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ABSTRACT OF THE DISSERTATION
Hamiltonian Systems and Gibbs Measures
by

Samantha Xu
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2014

Professor Rowan Killip, Chair

Consider the radial nonlinear wave equation —9u + Au = u?, u: R, x R —» R,
u(t,z) = u(t,|z]). In this thesis, we construct a Gibbs measure for this system
and prove its invariance under the flow of the NLW. In particular, we are in the

infinite volume setting.

For the finite volume analogue, specifically on the unit ball with zero boundary
values, an invariant Gibbs measure was constructed by Burq, Tvetkov, and de

Suzzoni [9,12] as a Borel measure on super-critical Sobolev spaces.

We first show that this finite volume Gibbs measure is supported on a space
of weighted Holder continuous functions. Next, we show that the NLW is locally
well-posed there, a counter-point to the Sobolev super-criticality noted by Burq

and Tzvetkov. Furthermore, the flow of the NLW leaves this measure invariant.

We use a multi-time Feynman—Kac formula to construct the infinite volume
limit measure by computing the asymptotics of the fundamental solution of an
appropriate parabolic PDE. We use finite speed of propagation and results from

descriptive set theory to establish invariance of the infinite volume measure.
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CHAPTER 1

Introduction

In this thesis, we consider the 3D radial, defocusing, cubic, nonlinear wave equa-
tion (NLW)

—02u + Au = u?,

u:Ry x R = R,

u(t, ) = u(t,|z|) = ult,r)

with Hamiltonian H(u) = [s $|ul|* + 3|Vul® + 3|w/|?. We wish to construct the

Gibbs measure, which we informally write as

1 lul*  |Vul? 1 | |2
[19 :: 7 o d “d 2 _ d C(d b
2 eXp( /Rs g g ) e w g exp /Rg g 1)

and show that the flow of the NLW is defined for all time on the support of the

Gibbs measure, and leaves this measure invariant.

This problem is a specific case of the investigation of invariant Gibbs mea-
sures on the phase space of various differential equations. This area has seen an
increasing focus of research in recent years, partially due to the fact that Gibbs
measure allow for global existence results at regularities which are not available

in the deterministic setting.

We introduce this area via a sequence of examples, beginning with the classical

case of Liouville’s theorem.



1.1 The Finite Dimensional Case

Theorem 1.1 (Liouville). Let H = H(p1,...,pa,q1,---,qq) € C*(R*?). Then the

flow of

dp, ~OH dqy. OH
— = and — =

= — = —— k=1,...,d 1.1
dt 8Qk dt apk’ fOT’ ? ? ( )

preserves the Lebesque measure Hizl dprdgq, on R?.

Furthermore, the partially normalized Gibbs measure exp(—H) HZ=1 dprdqy, is

invariant under the flow given by (1.1).

Remark. 1f Z := [z, exp(—H) HZ:1 dprdq, < oo, then the Gibbs measure

d

1

- exp(—H) | [ dprday
k=1

is also preserved by (1.1).

Proof. We write ¥ € R?? in coordinates as ¥ = (p1,...,P4,q1,---,qa).- Then,

equality of mixed partials shows that the vector field

—

V<p17"'7pd7q17---,Qd) I_( i )

T TR

on R?? is divergence free.

Let B C R?*@ be a bounded, open set with smooth boundary. For ¢t € R, denote
by B; the flow of B under (1.1) at time ¢. Writing |B;| for Lebesgue measure of

By, then the divergence theorem gives

d| B .

t — N —

- /... 7dS= [ ... . dp.dg. =
dt / /8Btv " S / /Btv V ]H1 pj q] 07

where 77 denotes the unit normal vector, 0B; denotes the boundary of B, and dS

denotes the induced surface measure on 0B;. Namely, the flow with respect to a



divergence free vector preserves Lebesgue measure. It follows that ngl dprdqy is

invariant under (1.1).

Furthermore, applying the chain rule and (1.1) shows

dH < (9H d OH d “ /OHOH OH OH
L) - -

dt opr dt " dq, dt ) Opr Oqr.  OquOpr)

k=1 k=1

This proves the second assertion, as the Radon—Nikodym derivative exp(—H) is

also invariant under (1.1). O

We illustrate Liouville’s theorem with some simple examples.

The most trivial example of a Hamiltonian ODE is H = 0. In this case,
the flow of (1.1) leaves each point fixed. Clearly, every Borel measure on R?? is

preserved by this flow.

Another example is the Hamiltonian H : R? — R given by
H(p.q) =350 +¢).

By Liouville’s theorem, the flow of the ODE

dp _O0H _ dg _ 0H _

it~ oq 7T it~ op 7

preserves Lebesgue measure on R2. Indeed, another way to recognize this result
is as follows: the flow defined above is a rotation in R? about the origin. In
particular, for fixed ¢t € R, the flow is a linear, orthogonal transformation on R?
and thus preserves Lebesgue measure. Furthermore, the Gibbs measure for this

system is

1 1 1
7 &P(=H(p,q))dpdg = 5— exp (—5 (p* + q2)) dpdyq,



which is also the standard Gaussian measure on R?. In the following section, we

observe an infinite dimensional version of this system.

1.2 A Simple Infinite Dimensional Case

Let L > 0 and let B(0, L) C R? denote the ball in R? of radius L and with center
at 0. Let A, = Ap pi» denote the Laplacian on B(0, L) with Dirichlet boundary

conditions.

In this section, we consider the linear wave equation

—02u+ Apu =0,
u: Ry x B(0,L) — R,
(1.2)
u(t, ) = u(t,|z]) = u(t,r),
| ulr,xoB(0,1) =0
and its associatied Hamiltonian,
1 2 L
H = H(u,u;) = —|Vul* 4+ = |u”. (1.3)
B(0,L) 2 2

We would like to make sense of the Gibbs measure

1
dML(“? ut) = Z eXp(_H) “d(ua ut)”

1 / 1 1 1,
=—exp|— —|Vul ) “du” ® — exp (—/ — |y ) “dug”  (1.4)
Z ( B(0,L) 2 A B(0,L) 2| ' '

in a manner similar to the previous section. An initial obstacle is the fact that
Lebesgue measure does not exist in infinite dimensions, which is why we write du

and du; in quotes. Specifically, we observe the following result.

Proposition 1.2. Let X be a separable, infinite dimensional Banach space and

let p be a translation-invariant, positive, Borel measure on X. If u(B) < oo for



any ball B C X of finite radii, then u is the trivial measure.

Proof. Let B C X be a ball of radius R such that u(B) < co. Let us denote by
B/2 the ball with the same center as B, but with radius R/2. Since X is infinite

dimensional, there exists a sequence {p,};>1 C B/2 such that

lp; — pell > R/4

for all j # k, by Riesz’s lemma (cf., [35, pg. 47]). The infinite sequence of balls
{B(p;, R/100)};>1 are pair-wise disjoint and

[j B(p;, R/100) C B. (1.5)

By translation invariance of p, we have

p(B(p1, R/100)) = p(B(p2, R/100)) =

Given this equality, as well as the assumption p(B) < oo, the hypothesis that u

is a positive measure, and (1.5), we have
0 = u(B(p1, R/100)) = p(B(p2, R/100)) = - - - . (1.6)

Let {z,}22, be a countable dense subset of X. By (1.6) and translation

invariance of p, we have
0 = p(B(x1, R/100)) = p(B(x2, £/100)) =
Since X = |, , B(z,, R/100) and p is a positive measure, we have

u(X) =0



and that p is the trivial measure. O]

The second obstacle is that, even if we have a “Lebesgue measure” on an
infinite dimensional space, the Radon—Nikodym derivative exp(—H) would be
almost surely 0 (which in turn forces the normalization constants to be infinite).
However, we may make sense of the aggregate expression in (1.4) as a Gaussian

measure. The key observation is that we can diagonalize Ay in this setting.

1.2.1 A Free Gibbs Measure as a Gaussian Measure

Recall that the radial Laplacian can also be written as A = 97 + 29, and that the

normalized Lebesgue measure on B(0, L) is given by ﬁerrdasz. Consider the

following orthonormal basis for L? ,(B(0, L)) consisting of eigenfunctions of Ay:
\/2/Lsin(nmr/L)

Jno(r) == . ., n=12 .. (1.7)

with eigenvalues (nw/L)?, n =1,2,..., respectively.
Let us express radial functions on B(0, L) via their Fourier expansion: for

example, u € L2 ,(B(0,L)) is written u = > .°7 x,f, with {x,} € ¢*. The

rad

expression in (1.4) can then be formally interpreted as

1 / 1 2) 1 1 S g
—exp | — —|Vu|” | “du” =~ —exp | —= nw/L)%|x, dx,
oo (= [ 5w . <22< /02 I1

n=1 n=1

and

1 / 1 2> 1 I, o\
—exp | — —|ug? ) “du” = —exp | —= ) |z, dzx,

The latter expression can be simply read as the standard Gaussian measure on an
infinite dimensional Hilbert space, while the former include the Fourier multipliers

arising from taking a derivative. It follows that a natural setting to make a rigorous



definition of (1.4) is as a measure on Sobolev spaces.

Definition 1.3. For each s € R, consider the radial, homogeneous Sobolev space

: fad,O(B(Ou L) — (C) =

{g = chfn,L

¢ € C, |lg]

n=1

o

2 N 2 2

Hogo Z; In /L™ [en|” < OO} )
n=

and Hjad,O(B(O,L) — R), the sub-space with real coefficients. We equip these

spaces with the usual Borel o-algebra.

Letting s < %, we define the measure My in (1.4) to be the image measure on
. jad,O(B«)’ L) - R) HiadIO(B(()’ L) - R)

under the map

o (s

n=1

Zb ) for ( ) (), by(w) ~ Np(0,1) iid.
(1.8)
where w is an element of some suitable probability space (2, F, P) and ay, b, are

1.1.d. standard Gaussian random variables.

Indeed, the restriction s < % is due to the fact that

2
< o0
Hsl

rad,0

[P E S b ST

if and only if s < % and so M, is actually supported on such Sobolev spaces.

In the next two sections, we discuss changes of variables that will reappear
throughout this thesis, as well as how change of variables aid in proving invariance
of measures on infinite dimensional spaces of functions. In particular, we prove

invariance of the measure above in Proposition 1.6.



1.2.2 Reduction to One Dimensions and Complexification

At this point, we make several remarks to motivate our changes of variables.
First, since we are restricting our attention to radially symmetric functions, the

phenomena that we observe is essentially one dimensional.

Also, we observe that M is not quite supported on a space of functions.
Indeed, H* for s < —% is only defined as a space of distributions. Ultimately,
we wish to work on a space of (equivalence classes of) functions, and possibly
even on a space where we may evaluate the functions at a point. To this end, we
complexify the wave equation, and apply the corresponding change of variables to

M, as well.

First, let us recall our 3D linear wave equation

—0?u+ Apu =0,
u: Ry x B(0,L) — R,

u(t,z) = u(t,r),r = |z

ulr, xoB(0,0) = 0

The change of variables v = ru is bijective correspondence to solutions of the the

1D linear wave equation

—0% + 0?v = 0,
v:Ry x [0,L] = R,
v(t,0) =v(t,L) =0

Observe that the boundary condition v(¢,0) = 0 arises from the fact that we

are multiplying by r. The changes of variables w = v + i|0,| '0v is a bijective



correspondence to solutions of the complexified 1D linear wave equation

—10yw + |0, |w = 0,
w:Ry x[0,L] = C, (1.9)
w(t,0) =w(t,L)=0

Here, |0,| = /—0? can be understood in terms of the Fourier expansion, cf.,

(1.11) below. The composition of these changes of variables is
ur— ru+ |00 (ru)  or  (u,up) — Tu 4|0, ruy (1.10)

Let us observe how this change of variables affects the corresponding the function

spaces, the Gibbs measure, and the Hamiltonian structure.

Regarding function spaces, consider the following orthonormal basis of L2([0, L])

consisting of Dirichlet eigenfunctions of 9%

enr(r) :=+/2/Lsin(nrr/L), n=12...,

with eigenvalues (nw/L)%, n = 1,2,..., respectively. For each s € R, we define

the operators |0,|° = /=0, via
|0, |° sin(nmr/L) = |nw/L|® sin(nmr/L) (1.11)

for each integer n > 1.

Definition 1.4. For each s € R, consider the homogeneous Sobolev space

H;([0,L] = C) := {g = chemL | e € R, 9| fqg = Z Inmt/L|*|c,|* < oo} :
n=1 n=1

and Hg ([0, L] — R), the sub-space with real coefficients. We equip these spaces

with the usual Borel o-algebra.



Recalling (1.7), observe that e, ; = rf, . In general, f(r) — rf(r) is (up to

a constant multiple) an isometry from L? ,(B(0, L)) — L2([0, L]), because

[ [ oS = [ a

Furthermore, multiplication by r is an isometry Hﬁad’O(B (0,L) = A) — H([0, L] —
A), where A = R or C. It follows that the map

(f1, fo) V= 11 + 3Oy |7 f (1.12)

motivated by (1.10), is a homeomorphism
H a0 % Haao(B(0, L) — R) — H;([0, L] = C).

Regarding the Gibbs measure, The analogue of the randomization in (1.8)

under the change of variables (1.12) is

w Z an n:/ZLb )emL(T), an(w), by (w) ~ Ng(0,1), i.id. (1.13)

where, again, w is an element of some suitable probability space (2, F, P).

Definition 1.5. Fixing s < 1, let us denote by 4, the image measure on H3([0, L] —
C) under the map in (1.13). To separate the randomizations, let 1 and g o

denote the image measure on Hg([0, L] — R) under the maps

WHZ%%,L(T) and wr—>z 7T/L en.( (1.14)

respectively.

The connection between fir, pir,1, and pr, 2 is as follows: for Borel sets A;, Ay C

10



H;([0,L] = R),
1 ({9 | Re(g) € A1, Tm(g) € Ao}) = g1 (Ar)pr2(Az). (1.15)

Note that (1.12) is a measure preserving isomorphism

'

(Fraao X Hido(BO.L) = R), My ) —> (H3([0,L] = ). e

essentially by construction.

Regarding the Hamiltonian structure, we apply (1.10) to (1.3) to see that the

Hamiltonian corresponding to (1.9) is

H(w):/o %(|8r\w)2dr. (1.16)

Furthermore, let wo(r) € Hi([0, L] — C) with Fourier expansion

(e}

wo(r) =Y (a(0) + iga(0))en.c ().

n=1
The w(t, ) solution of (1.9) with initial datum w(0,7) = wy(r) is given by
w(t,r) = e hw(0,r) =Y (palt) +iga(t))en,c(r)
n=1
where

Palt) + igu(t) = e (p (0) + ign (0)).

Observe that
(nm/L)*(pp + 43)- (1.17)

N | —

H(w) =)

n=1

11



Differentiating p, and ¢, with respect to time and applying (1.17) gives, formally,

dpn
dt

_,OH dq _O0H
— == Ly 11— > 1. 1.1

= (n/L) G >

1.2.3 Invariance of the Gibbs Measure for the Linear Wave Equation

We use Liouville’s theorem, (1.18), as well as some considerations from descriptive

set theory to prove invariance of x; under the free propagator e o,

Proposition 1.6. Fiz s < . The flow e "% [eqves (H3([0, L] = C), ug) invari-
ant. Namely, for each t € R and for each Borel subset A € HS([O, L] — C), the

set

6—it|8r|A _ {e—it|8r\g g€ A}

is a measurable subset of H3([0,L] — C) and

pr(e M A) = g (A).

—it]dy

Proof. First, we observe that e | is defined for all ¢ and is an isometry from

H;([0, L] — C) to itself. It follows that e~ preserves measurability.

Since =% ig a bijection, we may reduce our analysis of invariance from all

Borel sets A € Hi([0, L] — C) to those of the form
A:{g:chemL:cjij,jzl,...,N} (1.19)
n=1

where N > 1 is a natural number and By,...,By C C are Borel sets. Sets of
the form (1.19) are known as cylinder sets and generate the Borel o-algebra (cf.,

Proposition A.4). So let us fix such an A of the form (1.19).

12



Let Dy denote the usual Dirichlet projection, defined by

0o N
Dy E Cn€n,L = E CNEn,L-
n=1 n=1

By (1.18) and Liouville’s theorem, we have
[Divuel(eV" Dy A) = [Dyur](DyA),

where [Dipu](B) == pur(Dy'B) denotes the push-forward (or image) measure on

spanc(eyr,...,en.). Since A is a cylinder set, we have

A= Dy'DyA

o=t 4 — D;{le—it\ar\DNA.

The result follows. O

Observe that invariance of the Gibbs measure for the original linear wave

equations follows from undoing the change of variables outlined in Section 1.2.2.

1.3 The Burq—Tzvetkov—de Suzzoni example

In this section, we consider a non-linear version of previous system. Let L > 0

and consider the cubic non-linear wave equation®

—0%u + Apu = u?,

w: R, x B(0,L) — R,
(1.20)
u(t,x) = u(t, |x|) = u(t,r),

| ulrixaB0,L) =0

!Burq and Tzvetkov actually considered the Gibbs measure for NLW —02u + Aru = |ul|Pu
when p < 3, though invariance of the Gibbs measure was only shown in the case p = 2 by de
Suzzoni.

13



As before, we make a change of variables to reduce down to one dimension, and

to complexify. Namely, the changes of variables

and, respectively,

w = v +i|0.| 0w = ru +i]0,| " rowu

is a bijective correspondence to solutions of

v:Ry x [0,L] = R, (1.21)
v(t,0) =v(t, L

SN~—
|

and, respectively,

w: Ry x [0,L] — C, (1.22)
w(t,0) = w(t, L) = 0.

—idhw + [Opw = 10,7 (B

We clarify what we mean by a solution.

Definition 1.7 (Strong Solution for (1.22)). Let B be a Banach space of complex-
valued functions on [0, L]. We say that w(t,r) : [-T,7T] x [0, L] — C is a strong
solution of (1.22) on [—T,T)| with initial datum g € B if

1. w e C)B([-T,T] x [0, L] — C), which is to say: for fixed t € [-T,T] we

have w(t,r) € B and that the B-norm of w varies continuously in time.

2. w(0,7) = g(r), and

14



3. w(t,r) obeys, as a distribution, the corresponding Duhamel formula

s [ [ () o

for each t € [T, T].

Furthermore, if w is the unique strong solution on [—7,7] with initial datum

g € B, then we write

Flowr(t,g)(r) == w(t,r), |t| <T.

In this section, we shall consider the case that
B = H;([0, L] - C),

for some fixed s < % In later sections, we consider the space of Holder continuous

functions.

1.3.1 The Gibbs Measure

Fix 0 < s < 1 and L > 0. Recall that 4i;, denote the Borel measure on H;([0,L] —
C) from Definition 1.5. We wish to make a suitable definition (and construction)

for the Gibbs measure for (1.22).

Now, the Hamiltonian for (1.22) is
L 1
H(w) = / 5(!@\“1)2 + L—l(Re(w))4 r2dr.
0

So, we wish to make sense of the expression

1

«“ no__ 1 L 1 2 1 4 -2 « "
Zexp(—H(w)) dw = - exp (—/0 §(|8r|w) +Z(Re(w)) r dr) dw”.
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Recall, the expression

! e ! /L(W |w)?dr | “dw”
7 P\ 79

is simply pr. Thus, we define the Gibbs measure for (1.22) as a Borel measure on

H; ([0, L] — C) given by

ZLL exp (—}1 /OL(Re g(r))r? dr) dpr(g). (1.23)

First, let us show that the measure in (1.23) is actually well-defined. In par-

ticular,

1. Is the Radon—Nikodym derivative actually a measurable function?

2. Is the Radon—Nikodym derivative not pp-almost surely zero?

For the first question, let

_ [" Reg(r)* AN
Kn(g) .—/O 2y (V) dr.

Here a A b = min(a,b) and a V b = max(a,b). Observe that

1K x(g) — Kn(h)] gN/O ((Reg)4AN4— (Reh)“/\N“‘ dr
5N/0 (IRe(g — )| AN) - (|Re(g)[* A N® + | Re(h)]* A N?) dr

L
§N4/ lg — hl| dr
0

<t N¥lg — Al

TS
HO’

and so Ky is actually a continuous function on Hg([0, L] — C). Indeed, it is even
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Lipschitz. It follows that

1 [t 1
exp (——/ (Re g(r))*r~2 dr) = lim exp (——KN(g)>
4 0 N—00 4
is a point-wise limit of continuous functions, and is hence measurable.

To answer the second question, we employ the following result.

Lemma 1.8 (Khinchin). Let a,(w) ~ Ng(0,1) i.i.d., and {c,}n € (*. There is
p o q/2
C > 0, such that for ¢ > 2, E* [‘ p an(w)cn‘q] < chﬂ(Zn:l |cn\2> .

integrals to obtain

=

Z n:/lllj )en,L(r)

We use Tonelli’s theorem, Khinchin’s inequality, and Minkowski’s theorem for
=1
2
En, 2
L ) ) r—2dr

]
o [ ()

( [ ()] /)

Using the inequality |sin(z)| < |#|'/3, we obtain

4
3,

L L
0 0
It follows that

w) + b, (w)
mr/L

en,L( )

er] <r (Zn 3)

=1

and so exp (—}L fOL(Re g(r))ir=2 dr) is pz-almost surely positive. We have proven

the following result.
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Proposition 1.9. The measure vy, given by

inle) = - (1 [ (Reglr)s = dr) sty

is a well-defined Borel measure on Hi([0,L] — C) for 0 < s < 5. It is mutually

absolutely continuous with respect to py,.

1.3.2 Connection with 3D Gibbs Measure

Let us recall the 3D non-linear wave equation

—0%u + Apu = u?,
w:Ry x B(0,L) =R,

u(t,x) = u(t, |x|) = u(t,r),

ulr, xoB(0,1) = 0

and its (formally defined) Gibbs measure
dmp(u,ug) := dmp1(u) @ dmg o(uy) (1.24)

where

1 1 1
dmyp(u) = ZGXP (— /B( 5 Z|u|4 + §|Vu|2> “du”
07

1 1
Oa

Observe that, formally speaking,

1 1
dmp(u,uy) = - &Xp <— /B(o Y Z—1|u\4) dMp(u, uy), (1.25)
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where My is as in Definition 1.3. In [9], it was noted that

<00, was. (1.26)
LA(B(0,L))

In particular, the Radon—Nikodym derivative

1
(u,uy) — exp (——/ |u|4> (1.27)
4 JBo,r)

is positive M}, almost surely, and so the expression in (1.25) is indeed well-defined.
In particular, my, is mutually absolutely continuous with respect to the free mea-

sure M.

Now, we apply the change of variables

(fl,fg) — ’I"fl +i|ar|_1<Tf2). (128)

The image of the My under this map is pur. Recall that the Radon-Nikodym
derivative in (1.27) only depends on the first component and that, for Borel mea-

surable functions ¥ : Hg([0, L] — R) — R, we have

/, U(f) dppa(f) = / U(rf) ding,(f).
Hg ([0.L)) a0 (BO.L))

In other words, letting

v =ew (=1 [ 150 ar)

then ¥(rf) = exp (—}L fOL |f(r)]*r? dr) = exp <_71; Js0.0) |f(7")|4>, which recov-
ers (1.27). Thus, under the change of variables (1.28), the corresponding Gibbs
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measure for (1.22) is indeed

inle) = - (=5 [ (Reglr))s dr) dunfo),

with Z; being a normalization constant.

1.3.3 Invariance of the 1D Gibbs Measure, v},

In a similar spirit as the linear, we first express the formal Hamiltonian structure

of (1.22). Let

o0

wo(r) = Z[ n(0) + ign(0)]en,r(r)

n=1
admit a unique, global, strong solution w(¢,r), and write
w(t,r) = Z[pn(t) + iqn(t)]en,(r)-

n=1

Writing the Hamiltonian in Fourier series,

4
1 & ) _
H(w) =3 ;(W/L) [ +ap) + / [anen L] r2dr.
If we apply (1.22) and equate coefficients, we formally obtain
dpn _ OH dqn 8H
m [y 1= = L) > 1.

Given this (formal) Hamiltonian structure and the definition of v, we expect
Flow[(t,-) to preserve vr. Indeed, the following was proven by Burq, Tzvetkov,

and de Suzzoni.

Theorem 1.10 (Burq-Tvetkov-de Suzzoni?, [9,12]). Let s < 3, let L > 0, and

2Strictly speaking, the results in [9,12] were stated in the 3-dimensional, complexified setting.
Theorem 1.10 is the restatement of their result after multiplication by 7.
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let vy, be as in (1.23). There exists a measurable set 11, C HE([0, L] — C) with

the following properties

1. VL<HL) =1.

2. Each g € 1l admits a unique, global, strong solution in Hg Namely,
Flow(t, g) is defined for allt € R, and, for each T € [0,00), we have

Flow(t,g) € C°Hy([-T,T] x [0, L] — C).

3. For each measurable set A C 1I;, and for each t € R, the set Flow(t,A) =
{Flow,(t,g) | g € A} is a measurable subset of H:([0, L] — C) and

vr(Flowy(t, A)) = v (A).

Though there are many similarities with the linear case, the proof of this result
is significantly more difficult. We outline the proof of this result, and refer the
reader to [9,12] for the details. Also, we note that Burq, Tzvetkov, and de Suzzoni
proved their results in the 3 dimensional, complexified setting, whereas we state
the results in the analogous results in the one dimensional, complexified setting.

Let x € CZ(R — R) such that y = 1 on (—1/2,1/2) and is zero on R\ (-1, 1).
Rather than using the sharp Fourier cut-offs Dy as in the linear case, Burq and

Tzvetkov used the operator Sy given by

SN (i cne> = ix(nQ/NZ)cnemL
n=1 n=1

Similarly to the linear case, we first examine a closely related finite dimensional

system, establish invariance of the corresponding Gibbs measure, and pass to an
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infinite dimensional limit. To begin, consider the system

0w — |0, |w = Sy (0| )
w:Rx[0,L] - C
w(t,0) =w(t,L)=0

with initial data

w(0,7) = wy(r) € En :=span(eir,...,enL)

and Hamiltonian

b1 2 "1 1,2
H(w) = i §(|8r|w) dr + i Z(SNRew)r dr.

Since this is a finite dimensional system and all of the terms in the Hamiltonian are
positive, we may use conservation of the Hamiltonian to repeatedly apply Picard
iteration to obtain global existence. Let us denote the initial data to solution map
wo(r) — w(t,r) by

Flowy (t,w) :== w(t,r).

We record the result below.

Lemma 1.11. Flowy 1, is globally defined on Exy.

Define py s, as the image measure on Ey given by the randomization

an(w) + ib, (w)
W Z mr/L el

where w is an element of some suitable probability space (€2, P). Define vy 1, via

ionalg) = e (1 [ 0Sx(@N0) dr) dinalo)
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These are the finite dimensional analogues of u; and vy, respectively. Again,
since we are working with a finite dimensional system, we may apply Liouville’s

theorem to prove the following result.

Lemma 1.12. vy 1 is invariant under Flowy 1.

To pass to the infinite dimensional limit and obtain almost sure global existence
of solutions, we wish to estimate the measure of the sets on which we apply

contraction mapping. To this end, Burq and Tzvetkov proved the following result.

Lemma 1.13 (Burq-Tzvetkov, [9]). Let 2 < p < 6 and s < 5. There ezists some

Cp, Cs, C > 0 such that
pL ({9 € H;

UL <{g S HS

Hr%e_“'a"‘g(r)‘

> /\}) < Qe
LPLE([0,2]%[0,L])

and

lgllg > A}) < Ceme

for every A > 0.

As a sketch of the proof, we apply Markov’s inequality: for X a random

variable and for ¢ > 0,

POX] > A) <

In our case, the random variable amounts a random Gaussian series, to which we
may apply Khinchin’s inequality 1.8. To close the argument, we then specialize

to an optimal choice of ¢, which, in this case, happens to be ¢ = \?/2.

In particular, we note that similar estimates hold for py r, where we may
choose the constants ¢, cs,C' to be independent of N. Using invariance of jin z,
under Flowy ;, and the large deviation estimates, Burq and Tzvetkov iterated the

flow map to obtain long term growth estimates.
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Lemma 1.14. For every integer N > 1, there exists a jy 1, measurable set ol C

En such that

1. HN,L(EN\O'j\» < 2~

2. For every i, N € N, every wy € XY,

2—-p

r e ol (r)

+|| Flo t,
LPL2(0.2]x[0,L) [ Flows.. (£, wo)l

H3(0,E]) S Vi +log(1 + [t])
for all t € R, where the implicit constant does not depend on i, N, nor wy.

Using the long term estimates on Flowy ; and the fact we may close a con-

traction mapping argument whenever

Burq and Tzvetkov were able to establish assertions (1) and (2) in Theorem 1.10.

2—p

re e’”'a”wo(r)‘

+ [[wol
LYLE(0.2)x[0.1))

To establish invariance, we wish to show that Flowy ; converge uniformly, in
some sense, to Flow, on the sets in which we run the contraction mappings, which

is the content of the following result by de Suzzoni.

Lemma 1.15. Fizx 0 < s < %, 4 <p<6. Fix A >0 and let

AN = {wy € HE([0, L] = C) - Hrz%pe_“'a"wo(r)‘

< )\ TS < )\ .
IR0 (0.L]) 7”wOHHO > }

Let 0 = % — %. There exists a time T = T (D, L) such that for all ¢ > 0, there

exists Ny > 0 so that

| Flowp (¢, wo) — Flown, (£, wo) |l co o (—rmyx(0.2)) < €

Hr*%(FlowL(t, wo) — Flowy (t,wo))|| 2 <€
LPLFE (=TT (0.1))

for all N > Ny and for all wy € A(N).
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Note that o > £ > s and so Hg < H. Using this local uniform convergence
and measure theoretic considerations, de Suzzoni was able to prove assertion (3)

of Theorem 1.10.

1.4 Further Examples

Invariant measures for Hamiltonian PDEs were first considered by Lebowitz, Rose,
and Speer in [21], and refined by Bourgain in [1]. In these papers, they considered
a focusing, non-linear Schrodinger (NLS) equation on the circle and constructed

an L2-truncated Gibbs measure.

Indeed, the method used by Burq, Tzvetkov, and de Suzzoni was first pio-
neered by Bourgain: applying a frequency truncation (to obtain a finite dimen-
sional system), invoking Liouville’s theorem for Hamiltonian ODEs, and using
uniform probabilistic estimates to remove the truncations, Bourgain proved global
existence of solutions on a set of full measure and the invariance of the Gibbs mea-
sure under the NLS. Prior to Bourgain’s result, only local well-posedness results

were available in that setting.

One benefit of randomization is that one may work in systems with super-
critical scaling. Data with ill-behaved solutions generally lie in null sets of these
measures, and the invariance of the Gibbs measure can be used as a conservation
law to upgrade local in time existence to global existence. Indeed, the scaling that
preserves solutions of (1.20) also preserves the Hz norm, and so jy, is supported

on super-critical Sobolev spaces.

Furthermore, we may construct the Gibbs measure for —0?u+ Apu = |ulPu for
all p < 4. In [9], Burq and Tzvetkov show almost surely global existence on a set
of full Gibbs measure in the case p < 3. The analogous result in the case 3 < p < 4
was proven by Bourgain and Bulut in [7] by working in the context of X*? spaces.

In the case p = 2, de Suzzoni established invariance of the Gibbs measure under
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the flow of the corresponding NLW. Bourgain and Bulut also analyzed the case of
the power type non-linear Schrédinger equation on the unit ball in two dimensions,

[5], and three dimensions, [6].

Another example is [26], where Nahmod, Pavlovi¢, and Staffilani considered
the 2D and 3D Navier-Stokes equations with randomized initial data in super-
critical spaces. This is not in a Hamiltonian setting, and hence one cannot expect
invariant measures via Liouville’s theorem on the Fourier truncations. Neverthe-
less, they randomized about a fixed initial datum, and applied large deviation
estimates, to obtain almost sure global existence of weak solutions, with unique-

ness in the 2D case.

Another recent work is [28], where Nahmod and Staffilani proved almost sure
local well-posedness for a 3D quintic NLS on T? with data below H'(T?), also in
a supercritical regime. Other works on finite volume spatial domains include [4],
where Bourgain used Wick ordering to construct an invariant Gibbs measure for a
2D NLS on the torus; [29], where Oh proved invariance of mean 0 white noise for
the 1D KdV equation on the circle; [11], where Colliander and Oh showed almost
sure global existence of solutions of 1D cubic NLS with initial datum in H*(T),

1
_E<S<O'

This approach was also applied to the Gross-Pitaevskii hierarchy on T? and
closely related systems. In [37], Sohinger and Staffilani used randomization on the
collision (or contraction) operator to extend the space-time evolution estimates to

a lower regularity setting than in the deterministic case (cf., [17]).

Further works in the finite volume setting include [2,5,6,8,25,27,30,33,36, 40,

42,43], etc, and references therein.

A case in which an infinite volume invariant measure is constructed is in [24],
where Mckean and Vaninsky constructed a Gibbs measure for a 1D NLW on the

half-line. Using techniques from stochastic analysis, they reduced the construction
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of such a measure to computing the asymptotics of the fundamental solution of
a parabolic PDE with time-independent coefficients. Indeed, the measure was
realized as a stationary diffusion on the half-line. They also constructed invariant
measures for analogous finite volume NLW and used finite speed of propagation

to upgrade to invariance of the infinite volume measure.

In contrast to [24], our measure does not correspond to a stationary diffusion.
The fact that we are not in a strictly one dimensional setting means that our
parabolic PDE has time dependent coefficients with singularities as we approach

the space-time origin (cf., (4.8)).

The fact that our finite volume systems are posed with zero boundary values
also makes the measure theory more delicate: generic paths in the support of the
finite volume measures are ignored by the infinite volume measure. This is in
contrast to [24], where the finite volume systems were considered with periodic

boundary values.

Further results for invariant measure in the infinite volume setting include the

works of de Suzzoni in [14], Cacciafesta and de Suzzoni in [10], and Rider in [34].

Other work in infinite volume settings include: [3], where Bourgain analyzed
a 1D periodic NLS with uniform estimates on arbitrarily large intervals; [39],
where Thomann randomized coefficients of eigenfunctions of a Schrédinger opera-
tor with a confining potential, and showed almost sure global existence of solutions
of power-type NLS on R%; [23], where Lithrmann and Mendelson fixed an initial
datum and randomized with respect to its Littlewood—Paley pieces; [13], where
de Suzzoni obtains almost sure global existence of NLW on R?® via the Penrose
transform. Note that these works do not consider (infinite volume) Gibbs mea-

sures.
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CHAPTER 2

Setup of the Infinite Volume Problem

Consider the 3D radial, defocusing, cubic, nonlinear wave equation (NLW)

—0?u + Au = u?,
u: R x R = R, (2.1)
u(t, z) = u(t, |z]) = u(t,r)

with Hamiltonian

1 1 1
Hu) = [ =|ul*+ z|Vul® + = |u.
() = [ gt + 5Vl + 3l
We wish to construct the Gibbs measure my = Moo ® Moo 2 for this system,
which we informally write as
1
A, 10) = — exp (—H(w) “d(u, u)

1
dimoc,1 () = 7, &P (- /R3 lult+ %IVu|2> “du”

1
dmoo,Q(ut> = ZeXp <— /R;S %‘utP) cédutn

and show that the flow of (2.1) is defined for all time on the support of m.,, and

leaves m, invariant.

To prove this theorem, we again change variables to reduce down to a one

dimensional, complexified wave equation. As before,

v(t,r) = ru(t,r)
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and, respectively,
w(t,r) = v(t,r) +il0,| " ow(t,r) = ru(t,r) +i|0.| 'rdu(t,r)

is a bijective correspondence to solutions of

2 2 3
—0iv + 0;v = 7,

v:Ry x[0,00) = R,
v(t,0) =0

and, respectively,

r2

—idw + |0, w = —|0, 7 [ B ]
w: Ry x [0,00) — C, (2.2)
w(t,0) =0

We shall construct the Gibbs measure for the latter system as a suitable infinite
volume limit of v;. To this end, we shall employ techniques from the theory of
stochastic processes. In particular, we seek to work in a space where evaluation
at a point is a well-defined linear functional. In particular, we first modify the

result of Burq, Tvetkov, and de Suzzoni to suit our purposes.

Ultimately, we shall state our main result in three parts:

e Theorem 2.1, which modifies the finite volume Gibbs measure

e Theorem 2.3, which constructs the infinite volume limit measure (note: we

shall actually prove a slightly expanded version, which is given in Theorem

4.6)

e Theorem 2.5, which proves the invariance of the infintie volume measure

under the flow of (2.2).

29



We motivate these results in the subsequent sections, and we shall prove the
theorems in Chapters 3, 4, and 5, respectively. The construction and invariance
of the Gibbs measure for (2.1) can be recovered by applying the reverse change of
variables

w+— (r~' Re(w), 0, Im(w)).

2.1 Reyvisiting the Burq—Tzvektov—de Suzzoni Example

Let us recall Definition 1.5. Then p; and pr 2 both have the law of the random

e =3 Z’i;"g \/% sin(nar/L),  ap(w) ~ N(0,1) iid.  (2.3)

By Mercer’s theorem (cf., [18] or [22]), the series almost surely converges uniformly
and has law of the standard Brownian bridge from (0,0) to (L,0) . Namely, f“(r)

is a Gaussian process in r of mean zero with

E[f“(r)f<(") =r (1 — %) , 0<r<+ <L (2.4)

In particular, f“(r) is almost surely s-Hélder continuous for every s € [0,3). It

follows that pr; and pp o are supported on
Co([0,L] = R) :={f:[0,L] = R | fis s-Holder continuous and 0 = f(0) = f(L)},
equipped with the usual Holder norm

/]

f(r) = f(r
co(o,r) == sup [f(r)] + sup = 7)) ,(s I
re(0,L] r,r'€[0,L] |7” - r |
r#£r!

In particular, p, is supported on C§([0, L] — C). By mutual absolute continuity,

vy, is also supported on C§([0, L] — C).
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We will show that (1.22) is locally well-posed in C§(]0, L] — C), thus making

it an excellent space for the analysis of this random initial data problem.

Also, we slightly extend the measure theory in the following sense: we complete
the Borel o-algebra on C§([0, L] — C) with respect to the measure vy, and we
call a set vy -measurable if it is an element of this larger o-algebra. By abuse of
notation, we also denote the extension of the measure to this larger o-algebra by
vp. As we shall see in Chapter 5, this setting is convenient because for every Borel

set A C C5([0, L] — C) and for every 0 < R < L, the set
A= {f:]0,L] = C | 3g € A such that g|jo.r = fljo.r }

is not necessarily Borel, but is still v;-measurable. Indeed, we shall see that A is
analytic (i.e., a continuous image of a Borel set). Sets of this form arise naturally

when we seek to apply finite speed of propagation arguments.

The proof of the following modified result, as well as the discussion of the proof

method, is the content of Chapter 3.

Theorem 2.1. Let % < s < g, let L >0. Then (1.22) is locally well-posed in
Cs([0, L] — C). Let vy, be as in (1.23). Then, there exists a Borel measurable set
Q, CCi([0, L] — C) such that

1. VL(QL) =1.

2. Each g € Qp admits a unique global, strong solution in C;. Namely,
Flowy(t, g) is defined for allt € R, and, for each T € (0, 00), we have

Flow,(t,g) € CYC:([-T,T] x [0, L] — C).
3. For each vy-measurable set A C Qp, and for each t € R, the set

Flowy(t, A) := {Flow.(t,9) | g € A}
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is also vp-measurable subset of C§([0, L] — C) and
VL<F10WL(t, A)) = VL(A).

Moreover, if A is Borel, then so is Flowr(t, A).

Remark. Observe that the scaling w — wy(t,7) := w(At, A\r) preserves solutions
of (1.22). Thus, scaling-invariant space is C?. It follows that C?, with 3 < s < 3,

are sub-critical spaces with respect to this scaling.

2.2 Defining the Infinite Volume Limit Measure

We turn to the infinite volume setting. Given that the finite volume measures
vy, are supported on C§([0, L] — C), we shall construct the infinite volume limit

measure as a Borel measure on the space
Cr([0,00) = C) :={f :]0,00) = C| || fllcso,r)) < oo for all L > 0},

where we equip this space with the metric

o g — glleson)
digrg) =3 27" ’
(91792) Z 1+ ||g1 —_ 92|

C=([0,n])

n=1
as well as the induced metric topology and Borel structure. Recall,

Definition 2.2. Fix 0 < R < oo and let C*([0, R] — C) be the space of s-Holder
continuous functions on [0, R], equipped with the Hélder norm, the corresponding
norm topology, and the induced Borel o-algebra. For 0 < R < L < oo, we define

the restriction map p% : C5([0, L]) — C*([0, R]) in usual manner:

pif = flo.r-
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Define the (image) Borel measure vy |j g on C*([0, R] — C) by

vilor(A) = ve((pr) ™ (4))

for Borel measurable subsets A C C*([0, R] — C).

We say that a Borel measure vy, on Cp ([0,00) — C) is an infinite volume

loc
limit of {vp}rso if

L11_>H;O velo.r(A) = Veolpo,r)(4),

for all A C C*([0, R] — C) Borel.

The proof of the following result, as well as the discussion of the proof method,

is the content of Section 4.

Theorem 2.3. Fix 0 < s < % There exists a unique Borel probablity measure
Voo on C§ ([0,00) — C) such that for each R > 0 and for each Borel measurable
ACCo([0,R] — C),

A v,y (A) = veolo,5(A)- (2.6)

As before, vi|jo,r and Vsljo,r) denote the (Borel, probability) image measures on
C°([0, R] — C) given by the image, under the restriction map g — g|o.r), of VL
and Vs, respectively.

Moreover, for each L > 0, the measures VL|[07R} and Voo|[07R] are mutually
absolutely continuous. Let Fg denote the completion of the Borel o-algebra on
C*(]0, R]) with respect to any of these measures. Then (2.6) holds for every A €
Fr.

Remark. As mentioned before, we shall prove a slightly expanded version of this

result, which is expressed by Theorem 4.6.
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2.2.1 Comparison With the Linear System

Before we proceed, we illustrate why it was not possible to construct the Gibbs
measure for our non-linear system by appending a suitable Radon—Nikodym deriva-

tive to the Gibbs measure corresponding to the linear system.

Namely, consider the first order linear wave equation

—z@tw + |8T|w = O,
w: R, x [0,00) = C, (2.7)
w(t,0) =0

Recall, the Gibbs measure i, for the linear wave equations on the interval [0, L] for
L < oo were constructed by an appropriately randomizing the Fourier coefficients.
To do this, we needed an L?([0, L])-orthonormal basis of eigenfunctions of the
Laplacian. On the half-line [0,00), there are no such L? eigenfunctions of the

Laplacian. So, we require an alternate approach.

Recall (2.4), which is the covariance structure for the law of yy,; and ppo. If

we formally take L 1 oo, then we obtain the covariance structure

E[f*(r).f*(r")] = min(r, "),

which is precisely that of Brownian motion. We can rigorously establish this fact.

Fix 0 <s< % Let Wy, W5 denote independent copies of Wiener measure on
> ([0,00) = R). In Section 4.6, we will show that, for every R > 0 and for every

Borel set A C C*([0, R] — R),

[0,R] (A) = le[O,R} (A)

lim L.i
Laoo'u J
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for j = 1,2. In particular, define the Borel measure p., on C} .([0,00) — C) by
too({g € Cipe([0,00) = C) : Re(g) € A, Im(g) € Az}) = Wi (A1) Ws(Ay)

for Borel sets Ay, Ay C C} ([0, 00) — R). Then we have
A gijo,r (A) = ool po,m(A)
—00

for every Borel set A C C*([0, R] — C).

Now, suppose we wish to construct the Gibbs measure for the non-linear wave

equation by the expression

o (-1 [ e ar) auto) 23)

Note that [Re(g)](r) has the law of Brownian motion, which we denote by B(r).

Fix 0 < a < 1. The change of variables r — a?r gives

/0 T (B2 dr = o /0 (@ Blatr) 2 dr

By scaling invariance, a~! B(a?r) also has the law of Brownian motion and so

oo (=1 [ B0 ar)| <& [ (-5 [Tt n@nye o))
=E :eXp (—%2 /OOO(B<T))4T_2 dr)}
=E :<exp (—i /OOO(B(T))4T_2 dr))j

Observe that exp (—1 [;°(B(r))* 2 dr) is a random variable taking values in
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[0,1]. Given 0 < a < 1, we have

(mp(—inYBu»%f%w>5;Qmp(—i[f]B@»%f2m)>ﬁ (2.9)

Since the expected values of these random variables is the same, it follows that we
must have almost sure equality in (2.9). In particular, both sides of (2.9) must be
almost surely zero or one. Since Brownian motion is almost surely not identically
zero, it follows that both sides of (2.9) must actually be zero. It follows that the

Radon—Nikodym derivative

o (-1 [ Reta)) ar)

is o almost surely 0, and thus the expression in (2.8) is ill-defined.

In particular, this proves that the measure v, for the non-linear wave equation

is singular with respect to fioo-

2.2.2 Setup of the Invariance Result

Recall, the one dimensional, complexified wave equation

—@w+@m:—@r%@yﬂ

w(t,r) : Ry x [0,00) - C (2.10)
w(t,0) =0

which we obtained from (2.1) via the change of variables u — w(t,r) := ru(t,r) +

ir (|0,| 1 0u) (t,7). We make a precise definition of a strong solution of (2.10).

Definition 2.4 (Strong Solution for (2.10)). Let 7' € [0, 00) and let g € C} ([0, 00) —
C). We say that w(t,r) : [-T,T] x [0,00) — C is a strong solution of (2.10) on
(=T, T with initial datum g if
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1. For each R > 0, we have w € CYCs([-T,T] x [0, R] — C),
2. w(0,r) = g(r), and

3. w(t,r) obeys the corresponding Duhamel formula

s [ ()

for each t € [-T,T].

Furthermore, if w is the unique strong solution on [T, T] with initial datum g,

then we write

Flowy(t,g)(r) == w(t,r), |t| <T. (2.11)

As with Theorem 2.1, we complete the Borel g-algebra on C}

loc

([0,00) = C)
with respect to the measure v, and we call a set v, -measurable if it is an element
of this larger o-algebra. By abuse of notation, we also denote the extension of the

measure to this larger o-algebra by v...

The proof of the following result, as well as the discussion of the proof method,

is the content of Section 5.

1

Theorem 2.5. Fix 3 <s< % There exists a Borel measurable set sy C

C; .([0,00) = C) such that

1. V5o(Qs) = 1;

2. Each g € Q« admits a unique global, strong solution: Flow.(t,g) is defined
for allt € R and, for eachT"> 0 and R > 0, we have

Flowe (¢, 9)|jo.5 € CPC2([-T, T x [0, R] — C).
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3. For each v -measurable subset A C Q. and for each t € R, the set

Flow(t, A) := {Flow(t,g) | g € A}

is also a vs-measurable subset of C} ([0,00) — C) and

Voo (Flowoo (t, A)) = Voo (A).

Moreover, if A is Borel, then so is Flowy(t, A).
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CHAPTER 3

Finite Volume Invariant Measures

In this chapter, we prove Theorem 2.1. The main new ingredients are a local
well-posedness theory on C§([0, L] — C), as well as some measure theoretic con-

siderations from Appendix A.

3.1 Local Well-Posedness in C*, % <5< %

We first establish the local well-posedness of (1.21) in C§([0, L] — R), as the free
propagator in this setting can be written down explicitly. Afterwards, we show

that the complexified wave equation (1.22) is locally well-posed in C§([0, L] — C).

To obtain explicit formulas for the linear evolution on [0, L] with Dirichlet
boundary values, we apply the usual odd reflections, and use d’Alembert’s formula.

For L > 2, for 0 <t <1, and for 0 < r < L, we have
S(fr+t)— ft—r)) r—t <0,

[cos(t[0,) f] (r) = § L(f(r+t)+ f(r —t)) 0<r—t<r+t<L,

| L(fr—t) = f@L—7—1) L<r+t

(3.1)
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and

; 1 t+r
—/ glp)dp  r—1<0,
t

2 Jir
A 1 r+t
[%g%:w/ glpydp  Osr—tsret<l, (32)
r r—t

1 2L—r—t
/ glp)dp L<r+t

(2 r—t

with similar formulas when —1 <t < 0.

First, we establish some estimates on the linear propagator itself.

Lemma 3.1. Fiz s € [0,1). Let f € C5([0,L] = R). For 0 < T < oo, we have
[cos(t]0,1) f1(r), [sin(t|0]) f1(r) € CYC([=T,T] x [0, L] = R).
Furthermore, there exists C' = C(s) > 0 such that

H1eos(t10,1)..1 )l g ra1n0.) < Cl e (33)

[ [sin(t[0:]) f] (T)”C?C;?([—T,T}X[O,L]) <l fl G5 (3:4)

Also, for every t € [=T,T], we have

0 = [sin(¢[0,]).f] (0) = [sin([0,]).f] (L) = [cos(t[0]).f](0) = [cos(t]0:[) f] (L)

Proof. The assertions for cos(t]|0,|) follow immediately from (3.1).

Observe that, by (3.1) and (3.2), we have

(o) ]y )
o, |20 | ) = eostrlon 10
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and so

S Iflles
CPC (=TT)x[0.L))

Now, the operator |9,](9,)! is the finite volume Hilbert transform and, by Pri-
valov’s theorem (cf., [45]), is a bounded linear map from C*([0, L]) to itself. Thus,
(3.4) follows.

Finally, recall that the Fourier series of Holder continuous functions converge
uniformly to the original function. For fixed ¢, the function sin(¢|0,|) f is s-Holder

continuous, and the Fourier series of sin(t|0,|) f is still a sine series. Thus,
0 = [sin(t]0.]) ] (0) = [sin(t|0]) ] (L). O

We use Lemma 3.1 to establish a local well-posedness for the second order
equation (1.21). Similarly to Definition 1.7, we say that v(t,r) : [-T,T] x [0, L] —
R is a strong solution of (1.21) on [—7', T with initial data (fi, f2) if

1. o(t,r) € COC3([~T,T] x [0,L] — R),

2. (v,v))i=0 = (f1, f2),

3. v(t,r) obeys the Duhamel formula

o(t,r) = [cos(tan) ] (r) + [%f] (r) — K@) (1),

where

(K(@)](t.r) = /Ot (Sin(t ‘BT’T)!@\ [v((T.;é)]‘?) (r)dr.

Proposition 3.2. Fiz 3 < s < 3 and fit L > 2. Let f; € C5(0,L] — R) and let
f2 be a distribution supported on [0, L] such that |0, fo € C5([0, L] — R). There
s 1071 fa
strong solution v(t,r) of (1.21) on [T, T with initial data (f1, f2).

exists T' € (0,1), whose value depends on L, || f1]

cs, and a unique
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Moreover,

[vllcocs (—r.mix0,1-r) Ss 1fillcg + H’ar|71f2‘ cs (3.5)

and for every o € [0, 1),

sin(t|9,])

o(t.r) — [cos(t]d,]) ] (r) — [Tf] (r) € COCT (=T, T) x [0, L] - R). (3.6)

Proof. We use the abbreviation CP?C% in place of CYC*([-T,T] x [0, L] — R),

where 7T is a constant to be specified later. We want to show that the mapping

o(t,r) o [eos(t]L) 1] () + [%f] (")~ K@), (37)

admits a unique fixed point in C?C* with zero boundary values by showing that

it is a contraction for sufficiently small 7.

For (t,r) € [-T,T], we denote D(t,7) to be the domain of dependence from

(t,r). For example, if r —t < 0, then

D(t,r)={(r,p) |t—r<7<tandr —t+7<p<t+r —7}U

{(,p)|0<7<t—randt—1r —7<p<t+r —71}
We use two key estimates. Recalling u(t,0) = 0, the first estimate is
o, r)] < r*llvllces, (3.8)

which shall give us integrability in the Duhamel terms. Recalling 3s > 1, the

second estimate is

b —a* <, b—a, 0<a<bLL (3.9)
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since the function f(x) = x3¢ is Lipschitz on bounded domains.

For the remainder of this proof, let us assume 0 < r’ < r < L. We treat only

the case t > 0; the negative time case is similar.
Case 1, t < ”‘TT, In this case, D(t,7) N D(t,7") = (. So, we simply use
(K ()], ) = K@) )] < [[K@)]E )|+ [K ()] r)] (3.10)

and estimate each term separately. We seek a bound of the form

LK @)t 7) = K@)t )] Selvlloest,

as we may then use the estimate t < t177(r — 7/)° for every o € [0,1). In
particular, specializing to ¢ = s and taking ¢ sufficiently small will lead us
to the desired fixed point of (3.7). We only estimate [K(v)](¢,r); the case
[K (v)](t,7") is similar.

Subcase 1.1, r —t < 0. In particular, 0 < r < ¢. Then (3.2), (3.8), and (3.9) gives

oz [ f [
N||v!|oocs[/ / // ] 2 dp dr

Se ol [+ 1)% = (¢ = )™ =2(r) |

Ss.L ”UH%PC;?T

SS,L ”UHz'Ecgt

43



Subcase 1.2, 0 <r —t <r+t < L. Then (3.2), (3.8), and (3.9) gives

t o pr+(t—T) )
K@) S ol2ec / / 2 g dr
0 Jr—(t—7)
SS HUH:é?CTs [(T’ + t)?)s — 38 + (71 _ Zf)i’)s B 7"33}

—_—
<0

Ssr [0l ¢ocst

Subcase 1.3, L < r +t. In particular, L —r <tandr -t < L —t < 2L —1r —t.
Then (3.2), (3.8), and (3.9) gives

t—(L—r) p2L—r—(t—7) t r+(t—7)
(K@D STl [ f N
0 r—(t—7) t—(L—r) Jr—(t—7)

§s HU“%’?(Jg (2<L38 - 735) + £7“ - t)ss - (2L —r—= t)gi)

<0

Ss.L HUH%‘?Cg (L—r)

Sst 10lIGocst.

Case 2, ”‘;l < t. In this case, D(t,r) N D(t,r") # 0. Using (3.8), we have

HK(U)](ZS,T’) — [K(U)](t,?“)‘ < ||U||?())?C7§ //D(t S P2 dpdr, (3.11)

where AAB := (A\ B)U(B\ A) denotes the symmetric difference set. Here,

we seek an estimate of the form

/ / p¥ 2 dpdr Sepr—1'
D(t,r)AD(t,r")

as we may then use the estimate r — ' < t'77(r — /)7 for every o € (0, 1).

Subcase 2.1, 0 < ' —t and r +¢t < L. The domain of dependence is sketched in
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(r',t) (r,t)

p

Figure 3.1: Subcase 2.1: shaded region is D(t,r)AD(t,r").

Figure 3.1. In this case, D(t,7")AD(t,r) C Ry U Ry, where

Ri={(r,p)|0<7<tandr +t—7<p<r+t—r1}

Ry={(r,p) | 0<7<tandr —t+7<p<r—t+7}

Using (3.9), we have

t r+t—7
// ,035_2 dp dr = / / p3$_2 dp dr
R1 0 r'+t—1
< _

ST+ + 0"+ () = '+ 1)

<pr-—r.

Y

and

t r—t+71
// p3s—2 dp d’T :/ p3s—2 d,O dT
R2 0 ' —t+T1
<

Se (=P O - (-t

<0

Sernr—1.

~Y

Subcase 2.2, ' —t < 0 < % —tand r +t < L. The domain of dependence is

sketched in Figure 3.2. In this case, D(t,r")AD(t,r) C Ry U Ry U Rs,
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(r',t)  (rt)

p

Figure 3.2: Subcase 2.2: shaded region is D(t,r)AD(t,r").

where

Ri={(r,p)|0<7<tandr +t—7<p<r+t—r1}
Ro={(r,p) |t—r <7 <tandr —t+7<p<r—t+r7},

Ry={(r,p)|0<7<t—r'andt—r' —7<p<t+r —71}

Similarly to Subcase 2.1, we have [[, o p*~ dpdr Spr—1'. Using

(3.9) and that t < "}, we have

t—r! t+r' —1
// p3s—2 dp dT SJ/ / p3s—2 d,O dT
R3 0 t—r/—T1

S,s _(27,/>3s 4 (t + T‘/)3s —(t o T/)?;s

—_——
<0
/
Ss,Lt_T
ST —T

Subcase 2.3, 7"/;”’ —t<0<r—tand r+t < L. The domain of dependence is
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(r',t) (r,t)

t—1r'

AP

p

/

Figure 3.3: Subcase 2.3: shaded regionis D(t,r)AD(t,r’), and P = (t—"5-, 755).

sketched in Figure 3.3. In this case, D(¢,7")AD(t,r) C U?Zl R;, where

\t—T/;”"§T§t—r'and0§p§r—r’},

o

§T§t—%andr—t—l—TSpgt—r’—T}.

Similarly to Subcase 2.1, we have [[. , p*~*dpdr $pr—r'. Using
(3.9), we have

t—r' r—r’
// p3572 dp dT 5/ / p3sf2 dpdT
R3 t—rr Jo

<spr—r.

~S,

Also, we have

t—% t—r'—7
// 0> 2 dp dr < / / > 72 dp dr
R4 0 r—t4+r

7,,_7,,/ 3s 7/,_7,/ 3s
s (550) re-mr- (550) oo
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(r',t) (r,t)

P

Figure 3.4: Subcase 2.4: shaded region is D(t,r)AD(t, 7).

Using (3.9) and the fact that t < r means t — £ <

/

3s
r—1 roor
_( 9 ) +(t—7",)3s§Lt—§—§SLT—T,.

Using (3.9) and the fact that —t < —"£™ we have

3s /
r—r r—r
—< 5 ) +(r—t)<pr—t-— 5 Spr—r.

Subcase 2.4, r —t < 0 and r +t < L. The domain of dependence is sketched in
Figure 3.4. In this case, D(t,7")AD(t,r) C Uj=1 R;, where

Ri={(r,p)|0<7<tandr +t—7<p<r+t—r1},
Ry={(r,p)|t—r' <7 <tandr —t+7<p<r—t+r7},
Ry={(r,p) |t—r<7<t—7r"and 0 < p <r—r'},
Ri={(r,p)|0<7<t—randt—r' —7<p<t—r—7}

Similarly to Subcase 2.1, we have [[, . p*~%dpdr Spr—1'. Sim-

ilarly to Subcase 2.3, we also have [[., p**2 dp dr < r — 1. Using
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(3.9), we have

t—r t—r—7
// P> 2 dp dr < / / 0> 2 dp dr
R4 0 t—r/—1
Ss _(7, . 7“/)38 + (t o ?”/>3s o (t o 7,)33
Sspr—r1
Subcase 2.5, 0 < 7' — ¢ and %T' +t < L <r -+t This case follows from reflecting
the domains in Subcase 2.2 across the line p = L/2 and noting that

p*$7% is a decreasing function for p > 0.

Subcase 2.6, 0 <7 —tand "+t < L < TJ;’"/ + t, which follows from reflecting the

domains in Subcase 2.3 across the line p = L/2.

Subcase 2.7, ' +t > L, which follows from reflecting the domains in Subcase 2.4

across the line p = L/2.

Combining all the results from these cases, we have
|K(v)(t,r) = K(v)(t,r")] St [ollépe, (r = )7t~
for every o € (0,1), which is to say,

BN oy (r oy S2 T Molleges: (3.12)

Using the fact that |a® — 83| < |a — b|(|al® + [b]*), a similar computation shows

that

N @) = K@ | epe S2 Tl = Blleper (1012pc; + 1712pc,) -
(3.13)

Let us specialize to 0 = s. Then, for T sufficiently small, the map in (3.7) is

49



a self-mapping of the closed ball

{vectcs | leses <+ D) (Al + 1017 1o

)

as well as a contraction. Here, C' is the constant from Lemma 3.1. By contraction
mapping, (3.7) admits a unique fixed point v, which is also the desired strong

solution. n

Proposition 3.3. Fix % < s < % and fir L > 2. For each A > 0, there exists

T € (0,1), whose value depends on s, L, and A, with the following properties:

1. Let g € C§([0,L] — C) such that ||g|
defined for all t € [=T,T|. Furthermore,

Cs([0,L]) S A. Then FIOWL<t,g) 18

| Flow (¢, 9)llcocs (—r1)x[0,0)) Ss.L C2([0,L]) (3.14)
and for each o € [0, 1),
Flowy(t,g) — e % lg € C0C7([-T,T] x [0, L] — C). (3.15)

2. Let g be as above. If g € C§([0, L]) is such that ||g — g|

cs(lo,r)) 18 sufficiently
small, depending on A, s, L, then Flow(t,g) also exists for all t € [T, T

and

2.).
(3.16)

&+ 1912

| Flowr(t, g) — Flowr (¢, 9)llcocs(—raixjo,c)) Ss. 19 — glle=(llg]

Proof. Let g € C§([0,L] — C) such that ||g|lcs(o,z) < A. Observe that the
pair (Re(g),|0,|Im(g)) obeys the hypotheses of Proposition 3.2. Hence there

is a time interval [—T,T], depending on A,s, L, and a unique strong solution

o(t,r) : [-T,T] x [0, ] — R of (1.21) with initial data (Re(g), |0,|Im(g)). By
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(3.5),

vl cocs (—rmixio,L)) Ss.z l9lleoso.z)- (3.17)

Observe that

dr.

0,] 7 9,0 = —sin(t]0,|) Re(g) + cos(t]9,]) Im(g) — /0 COS((t|5J)|aT|) (U((T;2))3

We claim that
(10,7 o) (t,r) € CPCE([-T,T] x [0,L] — C)

and

0= (10,]""0w) (¢,0) = (|0,] ") (¢, L).

Assuming this claim, then

w = v +i|0,| 1w (3.18)

would be the unique! strong solution of (1.22).

We write ||F||C?Cﬁ = ||FHC?Cﬁ([*T,T]X[O,L]—)(C)' By Lemma 31, we have

[I—sin(t|0,[) Re(g) + cos(t|0:]) Tm(g) | coce < Il

C5([0.L]+C) (3.19)

Letting

K ))(t,r) == /O [COS(“'grlT)'a’"')(“(Z ;;»3 (r) dr,

we shall prove [K(v)](t,r) € COWIP([-T,T) x [0, L] — C) for large, but finite, p
and apply Sobolev embedding.

First, we realize |0,|~! as a convolution operator: for f € LP([0, L] — C) with

p € (1,00], we extend it to [—L, L] via f(—r) = —f(r) for r € [0, L], and then

1Uniqueness follows from (v,v;) = (Re(w), |,| Im(w)) and the uniqueness aspect of Propo-
sition 3.2.
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extend to R via 2L periodicity. Having this extension, then

10171 0) = (£ )0 = [ = )it (3:20
where .
h(r) = Z(mr/L)_l cos(nr/L) = Re (log(1 — e

Note that h(r) € LI([—L, L] — C) for every q € [1,00).

Next, we check boundary conditions. By (3.8), we have

1wt )’ r 2l core-rm<po.0) S ||U||?égcg~ (3.21)

for every p € [1, 575). Given (3.20), (3.21), and the fact that both cos(nm(—p)/L)

and cos(nm(L — p)/L) = (—1)" cos(nmp/L) are even in p, we have

o o) 0 = [l M

for all . Given (3.1), it follows that 0 = [K(v)](¢,0) = [K(v)](t, L), as well.

In view of (3.1), we also have

for every t. By Holder’s inequality,

[ [ =

where we extend the integrands from [0, L] to R in the manner above. Hence,

(v(7,-)°
(-)?

[cos((t —7)|8,)) } (r)

S llgocs-
COLR((0,6]x[0,L])

(v(7, )’
(-)?

cost(t = i) ] )] do a1 ol 322

& @)

< ollepcs- 3.23
CcoCo([-T,T)x[0,L]) ~ I HC?Q ( )
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Furthermore, by Fubini’s Theorem, we may also write
[K()](t,r) = |0, F (¢, )] (r) (3.24)

where
(v(r,))?
(-)?

fOo<r—t<r+t<L,then (3.1) and (3.8) gives
Wrr+t=7)°|  |wEr=({E=7)°

Fenls [ e

t
S Hv\légc; /0 (r+t—1)¥ 24— t—-1)>2dr

Pt = [ [eostie =00 ] 6 ar

dr

Ss 101G

When r — ¢ < 0 or when r 4+ ¢ > L, we may similarly show |F(t,7)| Sz [[0]200
t~r
and thus

HF(taT)Hc?cg Sl ||U||?é?cﬁ- (3.25)

Finally, the operator 0,|0,|~" (i.e., finite volume Hilbert transform) is a bounded
linear operator from LP([0, L]) to itself for every p € [1,00). Thus, (3.23), (3.24),
and (3.25) gives

for every p € [1,00). By Sobolev embedding, we have

K (w)](t.7)]

S oc 3.26
COWHP([=T,T]x[0,L]) ~pL HUHC?Q ( )

K(v) € C°Co([-T,T] x [0, L] — C) (3.27)
for every o € [0,1) and

||

So cocs 3.28
coce (-T,1)x[0,L]) ~ L HUHCECT ( )
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Specializing to o = s and combining (3.17), (3.19), (3.28), this proves

&+ llglles-

[wlleoe; S Mgl

In particular, we have established (3.14) and that w is the unique strong solution

of (1.22) with initial data g. (3.15) follows from (3.6) and (3.27).

The second part of the proposition follows from the fact that
|a® = 0° < |a = bl(laf® + o)

and arguing as above (and replacing T" by T'/2, if necessary). O

An immediate corollary is the following continuity result.

Corollary 3.4. Let L > 2 and let 0 < R < L — 2. Let g, € C§([0,L] — C),

1 < k < 00, such that each gi, admits a unique strong solution of (1.22) for |t| < 1.
If

lim ||gx — goollos (0,411 = 0,

k—oo
then

lim || FIOWL(t, gk) - FIOWL(t, gOO)HC?Cﬁ([—l,l]X[O,R]) =0. (329)

k—o0

Furthermore, if

klggo gk — gool cs(o,r)) = 0,
then
]}ggo | Flow (£, gr) — Flowr (¢, goo )l cocs((-1,1x10,) = 0. (3.30)

Proof. For each A € [0,L — 1], we define the “linear cut-off” operator Vg :
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C5(10, L]) — CG5([0, L)) via

g(r) <r<),
[Wagl(r) =4 gA)A+1—2) A<r<A+1,
0 A+1<r<L
Indeed,
1Wrglles oLy Ss.r llgllesqo,zn (3.31)

where the implicit constant is independent of the choice of A. Also, we clearly

have
kll_glo 1V Rrt19x — Y Rt1900 |5 (0,2)) = 0. (3.32)
Letting
A= FIOWL(tagoo)||cgc,§([—1,1]x[o,q)>
then (3.31) gives
1V rt1900 || (0,07) Ssi 1| 9oc oo,y < A

By Proposition 3.3, there exists a time 7', depending upon s, L, and A, such that
Flowy(t, Y ri1900) € CPCT([-T,T] x [0, L] — C). Proposition 3.3 also gives

Jim [ Flow,(t, ¥ g19x) — Flowr (t, W ri19o0) [ cocr (- r.21x(0.7) = 0-

By finite speed of propagation,

}}1_{20 | Flow,(t, gx) — Flowp(t, 900)||C$Cg([—T,T]x[0,R+1—T]) = 0.

We now seek to iterate the argument.
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As above, we have

|V rr1—7 Flow (T, goo)llc2(0,)) Ss,z || Flow (T’ goo) les o,y < A

and

klggo |V pt1—7 Flow (T, g,) — ¥py1—1 Flow (T, 9o ) |lcrp0,27) = 0.

Thus, we may argue as above, using Proposition 3.3, to conclude that

klggo | Flow, (¢, gi) — Flow (¢, goc) ||l cocr (0,277 x[0,R+1-277) = 0-

We may iterate this argument approximately 2|1/7"| times, using the value A as
a persistent bound, to establish (3.29). To prove (3.30), we argue as above, again

using A as a persistent bound, but without using the operator Wg. O

3.2 Proof of Theorem 2.1

By Theorem A.3, the set C5([0,L] — C) is a Borel subset of H([0,L] — C)
and the Borel o-algebras on C§([0, L] — C) generated by the s-Holder norm and
by the Sobolev norm must agree. Recall from the discussion in Section 2.1 that
vi(G5([0, L])) = 1.

Let IT;, be as in Theorem 1.10, then IT, NCy*([0, L] — C) has full v, measure.
By Theorem 1.10, the set

QL = ﬂ FIOWL (t, HL N CS)
tcQ

is a well-defined Borel subset of C§(]0, L] — C) with v, measure 1. This gives the

first assertion of Theorem 2.1.

For the second assertion, let 7' € (0,00) and let g € Q7. By Theorem 1.10,
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Flow, (t, g) is defined globally in time and we have Flowy(t,g) € COHZ([-T, T] x
[0, L] — C). The fact that Flow(¢,g) € CPC:([-T,T] x [0, L] — C) follows from

Proposition 3.3 and the definition of .

The fact that Flow preserves Borel measurability follows from Theorem 1.10
and Theorem A.3. Moreover, by Theorem 1.10, Flow preserves the measure of

all Borel sets.

Finally, let A C C3([0, L] — C) be vi-measurable with vy (A) = 0. Recalling
Proposition A.7, for every n > 0, there exists an open set U, D A such that
v (U,) < % By the previous paragraph, Flow,(¢,U,) is Borel measurable with
vp(Flowy(t,U,)) < £. Tt follows that (", Flow (¢, U,) is a Borel set of measure
0 which contains v (Flowy(t, A)). Thus vp(Flow(t, A)) is vi-measurable with
measure 0. As every vr-measurable set is the union of a Borel set and a v -null

set, Theorem 2.1 follows.
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CHAPTER 4

Construction of the Infinite Volume Measure

In this chapter, we prove a lengthier version Theorem 2.3, which we express in

Theorem 4.6.

Recall the definition of the (finite volume) measures pp, pr 1, and pr o from
Definition 1.5 and recall the definition of vy, from Proposition 1.9. Also recall the

definition of the infinite volume limit measure from Defintion 2.2.

To construct v.,, we shall separate vy, into its “real” and “imaginary” com-
ponents and compute the corresponding infinite volume limit of each. Namely,

let

()= oo (1 [ UOB @) dua) @

and let

VL,2 = ,lLL72. (42)

Then the connection between v, vy ;,vr9 is as follows: for Borel measurable

A17A2 - HS([O, L] — R),
vr.({g | Re(g) € A1,Im(g) € As}) = vp1(A1)vr2(As). (4.3)

After constructing the infinite volume limits of vz, ; and vy 5 separately, we shall

piece these limit measures back together in a way similar to (4.3).

Ultimately, this construction will follow from an analysis of the long-time

asymptotics of the fundamental solution of a particular parabolic PDE (cf., Def-
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inition 4.5 and (4.8) below). We reduce the measure theoretic problem to the
parabolic PDE computation in the following manner: first observing the equiv-
alence of the Borel and the cylinder o-algebras (see Definition 4.1 below) on

Cg(]0,L] — C) and on C;

loc

([0,00) — C), and then seeking to utilize the Kol-

mogorov consistency and continuity theorem.

Definition 4.1. Let A = C or R. Let I C R be an interval and let X be a subset
of Al := {f: I — A}. The cylinder set o-algebra on X is the o-algebra generated

by sets of the form
{feX|f(r)e B}

where r € I and B C A is Borel. We say that a cylinder set probability measure

p on X is supported on a cylinder measurable subset A C X if u(A) = 1.

Proposition 4.2. Let A = C or R. The Borel and cylinder o-algebras on
C§([0, L] — A) coincide. Also, endow C;

loc

([0,00) = A) with the metric

. I =9gllesqom
d(f,g) =) 27" ’
S nz:l L+ [If = gllesqon

(4.4)

and the induced metric topology. Then C} ([0,00) — A) is a Polish space (i.e.,
separable, completely metrizable). Furthermore, the Borel o-algebra generated by

(4.4) and the cylinder o-algebra on C§ ([0,00) — A) coincide.

Remark. The full strength of the fact that C

loc

([0,00) — C) is Polish will not be

used until Section 5. We record the result for convenience in the following proof.

Proof. Note that convergence in the C§([0, L] — C) norm implies uniform con-
vergence, and hence point-wise convergence. It follows that evaluation at a point
is continuous with respect to this norm, which then implies that the cylinder

o-algebra is contained in the Borel o-algebra on C§([0, L] — C).
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For the reverse containment, let us fix fo € C§([0, L] — C) and A > 0. Then

Br(fo, ) :=={f € C3([0, L] = C) [ |f = folle=o.py < A}
= () AFFE) = fo(r)] = [F) = o] < Ar —7')°}

""7""/ EQH [O7L:| b
r'<r

- N A{ri e e se(fe)+ h) - a7 |
r,r! er@gO,L} ,

which is a countable intersection of cylinder sets. Therefore,

Bi(fo, \) =S [1f = fol

ey <A} = Br(fo, M1 —27)),
k=1

from which it follows that every Borel subset of C§([0, L] — C) is cylinder mea-

surable.

Fix n € N and recall that C*(][0,n] — C) is Polish. Let {f,,, | m € N} be a
countable dense subset of C*([0,n] — C). We define

fam(r) ifre0,n]

fam(n) ifr € (n,o00)

fn,m(r> =

Then {fnm | n,m € N} is a countable dense subset of C

loc

([0,00) — C).

Also, a Cauchy sequence in .

([0,00) — C) must also be Cauchy with respect

to each semi-norm || - |[¢s(jo,n))- Completeness of Cj ([0,00) — C) then follows

loc

from the completeness of C*([0,n] — C).

Note that convergence in the metric d implies local uniform convergence, and
hence point-wise convergence. Similarly to above, the cylinder o-algebra is hence

contained in the Borel o-algebra induced by d.

Arguing as above shows that, for n > 1, for fy € C} .(]0,00) — C) and for
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A >0,
Bu(fo, A) == {f € Ce([0,00) = C) [ [f = fol

cs(om)) < A} (4.5)

is also cylinder measurable. As open sets of the form (4.5) constitute a sub-

basis for the topology on C7 ([0,00) — C) and this space is separable, it follows

loc
that every open ball (and hence every Borel set) is cylinder measurable. Finally,

observe that all of the arguments also hold if we replace C by R. O]

To express the Kolmogorov theorem, we first recall a definition.

Definition 4.3. Let A = C or R. Let I be an infinite index set, and for each
finite sub-index A C I, let P4 be some Borel probability measure on Al We
say that the collection {Pa}acr,aj<oo is & consistent family of finite dimensional

distributions indexed on I if, for every finite A C I and every r € I \ A, we have
PA(B) = PAU{T}(B X A)

for every Borel set B C Al

The proof of the Kolmogorov theorem be found in [32] and in [38].

Theorem 4.4 (Kolmogorov Continuity and Consistency). Let A = C or R. Let
{P,,...r, } be some consistent family of finite dimensional distributions indexed on
some interval I C R. Then there exists a unique (cylinder) probability measure P
on AT = {f : I — A} such that for Borel sets By, ..., B, C A and forry,...,r, €
I,

P(f(rj)eBj,j=1,...,n) =P, _,.(B1 X - X B,).

Let B,y > 0. If, for each compact sub-interval K C I, there exists a Cx < 00

such that for all r;s € K,
E”[1f(r) = f(s)I°] < Crlr—s|',
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then P is supported on CP (I — A). Furthermore, for every 0 < s < /B3, P is

loc

also supported on Cy, (I — A).

In order to apply Kolmogorov’s theorem to construct the infinite volume Gibbs
measure, denoted v,,, we shall reduce the problem to computing the asymptotics
of the fundamental solution of a certain parabolic PDE. The main tool used in

this reduction is a multi-time Feynman-Kac formula (cf., Theorem B.3).

Definition 4.5. Let C(r, x), Cy(r, z), and C3(r, x) be functions from [0, 00) x R

to R and consider the equation
qu = rﬁb + 01(7“, $)8§¢ + 02(r7 x>ax¢ + 03(Ta IL')¢ = 0.

Let ¢(r, x; s,y) be a function on the following domain: xz,y € R, s > 0, and r > s.
We say that ¢ is the fundamental solution of Lo = 0 at (s,y) if it obeys both of

the following conditions:

1. ¢ is continuously differentiable once in r and twice in x and satisfies, as a

function of r and x, the equation L¢ = 0 (in the classical sense).

2. lim, s ¢(r, x; 8,y) = 0,—, as linear functionals on Cy(R): for f € Cy(R),

lim / o(r, 73 5,9) f () dv = f(y). (4.6)

rls

If ¢(r,x;s,y) is the fundamental solution of L¢ = 0 at every (s,y) € RZ% x R,

then we simply say that ¢ is the fundamental solution of Lo = 0.

For example, the heat kernel

RS S N ok )
Polr 735,9) : 27(r — s) p( 2(r—s)> (47)

is the fundamental solution of the heat equation —0,¢¢ = %8%(]50.
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Recalling the definitions of v, vy 1, and v o in (1.23), (4.1), and (4.2). We

now state the main result of this chapter.

Theorem 4.6. 1. There exists a (strictly positive) function ¢(r,x;s,y) which

1s the fundamental solution of

4

0,6+ 53— g6 =0 (48)

at each (s,y) € (0,00) x R and at (s,y) = (0,0).

2. For each L > 1, the measure vy, 1 obeys the following law: let 0 <r; <--- <

ry < L and let By,..., By C R be Borel sets, then, with ¢ as above,

]P)VL,l(f(,rj) S Bj,j = 1,...,N)

O(L, 0y, TN) 1y

N N

/Bl . L 07 070) | | qb(rj,xj;rj_l,xj_1)¢(r1,$1;0,0) d$n . 'dl’l.
Jj=2

3. There is a positive, bounded, continuous function F(s,y) : (0,00) x R — R

such that, for fized s,

o(L,0;,y)

li - F =0.

P ‘ o(L.0.00) LY o

4. There exists a unique cylinder probability measure vo 1 on CP ([0,00) = R)
such that for 0 < ry < --- <ry and for Borel sets By, ..., By C R,

Py (f(ry) € Bjj=1,. N)
/ / TNJCN ¢(7“j7$j;Tj—17$j—1)¢(7“1,901;070) dry - --dxy.
By By o
Furthermore, for every s € [0, %), Voo,1 18 supported on Cf ([0,00) — R).

5 Fizse€|0,3). Let1 < R < L and let vo1|o,r) and vy, 1|jo,r) denote the image
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measure (or push-froward measure) of voo1 and v, 1, resp., on C*([0, R] —
R) under the restriction map f — flor. Then vealor and vilor are

mutually absolutely continuous, with Radon—Nikodym derivative

dvralo.r) )= ¢(L,0; R, f(R))
dVoo,1|[0,R] F(R7f(R))¢(L707070)

For every Borel subset A C C°([0, R] — R), we have
lim VL71|[07R](A) = Voo,1|[0,R](A)~ (49)
L—oo

6. Let W denote the Wiener measure on Cj,

([0,00) = R). Let vy, be the Borel

probability measure on C}.

([0,00) — C) given by
Voo({g | Re(g) € A1,Im(g) € As}) := Voo 1 (A1) W (Ay) (4.10)

for Borel measurable sets Ay, Ay C CF

loc

([0,00) — R).
Let1l < R< L. Then Voo‘[o,R] and VL|[0’R} are mutually absolutely continuous

measures on C*([0, R] — C). For every Borel subset A C C*(]0, R] — C),

we have

lim VL‘[(]’R](A) = Voo’[O,R} (A) (4.11)
L—oo

Furthermore, vy is the unique probability measure which obeys (4.11).

Let Fr denote the completion of the Borel o-algebra on C*([0, R]) with re-

spect to any of these measures. Then (4.11) holds for every A € Fg.

We will break up the proof of Theorem 4.6 into several sections.
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4.1 Theorem 4.6, Part 1: The Parabolic PDE

The main difficulty in constructing a fundamental solution of (4.8) lies with the
coefficient —%lf—;l. It is neither bounded in x nor is it uniformly Holder continuous.

For x # 0, this coefficient also goes to —oo point-wise as r goes to 0.

To handle these issues, we apply suitable cut-offs. For real numbers a,b € R,
let

aVb:=max(a,b) and  aAb:=min(a,b).

Let us consider the cut-off equations

1., 124 An
Ln¢:—r¢+§8$u—zr2v%¢20, 77,:1,2, (412)
For each n € N, it is not hard to see that the coefficient —}lr;’:i/l\’/”‘n is bounded and

uniformly Holder continuous in z (indeed, Lipschitz). By the parametrix method
(cf., [16, pg. 14-20] or [20]) there exists a there exists a unique fundamental
solution ¢, (r,x;s,y) of the cut-off PDE L,,¢ = 0 at all (s,y) € [0,00) x R and

obeys the Duhamel formula

On(r, 58, 7) (4.13)

1 [ 4
= ¢0(T,I;S,y) - Z‘:/ /R(ZﬁO(Tv'r;paw)

w* AN
PPV

On(p,w;s,y) dw dp.

Furthermore, ¢, > 0 for each n € N. Note that ¢y denotes the standard heat
kernel (cf., (4.7)), which is consistent with (4.12).

Lemma 4.7. Let ¢, be as above. Then

Po = P1 = g = -+ 2 0. (4.14)
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Furthermore, the function

n—oo

1s well defined and obeys the estimate

0 < o(r,2;55,y) < do(r,z;5,y) (4.16)

as well as the Duhamel formula

w4

o(r,x58,9) = ¢o(r, ;5,9) —%/ /Rcbo(?“,rc;p, w);cé(p?w;&y) dwdp (4.17)

for (s,y) = (0,0) or (s,y) € (0,00) x R. Moreover, ¢ is the fundamental solution
of (4.8) at (s,y) = (0,0) and all (s,y) € (0,00) x R. Finally, we have ¢ > 0.

Proof. Observe that r? Vv % > 2V n+r1 and z* An < 2 A (n+1). Tt follows that,

forn € N,
1:4/\(n—|—1)< i An
7‘2\/n+rl - or2vi’

By the comparison principle (cf., [16, p. 45-46]), we have (4.14). As decreasing
sequences that are bounded below must tend to a limit, the function ¢ given by

(4.15) is well-defined and clearly obeys (4.16).

To establish the Duhamel formula, we first recall a heat semi-group-like iden-

tity. Let B(z,y) = % be the beta function, and let A > 0. For —co < a, f <

%, we recall that

/ST /R(T —p)“exp <—H> (p—s) " exp (—%) dwdp (4.18)

0\ 1/2 ] N
- (B) Be-ai-9) -t e (-4,

Indeed, the proof of this identity can be found in [16, pg. 15].
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We first consider the case (s,y) = (0,0). For each n, (4.14) gives

w* An 1 [w w?
(0, w:0,0) < — | — _Z 4.19
Vet )Npl/Q[pQ eXp( 2P>} (19

Thus, (4.18) gives

=~
>
N

o (p,1030,0) dwdp\ (4.20)

where the implicit constants are independent of n. Thanks to (4.19), dominated
convergence implies that the first integral in (4.20) converges as n goes to +oo.

Using (4.13) and (4.15), we have

o(r,z;0,0) = lim ¢, (r,x;0,0)
n—oo

,w4

1 r
- ¢0(T,$;0,0) - Zl/ / ¢0(T7x;p7 w)_2¢(p7wa 070) dw dp7
0 JR P

which establishes (4.17) in the case (s,y) = (0,0).

We consider the case (s,y) € (0,00) x R. For each n € N and p > s, (4.14)

gives
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Thus, applying (4.18) gives

(z—y)?

" wt An _G@—w)?
/ /gbo(r,x;p, w)— T On(pyw; s, y) dw dp| Sys e ST r —s. (4.22)
s R Y n

Again, the estimate (4.22) is uniform in n. Using (4.13), (4.14), and (4.15),

dominated convergence gives

n—oo

4
bo(r, 73 5,7) ——//qsomp, ) 0w, o dp.

which establishes (4.17) in the case (s,y) € (0,00) x R.

An immediate corollary of the proof of (4.17) is the delta function property
(4.6) of fundamental solutions. Indeed, (4.17), (4.20), and (4.22) imply

lim ¢(Ta €S, y) = lim ¢0(7ﬁ7 T;s, y) = 5a:—y-
rls rls

Next, we use (4.17) to prove that ¢ is continuously differentiable twice in x

@—9)?
and once in 7. Clearly, ¢o(r,z;5s,y) = ————e 20-9 is infinitely differentiable
) y Ly S, \/m

in every variable. Letting

D(r,x;8,y) : //cbotl‘p, cb(p’wsy)dwdp

we claim that D is continuously differentiable twice in x and once in r, and

0, D(r,; 5,1) / / Ouolr 2 >%¢<p,w;s,y> dwdp  (423)
4
D(r, x5 5,y) / /8% T, T p,w )w—gcb(p,w;s,y) dw dp (4.24)
P
1z
arD(TwCE; S, y) = ZT_QQS(T’ xZ; S>y> + §8§D<T’, Z; S?Z/)' (425)
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If we accept this claim for now, then the relation ¢ = ¢g — D gives
8¢—8¢—8D—1W¢—1f¢—1WD— D2¢ ¢
r¢ — Ur0 T - 9 %0 4 7’2 92 T )

which shows that ¢ is indeed the fundamental solution of (4.8), and hence finishes

the proof of Theorem 2.1, part 1.

We first establish (4.23). The mean-value theorem gives

D(r,z + h; s, y)—D(r T8, Y)

(4.26)
/ /®%¢$+&hp,) ¢(p;w; s,y) dw dp
for some 6, € [0, 1]. From (4.19) and (4.21), we have
w' 1 (w—y)*
— 0P, Wi S, Y) Ssy —— 773 €XP (——) : 4.27
A ) S NPT S(p — 5) (4.27)
Also, we have
1 _ 2
et e B CED
r—p 8(r—p)
Combining (4.26), (4.27), (4.28) together, and applying (4.18),
’D(Tx—l—h's ,y) — D(r,x; s, 9) (4.29)
_ (z4+0,h—w)? (w—y)?
exp (5t ) exp (720
72 dwdp
ree )

Sey €XP (— @ Jg(ihﬁ ;)‘w ) .

Since the right hand side of (4.29) converges as h — 0, the generalized dominated
convergence theorem implies that D is differentiable once in  and satisfies (4.23).

The same proof also shows that D is continuously differentiable in x. Furthermore,
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(4.28) and (4.29) imply that, for each R > 0,

ex (_(x—y)Q)
P 8(r—s)
|020(r, 258, Y)| Srosy : (4.30)

r—s

for s <r <s+ R.

We now establish (4.24). We again apply the mean-value theorem to obtain

0. D(r,x + h; s, y)—(‘?D(r x;8,Y)

(4.31)
/ /32% r,x + Oph; p,w ) ¢(p,w s,y) dw dp
for some 6, € [0,1]. Unfortunately, the estimate
|02¢0(r,  + Ouh; p, w)] (4.32)
. 9 h _ 2
5 (r_p)*(%*5>|x+‘9hh_w|—2[3€xp <_($+ h U)) > :
8(r —p)

for 5 > 0, cannot be easily used with (4.18), as the resulting singularity in p
turns out to not be integrable. Instead, we use integration by parts to move the

singularity in p to other factors: first recall that

8x¢0(7’, T+ ehh; P, w) = - w¢0(r: T+ ehh; P U)) (433)
2o (r, x + Oph; p,w) = 0,00 (r, x + Oph; p,w) (4.34)

Using (4.34), integrating by parts once in w, and then using (4.33) gives

/ /a%rx+@mp,> b(p,w; s,) dw dp = (4.35)
//8x¢orx+9hhp,) ¢(p,wsy)dwdp

/ /@%rx+@mm 0) 04, w5 5,) duw dp
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Using (4.16), (4.30), and arguing as in (4.21), we have, for s < p,

wt exp (142 )
‘—qﬁ P, W; S y)‘ - Ow®(p,w; s y)' Ssw ) (4.36)
p? p—s
Combining (4.28), (4.31), (4.35), (4.36) together, and then applying (4.18),
GD(T:I:—l—h'sy)—(?D(r:U'sy)’ (4.37)

_ (z+0ph—w)* w)? (w—y)?
WEE L

p—s
($ + O — y)?
< -
~EY (- 3)1/2 P < 16(r — s) ’

Applying a similar generalized dominated convergence as above establishes (4.24)

and shows that D is continuously differentiable twice in x. Furthermore, (4.32)

and (4.37) imply that, for each R > 0,

)2
eXp <_ 1(6(r?i)s)>
(r—s)3/2 7

|020(r, 235, 9)| Sk

(4.38)

for s <r <s+ R.

Now, we establish (4.25). For h > 0, the mean value theorem gives,

D(r+ h,x;s,y) — D(r,x;5,y)
h

1
:—/gbo(r—l—h,x;r—i-th,w)
4 Jr

w4q§(7° =+ ehhu w; S, y)
(7’ + th)2

1 /[ 4
+Z/ /aTUO(T—i_ehhuxvp’w)%(b(pvwa 57y) dw dp
s JR

dw

for some 6, € [0,1). As h | 0, the first term converges to 1‘”— (r,x;s,y) by the
delta function property of ¢y. For second term, observe that 0,¢¢(r, z;s,y) =
$02¢0(r, z; s,y), and therefore the second term converges to %@%D(r,x;s,y) as

h ] 0. A similar argument can be made for h < 0. Also, (4.25), (4.27), and (4.37)
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imply that, for each R > 0,

’&Jb(?”,%; s,y)| SR,s,y (439)

for s<r<s+ R.

Finally, ¢ > 0 follows immediately from the maximum principle (c.f., [16,

p. 39]). This finishes the final claim. O

Remark. Observe that, in the proof of the Duhamel formula (4.17), the Gaus-

sian bounds are ineffective when s = 0 and y # 0; in particular, the expression

_1la?
4 r2

¢(r, z;0,y) admits suitable bounds only when y = 0.

4.2 Theorem 4.6, Part 2: Applying Feynman—Kac

We revisit p7; and v ;. As noted above, p ;1 is the measure corresponding to

the standard Brownian bridge from r» = 0 to r = L and
1 1t 4,2
dvpi(f) = ——exp(—~ [ |f(M[r = dr)dura(f).
ZL 4 0

Recall that ¢, (r, x; s,y) is the fundamental solution of

1 z*An

1
—0:¢ + §3§¢— ZW¢=O-

Let

dP,(f) := exp (—i /OL % dr> dpra(f)

be a Borel measure on C°([0, L] — R), not necessarily a probability measure.

By the multi-time Feynman—Kac formula with respect to Brownian bridges (cf.,

Theorem B.3), P, obeys the following law: for Borel sets By, ..., By C R and for
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O0<ri<rg<---<ry <L, wehave

P(f(rj) € Bj,j=1,...,N) (.40
N
¢n(LaO§7“N,$N)
= S P |
/31 B, ¢o(L,0;0,0) quﬁn(r],xj,r] 1,%j-1) dry x1,

J=1

with (zg,79) := (0,0). Using (4.14) and (4.15) and applying dominated conver-

gence,

lim RH S(4.40)

n—o0

N
¢(L; 0; TN,xN)
1 n ) Yy Yy .

J=1

Another application of dominated convergence gives

lim LHS(4.40) = P(f(r;) € Bj,j=1,...,N)

n—o0

where
RIS
dP(f) := exp ——/ —(f(Q)) dr ) dppa(f).
4 /o T
. $(L,0,0,0) : . . .
Let Z; := -—==2>=% be a normalization constant, which is non-zero because of

¢0(L70;070)
Theorem 4.6, Part 1 and because ¢(L,0;0,0) = (27L)~2. Then we have

ZiLdP(f) = dVL,l(f);

which obeys the desired multi-time law.

4.3 Theorem 4.6, Part 3: The Asymptotics

¢(L,0;5,y)

S(Loo0) We seek to compute the asymptotics of each fac-

To compute limy_,.

tor separately. The main obstruction is that the coefficient —if—; gives a quartic
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restoring force that decays with time, and contributes significantly to the asymp-
totics: it turns out that ¢ is neither of polynomial decay in r (cf., heat kernel)

nor exponential decay (cf., Mehler kernel).

To handle these issues, we change variables to remove r-dependence from the

significant terms: the function

s r3 xzr. s3 ys
@(T,x,s,y) = §¢ (2_77?72_77%> (441)
is the fundamental solution of

1 1
—&¢+§%®—Zﬁ®+f@@:0 (4.42)
T

at each (s,y) € (0,00) x R.

At this point, we set up the separation of variables. Let

192 1.4
This is an essentially self-adjoint operator with a discrete spectrum (cf., [41,
Section 5.14]). By Sturm-Liouville theory, H has simple eigenvalues, which we
list as

AN < A< <A< e

Furthermore, each 1 (eigenfunction of H corresponding to \x) is Schwartz and

g is sign-definite. Without loss of generality, v is positive.

Recall that the eigenvalues of the harmonic oscillator Hy = —192 4 127 are

k+ 3, k > 0. By the min-max principle (cf., [31, Ch. XIII]) and the fact that

2

1.4 1.2 _ 1
A 7, we have

A >k + 1 (4.43)
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As usual, the function
e M (2, y) = Zei(Ps)/\kQﬁk(ﬂf)wk(y)
k=0

is the fundamental solution of
Co.f + 102 — Latf =0

It turns out that the first-order term £0,® still gives a large contribution to

the asymptotics. To handle this term, first observe that
10y, = —3 + (20, + 3)

is the decomposition of xd, into its self-adjoint and anti-self-adjoint parts. Rewrite

(4.42) as

1 1
0= 0,8+ -0 — ~2'd + 29,0
2 4 r
B 1, 1, 1 .1
= 8TCI>+<28$ 70 2T)<I>+(Tax+2r)<1>
Note that (s/r)ze" =97 (z,y) is the fundamental solution of

_ Tgp Lo L)oo
8Tf+<28$ i 27ﬂ)f—().

With this in mind, the corresponding Duhamel formula is

O(r,z;8,y) = (S)é —r=9H (3 ) (4.44)

-] e
T
' P : —(r-p)H Ea i ) . dwd
[ et Lo 5| o) duds

This turns out to the correct setting to compute the asymptotics of &. The main
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result of this section is the following proposition.

Proposition 4.8. For every (s,y) € (0,00) x R,

lim <f)é =200 (1 0; 5, 1) = G(s,9)0(0), (4.45)

r—o0 \ S

where

G =wl) + [ [ (£) vt |+ o] @(ovwss.p) durdp

and obeys 0 < G(s,y) < tho(y) +s72. There exists an M such that for all s > M,
G(s,y) 1is strictly positive when |y| < 1. For fized s, the convergence is uniform

i y; in particular, G is continuous in vy.

Assuming Proposition 4.8 is valid, let us finish the proof of Theorem 4.6, part 3.

Let M be as above, and, for s > 0, let

N :=max(s + 1, A;—;)

For L > N, inverting the change of variables in (4.41) gives
&(L,0;N,y) = N"3& <3L%,o;3N%,yN*%) .
Also, recall the identity

Mhmamzémamwwwwmwwww

2

_(w=y)
Because 0 < ¢(N,w; s,y) < ﬁe Q(NESL the following estimate is indepen-
s —S

dent of s and y:
[ o i) du = (V. wi sy < 1 (1.46)
R
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and so Proposition 4.8 and Holder’s inequality gives

lim Loe™ X ¢(L,055,y) = lim | Lse™ X" (L, 0; N, w)¢(N, w; s, y) dw

L—oo L—o Jp

N / G <3N%,wN_%> O(N,w;s,y) dw. (4.47)
R

For fixed s, the convergence is uniform in y, by Proposition 4.8 and by (4.46).
The limit is finite because, by (4.46) and the fact that vy is Schwartz,

RHS(4.47) < / [wo (wN~3) + 1] S(N,w; s,y) dw < 1,

R
Furthermore,
|w|<N1/3

hence, by the positivity aspect of Proposition 4.8 and the fact that ¢ > 0 (cf.,

Theorem 4.6, Part 1), the limit is also strictly positive. In particular,

lim LseP" " ¢(L,0;0,0) = C > 0.

L—oo

It follows that

T QZS(L,O,S,?J) =1 E Agst/3 1 _1
F(s,y) = L11_>1’rolo o(1,0:0,0) C ™ 'sse wO(O)G(BSS,ys 3)

is a well-defined, strictly positive function that is bounded in s and y. For fixed
s, the convergence is also uniform in y and so F'is continuous in y. This finishes

the proof of Theorem 4.6, part 3.

We now focus on the proof of Proposition 4.8. We will compute the asymptotics

of the two terms in (4.44) separately.
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Lemma 4.9. For every x,y € R and s > 0,

im (2)* 0 [(2)} 290, )] = vataronto)

7—00 S

For fixed s, the convergence is uniform in x and y.

Proof. The identity (=102 4+ 1a%)p = Aoty gives [, 2]0.0)® + 322 e]? = A,
and so [|0,Vk|l2 < v/ Ak. Observe that

1kl < 10:(¥i)lly < l[Wnll2ll0svkllz = 102,

and so

oo S (Me)2. (4.48)

Thus, for all z,y € R and for all » > s+ 1, the fact that A\ > k (cf., (4.43)) gives

Z 6—(r—s))\k¢k(x)¢k(y) S 6—(r—s)/\1 Z )\ke—(r—s)(Ak—Al) 5 6—(7‘—5))\1.
k=1 k=1

For fixed s, it follows that
: (r—s)Xo —(r—s)Ag _
Tll}rgo e ,;_1 e Ui (z)r(y) = 0,

uniformly in x and y, which in turn gives the result. O]

The asymptotics for the other term in (4.44) is significantly more delicate and
requires several sets of additional, a priori, estimates, which we call short term

and long term estimates.
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4.3.1 Short Term Estimates

We use Gaussian bounds to obtain rational function bounds in r,;s. The goal is

to obtain bounds so that integrating various expressions in r from s to s 4+ 1 is

finite. For example, (4.16) and changing variables give

s 3(zr — ys)?
. < - S\ Ie)
which gives
5

O(r,x; s, N ar——— 4.49
00 wis)lez S (1.49)
Another application the comparison principle gives the bound
) S (=) F e (- (1.50)
x r—s) 2exp| ————= .
which implies
—(r—s)H 1 —(r—s)H 1
le @yl S —— and e @yl S ——=- (451
(r—s)i T (r—9)4
To handle the terms with derivatives, we have the following result.
Lemma 4.10. Let 0 < s <r < s+ 1. Then, for all x,y € R,
5 5
<1+ [y 1+ |z

lz0pe™ " (@ y)lle S 7 oand lydye” " (@, y)eg <

(r—s)i

(r—s)1

3

Proof. Note that e~ "9 (z y) = 372 e~ =9 )y (2)1hx(y) is symmetric in 2 and

y, so it suffices to establish the result for ||z0,e "~ (z, y)]| 2.

Using the Duhamel formula

—(r—s 1 " —(p—s
€ ( )H(xvy) = ¢Q(T,$; 87y) - ZL/ /¢0(T,$; va)w46 o )H<way) dw dpa
s R
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then, a similar computation to (4.23) gives

Due™ "M (2, y) = Dt (r, ;5. y)
1 r
- Z / / 8$¢0(7", x;s, w)w46_(p_S)H(wa y) dw dp
s R

=: (A) + (B).

It is not hard to see that

(z y) 1 _GEw?

(A)] S LY o5t < =i,
(r—s)E r—s

By Lemma 4.18, (4.50), and the hypothesis s < p < r < s+ 1 (in particular,

1< \/T) we have

(z—w)2 w4 (w_y)Q
< — ¢ 20—p) e 200-9) dw dp
BIS / / (r—s) 3 vVp—S
L//j_y w s (L )0t
e 20—
(r—-s) VP —S$
ToYy-—w, _Eoymw)? ] __w?
1 + y / / 2(r—p) e 20=5) dw dp
(r—s) VP —S

T—y— w _G@ymw? ] w? __w?
(1+ / / 3(r=p) [ e 2=9 | dwd
4 (r—s) V=5 Lp—s) g

_Geoy-w? ] __w?
S (1 + y4)/ \/R;/r — 86 4(2*/)) \/me 4(p—s) dw dp

[C

S (L +yhe o,

w2
e 20=5) dw dp

Combining both estimates gives

1+ y4 ,(41(—14)?
6 ™ S s

[0pe™ " (2, y)| S

r—s
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and so

] 2
s 2 o 14y / 2 G
Hxaxe (I,y)HL% ~ (7’ _ 8)2 Rl' exXp 2(7” _ 5) dx

1+ yt° ) x?
< | L
N(T’—S)Q/R( + 27) exp 20— 9) x
1+y10

(r—s)z

4.3.2 Long Term Estimates

Here, we seek exponential decay estimates in » — s whenever r > s + 1.

Lemma 4.11. Let (s,y) € [1,00) X R be fized. For all > s+ 1,

1
o1
1®(r, 23 5,y) |22 < <—> 2 dolr—s)
T

Furthermore, let Py denote orthogonal projection onto (Span(iy))*. For all r >
s+ 1,
1
IR @],z s, )z S (5) T e,
-

Proof. Observe that

. _rs 3 xr. s> ys
(91«@(7’,:6, S7y) - §¢IE (ﬁa 397 ?)
2 . _r2g s xr., s E
axq)<7’, x5 Svy) - T¢SE£E (ﬁa 397 3)
3 3

7‘28 'f‘3 ZT. 53 S xS T xr. S S
a,«q)<7’, X, S,y) - Tgb'r (ﬁa 397 %) + ?qbr (ﬁ7 3 97 %)
By (4.16), (4.30), (4.38), and (4.39), each of the functions
0,®, 0*°®, r0,®, and '@,

obey Gaussian bounds in x (with coefficients depending on r, s,y). In particular,

each of the functions are in L2.
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Writing (-, -) for the L2 inner product, then
0,(D, D) = 2(0,0, B) = 2(20%P — 127D D) 42 <§amc1>, <I>>

Observe that, for fixed r,

o0 oo

(308 = 122.9) = ~( (@b S @) (452)
I
< §A0<¢,¢k> = —2(®, D)
and that
2 <§axq>, <1>> - <§axq>, c1>> . % (@, (1 + 28,)®) = —%@, ). (4.53)

Combining (4.52) and (4.53), we see that, as a function of r, (®, ®) is a subsolution
of the ODE 0, f = — (2/\0 + %) f- At r = s+ 1, we have the initial condition
|®(s+1,2;8,y)||72, which is uniformly bounded in s and y by (4.49). Therefore,

~Y Y

1
(®.®) < [|@(s + L,a:5,9)32 (_ - e—%o<r—<s+l>>) < S o)
z T T

where we used the bound s > 1 to conclude s+ 1 < s. The result for Pi-® follows
from the fact that we may write all the sums beginning at k£ = 1, and then use )\,

in place of Ag. n

Lemma 4.12. Let s,y be fized. For all > s+ 1,

le= =M (2, )l S e and  ||2doe” " (2, y) ] S €0
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Proof. Indeed, for r > s+ 1, (4.48) gives

le™ = @ y)llzz = D e )l - (@) 22
k=0
< e Ml § ==k =do) () )3
k=0
< e~ Mo(r=s)

The identity —392¢ + 2%y, = Mgty implies the inequality
— 12202y, < ez}
Integrating both sides by parts gives

[Eeze R[S Ak/l’%i - /(@W)(l’%) S Mllwnll3 + 110stnll2[lwell2-

Furthermore ||0,¢k|l2 < (/\k)% and |lzglle < ||[Ukllz + [[220k]l2 S ()\k)%. It follows
that

|20xkll2 S Ak (4.54)

A similar computation as above gives the second result. O
At this point, we have all the necessary short term and long term estimates.

Proof of Proposition 4.8. Recall the Duhamel formula,

S\NZ r P\ 3
) . :(_ (TS)H’ //(_ W s, dd,
(r,0;s,y) T) e (0,y) + s T) ;Jk(pwsy) w dp
with
1 w
Ji(p,w; s,y) 1= e~ TPy (0)ahy (w) [% + ;&u} P(p,w; s,y).
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In view of Lemma 4.9, we first seek to show that

1 r 1 o©
lim (5> 2 =)o / / (3) N Jlp,w; s, y) dw dp =0,
r—00 S s R T —1

which is to say, that the higher eigenvalues do not contribute to the asymptotic.
Note that (p/r)Y/2 3 22 e~ =P kqfy (2)1hx (w) develops a singularity as p goes
to r, and that [2%) + %aw} O (p, w; s,y) also develops a singularity as p goes to s.

We split the integral

" N . . . .
\/S \/R<;> ZJk(p>wa S7y) dw dp:ll(ra S,y)+]2(7“,s,y)+]3(r,s,y)

k=1

into three parts, with

Je(p,w; s, y) dw dp
Jk(paw;87y> dw dp

= b
m\»—'
()¢

-[ [0
=[G
=[G

and consider the asymptotics of each part separately.

%
£
Il
—

=3 Ib
w\»—‘
()¢

%
e
Il
—

TSy
rsy
Tsy

Mg

Jk(p,w; s,y) dw dp

£
Il

1

Before analyzing these integrals, we first record a useful estimate on [ Y, Jydw.

Since % + wad,, is anti-self-adjoint, we obtain

/RQﬁk(w) (2 +wdy,) ®(p,w;s,y) dw = / [— (3 + wdy) Y(w)] ®(p,w; s,y) dw

R

Applying Cauchy—Schwarz, (4.43), and (4.54),

[ 0nt0) &+ 00) @005 ] £ 1000150
R
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Using the previous estimate and the definition of Ji(p, w),

Mg

SO (s wis ) g

(S te
R

k=1 1

blr—‘ ‘TT

M@ g Ze T (),

Thus, whenever s < p <r —1,

1 o,
P =028 (p, w; 5, Y)|| 12 - (4.55)

R

k=1

The asymptotics for [; and I, follow quickly from (4.55).

Indeed, first applying (4.55) and then applying (4.49),

s+1 1 1 1
hssl S [ (2) SNt g e o
s P p2(p? — s%)1 (rs)z

For fixed s, it follows that

1
lim (C) ’ e(’“_s)koh(ﬁ s,y) =0,

r—oo \ S

with uniform convergence in y (recall, A\; > X¢). Applying (4.55) and Lemma
411,

1
p2 _ s\
N p -z
1Io(r; s, )| < / ( e (r= )/\1( ) e~ (P=510 qp
s+1 r p

=

3 r—1
S <§> e Po(r=s) /2 e_(r_p)(’\l_’\())@ —i—/ e_(’“—p)(/h—/\o)@
r +1 P L p
< (f) o (r=5)X0 {—e G + 2] :
T s+1 r
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Again, for fixed s > 0,

1
lim <C> FermON L (rrs y) =0
r—00 S

with uniform convergence in y.

Using the fact that %—i—waw is anti-self-adjoint and applying Cauchy—Schwarz

| 3(r; 5, y)
"oyl >

S/ (—) ‘ (%+wc9w)Ze—(r—p)/\k¢k(0)¢k(w) 1@(p,w; s, 9|12, dp
P k=1 L2,

For r — 1 < p < r, applying (4.51) and Lemma 4.10 gives

| [+ w0u] 3 et 0ntw)

k=1

(4.56)
13,

S| G +wdu] e, w)]|  + || [+ wdh] e

=200 (0o (w)]] o
S(r—=p)

=l

Combining (4.56) and Lemma 4.11,

It follows that, for fixed s,

1
lim (i> ’ e (s s y) = 0
r—oo \ §

with uniform convergence in y.

At this point, we have established (4.45), with uniform convergence in y. Our

next goal is to establish the positivity results. In particular, we shall show that
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the integral term in

Gl =) + [ (£) () |5+ 20| @(p.wis) du dr

converges, uniformly in y, to 0 as s goes to oo (recall that 1y(y) > 0).

Applying Cauchy—Schwarz and (4.49),

1

e~ (=P oy, (w) {%

+wa Wo(w)lls [+
< : | 1ewss )l do

s+1
S
_d
/s Ao — )t

+ %&U] O (p,w;s,y) dw dp‘ (4.57)

AN

®W = » |-

S

For the integral over (s + 1,00), first recall that [(% + w@w)wo] (w) is perpen-
dicular to ¢g(w). Integrating by parts, applying Cauchy—Schwarz, and applying
Lemma 4.11,

1 w

~(s=Poy (w) {Q_p + ;&U} Q(p,w; s,y) dw dp‘ (4.58)

s+1

( p) (=0 [ 4 00, ] Yo(w)P(p,w; s,y) dwdp

( ) =00 | [ PL®] (w5 5, ) |12 dp

( ) ero(p— 8)< ) e~ (p=s) dp
P
/ e~ (A1=20)(p— S)dp
+1

/H/ :
LG
AC

2/\

AN
t/:.I —

Since 1)y is strictly positive and continuous, we have inf,1 ¢o(y) > 0. In view

of (4.57) and (4.58), there exists some M such that G(s,y) > 0 for all (s,y) €
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N

[M,00) x (—=1,1). The same estimates also show that |G(s,y)| < ¥o(y) + s72,

which finishes the proof of Proposition 4.8. O

4.4 Theorem 4.6, Part 4: Support is on Holder Spaces

Our main tool will be the Kolmogorov Continuity and Consistency theorem (cf.,
Theorem 4.4), which allows us to upgrade a consistent family of finite dimensional

distributions to a (cylinder) measure on path space.

We construct our consistent family of measures. For 0 < ry <ry < --- <1y

and for Borel sets By, By,..., By C R, let

P’rl ..... TN<B1><"'XBN)::

N
// F(TN,QZN)H(b(rj,xj;rj,l,xj,1)¢(r1,x1;0,0)da:N--~d:c1.
B By

Jj=2

and let

rx (B1 X -+ X By)

77777777777

where 0¢(B) =1if 0 € B and §y(B) = 0 otherwise.

The consistency of this family follows from the semi-group property of ¢, given
in (4.59) below. First, recall that ¢, is the fundamental solution of the cut-off
parabolic PDEs in (4.12). Fix p > s. Forr > p, both [}, ¢n(r, x; p,w)dn(p, w; s,y) dx
and ¢, (r, x; s, y) solve the Cauchy problem L,u(r, x) = 0 with initial data u(p, w) =
On(p, w; s,y). By uniqueness of bounded solutions of such parabolic PDEs (cf.,

[16, Section 1.9]), we must have

/Rcbn(h ;5 p, W) Pn(p, w; s,y) dv = ¢ (1,75 8,y).
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Applying (4.15), (4.16), and dominated convergence gives

/Rgb(r,:c; p, w)o(p,w; s,y) de = ¢(r,x; s,y). (4.59)

Having this semi-group property, then, for all r > ry,

/F(r, x)p(r,x;ry, ry) de = lim (L, 057, x)gzﬁ(r,x;rN,xN) dx
R

¢(L70arNaxN)

By Theorem 4.4, there exists a unique cylinder measure, which we denote v 1,

on RI%*®) with the desired finite dimensional distributions.

We now show that vy, ; is supported on the space of continuous functions and,

in particular, on locally s-Hélder continuous functions, with s < 1. Fix R > 1

5 .

and let p > 2. For 0 < s <r < R,

P i (1F(r) = f(s)] > A)

(r) = J(
:// | )\F(r,x)qb(r,x;s,y)qb(s,y;0,0) dx dy

= / / /F(R, w)P(R, w;r, x)o(r, z; 8,y)P(s,y;0,0) dw dz dy
lz—y[>A

Because F(R,w) Sg 1 and ¢(R,w;r,z) <

1%—7« exp (— 50 R_;), therefore

/RF(R,w)ng(R wir,x) dw <R/ \/_exp (-%) dw <p 1.

and, by (4.16),
o] 1 IQ )\2
o(r,x;s,y) de < / exp <——) dr < exp <——)
/x_y|>>\ ( ) \ r—s 2(r —s) 2(r —s)
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and, again by (4.16),
[ ot m0.0dy <1
R

Putting this all together,

Po i (11(r) = F(s)] > A) Sr exp (_2(rA— s))

It follows that

Bt £ (r) = f(s)I] = /OO NP (1 (r) = f(s)] > A) dA

0
<r /OO)\pleXp - X d\ Spr (r—s)
~ 0 2(7, o S) ~Pp,

Thus, for all s € [0, pg;pQ), Theorem 4.4 shows that the measure vy, ; gives measure

[N4S)

([0,00) — R). Finally, note that as p — oo, we have 22 1 1

one to C} 5 | 2 and so

loc

we may choose any s < % as our Holder exponent.

4.5 Theorem 4.6, Part 5: Restriction to Bounded Intervals

By definition, the measures vu 1 |j0,5] and vy, 1|0, r] are Borel measures on C*([0, R| —
R) that obey the following laws: for 0 < 7y <79 < --- < ry := R and Borel sets

Blv"'7BNgR7

IPVL,I“O,R](f(Tj) € Bj,j=1,... ,N)

¢(L,0;0,0)

N
L,0;R
:/ MH(b(?“j,ﬂ?j;7“j—1>%—1)¢(7“1,371;0>0) dxy - - dxy.
B By ( ;
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and

]P)VOOJHO,R](f(rj) €Bj,j=1,...,N)

N
:/ / F(R,ZL‘N)qu(’l“j,l’j;’I“j_hl’j_l)gb(?“l,l'l;070) d.TN"'del.
B By

=2
Let P be the Borel measure on C*([0, R|) given by

R, f(R))¢(L,0;0,0)
¢(L,0; R, f(R))

dP(f) := dl dvpalio.r (f) (4.60)

Recall that, by Theorem 4.6, part 1, we have ¢ > 0. Furthermore, as L > R,
division by ¢(L,0; R, f(R)) is well-defined. It is not hard to see that

P(f(r;) € Bj,j=1,...,N)=P,_, . . (f(r;) € Bj,j =1,...,N).

It follows that the finite dimensional distributions of P and 1/00,1|[0, Rr) are identical,

and by the uniqueness aspect of Theorem 4.4, we have

Voo,1|[0,r] = P-

As the Radon—Nikodym derivative in (4.60) is strictly positive everywhere, a simi-

lar argument shows that vy 1|(o, g is absolutely continuous with respect to Ve 1|0, 5],

P(L,0;R, f(R))
F(R,f(R))$(L,00,0) "

with Radon—Nikodym derivative

Let A C C*([0, R] — R) be a Borel set. Note that, for each f € C*([0, R] —

R),
() #(L,0; R, f(R)) < o(L,0; R, f(R))
XER, F(R)H(L,0:0,0)| ~ F(R, f(R)H(L,0;0,0)

and

L GLORR)

L F(R, f(R))¢(L,0;0,0)
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Also, for each L > R,

¢(L,0; R, f(R)) B -
/GS([OJ%D F(R, f(R))qb(L,O;O,O)dV“J“O’R](f) = /C([O,R]) dvialor(f) =1

and so the generalized dominated convergence theorem (cf., [15, Exer. 2.20]) gives

¢(L,0; R, f(R))
R, f(R))¢(L,0:0,0)

nggo vl (A) = lim XA(f)F< AVoo 1 |10,7)(f)

L=oo Jos((0,R))

= / Xa(f) Voo 1lpo,m (f)
C#(0,R))

= Voo,1|[0,R] (A);

as desired.

4.6 Theorem 4.6, Part 6: Construction of v

2

Recall the heat kernel ¢g(r,z;s,y) = ———— exp (_(a:fy)

o (t—s) 2(t_8)) and recall that W,

the standard Wiener measure, obeys the following law: for 0 < r; <71y < --- <ry

and for Borel sets By, Bs,..., By CR,

]P)W(f(rj)eth:la"'?N):

N
// H%(Tja$j§7"j—1,13j—1)¢0(7‘1,$1;0;0)dl‘n"'dIL
By B

N j=2

Also, recall that vy 9 = pi1, 2 obeys the same finite dimensional distributions as the

Brownian bridge from 0 to L, i.e.,

P, ,(f(rj) € Bj,j=1,...,N) =

gb(L O:ry,x ) N
0 s Uy I’ Ny LN
B ¢ Z 0:0 “ ||¢ 7'71";7" ,(E' (25 T ,:L’ ,0,0 dxndx .
/1 By 0(7;7)j20<JJ]1 31)0(11 ) 1
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We denote by W|p ) the image measure of W on C*([0, R] — R), with the
Borel g-algebra, under the restriction map f — f|jo 5 and similarly for vy »|jo r)-
By an argument similar to Section 4.4, the measures Wy g and v |jor are

mutually absolutely continuous, with the Radon-Nikodym derivative

dvr aljo,r] _ do(L,0; R, f(R))
dW‘[QR] (bO(LaO;OaO)

Mutual absolute continuity of v 0,5 and vz |, g) follow from the tensor product
structure of v, and the mutual absolute continuity of each of its components.

$o(L,0:R,f(R

As limy o ¢o(L,0;0,0))) =1 for every f € C*([0, R] — 00), a similar argument

as in Section 4.5 shows that for every Borel set A C C*([0, R] — R), we have

Jim v ofo,m(A) = Wliom(A). (4.61)

Furthermore, (4.11) follows from (4.9), (4.61), and the fact that v, is essentially

a tensor product of v, ; and W.

Finally, as the measures vy |jo, z) and V| [,z are mutually absolutely continuous
on C*([0, R] — C), the completion of the Borel o-algebra with respect to each of
these measures must coincide. Let us denote this o-algebra by Fg. Also, each set
A € Fg is the union of a Borel set and a null set (cf., Proposition A.7). Thus,
(4.11) also holds for each A € Fp.
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CHAPTER 5

Almost sure global existence and invariance

In this chapter, we prove Theorem 2.5. Let us recall the first order NLW in
(2.10) and the definition of Flow,, from (2.11). Furthermore, by Proposition 4.2,
C§([0,00) — C) is a Polish space, and hence we may utilize results from Ap-

pendix A. As before, let pk : C5([0, L]) — C*([0, R]) and p% : C: (]0,00)) —

loc

C*([0, R]) denote the restriction maps g — g|jo,z]-

The first two assertions of Theorem 2.5 are quite immediate.

Proposition 5.1. There exists a Borel subset Qo C C; _([0,00) — C) such that

1 V5o(s) = 1;

2. For every g € Qu, Flows(t,g) is defined globally in time. For each T > 0
and R > 0, we have Flows(t, g)|jo.r € CYC([=T,T] x [0, R] — R).

Proof. Let 0 as in Theorem 2.1 and let
Qe = ﬂ (Pﬁ/zj)_l ° PfL/zJ (Qr)
L=2
= {9 € C},.([0,00)) | VL > 2,31 € Qp s.t. grlo,22) = 9lo,1£/20}-

Here, | L/2] denotes the largest integer less than or equal to L/2. As restriction
is a continuous map, therefore pr /2] (Qr) is an analytic set. By Proposition A.6,
it follows that (pf5 /QJ)_I o pr /9 (1) is analytic and, hence, Q. is also analytic.

By Proposition A.6, the set Q. is ve-measurable.
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By Theorem 2.1, we have v(2,) = 1. As Qp C (prm)_l o pr/QJ(QL), it fol-
lows that VL|[07LL/2J](pr/2J (€27)) = 1. By mutual absolute continuity of vz, 1,2
and vs|o,(1/2) (cf, Theorem 2.3), we have Voo|[0,LL/2J](pr/2J (Qr)) = 1. In other

words,

Voo ((Pﬁ/zﬂfl © PfL/zj (QL)) =1

Thus, vee(Qeo) = 1. In particular, C ([0,00)) \ Qs is measure 0, and so there is

([0,00)) \ Qos. We define

some Borel set A of measure 0 that contains C}}.

QOO = Clsoc([07 OO)) \ A

Observe that Q. C Q. and Voo(Qoo) = 1.

We now prove the second assertion. Fix g € 0, and fix T" > 0. For each L > 2,
let g, € Qp such that gl z/2)) = 9rl0,|L/2))- By finite speed of propagation, we
have

Flow,(t, 91.) |10, /2)- = Flow 4, (t, 9r4)lj0,[2/2) -4

for all L > 2T, all t € [-T,T], and all £ > 0. We define Flow(t, g) to be the

unique function such that for each R > 0,
Floweo (t, 9)|j0,r = Flowr(, g1)|jo,r for all L>2(R+1T),|t| <T (5.1)

and note that it obeys the regularity conditions asserted above. O

We next turn to the invariance assertions of Theorem 2.5. To do this, we first
show invariance on the fixed time interval [—1, 1], and then iterate the flow map

to achieve global invariance.

Lemma 5.2. For each t € [—1,1], the map

Flow(t, ) : Qs — C},.([0,00) — C)
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is continuous with respect to (4.4). Furthermore, for each Borel subset A C Q,

the set Flowo(t, A) = {Flow(t,9) | g € A} is a Borel subset of C},.([0,00)).

Proof. For 1 < k < o0, let g € Qo such that d(gx, go) — 0. Observe that

convergence in this metric is equivalent to convergence in each semi-norm.

Fix n € N. For each 1 < k < o0, choose gi € (25,12 such that

Grlomn+1) = grljo.nt1-

In particular, lim, o [|gx — Goollcs((0,n+1)) = 0. By Corollary 3.4, we have

Jim | Floway, y2(t, gr) — Floway, (%, Goo)llcocs (=11 [0,n)) = O-

By finite speed of propagation,

lim || Flowoo (¢, gx) — Flowoo (¢, goo) lcocs ((—1,1)x[0,n)) = O- (5.2)

k—o00

As (5.2) holds for each n, it follows by the above observation that

lim d(Flowy (¢, gx), Flow (¢, goo)) = 0

k—o0

for each t € [—1, 1], proving the continuity assertion.

For fixed t € [—1, 1], we extend Flow(t,-) to C;

loc

([Ov OO) — C) by
Flows(t,g) :=0

for g € C},
CS

loc

([0,00) — C) \ Q. This defines a Borel measurable map from
([0,00) — C) to itself. Furthermore, the restriction of Flow,(,) to Qu
is an injective map, as the flow is reversible. By the Lusin-Souslin Theorem

(cf., Theorem A.2), Flow.(t,-) maps Borel subsets of Q. to Borel subsets of
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Cpe([0,00) = C). 0

Lemma 5.3. Let K C C; ([0,00) — C) be a closed set such that K C Q. For

every t € [—1,1], we have
Voo (K) < Voo (Flowoo (2, K)).

Proof. Let 0 < R < L, and recall that (pk,,)™" o p3,,(K) is an analytic subset
of C*([0, L] — C). By Theorem 2.1, we have

vr((pr) ™" 0 PR () = v (L 0 ((05s) ™ 0 PR (K))) (5-3)

=V (FlOWL [ta QN (pIL%H)il © poRo+1(K)D

for each ¢t € R.

Next, we claim that, for t € [—1,1],

ok (Flowy, [, 90 11 (k1) ™ © 051 (5))]) € 55 (Flowoe(£.K)) (5.4)

Indeed, let g € Flowy, [t, QN (pk,y) ™" 0 p%,1(K)]. Then there exists some f €
(phr) o pF(K) N Qp such that Flow (¢, f) = g. Furthermore, there exists

f € K such that f l0,54+1] = fljo,r+1) and thus, by finite speed of propagation,

Flow(t, f)][oﬂ = Flow(t, f)ljo,r = 9lj0,r-

The claim follows.

Given (5.4), we also have

Flowes [£, 2 0 (o)™ © o7 (K0)] 5.5
C (pr) "t o pg (Flowy [t 0 ((PRe) ™' 0 % (K))])

C (pp) " o piy (Flowso(t, K))
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Furthermore, Flow (¢, K) is a Borel subset of C} ([0, 00) — C) by Lemma 5.2,
and thus (p%)™' o p% (Flow.(t, K)) is analytic (and vp-measurable) by Proposi-
tion A.6.

Putting (5.5) into (5.3), then

vi((phy) " o p (K)) < v ((p) ™ o piy (Flowso(t, K)))

which is to say,

viloriy (PR (K)) < vilpr) (P (Flows (¢, K))) .

Sending L — oo, Theorem 2.3 gives

Voolor41] (PR41 () < Vool o) (pF (Flowoo (£, K)))

or

Voo ((PF41) ™" 0 PR (K)) < vee ((05) 7 0 o (Floweo (8, K))) - (5.6)

Similar to above, (p%) ™! o p¥ (Flow(t, K)) is an analytic subset of C} ([0, 00))

and thus it is indeed v,.,-measurable.

Note that (5.6) holds for arbitrary R > 0. Furthermore, we have
(p7) ™" 0 pit (Flowss (t, K)) 2 (pf1) " 0 pliyy (Flowss (t, K))

and similarly for K. By dominated convergence,

Voo (ﬂ ()" o p%‘”(K)) < Voo (ﬂ (%)~ 0 pf (Flowo(t, K))) . (B

R=2 R=1
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We claim that

Flowao(t, K) = [ (p%) " © pis (Flowao (t, K)). (5.8)
R=1

The containment C is obvious. Now, let g € x_,(p%) ' 0 pF (Flow (¢, K)). For

each integer R > 1, there exists fgr € K such that
Flowo(t, fr)lj0,51 = 9l[0,7] (5.9)
By finite speed of propagation, it follows that for each n > 0 and for each R > 1,
fR|[0,R—1] = fR+n|[0,R—1]-
Thus, the sequence {fr}%_; converges to some f € C¢ ([0,00) — C), with

f’[O,R—l} = fR’[O,R—l]

for each R > 1. Indeed, as K is closed, we also have f € K. Given (5.9) and

finite speed of propagation, we have

Flow(t, f)|0,r-2 = 9lj0,r-2

for each R > 2, and thus Flow (¢, f) = g. This proves the reverse containment.

As K is closed, a similar converging sequence argument as above shows

K= () (p5%)" o pf5(K). (5.10)
R=2
Putting (5.8) and (5.10) into (5.7) finishes the proof. O

The above proof actually shows that Flow., preserves closed subsets K of
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C; .(]0,00) — C) which are contained® in Q,, though we will not use this fact for

later results. Finally, we prove the invariance assertion of Theorem 2.5.

Proposition 5.4. For each vo.-measurable subset A C Q. and for each t € R,

the set Flow.(t, A) is also v-measurable and vy (Flow(t, A)) = vs(A).

Proof. We first consider the case when ¢t € [—1,1] and when A is Borel. In view
of Theorem A.7, let
KiCKyCKz3C---CA

be compact sets such that vy (A \ K,) < + for each n. By Lemma 5.3, we have
Voo (K) < oo (Flow (8, K,)) and so

Voo (A) = VOO( D Kn> < I/OO<FIOWOO [@ O KnD < v (Flowa (£, 4)).  (5.11)

n=1

A similar argument also shows
Voo (o0 \ A) < oo (Flowoo (¢, Q2 \ A)). (5.12)
Since
1= Voo(A) + V00 (V0 \ A) < Voo (Flowoo (£, A)) 4 veo (Flowo (2, Q00 \ 4)) < 1,

all of the inequalities in (5.11) and (5.12) must actually be equalities.

The case for all ¢t € R follows from iterating the flow, and intersecting with €2
if necessary. The case for all v,,-measurable A follows from a similar argument as

in Section 3.2. OJ

nner regularity of v, guarantees existence of such closed sets. Indeed, we may find compact

sets K C C} ([0,00) — C) contained in 2, with measure arbitrarily close to 1.
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APPENDIX A

Some Descriptive Set Theory

In this appendix, we recall some defintions and facts from descriptive set theory
that will be useful for our paper. In particular, we use these results in Section 3.2

and Section 5. We refer to [19] for proofs.

Definition A.1. A topological space is said to be a Polish space if it is completely

metrizable, and separable with respect to this metric.

One of the more useful results in this setting is a theorem by Lusin and Souslin,
which states that injective Borel maps (in particular, continuous embeddings)

between Polish spaces are Borel isomorphisms onto their image.

Theorem A.2 (Lusin—Souslin). Let X,Y be Polish spaces, and let f : X — Y
be Borel measurable. If A C X is Borel and f|a is injective, then f(A) CY is
Borel.

Indeed, let us deduce the following result as a corollary:

Proposition A.3. Fiz L € (0,00) and s € [0,00). For each of the Banach spaces

X = LP([0,L]), with1 <p < oo, or
X = H3([0,L]), or
X =C°([0, L)),

the following statement holds:
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Endow X with its usual norm topology, as well as the corresponding
Borel o-algebra, Bx. Then C§([0, L]) € Bx. Furthermore, the restric-
tion of Bx to C§([0,L]) coincides with the standard Borel o-algebra

induced by the s-Holder norm.

Proof. Recall that all of the Banach spaces mentioned above are separable, and
hence are Polish spaces. Furthermore, C§([0, L]) embeds continuously into each
Banach space X above. By Theorem A.2, it follows that C§([0, L]) € Bx for each

X above, and that the o-algebras mentioned above must coincide. O

Proposition A.4. Fizs € R, and fir L > 0. Let A =R or C and let H3([0, L] —
A) be as in Definition 1.5. We define the Fourier cylinder o-algebra to be the

o-algebra generated by sets of the form

Av={g="_ cuenr € Hy([0,L] = A) : cx € B}

n=1

where B C A 1s Borel. Then the Fourier cylinder o-algebra coincides with the

usual Borel o-algebra on HE([0,L] — A).

Proof. Let
AN ={C=(c1,¢a,...) 1 ¢y €A}

denote the the space of sequences in A. We equip this space with the metric

as well as the corresponding topology and Borel o-algebra. Observe that open

cylinder sets, i.e. sets of the form

{¢=(c1,¢,...) : ey € O},
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where O C A is open, form a sub-basis for this topology, and so they also gen-
erate the Borel o-algebra. It follows that the standard cylinder o-algebra on AN

coincides with the Borel o-algebra.

We consider the map
H3([0,L] = A) — AN

sending each Sobolev “function” to its corresponding sequence of Fourier coeffi-
cients. Clearly the map is injective. Furthermore, the map is continuous since
convergence in H* implies convergence in each Fourier coefficient, which then im-

plies convergence in the metric above. The result follows from Theorem A.2. [

In this paper, we also consider general continuous images of Borel sets, such as
restriction maps. These sets are not necessarily Borel, but still obey nice measure

theoretic properties.

Definition A.5. Let X be a Polish space.

1. A set A C X is called analytic if there is a Polish space Y, a Borel subset

B CY, and a continuous function f :Y — X such that f(B) = A.

2. Let pu be a o-finite Borel measure on X, and let F be the completion of the
Borel o-algebra with respect to u. A set A C X is called p-measurable if
AeF.

3. Finally, a set A C X is called universally measurable if A is p-measurable

for every o-finite Borel measure p on X.

Proposition A.6 (Properties of analytic sets). Let X be a Polish space.

1. If A, C X s analytic for n € N, then (o An and U, ey An are also

analytic.
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2. Let'Y be another Polish space and let f : X — Y be Borel measurable. If
A C X is analytic, then f(A) CY is analytic. If B CY is analytic, then
f~YB) C X is analytic.

3. (Lusin) Analytic sets are universally measurable.

Finally, we recall a generalization of regularity results for Lebesgue measure

to the Polish space setting.

Proposition A.7 (Regularity of Borel Measures). Let X be a Polish space and
let 1 be a finite Borel measure on X. Then u is reqular: for any p-measurable set

ACX,

u(A) = sup{u(K) | K € A K compact}

=inf{u(U) | U D A,U open}.

In particular, a set A C X is p-measurable if and only if there exists an F, set

F C A (resp., Gs set G O A) such that u(A\ F) =0 (resp., u(G\ A) =0).
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APPENDIX B

A Multi-time Feynman—Kac formula

In this appendix, we make various modifications to the classical Feynman—Kac
formula. To this end, we make use of the fact that fundamental solutions of
parabolic PDEs (cf., Definition 4.5) also have nice properties in their secondary

variables. We list the relevant results below, and refer to [16] for proofs.

Lemma B.1. Let V(r,x) : R2° X R — R be bounded and continuous, and let

o(r,x; s,y) be the fundamental solution of

0.6 = 5026+ V(1,26

Then, as a function of (s,y), we also have —0s¢p = %8§¢+V(S, y)¢. Furthermore,
for g € Co(R) and for fized r > 0, the unique solution of

—0s = 520+ V(s,y)v, (s,9) €[0,r) xR
P(r,-) = g(-)

of sub-exponential growth in y is given by
vls.9) = [ g(@)otr.ais.y) do.
R

Let W, denote the Wiener measure for Brownian motion starting from time

s and at point y. We use B to denote a generic function in the support of Wy ,,.
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As before,

Go(r, 73 8,Y) = ;)eXp <_éx(r_—yij>

2n(r — s

is the heat kernel.

Theorem B.2 (Multi-time Feynman—Kac, Brownian Motion). Let V(r, z) : R=%x
R — R be bounded and continuous, and let ¢(r, x; s,y) be the fundamental solution
of

orp = %8§¢ + V(r,z)o.

Let L € (0,00), s € [0,L), andy € R. Let s <1 < -+ <ry < L and let
fi, -, fn,9 : R = R be bounded, measurable functions. With (ro,zo) = (s,y),

we then have

5% Joxp ([ V0. B0) do) a(B(0) [T £(500) (B.1)
:/R"'/RQ(JUW(LJ?;TNJEN)Hf(ij(?“j,xj;?”j17333‘1) drdxy - - dr

k=1

Proof. The case N = 0 is the usual Feynman-Kac formula, which we shall assume
as a base case (see [44] for a proof). For the inductive step, we shall mimic the

technique of this proof.

Let us write the left hand side of (B.1) as

EWs,y

(Z An) exp (/ V(p, B(p)) dp) gBI) ] FBE))|,

T1 jil

where

1 T1 1
Avim o [ [V B0 V(o B0 dpy-dy
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for n > 1 and Ay = 1. Observe that, if we let
Ru={(p1,....pn) ER" s <p1 <o+ < pp <71}

and let dp := dp,, - - - dpy, then, for n > 1,
A= [ TIVs Bl d

By hypothesis and by Fubini’s theorem, one may interchange expectations, sums,

and integrals as desired. In particular,

LHS(B.1) =Y Jy,(n)
n=0
where

exp ( / Vi B) dp) o BN [ 1B

T1

Js,y(o) = ]EWs,y

and, for n > 1,
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which, by induction, is equal to

N

/R"'/Rg(‘%)¢<[”x;rN’xN)Hf($k>¢(rk’$k;rk1’wk1) drdry -+ -dry.  (B.2)

k=2

Applying the Markov property of Brownian motion and (B.2),

Jsy(0) = Ah(rl,wl)f($1)¢o(rl,x1;S,y) dzy.

and, for n > 1,

L) = [ [ [ b seetrnapw)

H Vi(pj, wj)do(ps, wj; pj—1, wj—1)V (p1, wi)go(pr, wi; s, y)day diddp

J=2

For the next step, observe that

1
- s%(r,w;s,y) = §6§¢0(r,x;s,y)

and so
0Ty (0) = 282, (0)

_2 YISy

For n > 1, differentiating J,,(n) in s produces two terms: one from the bounds

in R,, and one from differentiating ¢o(p1, w; s, y); namely, for n > 1,

C0uTsy(n) = V(s,y)Jey(n — 1) + 282, (n)

2 Yy Sy

In particular, Y  J;,(n) obeys' the backwards Kolmogorov equation

1
-0 = 58510 +V(s,y)¢

Indeed, ", J,4(n) represents the iterated Duhamel expansion for the solution of this PDE.
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with terminal condition ¢ (ry,-) = h(ry,-) f(-). Given Lemma B.1, we have

LHS(B.1) = Z Jsy(n) = Ah(rl,ﬁl)f(x1)¢(r1,x1; s,y) dzy.
n=0

In view of (B.2), we are done. O

Let BBy, 4.5, denote the measure for the Brownian bridge that starts at time
s and at point y, with ending at time L and at point x. We use BB to denote a
generic element in the support of BBy, ;.s,. The proof of the above theorem also

applies, mutatis mutandis, to the following setting.

Theorem B.3 (Multi-time Feynman-Kac, Brownian Bridge). Let V (r,z) : R=0 x
R — R be bounded and continuous, and let ¢(r, x; s,y) be the fundamental solution
of

orp = %8§¢ + V(r,z)o.

Let L € (0,00), s € [0,L), andy € R. Let s <1 < -+ <ry < L and let
fi,---, fv : R = R be bounded, measurable functions. With (ro, xo) := (s,y), we

then have

EPPres [exp ( / V(p, BB(p)) dp) FBB(m)) - fx(BB(ry))

¢LxTN7:CN N
¢o(L, ;5 8,y) Hf O(rj, w5371, i) day - - - dy.
R

J=1
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