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A Bayesian Nonparametric Approach to Multisensory Percepion

llker Yildirm (iyildiim@bcs.rochester.edu)
Robert A. Jacobs (robbie@bcs.rochester.edu)
Department of Brain & Cognitive Sciences, University of Rester, Rochester, NY 14627, USA

Abstract lateral occipital complex (LOC) shows similar patterns of a

, , i tivation regardless of whether an object is seen or touched.
We propose a Bayesian nonparametric model of multisensory . ]
perception based upon the Indian buffet process. The model i Third, researchers have speculated that representatised b

cludes a set of latent variables that learn multisensomufea o gifferent modalities are associated with each other.- Sup
from unisensory data. The model is highly flexible because it

makes few statistical assumptions. In particular, the rermb ~ POSe that an observer sees, but does not hear, an object. A
of latent multisensory features is not fixed a priori. Indtea visual representation of that object will be active in the ob

this number is estimated from the observed data. We applied geyer's prain, and this representation will often predict
the model to a real-world visual-auditory data set obtained

when people spoke English digits. Our results are congisten activate an auditory representation of the object evenghou
with several hypotheses about multisensory perceptiom fro  the object is not heard. Evidence consistent with this Hypot

the cognitive neuroscience literature. We found that thdeho esis was obtained by Calvert et al. (1997). They found that
obtained the statistical advantages provided by sensoégy in T . L L .
gration. We also found that the model acquired multisensory Viewing facial movements associated with speech (lipread-
representations that were relatively sensory invariasmistll, ing) leads to activation of auditory cortex in the absence of
we found that the model was able to associate unisensory rep- auditory speech sounds

resentations based on different modalities. ’

Keywords: multisensory perception; Bayesian modeling; ra- Here, we propose a model of multisensory perception that
tional analysis; Indian buffet process learns about its multisensory environment in an unsupetvis

manner. In unsupervised learning, the data provided to a

Introduction learner are unlabeled. The goal of the learner is to discover

We learn about our environments from many different sense@tterns and structure within the data set. There is a diampt
Objects can be seen, heard, touched, tasted, and smelld@ the cognitive science and machine learning literatuees b
How are our mental representations based on these differef¥€€n parametric and nonparametric unsupervised learning
sensory modalities structured, combined, and coordiffated methods. A parametric method uses a fixed representation
Cognitive neuroscientists have recently studied three imthat does not grow structurally as more data are observed.
portant hypotheses about multisensory perception. Fest, Ex@mples include factor analysis, where the number of la-
searchers have conjectured that multisensory repregergat (€Nt variables is fixed a priori, and cluster analysis, whieee
are advantageous because sensory integration ameligrates "UMber of clusters is fixed a priori. In contrast, a nonpara-
effects of bias and noise contained in representationsibas&€ric method uses representations that are allowed to grow
on single modalities. Multisensory representations &gt structurally as more data are Qbserved. These methc_)ds are
fore, able to convey more accurate and reliable informatior?{t€n used when the goal is to impose as few assumptions as
than the unisensory representations from which they are d&0ssible and to“let the data speak for themselves” (Blaf; Gr
rived. Consider an observer that sees and touches a surfalt@s, & Jordan, 2010). Examples include Dirichlet process
slanted in depth. Suppose that the observer's slant eggmatMixture models (or Chinese restaurant processes) andindia
based on the visual cue and on the haptic cue are each cdpuffet processes.
rupted by sensory noise with some variance. Itis easily show The proposed model of multisensory perception is an in-
that the maximum likelihood estimate of surface slant ob-stance of a Bayesian nonparametric model. It “explains” the
tained by combining information from both cues has a lowerunisensory representations arising from different maiéali
variance, and is thus more reliable, than estimates based dhnrough the use of a set of latent or hidden variables that lea
either cue alone. Evidence that the brain is able to combinenultisensory representations. The number of latent viasab
sensory information in such a manner was obtained by Ernss not fixed. Instead, this number is treated as a random vari-
and Banks (2002), for example, who found that people’s estiable whose probability distribution is estimated basedhen t
mates of object height based on both visual and haptic inforunisensory data. Because the size of the latent multisgnsor
mation was more reliable than their estimates based orreitheepresentations are estimated from the observed unigsensor
visual or haptic information alone. data, nonparametric statistical methods are requirednfor i
Second, researchers have hypothesized that our neural refprence. We use a Bayesian nonparametric framework de-
resentations of objects are often sensory invariant, meani veloped by Griffiths and Ghahramani (2005, 2006) known
they are the same (or at least similar) regardless of the sems the Indian buffet process. Due to its Bayesian founda-
sory modalities through which we perceive those objects. Evtions, the proposed model can be regarded as an ideal ob-
idence consistent with this hypothesis was obtained by Amedserver model inferring optimal features of its multiserysor
et al. (2001). They showed that a neural region known as thenvironment (Austerweil & Griffiths, 2009).
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We applied the proposed model to a visual-auditory data OO Qe m‘]fégffr”ess‘”y
set obtained when people spoke different digits. Our result
are consistent with the three hypotheses from the cognitive
neuroscience literature described above. It was found that
the model obtained the statistical advantages providedivy s
sory integration: categorization of objects was more aateur OO0 00 O000000
based on its latent multisensory representations thanen th visual auditory
latent features of unisensory models. In addition, the f®de features features
latent or multisensory representations were relativehgsey
invariant. That is, similar representations of an objectave Figure 1: A coarse schematic of the multisensory perception
formed regardless of whether an object was seen or hearfhodel.
Lastly, the model was able to associate representatiomesibas

on different modalities. In other words, it could use one o ) o
type of unisensory representation to predict or activate an@nd their distributions can be inferred. Similarly, theuesd

other type of unisensory representation. of the auditory features are observed when an object is heard
Otherwise, the auditory features are latent, and theiriblist
Visual-Auditory Data Set tions can be inferred. The multisensory features are always

The multisensory perception model was applied to a visualldient variables. Whereas the numbers of visual and ayditor
features are fixed, the number of multisensory featurestis no

auditory data set known as the Tulips1 data set (Move”anConsistentwith the nonparametric approach, this numteer is

1995). Twelve people (9 adult males, 3 adult females) were . o
videotaped while uttering the first four digits of Englistice: random variable whose distribution is inferred from theadat

In each video frame, the image of a speaker's mouth was Formally, the model is a straightforward extension of the

. ) : . Indian buffet process (Griffiths & Ghahramani, 2005, 2006).
processed to extract 6 visual features: the width and helgr;'Edetailed raphical representation of the model is shown in
of the outer corners of the mouth, the width and height o grap P

the inner corners of the mouth, and the heights of the upl_:|gure 2. _An important goal of the m‘odel IS FO f,',nd a set of
. . . . latent multisensory features, denot#&d'explaining” a set of
per and lower lips. The auditory signal corresponding to a : .
. bserved visual and auditory features, dendtgedand Xa,
frame was processed to extract 26 features: 12 cepstral coe .
- o L respectively. Assume that a learner both sees and hears a
ficients', 1 log-power, 12 cepstral coefficient derivatives, and

T ... humber of objects. LeZ be a binary multisensory feature
1 log-power derivative. Because speech utterances haa-diff ; : " 7
. ownership matrix, wherg;; = 1 indicates that objeétpos-
ent durations, we sampled 6 frames for each utterance span- : .
. . . . . sesses multisensory featurelLet Xy andXa be real-valued
ning the entire duration of the utterance in a uniform manner’. . : .
. . : isual and auditory feature matrices, respectively (&g,
In summary, each data item contained values for 36 visual : . S !

: Is the value of visual featurgfor objecti). The problem of
features (6 frames 6 visual features per frame) and 156 au- inferring Z from X andXa can be solved via Baves’ rule:
ditory features (6 framesg 26 auditory features per frame). 9 v A y '

Training and test sets were created as follows. For the first p(Xv|Z) p(Xa|Z) p(2)
i igi i P(Z|Xv, Xa) =
eight speakers, one utterance of each digit was used far trai 52 P(Xv|Z) p(XalZ’) p(Z')
ing and the other utterance was used for testing. For the
remaining speakers, both utterances were used for trainingvherep(Z) is the prior probability of the multisensory feature

Thus, the training set contained 16 data items for each, digibwnership matrix, ang(Xy|Z) and p(Xa|Z) are the likeli-

and the test set contained 8 data items for each digit. hoods of the observed visual and auditory feature matrices,
_ _ respectively, given the multisensory features. We now de-
Multisensory Perception Model scribe the prior and likelihood distributions.

We describe the proposed model in the context of a visual- The multisensory feature ownership matrix is assigned a
auditory environment, though we note that the model is dgualBayesian nonparametric prior distribution known as the In-
applicable to other sensory modalities and to any number ddian buffet process (Griffiths & Ghahramani, 2005, 2006). It
modalities. A coarse schematic of the model is illustrated i @n be interpreted as a probability distribution over featu
Figure 1. It contains three sets of nodes or variables corredwnership matrices with an unbounded (infinite) number of
sponding to visual features, auditory features, and nauitis features. The distribution is written as:
sory features. The visual and auditory features are statist oK K (N=mg)! (me—1)!
cally dependent. However, they are conditionally indepen- p(Z) = —g—— exp{—aHn} |'| ,\'“ '
dent given values for the multisensory features. The values Mh=1 k! k=1 '

of the visual features are observed when an object is viewe
When an object is not viewed, the visual features are late

n(il/\'/hereN is the number of objectK is the number of mul-
Elsensory features(, is the number of features with history
LCepstral coefficients are the coefficients of the Fouriensra D (the history of a feature is the matrix column for that fea-
form representation of the log magnitude spectrum. ture interpreted as a binary numbe, is theN™ harmonic
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first 3000 iterations were discarded as burn-in. To reduce co

relations among variables at nearby iterations, the reimgin

iterations were thinned to every %teration (i.e., only vari-
@ able values at every Y0iteration were retained). Thus, the

results below are based on 200 iterations.
() o
@ @ Posterior distributions over latent features
\ Recall that the number of latent features in each model is not
fixed a priori. Instead, it is a random variable whose distri-
\® bution is inferred from the training data. The three graphs
in Figure 3 show the distributions of the numbers of latent
features in the visual-only, auditory-only, and multisenys
Figure 2: A Bayesian network representation of the multisenmodels. The visual-only model used relatively few lateat fe
sory perception model. tures, the auditory-only model used more latent features, a
the multisensory model used the most latent features. This
result confirms that the models are highly flexible. Theirnon
number,my is the number of objects with featukeanda is ~ parametric nature allows them to adapt their representatio
a variable influencing the number of features. capacities based on the complexities of their data sets.
The visual and auditory likelihoods are each based on a L
linear-Gaussian model. Latbe the multisensory feature val- Categorization performances
ues for object, and letx;g be the feature values for objeict We evaluated each model's ability to categorize the speech u
wherep is set to eithel or A depending on whether we are terances as instances of one of the first four digits in Ehglis
referring to visual or auditory features. Thep is drawn  based upon its latent feature representations. At eadd iter
from a Gaussian distribution whose mean is a linear function of an MCMC chain, a model sampled a latent feature
tion of the multisensory features\\g, and whose covariance representation for each data item in the training set. Using
matrix equalmiﬁl, whereW, is a weight matrix (the weight these representations, we performed k-means cIustgrthg wi
matrices themselves are drawn from zero-mean Gaussian di@ur cluster centers. We then performed an exhaustivelsearc

tributions with covarianceg, 1). Given these assumptions, ©f assignments of clusters to English digits (e.g., cluster
the likelihood for a feature matrix is: — digit 3, clusterB — digit 1, etc.) to find the assignment

producing the best categorization performance. Perfocesn

(Xe|ZWh, 02 ) = 1 were averaged across iterations of a chain.
P(Xs|Z, W, X/ T (2102 )NDB/Z x The results are shown in the leftmost graph of Figure 4.
* The horizontal axis gives the model, and the vertical axis
exp{—%tr((xﬁg _ Z\NB)T (X3 — 2Wp))} plots the percent of data items in the training set that were c

rectly classified (error bars indicate the standard dexnatof
these percents across iterations of an MCMC chain). As ex-
whereDy is the dimensionality 0Xs, and tr¢) denotes the pected, the vision-only model showed the worst performance
trace operator. the auditory-only model showed better performance, and the
. . multisensory model showed the best performance.
Simulation Results Its possible that the multisensory model showed the best
The multisensory perception model was applied to the visualperformance solely due to the fact that it received bothalisu
auditory data set. To better understand its performances, wand auditory features and, thus, received a richer set atsnp
also consider the performances of two other models. Théhan either the visual-only or auditory-only models. Toleva
vision-only model is identical to the multisensory model ex uate this possibility, we simulated a model, referred to as a
cept that it contains only two sets of variables correspond‘mixed’ model, that resembled the multisensory model in the
ing to visual and latent features. When applied to the visualsense that it received both visual and auditory features:-Ho
auditory data set, it received only the visual features. i-Sim ever, for the mixed model, these features were not segrégate
larly, the auditory-only model contains only two sets ofivar into separate input streams. Instead, the mixed model con-
ables corresponding to auditory and latent features. It retained a set of latent features that received inputs front a se
ceived only the auditory features from the data set. of undifferentiated perceptual features, namely a comeate
Because exact inference in the models is computationallyion of the visual and auditory features. The results for the
intractable, approximate inference using Markov chain ddon mixed model on the training set are also shown in the left-
Carlo (MCMC) sampling methods (e.g., Gelman et al., 1995most graph of Figure 4. The mixed model showed signifi-
was performed based upon the training data following Grif-cantly poorer performance than the multisensory mode§ thu
fiths and Ghahramani (2005). A single chain of each modesuggesting the statistical advantages of segregatingperc
was simulated. Each chain was run for 5000 iterations. Théual inputs into separate streams.
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Figure 3: The distributions of the numbers of latent feagunethe visual-only (left), auditory-only (middle), and ttisensory
(right) perception models.

This analysis was repeated using the data items in the te§ensory invariance
set. Performing the analysis on test items presents unique
challenges. Although it is reasonable to sample variables®S discussed above, neural representations of objectd-are o
values, and thus estimate variables’ distributions, orbtze ~ te€n sensory invariant. That is, the same (or at least simi-
sis of training items, models are not meant to learn from testar) neural representations arise regardless of the ntypdali
items. Consequently, we could not run our MCMC samplerthrough which an object is sensed. Does the multisensory
on a model using the test items to evaluate the model’s catde€rception model show this same property?
gorization performance. Doing so would erase the distamcti ~ We investigated this question as follows. As above, let
between training and test data items. £i denote the set of multisensory feature representations ob-

Instead, we proceeded as follows. For a given model, contained on iteration of the MCMC sampler when the model

sider the latent feature representations obtained ortitara :/v?s tramed I?'n the training dat?'t. Recallltrt]hat these are ;he
of the MCMC sampler when the model was trained on th atent or multisensory representations with non-zero go

training data. There is one such representation for eaith traeggfzi:azi \S,\/Oelge(l;);g&gggt;ﬁg fgg;&ﬁp ?j?st{aritl)tl?trindrltnrm;he
ing item. These are the latent representations with noa-zer g set, P y

probability based solely on iteraticn Let £; denote this multisensory representation given an item’s visual fezgyr

set of representations. For each data item in the test set, V@d. the'dlstrlb_utlon of the multisensory representanmelg!
an item’s auditory features wherg was the set of possi-

searched; to find a latent representation that was most prob- | " tat Wh Il training it
able given the item. This was repeated for every item in th € multisensory representations. vvhen all training Itanes
aken into account, these distributions are denqgietiXy)

test set. Using these representations, the analysis oéghe t andp(Z|Xa), respectively. We then calculated the Battacharyya

set is identical to the analysis of the training set desdribe . 2 . )
above: latent representations were clustered using k-snea |§tance betweep(Z|Xy) andp(Z|Xa).” On every iteration,
is distance was zero.

clustering, and an exhaustive search of assignments of clu ) ) ) ) _
ters to digits was performed to find the assignment producing e repeated this analysis using the data items in the test

the best categorization performance. Performances were a¥et: Again, we computeg(Z|Xy) and p(Z|Xa) where Xy
eraged across iterations. andXp refer to the visual and auditory features of test items,

_ _ . and wherez; is the set of possible multisensory represen-
The results are shown in the rightmost graph of Figure 4, +ons  The Battacharyya distances betwH|Xy) and
Again, the multisensory model showed the best performanc%(Z|XA) are always small values—the distribution of these
In summary, the multisensory perception model showedlistances has values of 1.51, 1.55, and 1.68 as its 26",
the best categorization performance on both training astd te and 7% percentiles, respectively. By way of comparison, we
data sets. We conclude that its superior performance iscdue tilso computed the distance betwgs@|Xa) and a uniform
both its rich set of inputs (it receives both visual and awgit  distribution over multisensory representations. Therithist
features) and due to its internal structure (visual and-audi

tory features are segregated perceptual streams). Gltfasly 2We also considered the Kullback-Leibler distance but ugkisf
model received the statistical benefits of sensory integrat  metric led to numerical instabilities.
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Figure 4: Categorization performances of the vision-oalyditory-only, multisensory, and mixed models on the trajrset
(left) and on the test set (right). The horizontal axis ofregaph gives the model, and the vertical axis plots the p¢afedata
items correctly classified (error bars indicate the stashdawiations of these percents across iterations of an MCMIIN.

tion of these distances has values of 3.49, 7.83, and 19.04 a&e four graphs in the top row of the figure show the distribu-
its 28", 50", and 74" percentiles. tions of the visual representations given the auditoryufiesst

In summary, both training and test sets suggest that thef the test items. More precisely, the graphs show that when
multisensory perception model did indeed acquire sensery i presented with the auditory features corresponding to éne o
variant representations. Its latent multisensory featinad  the digits, the model’'s distribution of visual represeiatias
the same or similar distributions regardless of whetheeadp was tightly peaked at a representation corresponding to the

utterance was seen or heard. same digit. The four graphs in the bottom row show analo-
o ] ] o gous results for distributions of auditory representatioren

Predicting sensory representations in missing test items’ visual features.

modalities In summary, the multisensory perception model learns to

Above, we reviewed evidence of activity in people’s audi- associate unisensory representations from different foda
tory cortices when they viewed speech utterances but did ndtes- It successfully predicts representations from mési
hear those utterances (Calvert et al., 1997). This result ig'odalities based on features from observed modalities.
consistent with the hypothesis that sensory representaitio .
one modality can predict or activate representations ieroth Conclusions
modalities. Does the multisensory perception model shovBayesian nonparametric approaches to modeling are becom-
this behavior? ing increasingly popular in the cognitive science and maehi
This question was studied using the data items in the tedearning literatures. We regard this approach as an importa
set. Let? and a2 denote the sets of visual and auditory advance over conventional parametric approaches in which a
feature representations for the data items in the trainihg s researcher sets the number of latent variables by handh ofte
Once again, let; denote the set of multisensory representa-in an ad hoc or unprincipled manner. How can a researcher be
tions obtained on iterationof the MCMC sampler when the sure that the number of latent features should, for exarbple,
model was trained on the training data. For each test itemgxactly 10? Shouldn’t the number of latent features be deter
we computed the probability distribution of an auditory+rep mined by the structure of the task or data set? The Bayesian
resentation given a test item’s visual features. This was amonparametric approach is also an advance over modeling ap-
complished by first calculating a conditional joint distrilon ~ proaches that define a set of models, each with a different
over both multisensory and auditory representations,lani t number of latent features, and perform “model comparison”
by marginalizing over the multisensory representationsreh to select the best model. Typical model comparison tech-
the set of possible auditory and multisensory represemisiti niques are computationally expensive and, thus, only prac-
were given bya andcz;. Analogous computations were car- tical for comparing small numbers of models. How should a
ried out to compute the distibution of a visual represeatati researcher pick a small number of models to consider? The
given an item’s auditory features. Bayesian nonparametric approach eliminates (or at least am
Representative results are shown in Figure 6. Four tedtorates) the problems associated with model comparison.
items (items 1, 12, 24, and 28) were selected at random with We have proposed a Bayesian nonparametric model of mul-
the constraint that one item corresponded to each spokin digtisensory perception. The model includes a set of laterit var
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P(V|A=1) P(VIA=12) P(V|A=24) P(V|A=28)
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Figure 5: Graphs in the top row demonstrate that when predemith auditory features of a test item corresponding to one
of the digits, the multisensory perception model’s disttibn of visual representations was tightly peaked at agsgntation
corresponding to the same digit. Graphs in the bottom rowsdr@alogous results for distributions of auditory représtons
given test items’ visual features.
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