
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Bayesian Nonparametric Approach to Multisensory Perception

Permalink
https://escholarship.org/uc/item/0dw9z101

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Yildirim, Ilker
Jacobs, Robert

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dw9z101
https://escholarship.org
http://www.cdlib.org/


A Bayesian Nonparametric Approach to Multisensory Perception

İlker Yıldırım (iyildirim@bcs.rochester.edu)
Robert A. Jacobs (robbie@bcs.rochester.edu)

Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA

Abstract

We propose a Bayesian nonparametric model of multisensory
perception based upon the Indian buffet process. The model in-
cludes a set of latent variables that learn multisensory features
from unisensory data. The model is highly flexible because it
makes few statistical assumptions. In particular, the number
of latent multisensory features is not fixed a priori. Instead,
this number is estimated from the observed data. We applied
the model to a real-world visual-auditory data set obtained
when people spoke English digits. Our results are consistent
with several hypotheses about multisensory perception from
the cognitive neuroscience literature. We found that the model
obtained the statistical advantages provided by sensory inte-
gration. We also found that the model acquired multisensory
representations that were relatively sensory invariant. Lastly,
we found that the model was able to associate unisensory rep-
resentations based on different modalities.

Keywords: multisensory perception; Bayesian modeling; ra-
tional analysis; Indian buffet process

Introduction
We learn about our environments from many different senses.
Objects can be seen, heard, touched, tasted, and smelled.
How are our mental representations based on these different
sensory modalities structured, combined, and coordinated?

Cognitive neuroscientists have recently studied three im-
portant hypotheses about multisensory perception. First,re-
searchers have conjectured that multisensory representations
are advantageous because sensory integration amelioratesthe
effects of bias and noise contained in representations based
on single modalities. Multisensory representations are, there-
fore, able to convey more accurate and reliable information
than the unisensory representations from which they are de-
rived. Consider an observer that sees and touches a surface
slanted in depth. Suppose that the observer’s slant estimates
based on the visual cue and on the haptic cue are each cor-
rupted by sensory noise with some variance. It is easily shown
that the maximum likelihood estimate of surface slant ob-
tained by combining information from both cues has a lower
variance, and is thus more reliable, than estimates based on
either cue alone. Evidence that the brain is able to combine
sensory information in such a manner was obtained by Ernst
and Banks (2002), for example, who found that people’s esti-
mates of object height based on both visual and haptic infor-
mation was more reliable than their estimates based on either
visual or haptic information alone.

Second, researchers have hypothesized that our neural rep-
resentations of objects are often sensory invariant, meaning
they are the same (or at least similar) regardless of the sen-
sory modalities through which we perceive those objects. Ev-
idence consistent with this hypothesis was obtained by Amedi
et al. (2001). They showed that a neural region known as the

lateral occipital complex (LOC) shows similar patterns of ac-
tivation regardless of whether an object is seen or touched.

Third, researchers have speculated that representations based
on different modalities are associated with each other. Sup-
pose that an observer sees, but does not hear, an object. A
visual representation of that object will be active in the ob-
server’s brain, and this representation will often predictor
activate an auditory representation of the object even though
the object is not heard. Evidence consistent with this hypoth-
esis was obtained by Calvert et al. (1997). They found that
viewing facial movements associated with speech (lipread-
ing) leads to activation of auditory cortex in the absence of
auditory speech sounds.

Here, we propose a model of multisensory perception that
learns about its multisensory environment in an unsupervised
manner. In unsupervised learning, the data provided to a
learner are unlabeled. The goal of the learner is to discover
patterns and structure within the data set. There is a dichotomy
in the cognitive science and machine learning literatures be-
tween parametric and nonparametric unsupervised learning
methods. A parametric method uses a fixed representation
that does not grow structurally as more data are observed.
Examples include factor analysis, where the number of la-
tent variables is fixed a priori, and cluster analysis, wherethe
number of clusters is fixed a priori. In contrast, a nonpara-
metric method uses representations that are allowed to grow
structurally as more data are observed. These methods are
often used when the goal is to impose as few assumptions as
possible and to “let the data speak for themselves” (Blei, Grif-
fiths, & Jordan, 2010). Examples include Dirichlet process
mixture models (or Chinese restaurant processes) and Indian
buffet processes.

The proposed model of multisensory perception is an in-
stance of a Bayesian nonparametric model. It “explains” the
unisensory representations arising from different modalities
through the use of a set of latent or hidden variables that learn
multisensory representations. The number of latent variables
is not fixed. Instead, this number is treated as a random vari-
able whose probability distribution is estimated based on the
unisensory data. Because the size of the latent multisensory
representations are estimated from the observed unisensory
data, nonparametric statistical methods are required for in-
ference. We use a Bayesian nonparametric framework de-
veloped by Griffiths and Ghahramani (2005, 2006) known
as the Indian buffet process. Due to its Bayesian founda-
tions, the proposed model can be regarded as an ideal ob-
server model inferring optimal features of its multisensory
environment (Austerweil & Griffiths, 2009).
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We applied the proposed model to a visual-auditory data
set obtained when people spoke different digits. Our results
are consistent with the three hypotheses from the cognitive
neuroscience literature described above. It was found that
the model obtained the statistical advantages provided by sen-
sory integration: categorization of objects was more accurate
based on its latent multisensory representations than on the
latent features of unisensory models. In addition, the model’s
latent or multisensory representations were relatively sensory
invariant. That is, similar representations of an object were
formed regardless of whether an object was seen or heard.
Lastly, the model was able to associate representations based
on different modalities. In other words, it could use one
type of unisensory representation to predict or activate an-
other type of unisensory representation.

Visual-Auditory Data Set
The multisensory perception model was applied to a visual-
auditory data set known as the Tulips1 data set (Movellan,
1995). Twelve people (9 adult males, 3 adult females) were
videotaped while uttering the first four digits of English twice.

In each video frame, the image of a speaker’s mouth was
processed to extract 6 visual features: the width and height
of the outer corners of the mouth, the width and height of
the inner corners of the mouth, and the heights of the up-
per and lower lips. The auditory signal corresponding to a
frame was processed to extract 26 features: 12 cepstral coef-
ficients1, 1 log-power, 12 cepstral coefficient derivatives, and
1 log-power derivative. Because speech utterances had differ-
ent durations, we sampled 6 frames for each utterance span-
ning the entire duration of the utterance in a uniform manner.
In summary, each data item contained values for 36 visual
features (6 frames× 6 visual features per frame) and 156 au-
ditory features (6 frames× 26 auditory features per frame).

Training and test sets were created as follows. For the first
eight speakers, one utterance of each digit was used for train-
ing and the other utterance was used for testing. For the
remaining speakers, both utterances were used for training.
Thus, the training set contained 16 data items for each digit,
and the test set contained 8 data items for each digit.

Multisensory Perception Model
We describe the proposed model in the context of a visual-
auditory environment, though we note that the model is equally
applicable to other sensory modalities and to any number of
modalities. A coarse schematic of the model is illustrated in
Figure 1. It contains three sets of nodes or variables corre-
sponding to visual features, auditory features, and multisen-
sory features. The visual and auditory features are statisti-
cally dependent. However, they are conditionally indepen-
dent given values for the multisensory features. The values
of the visual features are observed when an object is viewed.
When an object is not viewed, the visual features are latent,

1Cepstral coefficients are the coefficients of the Fourier trans-
form representation of the log magnitude spectrum.

multisensory

auditoryvisual

features

featuresfeatures

Figure 1: A coarse schematic of the multisensory perception
model.

and their distributions can be inferred. Similarly, the values
of the auditory features are observed when an object is heard.
Otherwise, the auditory features are latent, and their distribu-
tions can be inferred. The multisensory features are always
latent variables. Whereas the numbers of visual and auditory
features are fixed, the number of multisensory features is not.
Consistent with the nonparametric approach, this number isa
random variable whose distribution is inferred from the data.

Formally, the model is a straightforward extension of the
Indian buffet process (Griffiths & Ghahramani, 2005, 2006).
A detailed graphical representation of the model is shown in
Figure 2. An important goal of the model is to find a set of
latent multisensory features, denotedZ, “explaining” a set of
observed visual and auditory features, denotedXV and XA,
respectively. Assume that a learner both sees and hears a
number of objects. LetZ be a binary multisensory feature
ownership matrix, whereZi j = 1 indicates that objecti pos-
sesses multisensory featurej. Let XV andXA be real-valued
visual and auditory feature matrices, respectively (e.g.,XVi j

is the value of visual featurej for objecti). The problem of
inferringZ from XV andXA can be solved via Bayes’ rule:

p(Z|XV ,XA) =
p(XV |Z) p(XA|Z) p(Z)

∑Z′ p(XV |Z′) p(XA|Z′) p(Z′)

wherep(Z) is the prior probability of the multisensory feature
ownership matrix, andp(XV |Z) and p(XA|Z) are the likeli-
hoods of the observed visual and auditory feature matrices,
respectively, given the multisensory features. We now de-
scribe the prior and likelihood distributions.

The multisensory feature ownership matrix is assigned a
Bayesian nonparametric prior distribution known as the In-
dian buffet process (Griffiths & Ghahramani, 2005, 2006). It
can be interpreted as a probability distribution over feature
ownership matrices with an unbounded (infinite) number of
features. The distribution is written as:

p(Z) =
αK

∏2N−1
h=1 kh!

exp{−αHN}
K

∏
k=1

(N −mk)!(mk −1)!
N!

whereN is the number of objects,K is the number of mul-
tisensory features,Kh is the number of features with history
h (the history of a feature is the matrix column for that fea-
ture interpreted as a binary number),HN is theNth harmonic
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Figure 2: A Bayesian network representation of the multisen-
sory perception model.

number,mk is the number of objects with featurek, andα is
a variable influencing the number of features.

The visual and auditory likelihoods are each based on a
linear-Gaussian model. Letzi be the multisensory feature val-
ues for objecti, and letxiβ be the feature values for objecti
whereβ is set to eitherV or A depending on whether we are
referring to visual or auditory features. Thenxiβ is drawn
from a Gaussian distribution whose mean is a linear func-
tion of the multisensory features,ziWβ, and whose covariance
matrix equalsσ2

Xβ
I, whereWβ is a weight matrix (the weight

matrices themselves are drawn from zero-mean Gaussian dis-
tributions with covarianceσ2

Wβ
I). Given these assumptions,

the likelihood for a feature matrix is:

p(Xβ|Z,Wβ,σ2
Xβ

) =
1

(2πσ2
Xβ

)NDβ/2
×

exp{−
1

2σ2
Xβ

tr((Xβ −ZWβ)
T (Xβ −ZWβ))}

whereDβ is the dimensionality ofXβ, and tr(·) denotes the
trace operator.

Simulation Results
The multisensory perception model was applied to the visual-
auditory data set. To better understand its performances, we
also consider the performances of two other models. The
vision-only model is identical to the multisensory model ex-
cept that it contains only two sets of variables correspond-
ing to visual and latent features. When applied to the visual-
auditory data set, it received only the visual features. Simi-
larly, the auditory-only model contains only two sets of vari-
ables corresponding to auditory and latent features. It re-
ceived only the auditory features from the data set.

Because exact inference in the models is computationally
intractable, approximate inference using Markov chain Monte
Carlo (MCMC) sampling methods (e.g., Gelman et al., 1995)
was performed based upon the training data following Grif-
fiths and Ghahramani (2005). A single chain of each model
was simulated. Each chain was run for 5000 iterations. The

first 3000 iterations were discarded as burn-in. To reduce cor-
relations among variables at nearby iterations, the remaining
iterations were thinned to every 10th iteration (i.e., only vari-
able values at every 10th iteration were retained). Thus, the
results below are based on 200 iterations.

Posterior distributions over latent features
Recall that the number of latent features in each model is not
fixed a priori. Instead, it is a random variable whose distri-
bution is inferred from the training data. The three graphs
in Figure 3 show the distributions of the numbers of latent
features in the visual-only, auditory-only, and multisensory
models. The visual-only model used relatively few latent fea-
tures, the auditory-only model used more latent features, and
the multisensory model used the most latent features. This
result confirms that the models are highly flexible. Their non-
parametric nature allows them to adapt their representational
capacities based on the complexities of their data sets.

Categorization performances
We evaluated each model’s ability to categorize the speech ut-
terances as instances of one of the first four digits in English
based upon its latent feature representations. At each itera-
tion of an MCMC chain, a model sampled a latent feature
representation for each data item in the training set. Using
these representations, we performed k-means clustering with
four cluster centers. We then performed an exhaustive search
of assignments of clusters to English digits (e.g., clusterA
→ digit 3, clusterB → digit 1, etc.) to find the assignment
producing the best categorization performance. Performances
were averaged across iterations of a chain.

The results are shown in the leftmost graph of Figure 4.
The horizontal axis gives the model, and the vertical axis
plots the percent of data items in the training set that were cor-
rectly classified (error bars indicate the standard deviations of
these percents across iterations of an MCMC chain). As ex-
pected, the vision-only model showed the worst performance,
the auditory-only model showed better performance, and the
multisensory model showed the best performance.

Its possible that the multisensory model showed the best
performance solely due to the fact that it received both visual
and auditory features and, thus, received a richer set of inputs
than either the visual-only or auditory-only models. To eval-
uate this possibility, we simulated a model, referred to as a
‘mixed’ model, that resembled the multisensory model in the
sense that it received both visual and auditory features. How-
ever, for the mixed model, these features were not segregated
into separate input streams. Instead, the mixed model con-
tained a set of latent features that received inputs from a set
of undifferentiated perceptual features, namely a concatena-
tion of the visual and auditory features. The results for the
mixed model on the training set are also shown in the left-
most graph of Figure 4. The mixed model showed signifi-
cantly poorer performance than the multisensory model, thus
suggesting the statistical advantages of segregating percep-
tual inputs into separate streams.
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Figure 3: The distributions of the numbers of latent features in the visual-only (left), auditory-only (middle), and multisensory
(right) perception models.

This analysis was repeated using the data items in the test
set. Performing the analysis on test items presents unique
challenges. Although it is reasonable to sample variables’
values, and thus estimate variables’ distributions, on theba-
sis of training items, models are not meant to learn from test
items. Consequently, we could not run our MCMC sampler
on a model using the test items to evaluate the model’s cate-
gorization performance. Doing so would erase the distinction
between training and test data items.

Instead, we proceeded as follows. For a given model, con-
sider the latent feature representations obtained on iteration i
of the MCMC sampler when the model was trained on the
training data. There is one such representation for each train-
ing item. These are the latent representations with non-zero
probability based solely on iterationi. Let L i denote this
set of representations. For each data item in the test set, we
searchedL i to find a latent representation that was most prob-
able given the item. This was repeated for every item in the
test set. Using these representations, the analysis of the test
set is identical to the analysis of the training set described
above: latent representations were clustered using k-means
clustering, and an exhaustive search of assignments of clus-
ters to digits was performed to find the assignment producing
the best categorization performance. Performances were av-
eraged across iterations.

The results are shown in the rightmost graph of Figure 4.
Again, the multisensory model showed the best performance.

In summary, the multisensory perception model showed
the best categorization performance on both training and test
data sets. We conclude that its superior performance is due to
both its rich set of inputs (it receives both visual and auditory
features) and due to its internal structure (visual and audi-
tory features are segregated perceptual streams). Clearly, this
model received the statistical benefits of sensory integration.

Sensory invariance

As discussed above, neural representations of objects are of-
ten sensory invariant. That is, the same (or at least simi-
lar) neural representations arise regardless of the modality
through which an object is sensed. Does the multisensory
perception model show this same property?

We investigated this question as follows. As above, let
L i denote the set of multisensory feature representations ob-
tained on iterationi of the MCMC sampler when the model
was trained on the training data. Recall that these are the
latent or multisensory representations with non-zero proba-
bility based solely on iterationi. For each data item in the
training set, we calculated the probability distribution of the
multisensory representation given an item’s visual features,
and the distribution of the multisensory representation given
an item’s auditory features whereL i was the set of possi-
ble multisensory representations. When all training itemsare
taken into account, these distributions are denotedp(Z|XV )
andp(Z|XA), respectively. We then calculated the Battacharyya
distance betweenp(Z|XV ) andp(Z|XA).2 On every iteration,
this distance was zero.

We repeated this analysis using the data items in the test
set. Again, we computedp(Z|XV ) and p(Z|XA) whereXV

andXA refer to the visual and auditory features of test items,
and whereL i is the set of possible multisensory represen-
tations. The Battacharyya distances betweenp(Z|XV ) and
p(Z|XA) are always small values—the distribution of these
distances has values of 1.51, 1.55, and 1.68 as its 25th, 50th,
and 75th percentiles, respectively. By way of comparison, we
also computed the distance betweenp(Z|XA) and a uniform
distribution over multisensory representations. The distribu-

2We also considered the Kullback-Leibler distance but use ofthis
metric led to numerical instabilities.

2636



Vision Auditory Multisensory Mixed
0

20

40

60

80

100
P

er
ce

nt
 c

or
re

ct

Training

Vision Auditory Multisensory Mixed
0

20

40

60

80

100

P
er

ce
nt

 c
or

re
ct

Test

Figure 4: Categorization performances of the vision-only,auditory-only, multisensory, and mixed models on the training set
(left) and on the test set (right). The horizontal axis of each graph gives the model, and the vertical axis plots the percent of data
items correctly classified (error bars indicate the standard deviations of these percents across iterations of an MCMC chain).

tion of these distances has values of 3.49, 7.83, and 19.04 as
its 25th, 50th, and 75th percentiles.

In summary, both training and test sets suggest that the
multisensory perception model did indeed acquire sensory in-
variant representations. Its latent multisensory features had
the same or similar distributions regardless of whether a speech
utterance was seen or heard.

Predicting sensory representations in missing
modalities

Above, we reviewed evidence of activity in people’s audi-
tory cortices when they viewed speech utterances but did not
hear those utterances (Calvert et al., 1997). This result is
consistent with the hypothesis that sensory representations in
one modality can predict or activate representations in other
modalities. Does the multisensory perception model show
this behavior?

This question was studied using the data items in the test
set. LetV and A denote the sets of visual and auditory
feature representations for the data items in the training set.
Once again, letL i denote the set of multisensory representa-
tions obtained on iterationi of the MCMC sampler when the
model was trained on the training data. For each test item,
we computed the probability distribution of an auditory rep-
resentation given a test item’s visual features. This was ac-
complished by first calculating a conditional joint distribution
over both multisensory and auditory representations, and then
by marginalizing over the multisensory representations where
the set of possible auditory and multisensory representations
were given byA andL i. Analogous computations were car-
ried out to compute the distibution of a visual representation
given an item’s auditory features.

Representative results are shown in Figure 6. Four test
items (items 1, 12, 24, and 28) were selected at random with
the constraint that one item corresponded to each spoken digit.

The four graphs in the top row of the figure show the distribu-
tions of the visual representations given the auditory features
of the test items. More precisely, the graphs show that when
presented with the auditory features corresponding to one of
the digits, the model’s distribution of visual representations
was tightly peaked at a representation corresponding to the
same digit. The four graphs in the bottom row show analo-
gous results for distributions of auditory representations given
test items’ visual features.

In summary, the multisensory perception model learns to
associate unisensory representations from different modali-
ties. It successfully predicts representations from missing
modalities based on features from observed modalities.

Conclusions
Bayesian nonparametric approaches to modeling are becom-
ing increasingly popular in the cognitive science and machine
learning literatures. We regard this approach as an important
advance over conventional parametric approaches in which a
researcher sets the number of latent variables by hand, often
in an ad hoc or unprincipled manner. How can a researcher be
sure that the number of latent features should, for example,be
exactly 10? Shouldn’t the number of latent features be deter-
mined by the structure of the task or data set? The Bayesian
nonparametric approach is also an advance over modeling ap-
proaches that define a set of models, each with a different
number of latent features, and perform “model comparison”
to select the best model. Typical model comparison tech-
niques are computationally expensive and, thus, only prac-
tical for comparing small numbers of models. How should a
researcher pick a small number of models to consider? The
Bayesian nonparametric approach eliminates (or at least ame-
liorates) the problems associated with model comparison.

We have proposed a Bayesian nonparametric model of mul-
tisensory perception. The model includes a set of latent vari-
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Figure 5: Graphs in the top row demonstrate that when presented with auditory features of a test item corresponding to one
of the digits, the multisensory perception model’s distribution of visual representations was tightly peaked at a representation
corresponding to the same digit. Graphs in the bottom row show analogous results for distributions of auditory representations
given test items’ visual features.

ables that learn multisensory features from unisensory data.
The model is highly flexible because it makes few statistical
assumptions. In particular, the number of multisensory fea-
tures is not fixed a priori. Instead, this number is estimated
from the data.

We applied the model to a real-world visual-auditory data
set obtained when people spoke English digits. Our results
are consistent with several hypotheses about multisensoryper-
ception from the cognitive neuroscience literature. We found
that the model obtained the statistical advantages provided by
sensory integration. We also found that the model acquired
multisensory representations that were relatively sensory in-
variant. Lastly, we found that the model was able to associate
unisensory representations based on different modalities.

Because the multisensory perception model is based on
Bayesian statistics, it can be regarded as an ideal observer
inferring optimal multisensory features from unisensory data
(Austerweil & Griffiths, 2009). As such, it provides a basis
for a rational analysis of multisensory perception. This anal-
ysis suggests that the acquisition of latent multisensory rep-
resentations that are sensory invariant and more statistically
robust than latent features from unisensory models is a ratio-
nal response of an agent attempting to learn the structure of
its multisensory environment. It also suggests the rationality
of acquiring associations among unisensory representations.
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