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ARTICLE OPEN

Transport anomalies in the layered compound BaPt4Se6
Sheng Li1, Yichen Zhang 2, Hanlin Wu1, Huifei Zhai1, Wenhao Liu1, Daniel Peirano Petit1, Ji Seop Oh2,3, Jonathan Denlinger 4,
Gregory T. McCandless5, Julia Y. Chan 5, Robert J. Birgeneau3,6, Gang Li 7, Ming Yi 2✉ and Bing Lv 1✉

We report a layered ternary selenide BaPt4Se6 featuring sesqui-selenide Pt2Se3 layers sandwiched by Ba atoms. The Pt2Se3 layers in
this compound can be derived from the Dirac-semimetal PtSe2 phase with Se vacancies that form a honeycomb structure. This
structure results in a Pt (VI) and Pt (II) mixed-valence compound with both PtSe6 octahedra and PtSe4 square net coordination
configurations. Temperature-dependent electrical transport measurements suggest two distinct anomalies: a resistivity crossover,
mimic to the metal-insulator (M-I) transition at ~150 K, and a resistivity plateau at temperatures below 10 K. The resistivity crossover
is not associated with any structural, magnetic, or charge order modulated phase transitions. Magnetoresistivity, Hall, and heat
capacity measurements concurrently suggest an existing hidden state below 5 K in this system. Angle-resolved photoemission
spectroscopy measurements reveal a metallic state and no dramatic reconstruction of the electronic structure up to 200 K.

npj Quantum Materials            (2021) 6:80 ; https://doi.org/10.1038/s41535-021-00382-x

INTRODUCTION
Two-dimensional (2D) transition metal dichalcogenides (TMDs),
with various polytype structures such as 1 T, 1 T’, 2H, and 3 R
phases, have provided a fertile ground for fundamental quantum
materials research and emergent potential applications in the past
decade due to the fascinating physical properties discovered in
these materials1–17. In most cases, structural defects such as
vacancies and grain boundaries disrupt the translational symmetry
of these pristine lattices and significantly impact their physical and
chemical properties. Typically, these defects are detrimental to the
carrier mobility and associated charge transport performance18–20.
However, defect engineering through carefully controlled atomic
defects has recently emerged as a versatile and effective tool that
can significantly improve the physical properties, tune the
electronic structures, and tailor their device performances for 2D
materials. It has been demonstrated that different types of
controlled defect structures have led to the enhancement of
electrical transport, optical, and chemical properties, for various
TMD materials21–23. If such defects are well-ordered, a new type of
structure or even unprecedented physical properties could also be
developed24,25. For example, Mo6Te6 nanowire forms at the
boundaries of 2H-MoTe2 through thermal annealing under
vacuum26; novel Mo2S3 is fabricated through a periodic assembly
of chalcogen vacancy lines in the corresponding MoS2 mono-
layers27. Point defects and line defects of chalcogen atoms induce
magnetism in PtSe2 and ReS2 where magnetism does not exist in
the pristine materials28,29. Besides defect engineering, chemical
intercalation that introduces guest species into the van der Waals
gaps can also effectively change the band filling and the chemical
potential of TMD materials and lead to drastic changes in their
electronic, transport, and optical properties30–32. These interca-
lates can range from cations, anions, neutral atoms, and even
organic molecules, and could also introduce charge orders33,34,
superconductivity35,36, or magnetic orders37,38 into the host TMD
materials.

Among the known TMDs, PtSe2 has been well-known for its
high performance in photocatalysis, electrocatalysis, and high
mobility in field-effect transistors39–45. With dimension reduction
of PtSe2, the physical properties will change from that of a bulk
Dirac-semimetal to a monolayer semiconductor with an indirect
bandgap of 1.2 eV46. Different types of defects have been found in
the bulk and thin films of PtSe2, and they have experimentally and
theoretically impacted the related properties28,47. Thickness-
independent semiconducting-to-metallic conversion, in contrast
to semiconducting-to-metal transition with reduced thickness, has
been observed through plasma-driven atomic defect engineering
in PtSe2 films48. Theoretical calculations suggested that large spin-
orbit splitting can be induced by introducing point defects in the
PtSe249, and the Se vacancy line defects in monolayer PtSe2 could
cause a sizable spin splitting in the defect states50. This large spin-
orbital splitting gives rise to persistent spin textures, which protect
the spin from decoherence and induce an extraordinarily long
spin lifetime for designing spintronic devices.
As a part of chemical doping studies with controlled defects

synthesis for bulk PtSe2 materials51, we report herein a ternary
compound of BaPt4Se6 of layered structure featured with sesqui-
selenide Pt2Se3 layers sandwiched by Ba atoms. Each sesqui-
selenide Pt2Se3 layer could be considered as a PtSe2 structure with
ordered Se vacancies. It has an atomic coordination within the
structure of both the PtSe6 octahedra and the PtSe4 square planar,
which results in a mixed-valence compound with Pt (II):Pt (IV)=
3:1. It is also interesting to note that the Se atom framework in this
compound could be viewed as stacks of distorted Kagome nets
formed by Se atoms. We observe a resistivity crossover, mimic to
the metal-insulator transition ~150 K and a resistivity plateau at
temperatures below 10 K. The X-ray single-crystal diffraction,
temperature-dependent electrical resistivity, magnetoresistivity,
Hall, effect, heat capacity, and angle-resolved photoemission
spectroscopy (ARPES) measurements are carried out to fully
characterize this compound and understand the intriguing
transport anomalies observed in this system.
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RESULTS AND DISCUSSIONS
X-ray diffraction and structure description
The details of the X-ray single-crystal refinements and the
associated crystallographic parameters for BaPt4Se6 at both
300 K and 100 K are provided in Table 1. Additional atomic
coordination, selected interatomic distances, angles, and preces-
sion images are presented in the supplementary information. In
sharp contrast to PtSe2 in the space group of P3m1, BaPt4Se6
crystallizes in a distinct structure type (mC44) and the centrosym-
metric monoclinic space group C2/c (#15) with lattice parameters
a= 12.715 (4) Å, b= 7.406 (2) Å, c= 12.461 (3) Å, and β= 118.089
(7)°. The X-ray diffraction pattern with peaks in the preferred
orientation is shown in Fig. 1a, together with a photograph of the
crystals on the mm scale grid. The crystal structure (Fig. 1b)
consists of three distinct Pt sites (Pt1 and Pt2 atoms are at 4e sites
and Pt3 atoms are at the general position 8f, as labeled in Fig. 1b).
Pt1 atoms at the 4e site are octahedrally coordinated with six
neighboring Se atoms and have a formal Pt4+ valence. The Pt2
atoms at 4e site and the Pt3 atoms at the 8f site, have a square
planar environment with nearby Se atoms, and have a formal Pt2+

valence (Supplementary Fig. 1). The PtSe6 octahedra formed by
Pt1 atoms are edge shared with the square planar PtSe4 formed
by both Pt2 and Pt3 atoms (Fig. 1b). Each PtSe6 octahedra is
surrounded by six PtSe4 square planar, and each PtSe4 square
planar is shared by two PtSe6 octahedra, together they form a
sesqui-selenide Pt2Se3 layer structure with the stacking along the c
axis. The interlayer Se–Se distance is 3.478 Å, suggesting weak van
der Waals interactions between the sesqui-selenide layers. The Ba
atoms are sandwiched between layers and can be charge-
balanced as (Ba2+) (Pt2+)3(Pt4+)(Se2−)6 with Pt (II):Pt (IV)= 3:1.
The Pt (II)-Se distances in the square planar configuration range
from 2.4371(9) Å to 2.4704(9) Å, and are generally shorter than the
Pt(IV)-Se distances with octahedral configurations [2.5008(9) Å to
2.5169(9) Å]. Both the PtSe6 octahedra and PtSe4 square planar
are highly distorted resulting from the monoclinic symmetry of

the crystal structures (Supplementary Fig. 1 and Supplementary
Tables 1 and 2).
The sesqui-selenide Pt2Se3 layer in this BaPt4Se6 compound

could be considered as the Se-defect-ordered structure of TMD
PtSe2 layers. Figure 1c represents the projection of the Pt2Se3 slab
in BaPt4Se6. In comparison with the projected monolayer PtSe2
slab (Fig. 1d), one-third of the Se atomic positions in the Pt2Se3
slab remain vacant, as highlighted by red open circles, and the
vacancies are alternatively shifted to form a well-ordered
honeycomb defect pattern. This ordered vacancy pattern is
apparently different from the linear vacancy line pattern observed
in the Mo2S3 structures and suggests a likely significant change in
the electronic structures and transport properties compared with
the parent compound PtSe2.

Electrical transport data and discussions
The temperature-dependent resistivity data of the BaPt4Se6 are
shown in Fig. 2a. In sharp contrast to the overall semi-metallic
behavior of the bulk PtSe2, this vacancy-ordered sesqui-selenide
shows a drastic resistivity crossover at ~150 K with metallic
behavior from room temperature down to 150 K and semicon-
ducting behavior below 150 K. Using the thermal activation model
formula of ρ / eEa=kBT within the temperature range from 150 K to
90 K, we obtain an activation energy of 0.82 meV. However, the
resistivity begins to deviate from the thermal activation model
below 80 K, starts to saturate below 20 K, and reaches a plateau
between 10 K and 2 K, reminiscent of the resistivity plateau
observed in SmB6.
Both the resistivity crossover at 150 K and resistivity plateau at

lower temperatures are quite intriguing, as they hint at a number
of potential causes ranging from a magnetic phase transition,
charge density wave (CDW) transition, Kondo effect, topological
effects, and localization. We, therefore, carried out temperature-
dependent magnetization, single-crystal X-ray diffraction, and
heat capacity measurements to further examine the origins of

Table 1. Crystal structure of BaPt4Se6 at room temperature and 100 K.

Temperature 300 K 100 K

Crystal system Monoclinic Monoclinic

Space group C2/c (no. 15) C2/c (no. 15)

a 12.715(4) Å 12.709(2) Å

b 7.406(2) Å 7.4004(14) Å

c 12.461(3) Å 12.406(2) Å

β 118.089(7)° 118.374(8)°

Z 4 4

Atomic position

Ba1(4c) 1/4 3/4 1/2 1/4 3/4 1/2

Pt1(4e) 0 0.35664(5) 1/4 0 0.35783(4) 1/4

Pt2(4e) 0 0.85699(5) 1/4 0 0.85812(4) 1/4

Pt3(8f) 0.25059(2) 0.59819(3) 0.24539(3) 0.25057(2) 0.59922(3) 0.24530(2)

Se1(8f) 0.03278(6) 0.61103(8) 0.13512(7) 0.03223(5) 0.61205(7) 0.13456(5)

Se2(8f) 0.22316(6) 0.35380(9) 0.36289(7) 0.22376(5) 0.35499(7) 0.36357(5)

Se3(8f) 0.03163(6) 0.10257(8) 0.13610(7) 0.03117(5) 0.10391(7) 0.13565(5)

Absorption coefficient 78.633mm−1 79.292mm−1

θ range 3.30–30.57° 3.30–30.54°

Independent reflections 1599 1575

Refine Parameters 54 54

R(int) 0.0564 0.0458

Final R indices R1= 0.027, wR2= 0.058 R1= 0.022, wR2= 0.055

Goodness-of-fit 1.056 1.076
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these transport anomalies. First, no magnetic transition is
observed from temperature-dependent magnetization measure-
ment (Supplementary Fig. 4). This is consistent with the electron
configuration of 5d8 for Pt (II) atoms in the square planar
coordination and 5d6 for Pt (IV) atoms in the octahedral
coordination as for both configurations the 5d electrons are fully
paired. In addition, there are no magnetic ions in this system.
Hence, resistivity anomalies cannot be induced by the Kondo
effect. Secondly, no clear structural transformation is observed
from X-ray single-crystal diffraction in the low-temperature regime
down to 100 K. The overnight low-temperature X-ray single-crystal
diffraction at 100 K is collected and the refined crystal structures
are shown in Table 1. Clearly, no symmetry changes nor splitting
of Wyckoff positions is observed between 100 K and 300 K. The
integrated precession images that represent the reciprocal space
diffraction spots (Supplementary Fig. 2) also do not reflect any

CDW-modulated structural distortions at 100 K compared with the
refined structural model at 300 K shown in Table 1. In addition, no
clear jumps or anomalies are observed from heat capacity data
between 2 K and 200 K (Fig. 2b), which further supports that no
structure transition nor other first-order phase transitions exist in
this system. Therefore, electron localization is the most likely cause
of the resistivity upturn at 150 K in this system. A combination of
the thermal activation model and variable range hopping model
using different dimension indices to represent the strong
localization effect has been used to fit the data between 80 K
and 20 K, and yield unreasonably small activation energy <1 μeV.
This suggests that weak localization rather than strong localization
exists in the system.
Regarding the origin of the resistivity plateau observed at low

temperatures, magnetic effects such as the Kondo effect or
magnetic field-induced resistivity saturation as observed in WTe2
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Fig. 1 Structural analysis of the BaPt4Se6. a Powder X-ray diffraction on single-crystal with the preferred orientation along c axis, inset is the
optical image of the BaPt4Se6 single crystals. b Side view of BaPt4Se6 structure, with the PtSe6 octahedra and the adjacent PtSe4 square planar.
c Projection of the Pt2Se3 layer, with the red open circles, denote the vacancy of Se atoms and compare to d top view of the PtSe2 layer from
1T-PtSe2.

Fig. 2 Electrical resistivity and heat capacity data. a Temperature-dependent resistivity in log scale to show the low-temperature resistivity
saturation, the red solid line is the fitted data using the activation energy model. b Heat capacity of BaPt4Se6 from 2 K to 200 K where no clear
anomalies or jumps are observed, and the inset is the low-temperature heat capacity and first derivative (in red) data from 2 K to 10 K.

S. Li et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2021)    80 

1
2
3
4
5
6
7
8
9
0
()
:,;



system are not applicable here. One possible explanation could be
the contribution of some additional metallic states, which could
originate from multiple conducting channels or surface states
competing with the localization effects at low temperatures.
The low-temperature range heat capacity data are shown in the

inset of Fig. 2b. Interestingly, the heat capacity does not exhibit a
linear relationship of C/T vs T2 following the Debye model C= γNT
+ βT3 between 2 K and 10 K. By taking the first-order derivative of
the nonlinear behavior from 2 K to 10 K, we can clearly observe a
broad peak with a maximum at ~6 K. This peak may suggest an
existing hidden order in the BaPt4Se6 system, which could be
responsible for the resistivity plateau observed from the electrical
resistivity measurement.
Resistivities with and without applying a magnetic field at 9 T in

the whole temperature range are shown in Fig. 3a. A clear change
of magnetoresistance sign is observed at ~100 K, from negative in
the low-temperature range to positive in the high-temperature
range. The isothermal magnetoresistivity up to 9 T at different
temperatures is shown in Fig. 3b, which is consistent with Fig. 3a.
Three small yet non-negligible anomalies could be observed: (i) a
broad hump at 150 K, which is on par with the M-I transition
temperature observed in Fig. 2a; (ii) a change of sign of the
magnetoresistance at 100 K from positive to negative is observed;
(iii) the magnetoresistance upturn below 5 K. As the localization is
typically induced by disorder, the broad hump at 150 K could be
explained by the enhanced scattering caused by disorder under
magnetic field. However, at low temperatures, a negative
magnetoresistivity owing to the localization effect will emerge
and become stronger with decreasing temperature. The positive
and negative magnetoresistance will compensate each other at
intermediate temperatures, which could explain the significant
changes of magnetoresistance at ~100 K. Below 100 K, the
negative magnetoresistance induced by localization becomes

predominant. Interestingly, an upturn of the magnetoresistivity
below 5 K is observed, which could also be clearly noticed from
the inset of Fig. 3b. In comparison with the 5 K data, the
magnetoresistivity at 2 K bends down at high magnetic fields.
In order to demonstrate the weak localization effect in this

system, we convert the magnetoresistance data to the magneto-
conductance at a low field range with temperatures far below
100 K to minimize the influence of the classical magnetoresistance
and fit the data using the Hikami-Larkin-Nagaoka (HLN) formula52

Δσ Bð Þ
G0

¼ α Ψ
1
2
þ Bϕ

B

� �
� ln

Bϕ
B

� �� �
(1)

which describes the quantum correction to conductivity owing to
weak localization. In the equation G0 ¼ e2=ð2π2�hÞ, α is the
parameter in the renormalization group equation, Ψ(x) is the
digamma function, Bϕ ¼ �h=ð4eL2ϕÞ is the characteristic value of the
magnetic field with Lϕ as the phase-coherent length. The fitting
results are shown in Fig. 3c, where the data generally are
described reasonably well by the HLN formula, some deviation of
the fits from experimental values are observed at our lowest
measured temperature of 2 K and 5 K, which likely is due to the
additional metallic states as seen in the previous resistivity data in
Fig. 2a. The phase coherence length Lϕ extracted from Bϕ, changes
from ~47 nm at 2 K to ~12 nm at 30 K (Fig. 3d). As we increase
temperature, the phase coherence length decreases, typically
following the power-law relationship Lϕ∝ T−n. As the coherence
length value at 2 K is affected by additional metallic states (Fig. 3c),
we therefore only perform a linear fitting from 5 K to 30 K (red
solid line) (Fig. 3d) and obtain a fitted index of n= 0.62—a value
close to ½ indicating the 2D nature of this system.
In order to further understand the carrier contributions at low

temperatures for BaPt4Se6, we performed a Hall measurement
(Fig. 4a). By sweeping the magnetic field at different temperatures,

Fig. 3 In-plane magnetoresistivity data and related analysis. a Temperature-dependent in-plane resistivity data at zero magnetic field and
with the applied magnetic field up to 9 T. b Magnetoresistivity at different temperatures under 9 T. The inset shows the isothermal magnetic
field-dependent resistivity behavior. c Magnetoconductance at low magnetic field range fitted by the HLN formula (solid line) at several
temperatures, and d Temperature-dependent phase coherence length at different temperatures derived from the HLN formula with linear
fitting in the double log scales.
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the Hall resistivity shows a linear relationship with the magnetic
field. The Hall resistivity is positive throughout the whole
temperature range, suggesting the predominant hole charge
carriers in the system. The absolute Hall resistivity value does not
change much in the whole temperature range, and the obtained
room temperature hole concentration is on the order of 1019

cm−3. This is consistent with the resistivity data where no
significant change of resistivity is observed despite the M-I
transition at 150 K. The temperature-dependent Hall resistivity
data at 9 T is shown in Fig. 4b. Both a broad maximum at 150 K
and a small upturn below 20 K are observed, consistent with both
temperature-dependent resistivity and magnetoresistivity results
discussed previously.

Band structure calculations and ARPES measurements
To visualize the electronic structure of BaPt4Se6 and its evolution
with temperature, we performed ARPES experiments on the high-
quality single crystals. From density functional theory (DFT)
calculations on the nominal crystal structure, BaPt4Se6 is expected
to be a semiconductor (Fig. 5d). The measured dispersions,
however, indicate a metallic state. To introduce the measured

dispersions, we first show the three-dimensional (3D) Brillouin
zone (BZ) notation of BaPt4Se6 (Fig. 5a) and the corresponding
projected (001) plane sketched in gray and appended to the
measured Fermi surface (FS) in Fig. 5b. Note that due to the low
symmetry of the BaPt4Se6 crystal structure, the FS intensity shows
a C2 symmetric pattern with respect to the Γ�M2 direction only.
In the kz mapping displayed in Fig. 5c, the FS shows an anti-
symmetric intensity distribution across kz, of which the apparent
periodicity is twice that of the BZ size. Such observed intensity
pattern is owing to the structural factor originating from the two
stacked Pt4Se6 layers within each unit cell. Consequently, the kz FS
mapping intensity manifests more strongly the periodicity of the
single-layer Pt4Se6. The measured FS shows Fermi pockets around
the BZ boundaries. Along Γ�M2, we observe these pockets to be
small hole pockets from two linear bands crossing the Fermi level
consistent with a metallic nature, albeit near the valence band top
(Fig. 5e). From a comparison with the calculation, we observe that
the bands away from Fermi level present better consistencies with
the calculation. The origin of the mismatch here is likely owing to
Se vacancies in the material that slightly hole-dopes the sample.
The electronic dispersions of BaPt4Se6 indicate a degree of

Fig. 4 Hall resistivity data. a Field-dependent Hall resistivity of BaPt4Se6 at different temperatures up to 9 T. b Temperature-dependent Hall
resistivity at 9 T.
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Fig. 5 Angle-resolved photoemission spectroscopy results. a 3D BZ of BaPt4Se6 where the gray-shaded area denotes the projected (001)
surface. b FS map integrated within a 2meV window of the projected (001) surface using 88 eV LH photons at T= 13.5 K. Polarization of
incident photons is indicated by ε. c FS map along the kz direction. d DFT calculation for bulk BaPt4Se6 with SOC included showing a
semiconducting ground state. e Band dispersions along the Γ�M2 and Γ� C directions, where the momentum directions have been marked
in b. f Band dispersions along the Γ�M2 direction at 14 K, 151 K, and 196 K, respectively, indicated by a yellow vertical line in panel b. Red
triangles extracted from MDCs serve as visual guidance for the metallic states crossing the Fermi level.
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resemblance to that of PtSe2, albeit with distinction. The
dispersions at the Γ point emerge from an X-shape feature at ~
−1.3 eV (Fig. 5f top figure and Supplementary Fig. 5). A pair of
bands are observed at the M2 point, which in PtSe2 are observed
to carry spin texture owing to Rashba splitting45. However, the
measured FS and dispersions show much lower symmetry
compared with PtSe2.
We also carried out temperature-dependent measurements to

examine the connection to the transport anomalies. The middle
panel in Fig. 5f shows the Γ�M2 cut at 151 K corresponding to
the M-I transition shown above, while the figure at the bottom is
taken at a temperature high above the transition. Evidently,
considering thermal broadening, major features of the band
structure, especially the bands crossing Fermi level remain largely
unchanged between 14 K and 196 K. The red triangles in Fig. 5f are
fitted from momentum distribution curves (MDCs) to highlight the
band crossing the Fermi level. Our observation supports the
argument that the resistivity crossover ~150 K is not caused by
any change of the density of states near EF, but according to the
analysis above can be attributed to the weak localization effect.
In summary, A layered ternary compound BaPt4Se6 has been

discovered with sesqui-selenide layered feature and mix-valence
Pt oxidation states. The sesqui-selenide layer is similar to the TMD
PtSe2 structure with ordered Se vacancies. Electrical resistivity
measurements reveal two transport anomalies: one resistivity
crossover at ~150 K and a resistivity plateau below 10 K. Extensive
studies from X-ray diffraction and heat capacities suggest the
resistivity crossover is due to weak localization that is related to
the structural distortion and ordered honeycomb Se vacancy of
the structure. Temperature-dependent ARPES measurements
reveal a metallic state between 14 K and 196 K, and do not show
any abrupt electronic changes in the whole temperature range,
further supporting the weak localization effect in this compound.
Magnetoresistivity, Hall, and heat capacity measurements con-
currently suggest an existing hidden state below 5 K, which should
be responsible for the resistivity plateau at low temperatures. The
hole-like band in the MDC curves from the ARPES measurements
is consistent with hole charge carriers from our Hall data.
Unfortunately, no clear evidence of the existence of the in-gap
state is observed from ARPES measurements down to 14 K, which
is slightly higher than the resistivity plateau below 10 K. The exact
origin of the emerged metallic ground state at low temperatures is
responsible for the resistivity plateau is subject for future studies.

METHODS
Material synthesis and X-ray diffraction
The compound was initially discovered during the chemical doping studies
for BaxPtSe2. The small grain crystals are isolated first for chemical analysis
and initial X-ray diffraction studies. The large size of single crystals of
BaPt4Se6 was later directly synthesized through solid-state reaction using
Ba pieces (99.9%, Alfa Aesar), Pt pieces (99%), and Se shots (99.999%, Alfa
Aesar). A stoichiometric amount of the starting materials were placed into
a graphite crucible and then sealed in the fused quartz tube under a
vacuum. The tube was placed in a furnace, slowly heat with a rate of 30 °C/
h up to 1100 °C, and maintained for 48 hours before slowly cooled down to
800 °C with the rate of 3 °C/h. Thin shinning black crystals can be obtained
by carefully cleaving the melt ingot and with preferred c axis orientations
(Fig. 1a). The exact crystal structure was determined by Bruker D8 Quest
Kappa single-crystal X-ray diffractometer equipped with a Mo Kα IμS
microfocus source (λ= 0.71073 Å) operating at 50 kV and 1mA with a
HELIOS optic monochromator and a CMOS detector. The collected data set
was integrated with Bruker SAINT and scaled with Bruker SADABS
(multiscan absorption correction). The refined chemical composition from
single-crystal diffraction was subsequently confirmed by scanning electron
microscope energy-dispersive X-ray spectroscopy (Supplementary Fig. 3).

Physical properties measurements
The electric resistivity and Hall coefficient were measured by employing
the standard six probe method using golden wires and silver paste on a
2 × 1 × 0.1 mm3 crystal with the temperature down to 2 K and magnetic
field up to 9 T. The magnetoresistivity measurement using standard six
probe method with magnetic field perpendicular to the crystal plane and
current, the heat capacity measurement using the relaxation method
down to 2 K, were performed in a Quantum Design Physical Property
Measurement System. ARPES measurements were performed at the
MERLIN beamline 4.0.3 at the Advanced Light Source, equipped with a
SCIENTA R8000 electron analyzer. The single crystal was cleaved in situ at
13 K and measured in an ultra-high vacuum with a base pressure better
than 5 × 10−11 Torr. Photon energy-dependent measurements were carried
out from 30 to 120 eV, and 88 eV linear horizontal light was selected to
obtain the highest data quality.

Electronic structure calculations
The electronic structure of BaPt4Se6 was calculated in the framework of
DFT within the generalized gradient approximation53. The projector-
augmented-wave method implemented in Vienna Ab Initio Simulation
Package is employed with the default energy cutoff specified in the
pseudopotential file. The momentum grid is taken as 9 × 9 × 9. The SOC is
included in the calculation self-consistently. The calculations are performed
at the HPC Platform of ShanghaiTech University Library and Information
Services and the School of Physical Science and Technology.
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