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Urbanization creates novel ecosystems comprised of species assemblages and
environments with no natural analogue. Moreover, irrigation can alter plant
function compared to non-irrigated systems. However, the capacity
of irrigation to alter functional trait patterns across multiple species is
unknown but may be important for the dynamics of urban ecosystems. We
evaluated the hypothesis that urban irrigation influences plasticity in func-
tional traits by measuring carbon-gain and water-use traits of 30 tree
species planted in Southern California, USA spanning a coastal-to-desert gra-
dient. Tree species respond to irrigation through increasing the carbon-gain
trait relationship of leaf nitrogen per specific leaf area compared to their
native habitat. Moreover, most species shift to a water-use strategy of greater
water loss through stomata when planted in irrigated desert-like environ-
ments compared to coastal environments, implying that irrigated species
capitalize on increased water availability to cool their leaves in extreme heat
and high evaporative demand conditions. Therefore, irrigated urban environ-
ments increase the plasticity of trait responses compared to native ecosystems,
allowing for novel response to climatic variation. Our results indicate that
trees grown in water-resource-rich urban ecosystems can alter their functional
traits plasticity beyond those measured in native ecosystems, which can lead
to plant trait dynamics with no natural analogue.

Urbanization is a recognized cause of novel ecosystems, assemblages of species
living in environments with no natural analogue [1,2]. Novel urban tree commu-
nities result from including species from globally distributed biogeographic
provinces [3], and trees encountering factors that differ from natural stands,
from soil characteristics to variable microclimates [4,5]. Another cause of novel
tree communities is greater resource availability, notably irrigation, in the growing
environment [6]. The effect of urban irrigation on tree functioning can alter mor-
tality, growth and phenology [7,8], which may drive changes in important plant
traits. The potential for novel functional trait distributions as an additional effect
of irrigated urbanization and novel ecosystem in general is unknown.

Carbon gain and water use reflect trait variation axes linked to tree physiologi-
cal functioning and may change in response to urban irrigation. Trait
suites associated with carbon gain and water use reflect the trade-offs between
high resource use and faster growth on one end of the spectrum, and a reduced
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resource use and more conservative growth on the other [9].
The leaf economic spectrum (LES) describes the carbon-gain
axis [10] and is exemplified by the positive relationship between
specific leaf area (SLA) and leaf nitrogen concentration (%IN)
[11]. SLA and %N indicate allocation to maximum carbon-
gain potential, which is associated with LES position, varying
from fast to slow return on carbon investment to photosynthetic
structures [10]. An analogous spectrum considers leaf water-
use strategies [12], where conservative strategies enable preser-
vation of internal water resources in the presence of soil or
atmospheric drought. This trade-off is demonstrated in the
relationship between stomata guard cell length (GCL) and sto-
mata density, where longer length and low-density values are
associated with rapid water transport and loss [13]. Physiologi-
cal coupling of carbon gain and water use can be represented by
negative relationships between wood density (WD) and mini-
mum daily leaf water potential, where greater carbon gain is
associated with increasing water transport capacity in the
xylem [14]. However, how these trait distributions and their
coupling are expressed and vary in irrigated urban trees is
uncertain [15].

Irrigated urban trees may functionally differ from tree
species planted within natural stands in carbon-gain and
water-use traits. Urban irrigation could favour greater
carbon-gain and water-use traits, with effects increasing in
arid environments where enhanced evaporative cooling
would be beneficial [16]. Moreover, irrigation may decouple
carbon gain and water use, where instead of acting as a
trade-off, these processes run independently of each other
[17]. This decoupling provides opportunities for plants to
plastically respond to climatic changes. During extreme
heat, carbon-gain rates may become decoupled from tran-
spiration rates through access to soil moisture. [18,19]. The
slowing of photosynthetic processes during extreme heat,
while increasing leaf transpiration is likely facilitated by
available subsurface water and potentially leads to more lib-
eral water-use strategies which may protect leaves from heat
damage caused by more frequent future heatwaves [20,21].
Preventing soil drought through irrigation in arid environ-
ments can contribute to this decoupling, creating a
disconnect between atmospheric water demand and water
availability [22,23].

To identify consequences of urban high water resources
on trees and the potential for novel trait distributions, we
ask how does an irrigated urban environment affect tree
carbon-gain and water-use strategies? To answer this ques-
tion, we assessed trait values throughout the Los Angeles,
USA megacity. We use Los Angeles as a model urban ecosys-
tem spanning a coastal Mediterranean to arid desert climate
gradient with regular irrigation with extensive tree biodiver-
sity [3]. We hypothesized that trees respond to urban
irrigation by simultaneously increasing the capacity for
carbon gain and water transport. We tested the prediction
that high water resources found in irrigated urban systems
alter trait relationships for both carbon-gain and water-use
traits compared to the same species in their native habitats.
We also tested the prediction that effects of irrigation
would depend on climate such that increased aridity leads
to elevated carbon-gain traits and more liberal water-
use strategies. Our study aims to resolve uncertainties of
how key trait values and relationships respond to urban irri-
gation and highlight an under-recognized component of
novel ecosystems.

The Los Angeles Megacity comprises over 17.5 million residents
and is highly urbanized from the coast to the Coachella Valley
desert. Atmospheric aridity, measured as the difference between
mean atmospheric-saturation water vapour pressure and actual
water vapour pressure in the air (vapour—pressure deficit; VPD),
and maximum summer temperatures range from approximately
1.4 kPa and approximately 24.5°C on the coast, to approximately
6.1 kPa and approximately 41.0°C in the desert [24]. We use
mean VPD as a primary climate variable, as temperature and
VPD are tightly correlated across this region [25].

To assess trait distributions, we selected 30 tree species (electronic
supplementary material, appendix S2; table S1) representing 11
biomes of origin, and included eight of the 15 most common
Southern California street trees [3]. We located sample individuals
via partnership with trained local community scientists. Commu-
nity scientists identified potential individuals, recorded GPS
location and provided a qualitative evaluation of tree condition
and surrounding environment. We focused on healthy irrigated
specimens by only sampling community scientists identified
healthy trees with at least 65% irrigated area surrounding a 10 m
radius around the base of the tree.

We quantified the ‘carbon-gain’ train suite by being com-
prised of SLA, %N and leaf laminar thickness (LT) and the
‘water-use’ trait suite being comprised of GCL, stomatal density
(SD) and WD. We calculated water-use strategy shifts as the
coastal-to-desert variation between leaf water potential at pre-
dawn (¥pp), midday (Pymp) and their daily difference (A¥y).
Values of ¥pp approximate night-time equilibrium with soil
water potential, and values of Yyp and AY reflect daytime
plant water status, with more negative values indicating a liberal
water-use strategy [26]. Sampling procedures are included in
electronic supplementary material, appendix S1, and trait data
are available from a Dryad dataset [27].

To compare urban carbon-gain and water-use strategies to
trees in natural habitats, we obtained LES trait values (SLA
and %N), and water-use traits (¥pp and WD) for each species
from their native habitats with the TRY database and primary
sources and compared their linear regressions slopes [28-30].
Statistical analyses were completed in RStudio version 1.4.1106
[31].

We found the two primary axes of the principal component
analysis ordination comprised 65% of plant trait variation
(axis 1=36.5% variation, axis 2=29.6% variation)
(figure 1a). PC axis 1 was associated with carbon-gain traits
(SLA - loading value: 0.58, %N - loading value: 0.39, LT -
loading value: —0.64). PC axis 2 was mostly associated with
water-use traits (GCL - loading value: —0.42, SD — loading
value: 0.69, WD - loading value: 0.53). Carbon-gain traits
were significantly correlated with each other (SLA, %N; r =
0.31, SLA, LT; r=-0.59, %N, LT; r=—0.18). Some water-use
traits were significantly correlated (SD, GCL; r=-0.3, SD,
WD; r=0.25), although no significant correlation was
observed between GCL and WD (table 1).

Urban trees differed from natural stands in both carbon-
gain and water-use trait values showing greater leaf N per
unit SLA (figure 1b; difference between slopes: p=0.002;
urban: slope =0.015, Adj R%2=0.167, p =0.014; native habitat:
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Figure 1. (a) Principal components analysis of trait variation across all study species. Percentage next to axis label indicates the variation in trait values determined
by that axis. (b,¢) Trait coordination relationships for (b) two carbon-gain traits, SLA and per cent leaf N by mass (%N) and two (c) water-use traits are represented
as the relationship between WD and pre-dawn leaf water potential. Blue solid lines represent the linear regression and 95% confidence interval of urban sampled
data when linear regression is significant (o < 0.05). Green solid lines represent the linear regression and 95% confidence interval of data species representing the
trait spectra in native habitats (o < 0.05). Slopes of urban and native habitats are significantly different for (b) and (c) ((b): p=0.002, (c) p < 0.001).

Table 1. Correlation matrix of interactions across traits and aridity (VPD) of all sampled individuals. Only significant (p < 0.05) correlation coefficients are
bolded; non-significant coefficients are in italics.

SLA leaf nitrogen leaf thickness stomate density GCL WD
VPD 0.25 0.12 —0.09 0.05 0.04 0.01
SLA . 0.31 —0.59 ~005 01 —0.33
leaf nitrogen —0.18 0 —0.12 —-0.07
it [ By oo oal
stomate density -0.3 0.25
w Bt oo
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Table 2. Pearson correlation coefficients between functional traits and VPD, restricted to intraspecific variation within each study species. Significant (p < 0.05) n
coefficients are in bold; non-significant are italicized.

functional trait

S
3
species leaf nitrogen leaf thickness stomate density ‘é;
S
Afrocarpus falcatus —0.31 —0.16 0.068 0.71 0.93 0.44 ‘:;
Arbutuﬁ unedo - . 06 0.71 ‘ 40.74 » - —0.026 “—0.39‘ ‘ 0.47> - g
Brachychiton populneus 0.77 0.23 —-0.95 0.42 —047 0.5 %
Celtis sinensis 049 0% B 012 o ~051 05 S
Chitalpa tashkentensis -0.72 -1 1.42 —0.184 1.5 0.58 §
Gnnamomum camphora 065 05 038 04 e -0
Eucalyptus sideroxylon 0.55 —0.0036 0.43 0.12 —-04 —-0.092 S
Ficus micocarpa 0.7 —016 -0 0.7 C —0.66 —038 =
Fraxinus uhdei —-029 0.22 0.32 0.52 0.73 04 v
Gleditsia triacanths 02 019 031 054 034 067 S
Grevillea robusta —0.2 0.067 -1 0.36 0.53 —-0.97 §
Handroanthus impetignosa 0.28 —0.54 0.067 0.25 —041 0.63 &
Jacaranda mimosifolia —0.093 0.099 —-0.47 —-037 0.21 -05
Koelreuteria bipinnata —057 —059 056 —028 o2 048
Lagerstroemia indica 0.68 0.14 -033 —0.24 0.48 —-0.093
liguidambar stryacifua 057 0.26 —015 ~0.15 —0.54 033
Lophostemon confertus —-0.35 -0.27 0.046 —0.65 0.85 —-0.033
Magnolia grandifiord 0052 03 024 —0.62 0B 0061
Melaleuca quinquenervia 0.67 —0.44 —0.68 0.32 -032 —-0.46
Olea europgea 035 049 o - 0.47 0049 —019
Pistacia chinensis 0.43 0.9 -0.082 0.31 —0.81 —-0.64
Platanus racemosa 054 021 0.021 0.36 039 0.62
Populus freemontii —-0.18 0.024 0.59 0.88 —-0.69 0.38
Quercus agrifolia -0.25 0.57 —-0.31 -0.13 0.3 —0.57
Quercus engelmanii 0.58 0.18 —-0.46 0.001 0.68 —0.81
Rhus lancea =032 036 0B —0012 04 053
Schinus terebinthefolius 0.66 —0.035 —0.69 0.73 —0.64 0.035
Tipuana tipy 0 —033 o1 o 038 —0099
Ulmus parvifolia 0.031 -0.6 -0.19 0.61 —-0.54 0.77

slope =0.003, Adj R*=0.157, p<0.001). Urban trees dis-
played greater pre-dawn leaf water potential per unit WD
(figure 1c) compared to the natural stands. Urban trees
exhibited no relationship between ¥pp and WD, while
native counterparts displayed coupling of water-use and
carbon-gain traits through a negative correlation between
these traits (figure 1c; difference between slopes: p <0.001;
urban: p =0.210; native: p = 0.016).

(a) Interactions among species, traits and climate

Carbon-gain traits were positively correlated with aridity
across all sampled individuals (VPD, SLA; r=0.22, VPD, %
N; r=0.13) (table 1). Within individual species, we observed
more correlations between traits and the local climate, never-
theless, there was no singular trait approximately VPD
relation which was significant for all species. Similarly, no
species displayed significant correlations between all traits
approximately VPD. Twenty species exhibited significant

correlations among traits and climate, representing 76% of all
sampled species. All within-species significant correlations
between carbon-gain traits and VPD were positive, whereas
correlations of other traits as a function of VPD varied between
positive and negative depending on species and trait (table 2).

Across the climate gradient, water-use strategy within urban
species varied from coastal to desert regions. Out of 21 species,
four exhibited differences in coastal and desert ¥pp, 13 for ¥yp
and 11 species shifted mean A¥] between urban coast and
desert (p <0.05). For Ymp and AY;, all species that shifted
water-use strategies tended towards more liberal water use,
except Ficus microcarpa (figure 2). Six species increased A¥;, in
desert environments by more than a factor of two.

4. Discussion

In greater Los Angeles, urbanization with irrigation leads to
novel functional trait relationships. Irrigated urban trees
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Figure 2. Comparison of water-use in urban tree species planted near the coast versus the desert. Water-use change is described by: (a) difference between species
pre-dawn leaf water potential from coast to desert, (b) difference between species midday leaf water potential from coast to desert and (c) delta leaf water potential
(midday—pre-dawn) from coast to desert. The 1:1 line indicated no difference between coast or desert water use. The water-use parameter of species with red

points and greyed names was not significantly different between locations.

generally exhibited greater carbon gain relative to trees in
their native habitats. Our results show irrigated urban trees
pushing the bounds of the LES capacity for carbon gain
while reducing constraints to water losses. The combination
of increased carbon trait relationships and weakened water-
use relationships results in a decoupling of carbon-gain and

water-use strategies in urban trees. With the addition of irriga-
tion, urban trees have an unexpected capacity to present novel
water-use and carbon responses to extreme heat and aridity,
previously unmeasured in multi-species studies. We interpret
these results as evidence that functional traits of irrigated
urban trees diverge from relationships observed in native
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habitats to accelerate carbon gain and increase water loss, while
increasing aridity magnifies these effects. Irrigation-induced
trait changes and their sensitivity to aridity contribute a func-
tional component to novel urban ecosystems beyond changes
in environments and community assemblages.

While the urban tree traits were distributed into two axes
associated with carbon gain and water use, carbon-gain and
water-use strategies deviated from their respective relation-
ships in natural stands in contrasting ways. We interpret this
as carbon trait relationships are amplified in irrigated urban
settings and water-use trait relationships are weakened com-
pared to native conditions. Within native habitats, resource
availability can determine ecological trade-offs in functional
trait suites [32]. The heightened ratio of N : SLA of resource-
saturated trees compared to natural habitats is consistent
with patterns of accelerated growth found in other urban for-
ests, creating a potential trade-off between increased carbon
sequestration at the cost of rapid mortality [33]. Carbon trait
responses occur in the context of reduced sensitivity of leaf
water-use traits to the constraints of xylem architecture, pro-
viding longer periods of carbon acquisition at the leaf level.
Our finding is consistent with studies showing that increased
soil moisture results in trees lessening stomatal control [34],
allowing for a ‘faster’ carbon gain in environments of higher
VPD. While such carbon and water-use trait decoupling can
also occur in tropical and sub-tropical trees growing in natural
stands where soil moisture is not limiting [19], as the urban
trees of the Los Angeles area represent species native to
biomes across the planet, our results suggest global trait flexi-
bility of diverse species planted in semi-arid urban
environments when irrigation is applied.

The decoupling between carbon-gain and water-use strat-
egies may facilitate increased functioning in environments of
extreme heat or atmospheric aridity than previously expected.
Correspondingly, the effect of urban irrigation on tree carbon-
gain and water-use traits also varied in response to climate.
Throughout our study, urban tree carbon-gain traits were posi-
tively correlated with aridity, which is in contrast with the
expected decrease in tree growth in response to increases in
VPD [22]. Concurrently, water-use strategy shifted to a more
liberal strategy in desert environments (figure 2), implying
that trees from diverse habitats can plastically alter water-use
strategies, meeting atmospheric demands when adequate soil
moisture is available. The ability to use available water there-
fore facilitates an increase in carbon gain and explains the
contrasting effects of long-term climate and irrigation and
points to another aspect of novel ecosystem trait distributions.
Shifting water-use responses mirror mechanistic predictions by
Wolf et al. [35] where under well-watered conditions, plants
that favour water-use-efficiency strategies, and plants that
favour carbon-maximizing stomatal strategies will act simi-
larly. These results occurred even for tree species that never
naturally experience the extreme heat and arid conditions
found in the desert. The combination of irrigation and extreme

climates in arid urban cities shows how human facilitation and n

trait flexibilities create novel functional compositions, as
increased functional plasticity opens up the arid urban species
pool to greater diversity [36,37].

Using a metropolitan region spanning a dramatic climate
gradient provides a unique ‘common garden’ to broadly
evaluate how irrigation influences tree functional traits and
to examine fundamental ecological relationships in urban
environments [38]. While urban environments have been con-
sidered laboratories to study species composition due to their
global diversity of tree species [39] and effects of global
change [40,41], using this laboratory we found that urban
irrigation is associated with distinct functional trait relation-
ships. These findings further highlight the importance of
the distinct effects of atmospheric drought separately from
soil drought. The unexpected responses of trees to increased
water resources are an important constraint when evaluating
future functioning of urban forests. We focused on irrigation
as a cause of the high-water resource availability which can
influence tree function; however, the urban environment
also contains other potential sources of high-resource avail-
ability, including CO,, nitrogen and heat, all which can
influence function [42-44]. Within cities, policy has called
for increased planting of ‘drought-tolerant’ species [45]. Yet,
if cities do not change irrigation practices, our results suggest
‘drought-tolerant’ species may ultimately increase capacity
for water use. Our study demonstrates in an urban ecosys-
tem, as an example of a novel ecosystem, trees exhibit
unexpected flexibility in ecological strategies.

Raw data used for analysis are available from the
Dryad Digital Repository: https://doi.org/10.6086/DIN96B [27].
Data include a .csv file of all leaf and stem trait data collected and
analysed in the study for each sampled tree (RT all.csv), a .csv
file of leaf water potential measurements for all trees used in the
study (RT_water_potential.csv) and a README file with metadata
describing column names, descriptions and units.

Supplementary material is available online [46].
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