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Abstract

Searching for alternative solutions of an indeterminate reason-
ing task is an important and necessary step in order to draw
certain inferences as in the case of deduction. To elucidate the
underlying mental representations and processes of the search
for alternatives in spatial reasoning, an experiment was con-
ducted that used specific material stemming from AI research
of Qualitative Spatial Reasoning. The results showed that
searching for alternative solutions can be best explained as a
revision process starting with an initial mental model of the
premises. Proceeding from one solution to an alternative is
apparently achieved by local transformation. Interestingly,
local transformations have a "logic of their own": They can
lead to systematic errors of omission and to errors of commis-
sion. 

Spatial Reasoning and Mental Models

Dealing with spatial problems is a frequent and important
challenge in everyday as well as in professional life. It
occurs across various fields like spatial navigation or spatial
configuration and design. In this paper, we will concentrate
on a special sort of spatial problem solving, namely reason-
ing based on spatial relational descriptions. This type of rea-
soning can be investigated with recourse to several
background theories of thinking developed in cognitive psy-
chology. According to previous research in spatial reasoning
(Byrne & Johnson-Laird, 1989; Evans, Newstead, & Byrne,
1993) and according to our own previous findings (Knauff,
Rauh, & Schlieder, 1995; Knauff, Rauh, Schlieder, & Strube,
1998; Rauh & Schlieder, 1997) the most promising and most
successful framework is the theory of mental models.

Mental Model Theory as Framework

The core assumption of the mental model theory (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991) states that when
we reason we build an integrated representation of the situa-
tion that the premises describe. This integrated representa-
tion—the mental model—is in certain aspects analogous to
the state of affairs and, as a consequence, lacks the informa-
tion whether relationships are explicitly mentioned in the

premises and or are implicitly determined by the representa-
tional format. 

A further consequence of the assumption of integrated rep-
resentation becomes evident when certain kinds of infer-
ences have to be drawn. Take deductive inference for
example: To test whether a contingent relationship in the ini-
tial mental model is necessarily true, the reasoner has to test
all the alternative models of the premises. If a contradictory
example is found, the putative conclusion will be rejected; if
not it will be accepted as a valid conclusion. 

The search for alternative models takes place during what
we call the phase of model variation. It seems to be a deliber-
ate mental process so fragile that it causes many systematic
reasoning errors. There are errors of omission, i.e. inferences
that could have been validly drawn, and there are errors of
commission, i.e. inferences that are not justified by the pre-
mises. 

Therefore, model variation has attracted much attention,
but little is empirically known about how the mental search
for alternative models is accomplished by the human process
of reasoning. For a precise investigation of the model varia-
tion phase, there is the need for relational material with a
rich inherent structure and unambiguous semantics.

Spatial Reasoning with Interval Relations

Traditional investigations of spatial reasoning used relations
like left-of, right-of, in front of, and behind. As argued else-
where (Knauff et al., 1998), these spatial relations have no
clear semantics. Therefore, studies of reasoning using these
spatial relations are problematic because it is unclear
whether the results obtained can be attributed to the infer-
ence processes, or are due to the ambiguity of these relations.
To remedy this situation, we use Allen’s (1983) set of 13
qualitative interval relations that enables one-dimensional
spatial reasoning. These relations have clear geometric
semantics based on the bounding points of the intervals, i.e.
their starting points and ending points. They also have the
property of being jointly exhaustive and pairwise disjoint
(JEPD)—a property that also reduces the risk of misinterpre-
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tations. In Table 1, we shortly introduce these relations
together with verbalizations that we use in our experiments.  

With these relations, reasoning tasks known as three-term
series problems can be constructed. One example is "X over-
laps Y from the left. Y surrounds Z." The example also shows
that there are many three-term series problems generated
from these relations that have more than one solution. To be
precise, there are 42 three-term series problems that have
three solutions, 24 that have five solutions, 3 that have nine,
and another 3 that have thirteen solutions. We utilize this
property in order to construct indeterminate three-term series
problems to investigate precisely the phase of model varia-
tion. In the next section, we will present a more formal anal-
ysis of these tasks. From this analysis and the revealed
properties of the different tasks, hypotheses can be derived
that we will test in a model variation experiment.

A Formal Framework for Model Variation

In principle, there are two ways to construct alternative mod-
els of the premises. The first consists of repeating the com-
plete construction of alternative models one after another
(model iteration). We will examine the more plausible varia-

Table 1: The 13 qualitative interval relations, associated 
natural language expressions, and a graphical example 

(adapted and augmented according to Allen, 1983).

Relation 
symbol

Natural language 
description

Graphical 
example

X < Y X lies to the left of Y

X m Y X touches Y at the left

X o Y X overlaps Y from the left

X s Y X lies left-justified in Y

X d Y X is completely in Y

X f Y X lies right-justified in Y

X = Y X equals Y

X fi Y X contains Y right-justified

X di Y X surrounds Y

X si Y X contains Y left-justified

X oi Y X overlaps Y from the right

X mi Y X touches Y at the right

X > Y X lies to the right of Y

tion strategy that consists of generating alternative models by
locally transforming the initial model (see also Schlieder,
1998), i.e. the first model constructed during model variation
(model revision).

In this view, any sequence of models M0, M1, ..., Mn corre-
sponds to a sequence of transformations T1, T2, ..., Tn, where
the output model Mi of Ti is the input model of Ti+1. The set
{M0, ..., Mn} is ordered by the sequence T1, T2,..., Tn.

Since models of a three-term-series problem are com-
pletely determined by only one relation, namely the one
between X and Z, we can treat models and relations equiva-
lently. Seen this way, a transformation is a transition from
one relation r1 to another relation r2, or, in short, r1 → r2.

Conceptual Neighborhoods

Freksa (1992) introduced the notion of conceptual neighbor-
hood between interval relations. Formally, the three concep-
tual neighborhoods are defined by the graphs in Figure 1.
Two relations are neighbors iff they are connected by an
edge of the corresponding graph.

The common generic principle underlying the three types of
neighborhood reads as follows: Interval relations r1 and r2
are said to be conceptual neighbors if a model of intervals X
and Y satisfying X r1 Y can be continuously transformed
into a model of intervals X’ and Y’ satisfying X’ r2 Y’ such
that during the transformation no model arises in which a
relation different from r1 and r2 holds (see Schlieder &
Hagen, in press). Their peculiarities arise from different
transformation processes. The A-neighborhood is based on a
transformation that can be described as the movement of one
single bounding point of one interval whereas the B-neigh-
borhood relies on the movement of a complete interval of
fixed length. The transformation defining the C-neighbor-
hood consists of keeping the center of the changing interval
fixed and varying its length. The types of transformations
defining the A(B,C)-neighborhoods will be called A(B,C)-
transformations.
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Figure 1: Freksa’s (1992) conceptual neighborhoods.
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Local Transformations: Steps between A-Neighbors

An examination of sequences of A-transformations revealed
a need to formally refine the conceptual framework. In order
to describe the model revision process adequately the defini-
tion has to include the movement of bounding points and its
direction. An A-transformation between intervals X and Y
does not specify the moving bounding point since it can
always be accomplished in two ways by movements of a
suitable bounding point: Either by moving one bounding
point of interval X in one direction or one of Y in the oppo-
site direction (see Table 2). An A-transformation with speci-
fied moving point p will be called a step (of bounding point p
in direction d). 

Note that tracking sequences of interval relations does not
permit the direct observation of steps. Step-sequences, i.e.
sequences of steps that refer to the same point p moving in
constant direction d, can explain errors of omission or com-
mission that cannot be explained on the level of A-transfor-
mations. In order to show this, we need one more definition.
A step-sequence S1, ..., Sn is extendible at the beginning (or
the end) iff there exists a step S0 (or Sn+1) such that S0, S1,
..., Sn (or S1, ..., Sn, Sn+1) is a step-sequence. If it is extend-
ible at the beginning or at the end it is (totally) extendible.

Table 2: The relation of A-transformations and steps.

A-transformation step right step left

< → m EX SY

m → o EX SY

o → fi EX EY

fi → di EX EY

di → si SX SY

si → oi SX SY

oi → mi SX EY

mi → > SX EY

o → s SX SY

s → d SX SY

d → f EX EY

f → oi EX EY

s → = EX EY

= → f SX SY

= → si EX EY

fi → = SX SY

Errors of Omission and Errors of Commission. Our gen-
eral assumption about the implications of this formalism for
the traversal of solution sets is as follows: Moving along a
step-sequence, i.e. keeping the moving point and its direction
constant, is easier to process than changing them or even per-
forming a non-A-transformation.

Therefore, errors of omission should be observed more
frequently if the end of a step-sequence is reached but the
solution set is not completely traversed. Errors of commis-
sion, in turn, should occur more frequently with non-solu-
tions which are a continuation of a step-sequence.

Hypotheses

In the following we present hypotheses specifying the impli-
cations of the above considerations in more detail. They can
easily be verified consulting Table 2 and Figure 2, which dis-
plays solution sets of all three-term series problems with
multiple models.

3-Model-Tasks. The relations determining the solution set of
a 3-model-task can be ordered in two ways by sequences of
A-transformations (e.g. for (3-1): <→m→o or o→m→<).
Each of these sequences can be accomplished in two ways as
step-sequence (e.g. <→m→o by steps to the right of the end-
ing point EX of interval X or by steps to the left of the starting
point SY of Y). One of these sequences is extendible except
for the solution sets (3-7) and (3-8) where all sequences are
non-extendible. There are two interesting hypotheses con-
cerning 3-model tasks: (1) 3-model-tasks having extendible
solution sequences are prone to errors of commission, and (2)
3-model-tasks with solution sets (3-7) and (3-8) have signifi-
cantly less errors of commission than the other 3-model-
tasks.

5-Model-Tasks. The solution set of a 5-model-task can be
ordered in two ways by sequences of A-transformations.
Each of these sequences can be accomplished in two ways, as
step-sequence that is non-extendible, or as a sequence S1, S2,
S3, S4, where S1, S2 and S3, S4 are non-extendible step-
sequences, having the same direction but referring to different

3-Model-Tasks

5-Model-Tasks 9- and 13-Model-Tasks

Figure 2: The solution sets of three-term-series problems with 
multiple models. The valid relations are represented as points 

at corresponding positions of Figure 1.

3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8

5-1 5-2 5-3 5-4 9-1 13-1



bounding points of the same interval. Accordingly, we can
formulate the hypothesis, that errors of omission will most
frequently occur between step 2 and step 3.

9-Model-Tasks and 13-Model-Tasks. The solution set of a
9-model-task or of a 13-model-task can be ordered in multi-
ple ways by sequences of A-transformations. Each of them
fall into several step-sequences, including necessary changes
of direction between them. So we expect a decreased number
of correct and complete solution sequences for these tasks.

Experiment on Model Variation

Participants

24 students (12 female, 12 male) of the University of
Freiburg were paid for participation.

Materials

The material consisted of the 72 indeterminate three-term
series problems that can be constructed by the 12 interval
relations, if the trivial "=" relation is omitted. In each three-
term series problem the spatial relationship between a red
and a green interval is described in the first premise, and the
relationship between the green interval and a blue one is
given in the second premise.

Procedure

The computer-assisted experiment was divided into three
phases. During the definition phase participants were given
the verbalizations of the interval relations together with an
explanation of the semantics with respect to the ordering of
starting points and ending points. Additionally, a pictorial
example was displayed.

During the learning phase, participants read sentences
describing the relation between a red and a blue interval. For
each sentence they had to specify the relationship of the two
intervals graphically by clicking the mouse in rectangular
regions on the screen. After having confirmed the final
choices, the participant got feedback about the accuracy of
the configuration. If the configuration did not match the rela-
tion, additional information about the correct answer was
given, i.e. a verbal description of the ordering of start points
and end points. Learning trials were blocked with 13 sen-
tences using the interval relations. If one relation was
answered correctly in three consecutive blocks, the learning
criterion for this relation was accomplished. As soon as the
learning criterion was reached for all relations, the learning
phase stopped.

During the inference phase, participants were given 3
practice trials, and then received the 72 indeterminate three-
term series problems. After self-paced reading of the pre-
mises, the premises vanished, and the participants were
asked to generate all possible relationships between the red
and the blue interval. By clicking the mouse they specified

the spatial relationships analogous to the interval-specifying
procedure in the learning phase. After finishing the configu-
ration, participants could either continue specifying other
solutions, or stop working on the present task and go to the
next three-term series problem.

We recorded premise processing times, drawing times,
and, of course, the sequence of solutions by pixel coordi-
nates and by interval relations.

Results

In the following, data analyses are applied to the constructed
solution sequences. Since all participants passed the learning
phase successfully, all data collected in the inference phase
were included in the statistical analyses.

First, we tested the hypothesis that solution sequences fol-
lowed the principles of conceptual neighborhood. All transi-
tions in the solution sequences were analyzed for the
existence of A-, B-, and C-transformations. We found that
the significant majority of the transitions (3145 of 4462 [=
70.48%]) conformed to A-transformations. Transitions con-
formed to B- or C-transformations in 64.95% or 64.34% of
all the cases, respectively. The three values are rather similar,
since most transitions are consistent with all three types of
conceptual neighborhood. Only transitions involving the "="
relation discriminate between different types of conceptual
neighborhood (see Figure 1). Therefore, we performed an
analysis for these transitions and found the frequencies listed
in Table 3. 

We obtained the results in Table 4 by exclusively analyzing
correct and complete solution sequences of 3-, 5-, 9-, and 13-
model tasks.
The interesting fact is the nearly monotonic decrease of the
number of correct and complete solution sequences in
dependence of the number of models. Besides, it is notewor-
thy that correct and complete sequences of the 9- and 13-
model problems (i) are rarely observed (as predicted by our
hypothesis), and (ii) that none of these sequences conformed
perfectly to any of the neighborhood transformations. We
will return to the latter point below.

Table 3: Number of "="-transitions conforming to different 
types of conceptual neighborhood.

Absolute Percent

A-transformation 296 75.13%

B-transformation 49 12.44%

C-transformation 22 5.58%

Other 27 6.85%

Total 394 100%



Errors of omission. To test for the hypothesis of systematic
errors of omission between step 2 and step 3, we looked at the
solution generated last in the whole solution sequence for all
5-model-tasks. In Table 5 the results for the six 5-model-tasks
with solution set (5-2) (see Figure 2) are listed. As stated
above, we expected an increasing number of solution
sequences terminating after the second step, i.e. for relation o.

As Table 5 shows, there are indeed many solution sequences
terminating with the relation o (22 of 134). This pattern of
results was also obtained for the 5-model-tasks with the
other three solution sets. The result confirms our predictions
of systematic errors of omission between steps 2 and 3.

Errors of commission. According to our predictions of sys-
tematic errors of commission, the 3-model-tasks with solu-
tion sets (3-1) to (3-6) were analyzed for transitions from
relation o (oi) followed by an erroneous one. The number of
such transitions was 57. It turned out that 26 of them were
steps with the o (oi) relation as precursor. Given that there are
at least 8 other erroneous relations that are not A-transforma-
tions of o (oi), this shows that the transition from a correct
solution to an erroneous one is about three times more prob-
able if the erroneous solution is the next step in the step-
sequence. The result corroborates our hypothesis of system-
atic errors of commission. Additionally, the 3-model-tasks
with solution sets (3-7) and (3-8) had 13.5 commission errors
on the average, much less than the 72.0 commission errors
that could be observed on the average for the 3-model tasks
with solution sets (3-1) to (3-6).

Table 4: Number of correct and complete solution sequences

Percent A-Transf.

3-model-tasks 52.88% 
(533 of 1008)

75.61% 
(403 of 533)

5-model-tasks 34.20% 
(197 of 576)

86.29% 
(170 of 197)

9-model-tasks 13.89% 
(10 of 72)

0% 
(0 of 10)

13-model-tasks 16.67% 
(12 of 72)

0% 
(0 of 12)

Total 43.52% 73.27%

Table 5: Frequencies of relations as last solution for 5-model 
tasks with solution set (5-2).

di fi o m <

10 7 22 8 87

7.46% 5.22% 16.42% 5.97% 64.93%

Strategies for 9- and 13-Model-Tasks. As shown in Table 4
none of the correct and complete solution sequences of the 9-
model-tasks and the 13-model-tasks conformed perfectly to
any of the conceptual neighborhood transformations. In an
exploratory data analysis, we identified two classes of strate-
gies for navigating through the solution set that guided the
successful search for alternatives in solving 9- and 13-model-
tasks. 

Constant-Direction-Strategies. The first class of strategies
consists of three sequences of A-transformations following
one after another. The two transformations joining them are
not A-transformations, but jumps in the graph of the A-
neighborhood. (see the diagram in Figure 3) 

As the pseudo code description in Figure 3 shows this
strategy can be accomplished in a simple way: All steps refer
to points of the same interval and proceed with the same
direction. For each step the other bounding point of the inter-
val is tested if a step leads to a valid model, and the informa-
tion determining this model is stored if necessary. The jumps
occur only if proceeding within a step-sequence is not possi-
ble. Then the stored information is retrieved again to con-
struct the corresponding model to begin the next step-
sequence.

The success of this kind of strategy depends highly on the
choice of the initial model since the moving direction is con-
stant and an omitted model will never be reached.

Choose an initial model;
Choose an interval (with bounding points p and q) that is part
of the relation between the first and the third interval; 
Choose p and direction d such that step(p, d) possible;

while step(p, d) or step(q, d) possible
begin
    if step(p, d) possible then
        begin
            if M empty and step(q, d) possible then
               Store info identifying the result of step(q, d) in M;
            step(p, d);
        end
    else
        begin
            if M not empty then
                Continue with the model 
                     identified by M;
            else if step(q, d) possible then
                step(q, d);
        end
end

Figure 3: Constant-Direction strategies as pseudo code and a 
diagram of a possible path in the Freksa-graph. Details of the 

algorithm are specified only as far as necessary; step(p, d) 
represents a step-transformation of p in direction d, M infor-

mation identifying a model.



Symmetry-Strategies. The second class of strategies is based
on the use of symmetric transformations mapping relations
to their inverses (transposition-symmetry). Their limitations
and strengths concerning the traversal of the solution set
arise from the fact that the solution sets of 9- and 13-model
tasks fall into several disjointed subsets that are closed in
relation to symmetry-transformations. An extended version
involves additional reorientation-symmetry. This type of
symmetry can be described as reflection of the graphical
example in Table 1 at the vertical axis. All relations are sym-
metrical to themselves with respect to reorientation except
the pairs f-s and fi-si. In place of the closed subsets {f, fi} and
{s, si} their union now forms a closed subset.

For the traversal of the solution set of a 13-model-task fol-
lowing the extended type of strategy this implies that at least
5 non-symmetric transformations (out of a total of 12 neces-
sary transformations) are needed to traverse all relations. A
9-model-task needs at least 3 non-symmetric transformations
(out of a total of 8). The type of strategy that relies only on
transposition requires one more non-symmetric transforma-
tion. Especially for 13-model-tasks we cannot expect com-
plete solutions without an additional guiding principle.
Furthermore, errors in finding a closed subset will lead to
omitting it completely. On the other hand due to the cyclic
structure of a closed subset, its traversal is insensitive to the
first relation established.

General Discussion

In summary, the presented results corroborate the assump-
tion that searching for alternatives is based on a model revi-
sion process proceeding from an initial model to alternatives
by local transformations. We demonstrated and specified this
for one-dimensional spatial reasoning, where local transfor-
mations appear as movements of a point along a step-
sequence. Additionally, we were able to show that local
transformations have a logic of their own: They can system-
atically suppress certain inferences on the one hand, but, on
the other hand, lead to false ones. Again, we specified these
conditions with the help of our relational material, and thus
were able to predict errors of omission and errors of commis-
sion precisely. This point is also very important for augment-
ing our existing cognitive modeling of mental model
construction with an empirically adequate revision process. 

With respect to psychological theories of reasoning, our
results are pretty much in accordance with the mental model
theory. In particular, the decline of number of correct and
complete solution sequences with the number of models cor-
responds well with mental model theory assumption that the
difficulty of a reasoning task is dependent on the number of
models. Likewise, the notion of local transformation only
makes sense with recourse to analog representations, e.g.
mental models. Therefore, our data also present a new chal-
lenge for other theories of reasoning.
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