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Abstract: Predicting material properties of 3D printed polymer products is a challenge in additive
manufacturing due to the highly localized and complex manufacturing process. The microstructure
of such products is fundamentally different from the ones obtained by using conventional man-
ufacturing methods, which makes the task even more difficult. As the first step of a systematic
multiscale approach, in this work, we have developed an artificial neural network (ANN) to predict
the mechanical properties of the crystalline form of Polyamide12 (PA12) based on data collected
from molecular dynamics (MD) simulations. Using the machine learning approach, we are able to
predict the stress–strain relations of PA12 once the macroscale deformation gradient is provided as an
input to the ANN. We have shown that this is an efficient and accurate approach, which can provide
a three-dimensional molecular-level anisotropic stress–strain relation of PA12 for any macroscale
mechanics model, such as finite element modeling at arbitrary quadrature points. This work lays the
foundation for a multiscale finite element method for simulating semicrystalline polymers, which
will be published as a separate study.

Keywords: molecular dynamics; crystalline polymers; ReaxFF; polyamide; machine learning; neural
network

1. Introduction

Material modeling has been a great challenge for additive manufacturing and other
advanced manufacturing technologies. In additive manufacturing, the product is built
layer by layer; thus, the resultant properties are highly dependent on the printing process
both spatially and temporally at the localized regions. A microstructurally informed and
robust mechanical model is highly anticipated, as it would help to overcome the challenges
with manufacturing process, product design, and material selection.

One promising approach is multiscale modeling of 3D printed materials [1–3], which
has the ability to extract bottom-up material information to assess the macroscale properties
of the product. However, the cost of multiscale modeling may vary, especially when
it is involved with molecular-scale simulations. Traditionally, in multiscale modeling
of crystalline materials, this is overcome by using a technique called the Cauchy–Born
rule [4,5], which is an approximation of molecular dynamics by using simplified molecular
statics or by using the phase field crystal method for polycrystalline metals [6]. However, for
semicrystalline or amorphous materials, due to the lack of a definite crystal structure, full-
scale molecular dynamics must be utilized, which will significantly increase the cost of the
multiscale simulation. This is because the macroscale finite element method would require
a molecular-level stress–strain relation at each quadrature point for an arbitrarily given
strain and it is almost impossible to conduct concurrent molecular dynamics simulations
unless one has abundant computational resources.
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The task at hand is to simulate the molecular-level stress–strain relation under arbitrary
strain and temperature with good accuracy, efficiency, and low cost. To solve this problem,
in the present work, we adopted a machine learning approach by developing an artificial
neural network (ANN) that is trained on a molecular dynamics (MD) data set, which can
predict the molecular-level mechanical material properties of polymeric materials.

Current efforts in machine learning-driven material property predictions involve a
variety of approaches. One common approach is to use features based on the material
composition to obtain structure and electronic properties, such as predicting the band
gap of semiconductor materials using convolutional neural networks [7] and predicting
adsorption energies of high-entropy alloys through deep neural networks [8]. In a recent
study, standard feedforward neural networks are used with EAM-based MD simulations
to model crystal plasticity in a multiscale framework [5].

Additive manufacturing can use a wide range of materials, such as synthetic poly-
mers, metal alloys [9], and biomaterials. Industrial applications range from the automotive
industry to tissue engineering [10], and understanding the mechanical properties of such
materials is still an open topic. Our focus in this work is on polymers, for which new appli-
cations emerge everyday, such as polyester membranes for biomedical applications [11]
and geopolymers used in the construction industry [12].

Polymeric materials have three different microstructural forms: crystal, amorphous,
and semicrystalline. As a starting point, we first develop an ANN to predict the mechanical
response of the anisotropic crystalline forms of polymers. The approach we presented can
be extended to include amorphous phases and will eventually be incorporated into the
constitutive relations of a multiscale finite element method for semicrystalline polymers.
One of the polymeric materials widely used in additive manufacturing is Polyamide12
(PA12), also known as Nylon12, which is a synthetic polymer that is used in many industrial
applications, such as automotive parts, aerospace applications, and medical components.
An automotive part manufactured using the multi-jet fusion process is shown in Figure 1.

Figure 1. A 3D printed PA12 auto part via HP multi-jet fusion (Courtesy of Ford Motor Company).

PA12 has the chemical formula [-(CH2)11C(O)NH-]n as visualized in Figure 2. In
recent years, many 3D printed PA12 products have been fabricated and they have shown
some outstanding material properties. Additively manufactured PA12 is a semicrystalline
material, in which the microstructure has a sandwich-like structure of alternating regions
of crystal and amorphous zones.

3D Atomistic (2)

Page 1 of 1
Printed by Materials Studio at 6:13:00 PM on 2/24/2023

Figure 2. Polyamide12 molecules. Gray, white, blue, and red spheres represent carbon, hydrogen,
nitrogen, and oxygen atoms, respectively. Dashed lines indicate the H bonds.
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Its structural characterization has been extensively studied since the 1970s with X-ray
diffraction (XRD) experiments [13,14] and with nuclear magnetic resonance (NMR) spec-
troscopy [15], which revealed that PA12 displays polymorphism and can have crystal
phases α, α′, γ, and γ′. The most abundant phase is the γ form, which results from slow
cooling at atmospheric pressure, whereas the other phases require specific conditions such
as rapid quenching and/or high-pressure treatment. For the purposes of our study, we
focus on the γ crystal form.

2. Molecular Dynamics Simulations

In this section, we describe the details of molecular dynamics simulations, such as the
preparation of initial configurations, force field selection, and simulation procedures, and
we conduct a preliminary study.

2.1. System Setup

We start by constructing the unit cell of the γ form PA12 crystal. The γ phase has
a pseudo-hexagonal monoclinic structure with the lattice parameters summarized in
Table 1 [13,14]. Using the atomistic coordinates and the lattice parameters from the experi-
mental literature [14], the unit cell of the γ phase is constructed. This monoclinic structure
contains four PA12 chains and is visualized in Figure 3. Note that the dashed lines indicate
hydrogen bonds and that the unit cell is periodic in all directions.

Table 1. Lattice parameters for γ form PA12 crystal from [13,14].

Lattice Parameters

a 4.79 Å
b 31.90 Å
c 9.58 Å
β 120◦

Space Group P21/C

unitcellVisualized

Page 1 of 1
Printed by Materials Studio at 4:04:21 PM on 2/24/2023

(a) (b)

Figure 3. Unit cell of the γ form PA12: (a) monoclinic cell; (b) orthogonal transformation.

Polymer chains are aligned with the y-axis, and the unit cell represents a perfect
crystalline system with infinite chain length and no defects. MD simulations of triclinic
(non-orthogonal) boxes are computationally expensive, due to the irregular partitioning of
the processor subdomain. To improve the efficiency, we transform the simulation box into
an orthogonal cell with chains aligned with the z-axis, which is depicted in Figure 3. The
unit cell is then duplicated by (8× 4× 2) in the (x, y, z) directions, respectively, to create a
supercell for MD simulations. The resulting model, which consists of around 9500 atoms
and has dimensions [38.3× 33.2× 63.8], is visualized in Figure 4.
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(a)
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(b)

Figure 4. Supercell of perfect PA12 crystals: (a) view from x-y plane; (b) view from y-z plane.

2.2. Force Field Selection

Force fields represent the interactions between atoms and molecules using a set of
equations. In classical forms, force fields consist of empirical potentials that describe bonded
interactions (primary bonds, bond angles, and dihedrals) and non-bonded interactions
(van der Waals and electrostatic). Choosing a suitable force field for the system under
consideration is a crucial part of molecular dynamics simulations.

Several empirical force fields have been used in the simulation of polyamides, some
popular examples being OPLS, CVFF, COMPASS, and DREIDING [16]. However, these
potentials are typically unable to model chemical reactions and cannot account for bond
dissociation. Hence, they are not the ideal choice for investigating the mechanical response
of the system in the context of fracture mechanics and rupture of polymer crystals, which
may involve the chain scission process [17,18].

Reactive force fields, on the other hand, have been developed to simulate complex
chemical reactions and have been used successfully in deformation simulations that involve
bond cleavage. Once such a force field is ReaxFF, originally developed by van Duin [19],
which utilizes the so-called bond order formalism to describe chemical bonding. ReaxFF
requires no topology information and it is easy to construct initial MD configurations since
only the atomistic coordinates are needed. ReaxFF specially treats weak hydrogen bonds
with an explicit energy term in the functional, which plays an important role in polymer
systems. The current implementation in LAMMPS utilizes the functional described in [20].

ReaxFF is parameterized for a wide range of materials through quantum mechanical
calculations [21] and has also been used in the simulation of polyamide crystals before [22].
For our polymer system, we tested three such parameterizations [23–25]. The test process
involved relaxing the initial structure in the NPT ensemble and comparing the resultant
lattice parameters with the experimental values. Among these, the ReaxFF parameterization
by Mattson [24] yielded the best result; therefore, it was chosen as the force field for
this study.

2.3. Simulation Details and Preliminary Analysis

Molecular dynamics simulations are performed using the Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [26]. The simulations are run on Berkeley’s high-
performance computing cluster Savio using a [4× 2× 4] CPU grid. MD time steps are
chosen as 0.5 fs. Nosé–Hoover thermostat and barostat [27] are used to control temperature
and pressure, respectively, with damping parameters chosen as 50 fs and 500 fs. Damping
parameters were chosen according to the LAMMPS documentation, which recommends
temperature and pressure damping to be 100 and 1000 times the time step, respectively.

The initial structure is relaxed in the constant pressure and temperature (NPT) ensem-
ble at 300 K and 1 atm, where the pressure is controlled independently in all directions. We
observed that an NPT simulation for 50 ps was sufficient to reach equilibrium, as the lattice
parameters stabilized adequately at this point.

As a preliminary study and to investigate in detail the anisotropic mechanical response
of PA12 crystals, we constructed a larger MD cell with 38,000 atoms. After relaxation under
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ambient conditions, we deform the system in different directions under uniaxial tension.
Uniaxial deformation is imposed by stretching the unit cell in one direction at a constant
strain rate and relaxing the other two dimensions with the NPT ensemble at 1 atm. For this
part of the study, we used slower strain rates and deformed the cell quasi-statically in a
step-by-step fashion as described in [28]. In this process, the MD cell is deformed to 1% of
its final stretch and relaxed in the NVT ensemble, and the stress is sampled and averaged
over 5 ps intervals. These steps are repeated until rupture of the polymer chains is observed
and the resulting stress–strain behaviors are shown in Figure 5 for each direction.

(a) x-direction (b) y-direction (c) z-direction

Figure 5. Stress (MPa) versus strain (engineering) behavior of PA12 in uniaxial tension.

In Figure 5, we observe that the system is highly anisotropic; crystal is significantly
more stiff in the z-direction, which is the direction of polymer chain alignment, and it
is more ductile in the other two directions. Interestingly, for the x-direction, Figure 5a,
there was a remarkable increase in the elastic modulus once the strain reached around
12%. We explored this phenomenon to comprehend whether it involves a mechanically
induced phase transformation, by deforming the original monoclinic crystal supercell
in the x-direction. The resulting atomistic configurations before and after the change in
elastic modulus are visualized in Figure 6, in which we clearly observe a change in the
microstructural configurations.

(a) Before the elastic modulus change (b) After the elastic modulus change

Figure 6. Snapshots of the atomistic configurations during deformation in the x-direction.

Upon additional analysis, we understood that the process is completely reversible and
the effect disappears once the MD cell is unloaded to its original state. Further investigation
may be required to draw a meaningful conclusion about the phenomenon.

3. Artificial Neural Network for Constitutive Law

In this section, we present a data-driven approach to model the hyperelastic constitu-
tive law of crystalline PA12, to be used in multiscale mechanics simulations. Our task is to
find the mapping between the deformation state and the resulting material response, using
the data obtained from the molecular dynamics simulations on an artificial neural net-
work (ANN). We discuss data collection, model selection, training phase, and predictions
in detail.
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3.1. Data Collection and Processing

In order to generate the data set to train the learning model, we performed MD simula-
tions by deforming the PA12 supercell in different directions with varying strain rates. For
the purposes of this study, we limit our attention to uniaxial and biaxial tensile deforma-
tions, although the presented methodology should be applicable to any deformation mode.
Using the findings of the preliminary study, Figure 5, we determined the final stretch limits
of the simulation box necessary in each direction and corresponding strain rate ranges, as
summarized in Table 2. In all simulations, the supercell is deformed for 10,000 steps with a
rate chosen from the prescribed ranges depending on the loading direction. Specifically, we
chose 15 evenly spaced values from the ranges in Table 2, and took their combinations to
obtain uniaxial and biaxial loading cases, resulting in 720 different MD simulations, each
having different final stretches and strain rates. Note that the ultimate strains would only
be reached at simulations which utilize the maximum strain rates.

Table 2. Ultimate strain and resulting ranges of strain rates for each direction.

Deformation Direction
x y z

Ultimate Strain 0.5 0.6 0.15
Strain Rate (10−6/ f s) [3.3, 50] [4, 60] [1, 15]

Each deformation simulation is run for 5 ps, and the virial stress and the box dimen-
sions are sampled at 50 fs intervals. Consequently, after running all the 720 simulations,
we collected a data set consisting of 72,720 data points. Each data point is 12 dimensional,
representing the deformation (six components) and stress (six components) states of the
PA12 crystal. Note that the process described here involves remarkably high strain rates
and short simulation times, since it was not computationally feasible to conduct slower
simulations and collect a large data set at the same time.

The original data from MD simulations consist of box dimensions l = {lx, ly, lz} which
can be used to construct the deformation gradient F, and the stress measure we get is the
pressure tensor, known as the virial stress. Virial stress has been shown to be equivalent to
continuum Cauchy stress σ [29]. In order to adopt the model into the continuum mechanics
framework, we need to transform the data set into the tensor quantities utilized in finite
deformation. To preserve material objectivity [5,30], we chose the energetic conjugates right
Cauchy–Green tensor C and the second Piola–Kirchhoff (PK2) stress tensor S to represent
the deformation state and material response, respectively. Each of these second-order
tensors have nine components, but making use of the symmetry and Voigt notation we
represent them in the vector form as below.

C = [C11, C22, C33, C12, C13, C23] (1)

S = [S11, S22, S33, S12, S13, S23] (2)

Using the elementary relations of continuum mechanics, we can obtain the C and S
tensors as follows.

J = det F (3)

C = FT F (4)

S = JF−1σF−T (5)

Now, we can state our goal as finding the map,

Ψ : C → S (6)

where Ψ encapsulates the constitutive model that we are going to approximate through
supervised learning.
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Finally, we normalize our input data set to have a mean of zero and a standard
deviation of one, a process known as standardization. It is common practice in gradient-
based learning methods to standardize the data, which improves the performance of
ANNs by helping to solve the convergence issues of the backpropagation algorithm [31,32].
Standardization can be described as follows.

Cstd
ij =

Cij − µ̂ij

σ̂ij
for i, j = 1, 2, 3. (7)

where Cstd
ij is the normalized component of the right Cauchy–Green tensor, µ̂ij is the sample

mean, and σ̂ij is the sample standard deviation of the respective component.

3.2. Model Selection and Results

We adopt a fully connected feedforward network architecture to construct our regres-
sion ANN, which may be called a multilayer perceptron (MLP). As shown by the universal
approximation theorem, feedforward neural networks can approximate any continuous
function, provided that they have at least one hidden layer, have enough neurons, and the
activation functions satisfy certain properties [33,34]. Thus, we believe that an MLP is a
suitable choice to approximate the hyperelastic constitutive law. The Keras [35] Python
interface of the TensorFlow [36] machine learning package is used to select and train our
ANN model.

Our task is to find an approximation to the constitutive model defined in Equation (6).
Formally, we can express the learning problem as follows.

Find
N (C, w) = Ŝ (8)

such that
w = argmin

w
L(S, Ŝ) (9)

whereN encodes the ANN, w is known as the weight of each neuron, and L is a loss function.
The task in supervised learning is to find optimal weights w such that the metric defined in
the loss function is minimized.

To select the ANN model parameters known as hyperparameters, such as the number of
hidden layers, the number of neurons in each layer, the type of activation functions, and
the learning rate of the gradient descent, we perform hyperparameter optimization. We
chose two candidate activation functions that are commonly used in regression, the ReLu
function and its smooth approximate version known as the Softplus function.

ReLu : σ(x) = max(x) Softplus : σ(x) = log(1 + ex) (10)

For the loss function, we choose the mean squared error (MSE) of the PK2 stress, which
is defined as

LMSE(S, Ŝ) =
1
n

n

∑
i=1
||Si − Ŝi||22 , (11)

where S is the PK2 stress obtained from MD simulations, Ŝ is the predicted stress from
ANN, and n is the number of data points.

We tried two methodologies to select the best set of hyperparameters, the HyperBand
algorithm [37] and Bayesian Optimization with Gaussian Process [38]. Both algorithms
would pick the best parameters from a predefined set, which would give the lowest
validation loss. The set of parameters that we search for is determined by preliminary
analysis, where the optimizer of the ANN is chosen as the Adam algorithm [39], which
implements a version of the stochastic gradient descent (SGD) method. Accordingly, we
chose the range of parameters to perform hyperparameter tuning, as shown in Table 3.
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Table 3. Hyperparameter search grid.

Hyperparameters

Hidden Layers Neurons Activation Function Learning Rate

[2, 5] [32, 256] {ReLu, Softplus} {10−1, 10−2, 10−3}

We start by partitioning the data into a random 80–20% train–test split. Then, we run
hyperparameter optimization using Hyperband and Bayesian Optimization methods in the
domain described in Table 3, leaving aside 20% of the training data to be used to compute
validation loss. For all models, the learning rate γ = 10−2 and the number of hidden layers
of four or five gave us the best results. For the rest of the hyperparameters, we investigated
the top ten models and chose the ones with the lowest complexity to reduce overfitting.
Resulting candidate models are summarized in Table 4.

Table 4. ANN architectures resulting from Hyperband method and Bayesian Optimization.

Hyperband (1) Bayesian (2) Hyperband (3) Bayesian (4)

Input Layer 6 6 6 6
Hidden Layer 1 192 × ReLu 64 × ReLu 160 × ReLu 224 × ReLu
Hidden Layer 2 32 × Softplus 32 × Softplus 64 × Softplus 96 × Softplus
Hidden Layer 3 32 × ReLu 256 × Softplus 32 × ReLu 64 × ReLu
Hidden Layer 4 64 × ReLu 32 × ReLu 128 Softplus 96 × Softplus
Hidden Layer 5 128 × ReLu 64 × ReLu - -
Output Layer 6 × Linear 6 ×Linear 6 × Linear 6 ×Linear

Validation Loss 15,630 15,026 14,109 13,538

The models summarized above are trained on the train data set for 1000 epochs and
predictions are made on the test data to assess our final performance. The resulting train-
test history curves, in terms of MSE in PK2 stress (MPa), are presented in Figure 7. We
conclude that the ANNs are stable, there is no significant overfitting, and they perform well
against the test data set, as seen from the test loss. The best model appears to be ANN-4,
the rightmost column in Table 4, and its architecture is schematically visualized in Figure 8.

60,000
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40,000

30,000

20,000

10,000

60,000

50,000

40,000

30,000

20,000

10,000
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Figure 7. Learning curves of the ANNS: training and test loss (MPa) during training phase.
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Figure 8. ANN-4 schematic representation [40].

Finally, we tested ANN-4 against a new set of uniaxial tension MD simulations to
observe the performance of our models against the variance in the strain rate. Two of the
simulations utilized strain rates ε̇1 = 5× 10−6/ f s and ε̇2 = 10× 10−6/ f s, which are within
the training interval defined in Table 2. Predictions from ANN-4 are compared with the
MD results, and the resultant C33 versus S33 (MPa) relations are shown in Figure 9. The
predictions in the elastic range and the ultimate strength are in great agreement with the
MD findings, demonstrating the predictive power of the ML approach.

Figure 9. Predictions of ANN-4 for uniaxial tension in z-direction for a new set of simulations. The
strain rates are contained in the training range.

We consider two additional MD simulations that employed strain rates lying beyond
the training range, encompassing both extremes. These strain rates are defined as ε̇3 =
0.5× 10−6/ f s (slower) and ε̇4 = 30× 10−6/ f s (faster). The corresponding results are
shown in Figure 10, together with the MD results, for comparison. Although the slower
rate led to a slightly higher ultimate strength, remarkable agreement is observed within
the elastic range. Here, the ANN effectively captured intricate aspects of the loading
path. The findings clearly demonstrate the capacity of the model for generalization and
robustness across various strain rates, which makes it a promising candidate for effectively
describing the constitutive laws of crystalline polymers to be used in large-deformation
FEM simulations.
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Figure 10. Predictions of ANN-4 for uniaxial tension in z-direction for a new set of simulations. The
strain rates are beyond the range of the training data.

In order to better quantify the model uncertainty of the ANN, we performed an
error analysis. We use the same four sets of simulations with different strain rates as
previously shown in Figures 9 and 10. We consider the full six components of the prediction,
namely the second Piola–Kirchhoff tensor Ŝ, and investigate how the error evolves with
the deformation by comparing it to the MD result S. Since the use of MSE does not make
sense here, we use the percentage error defined below.

Percentage Error = 100× ||S− Ŝ||2
||S||2

, (12)

Results are presented in Figure 11, with respect to the deformation. Note that we used
the tensor component C33 to represent axial deformation, to be consistent with the previous
discussions. We observe that the error remains close to zero for the elastic region, except for
the initial loading regime. When the material is further deformed and starts to yield, that is,
for C33 > 1.20, we start to see a significant increase in error. This is expected as the failure
mechanism and the material response beyond yielding would involve high uncertainty.
Out-of-domain data ε̇3 result in a significant error, especially during the initial loading
phase. On the other hand, ε̇4 outcomes are similar to those of the in-range data. From these
findings we infer that the model performs better when dealing with faster loading rates,
and there is a high uncertainty within the initial loading and the failure regions. Further
analysis may be required to draw a final conclusion as the data here were rather limited.

Figure 11. Percentage error, as defined in Equation (12), for different strain rates.

4. Conclusions

In this study, we have developed an artificial neural network to model the mechanical
response of crystalline polymers based on molecular dynamics simulations. Initial configu-
rations are generated to model PA12 in γ crystal form. ReaxFF was our choice for the force
field, and MD simulations are performed under uniaxial and biaxial tensile deformations
to generate a data set for the learning model.
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ANN architecture was selected through hyperparameter tuning algorithms and care-
fully calibrated using the training set. The training and validation process showed the best
model to be ANN-4, which was proven to be robust and accurate with no significant over-
fitting. The best model was tested against different strain rates, which covered above and
beyond the loading rate range of the training set. The results demonstrated the predictive
power and generalization capacity of our approach, even with strain rates that are much
slower or faster than the original data.

The presented methodology proved to be an efficient way of modeling the microstruc-
turally informed constitutive relation of crystalline polymers, which would be used in
macroscale FEM simulations. Namely, we presented an approach to accurately predict the
mapping between the right Cauchy–Green (C) and second PK2 stress (S) tensors, which
shall be utilized to compute the strain energy density of large deformation problems. Once
the model is trained, we can simply treat it as a black box for computing the strain energy
at arbitrary quadrature points and time steps, corresponding to the current deformation
state of the material.

There are some caveats that need further attention. As detailed in Section 2.3, there
may be a mechanically induced phase transformation of PA12, which may depend on the
particular additive manufacturing method and process parameters such as temperature and
printing speed. Furthermore, we only considered uniaxial and biaxial tensile deformations
in our training set. For general loading conditions, such as pure shear, compression, and
torsion, the artificial neural network will need more data, and the associated ML training
procedure may become more complicated and expensive. Nevertheless, the approach
outlined in this work can easily be extended to any deformation mode by obtaining the
corresponding MD data set and repeating the ML process.

It should be noted that our current investigation was limited to the fully crystalline
form of PA12 for demonstration purposes. The actual material components consist of
semicrystalline structures wherein the microstructure comprises amorphous and crystalline
regions. However, the MD and ML methodologies presented can be easily adopted for
amorphous domains. Additionally, considering larger simulation cells, having longer
relaxation windows, and adopting slower strain rates may be necessary to simulate more
accurate and realistic scenarios. These matters will be further investigated and reported in
a separate study.
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