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FOCUS FEATURE:
Biomarkers in Network Neuroscience
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ABSTRACT

We introduce an extension of independent component analysis (ICA), called multiscale ICA,
and design an approach to capture dynamic functional source interactions within and between
multiple spatial scales. Multiscale ICA estimates functional sources at multiple spatial scales
without imposing direct constraints on the size of functional sources, overcomes the limitation
of using fixed anatomical locations, and eliminates the need for model-order selection in ICA
analysis. We leveraged this approach to study sex-specific and sex-common connectivity
patterns in schizophrenia. Results show dynamic reconfiguration and interaction within and
between multi-spatial scales. Sex-specific differences occur (a) within the subcortical domain,
(b) between the somatomotor and cerebellum domains, and (c) between the temporal domain
and several others, including the subcortical, visual, and default mode domains. Most of
the sex-specific differences belong to between-spatial-scale functional interactions and are
associated with a dynamic state with strong functional interactions between the visual,
somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain.
We observed significant correlations between multi-spatial-scale functional interactions and
symptom scores, highlighting the importance of multiscale analyses to identify potential
biomarkers for schizophrenia. As such, we recommend such analyses as an important option
for future functional connectivity studies.
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AUTHOR SUMMARY

Brain function can be modeled as the dynamic interactions between functional sources (e.g.,
intrinsic connectivity networks, ICNs) at different spatial scales. Each spatial scale contains its
own functional sources with unique information. For example, the default mode (DM)-ICNs
from lower order independent component analysis (ICA) are not a simple union of DM-ICNs
from a higher order. Furthermore, dynamic functional interactions occur both within and
between different spatial scales, which has been underrepresented. Here, we introduce
multiscale ICA to capture functional sources and their interactions across multiple spatial
scales. We leveraged this approach to study sex-specific changes in schizophrenia. Most sex-
specific differences occur in between-model order, highlighting the benefit of multi-spatial-
scale analysis. In sum, studying multi-spatial-scale functional sources provides us with a
wealth of information to better characterize brain function.

INTRODUCTION

Multi-spatial-Scale Dynamic Interactions

Brain function has been modeled as coordination and interaction between functional sources,
which has been summarized via the principles of segregation and integration (Genon et al.,
2018). In other words, the brain can be segregated into distinct functional sources (e.g., intrinsic
connectivity networks, ICNs), which dynamically interact with each other (i.e., functional integra-
tion). Notably, functional sources exist at different spatial scales, and dynamic functional interac-
tions occur both within and between different spatial scales. Previous work has highlighted the
importance of analysis at multiple spatial scales (Li et al., 2018); however, most multi-spatial-scale
studies have built upon a single set of nodes (e.g., predefined regions or single model-order inde-
pendent component analysis, ICA) and identifyingmultiple levels of modularity (e.g., with different
resolutionparameters) or clusters (e.g., different number of clusters) (Doucet et al., 2011). In the case
of using functional sources as nodes, information at different spatial scales captures functional in-
tegration among those sources at multiple resolutions. However, each spatial scale also contains its
own functional sources with unique functional information. For instance, larger functional sources
are not a simple union of smaller functional sources (Figure 1). In addition, functional interactions
occur among functional sources across (within and between) different spatial scales (e.g., large net-
works interact with small networks), which convey important information about the brain as shown
in this study. This relationship is effectively ignored if using a single spatial scale to analyze the data.

Here, we present an approach that combines multiscale ICA (msICA) and functional network
connectivity (FNC) to study multi-spatial-scale functional interactions (both within and between
spatial scales). Multiscale ICA uses multi-model-order ICA to estimate functional sources at multi-
ple spatial scales directly. Static and dynamic FNC (sFNC/dFNC)were applied to capture static and
dynamic interactions between functional sources, both within and between multiple spatial
scales. We leveraged this approach to study sex-specific and sex-common schizophrenia differ-
ences, which have been understudied but may play an important role in understanding the neural
mechanisms as it is clear there are sex differences in schizophrenia, for example in disease onset
(Nawka et al., 2013; Li et al., 2016).

Intrinsic Connectivity Networks: Assessment of Functional Sources

A functional source can be defined as a temporally synchronized pattern (Iraji, Miller, et al.,
2020), and studying brain function requires a proper estimation of functional sources to

Functional source:
A spatial locality with a temporally
synchronized pattern. All voxels
within a functional source have
similar temporal patterns.

Intrinsic connectivity network (ICN):
An estimation of a functional source
obtained using ICA and typically
referring to the components deemed
non-artifactual.

Independent component analysis
(ICA):
A multivariate technique that
decomposes data into a set of
maximally independent components.

Functional network connectivity
(FNC):
The temporal dependence between
ICN time courses.

Dynamic functional network
connectivity (dFNC):
FNC calculated using a subset of ICN
time courses. Using dFNC, we can
capture and evaluate how FNCs
between ICNs evolve over time.

Static functional network
connectivity (sFNC):
FNC calculated using the entire
length of the ICN time course; sFNC
represents overall or average FNC.
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prevent incorrect functional connectivity inferences (Iraji, Miller, et al., 2020). Because of its
emphasis on capturing spatially distinct and temporally coherent sources, ICA has proven itself
to be a strong method to identify functional source estimates. ICA is a data-driven multivariate
technique, which divides the brain into overlapping functionally distinct patterns (Calhoun &
Adalı, 2012; Calhoun & de Lacy, 2017; Kaboodvand et al., 2018), called intrinsic connectivity
networks. Each ICN is a temporally synchronized pattern of the brain, a good estimation of a
functional source. The ICN time course describes its functional activity over time, while its
spatial pattern indicates the contribution of spatial locations to ICN. The spatial scale of ICNs
can be set effectively using the model orders of ICA. In other words, we can study brain segre-
gation and estimate ICNs at different spatial scales by using ICA with different model orders.
Low-model-order ICAs result in large-scale spatially distributed ICNs (Damoiseaux et al.,
2008; Iraji et al., 2016), while higher model order results in more spatially granular ICNs
(Allen et al., 2011; Iraji, Faghiri, et al., 2019; Iraji, Fu, et al., 2019). Therefore, we proposed to
use msICA (running ICA with multiple orders) to estimate functional sources of multiple spatial
scales. While there have been a few studies of the effect of model order on the spatial maps of
ICNs (Abou-Elseoud et al., 2010), to our knowledge there is no work that has studied brain func-
tion across multiple model orders. Similarly, no work has yet evaluated dynamic functional in-
teraction jointly at multiple model orders.

It is worth mentioning that ICA does not impose a direct constraint on the spatial extent of
functional sources estimates; thus, msICA allows data itself determine the spatial extent of

Figure 1. A toy example of multi-spatial-scale analysis. A systemwith two true spatial scales,M and
N. Each spatial scale has its own set of functional source (FS). Functional sources of spatial scaleM are
not just a simple split of functional sources of scaleN. Each functional source represents a segregation
unit in a given scale, and functional connectivity between functional sources indicates functional
integration. Functional interaction (functional connectivity) exist both within and between different
spatial scales.

Network Neuroscience 359

Multiscale ICA: Schizo-sex-specific changes in multi-spatial-scale dFNC



estimated functional sources without generating spurious sources for different spatial scales. In
other words, msICA does not force the functional sources of a given spatial scale to have a
similar spatial extent. This gives msICA a great advantage as we do not expect different brain
areas or functional domains, such as “the primary cortex versus the frontal lobe” and “the
visual domain versus the cognitive control domain across,” to be parceled at the same level
of granularity (see the Results section, Multi-spatial-Scale Functional Segregation: Intrinsic
Connectivity Networks).

Multiscale ICA also addresses the model-order selection problem because, in general, one
remedy to parameter selections is finding a procedure to combine results from several parame-
ters. Various information-theoretic criteria such as the minimum description-length criterion
(MDL) and Akaike’s information criterion (AIC) have been used to estimate an optimal model
order. However, the optimal number can vary across them; as such, the model-order selection
problem still remains as selecting the estimation method. Instead of focusing on a single model
order selected by these approaches, msICA includes information on all spatial scales (within the
constraints of the number of model orders we use).

Functional Network Connectivity: Assessment of Functional Interaction

While ICA effectively segregates the brain into ICNs, FNC provides a way to study functional
interaction and integration. FNC is defined as the temporal dependency among ICNs and is
commonly estimated using Pearson’s correlation coefficient between ICN time courses (Jafri
et al., 2008). Thus, FNC characterizes the functionally integrated relationship across the brain
by calculating the functional interaction between ICNs.

Traditionally, functional integration has been studied using sFNC, where the overall func-
tional interactions are calculated using scan-length averaged FNC. However, the brain con-
stantly integrates and processes the information in real time. Considering the brain’s rich,
dynamic nature, a number of methods have moved beyond the “static” oversimplification
and evaluate the temporal reconfiguration of functional interactions using dFNC (Allen et al.,
2014; Calhoun et al., 2014; Iraji, Faghiri, et al., 2020). The dFNC approaches calculate time-
resolved FNC, allowing us to study variations in functional integrations over time and identify
different brain functional interaction patterns, also known as brain functional states (Iraji,
Faghiri, et al., 2020).

Schizophrenia

Schizophrenia is a psychotic disorder accompanied by various cognitive impairments and a
decrease in social and occupational functioning. Schizophrenia is a heterogeneous syndromic
diagnosis of exclusion, lacks unique symptoms, and is diagnosed clinically by both positive
symptoms (such as delusions, hallucinations, disorganized speech, disorganized, or catatonic
behavior), and negative symptoms (such as apathy, blunted affect, and anhedonia; American
Psychiatric Association, 2013), plus a decline in social functioning. Schizophrenia overlaps
considerably with both schizo-affective disorder and psychotic bipolar disorder, not only symp-
tomatically, but also in terms of genetics and at the level of other biomarkers (Clementz et al.,
2016). The diverse temporal trajectory across individuals with schizophrenia and the different
types of clinical symptoms suggest alterations in various functional domains and brain capacity
reductions to integrate information across the brain. Schizophrenia has been hypothesized as a
developmental disorder of disrupted brain function, which can be characterized by functional
dysconnectivity and/or changes in functional integration (Friston & Frith, 1995; Kahn et al.,
2015; Stephan et al., 2006). Therefore, studying static and dynamic FNC can provide vital

Network Neuroscience 360

Multiscale ICA: Schizo-sex-specific changes in multi-spatial-scale dFNC



information about brain functional integration and its schizophrenia changes, potentially im-
proving our understanding of the actual brain pathology underlying different schizophrenia
subcategories.

In early work, Meda et al. show abnormal FNC, including those related to paralimbic circuits,
whichwere correlated significantlywith PANSS negative scores (Meda et al., 2012). Focusing on
the default mode, hypoconnectivity was observed across all related networks (Meda et al.,
2014). Dynamic studies also identify hypoconnectivity as the dominant dysconnectivity pattern,
while identifying few consistent hyperconnectivity patterns. The strengths of dynamic functional
connectivity (dFC) between subcortical and sensory networks are weaker in individuals with
schizophrenia (Damaraju et al., 2014). The weaker dFC strengths have also been observed in
several brain networks in spatial dynamic studies (Iraji, Deramus, et al., 2019; Iraji, Fu, et al.,
2019). The decrease in the strengths of dFC (transient hypoconnectivity) seems to be accompa-
nied by higher fluctuations of dFC between brain regions (Yue et al., 2018) and within and
between several brain networks (Iraji, Deramus, et al., 2019; Ma et al., 2014). Sun et al.
(2019) reported overall higher global efficiency across the schizophrenia brain. The alteration
in the dFNC patterns in schizophrenia also seems to be related to cognitive performance (Fu
et al., 2018; Iraji, Deramus, et al., 2019; Yue et al., 2018). For instance, the temporal variability
of FNC between the amygdala-medial prefrontal cortex (mPFC) is positively correlatedwith total
symptom severity and negatively correlated with information-processing efficiency (Yue et al.,
2018). The correlation between the energy index (spatiotemporal uniformity) of the subcortical
domain and the attention/vigilance domain of computerized multiphasic interactive neurocog-
nitive dualdisplay system (CMINDS) was reported to be disrupted in schizophrenia (Iraji,
Deramus, et al., 2019). Studies also show frequency-specific dFC alterations in schizophrenia
patients (Faghiri et al., 2021; Yaesoubi et al., 2017; Zhang et al., 2018). However, previous stud-
ies have not studied functional interactions across multiple spatial scales and have underappre-
ciated differences between male and female cohorts (Damaraju et al., 2014; Faghiri et al., 2021;
Iraji, Deramus, et al., 2019; Miller et al., 2019; Miller et al., 2016).

Schizophrenia incidence is higher in men (Aleman et al., 2003; McGrath et al., 2004), but
paradoxically there is equal overall prevalence (Saha et al., 2005). There is also evidence sug-
gesting sex differences in onset, symptom expression, and outcome in schizophrenia (Li et al.,
2016; Navarro et al., 1996; Nawka et al., 2013). For instance, males have more severe overall
symptoms, worse outcomes, and more negative and fewer affective symptoms, and they
experience symptoms earlier than females (Li et al., 2016). Furthermore, symptoms respond
more quickly to treatments in females. However, sex differences in symptoms and outcomes also
depend on the age of onset and treatment (Li et al., 2016; Seeman, 2019). Understanding sex-
specific characteristics of functional connectivity, which is currently lacking in the field, can
help provide an important insight to understand sex differences in schizophrenia and potentially
the opportunity to deliver sex-specific treatments and care for individuals with schizophrenia.

Considering the previous static and dynamic FNC findings on sex differences in typical con-
trol cohorts (Allen et al., 2011; Yaesoubi et al., 2020) and previous reports on sex differences in
schizophrenia (Li et al., 2016; Navarro et al., 1996; Nawka et al., 2013), we hypothesize that
multiscale functional interactions capture sex-specific changes in schizophrenia, which are
significantly correlated with schizophrenia’s symptoms score. We examined our hypothesis
using the following pipeline: (a) We estimated ICNs at multiple spatial scales using ICA with
model orders of 25, 50, 75, and 100. (b) We calculated the multi-spatial-scale static and dynamic
functional integrations using within and between model orders sFNC and dFNC using a
window-based approach (Allen et al., 2014; Iraji, Faghiri, et al., 2020). (c) We evaluated
sex-specific differences between typical controls and individuals with schizophrenia.
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MATERIALS AND METHODS

Participant Demographics and Data Inclusion Criteria

The data used in this study were selected from three projects: FBIRN (Functional Imaging
Biomedical Informatics Research Network), MPRC (Maryland Psychiatric Research Center),
and COBRE (Center for Biomedical Research Excellence). We selected a subset of data that
satisfy the inclusion criteria, including (a) data of individuals with typical control or schizo-
phrenia diagnosis; (b) data with high-quality registration to echo-planar imaging (EPI) tem-
plate; and (c) head motion transition of less than 3° rotations and 3-mm translations in
every direction (Fu et al., 2020). Mean framewise displacement among selected subjects is
average ± standard deviation = 0.1778 ± 0.1228; min ~ man = 0.0355 ~ 0.9441. Thus, we
report on resting-state fMRI (rsfMRI) data from 827 individuals, including 477 typical controls
and 350 individuals with schizophrenia selected (Table 1).

Data Acquisition

The FBIRN dataset was collected from seven sites. The same rsfMRI parameters were used
across all sites: a standard gradient EPI sequence, repetition time (TR)/echo time (TE) =
2,000/30 ms, voxel spacing size = 3.4375 × 3.4375 × 4 mm, slice gap = 1 mm, flip angle
(FA) = 77°, field of view (FOV) = 220 × 220 mm, and a total of 162 volume. Six of the seven
sites used 3-Tesla Siemens Tim Trio scanners, and one site used a 3-Tesla General Electric
Discovery MR750 scanner.

The MPRC dataset was collected in three sites using a standard EPI sequence, including
Siemens 3-Tesla Siemens Allegra scanner (TR/TE = 2,000/27 ms, voxel spacing size = 3.44 ×
3.44 × 4 mm, FOV = 220 × 220 mm, and 150 volumes); 3-Tesla Siemens Trio scanner (TR/TE =

Table 1. Demographic information of the data used in the study. FBIRN: Functional Imaging Biomedical Informatics Research Network.
MPRC: Maryland Psychiatric Research Center. COBRE: Center for Biomedical Research Excellence.

Project Diagnostic N Sex N
Age (years)

Mean ± SD Median/range
FBIRN Control group 160 Male 115 37.26 ± 10.71 39/(19–59)

Female 45 36.47 ± 11.33 33/(19–58)

Schizophrenia group 150 Male 114 38.74 ± 11.78 40/(18–62)

Female 36 39.06 ± 11.40 36/(21–57)

MPRC Control group 238 Male 94 38.72 ± 13.63 40/(12–68)

Female 144 41.22 ± 16.06 44/(10–79)

Schizophrenia group 150 Male 98 35.57 ± 13.18 32/(13–63)

Female 52 44.60 ± 13.87 47/(13–63)

COBRE Control group 79 Male 55 39.07 ± 12.43 38/(18–65)

Female 24 34.92 ± 10.23 34/(18–58)

Schizophrenia group 50 Male 42 37.43 ± 15.05 32.5/(19–64)

Female 8 43.25 ± 12.78 40/(31–65)
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2,210/30 ms, voxel spacing size = 3.44 × 3.44 × 4 mm, FOV = 220 × 220mm, and 140 volumes);
and 3-Tesla Siemens Tim Trio scanner (TR/TE = 2,000/30 ms, voxel spacing size = 1.72 × 1.72 ×
4 mm, FOV = 220 × 220 mm, and 444 volumes).

The COBRE dataset was collected in one site using a standard EPI sequence with TR/TE =
2,000/29 ms, voxel spacing size = 3.75 × 3.75 × 4.5 mm, slice gap = 1.05 mm, FA = 75°,
FOV = 240 × 240 mm, and a total of 149 volumes. Data were collected using a 3-Tesla
Siemens Tim Trio scanner.

Preprocessing/MRI Data Preprocessing

The preprocessing was performed primarily using the statistical parametric mapping (SPM12,
https://www.fil.ion.ucl.ac.uk/spm/) toolbox. The rsfMRI data preprocessing used the following
steps: (a) discarding the first five volumes for magnetization equilibrium purposes, (b) rigid
motion correction to correct subject head motion during scan, and (c) slice-time correction to
account for temporal misalignment in data acquisition. Next, the data of each subject were non-
linearly registered to a Montreal Neurological Institute (MNI) EPI template, resampled to 3 mm3

isotropic voxels, and spatially smoothed using a Gaussian kernel with a 6 mm full width at half-
maximum (FWHM = 6 mm). The voxel time courses were then z-scored (variance normalized).
We are interested in identifying functional sources, temporally synchronized regions. Therefore,
temporal coupling and not amplitude information is the information of interest. Variance nor-
malization was shown to enhance sensitivity to functional segregation and functional sources
(Iraji, Fu, et al., 2019) and to be highly reproducible across different studies. Furthermore, prior to
calculating static and dynamic FNC, an additional post hoc cleaning procedure was performed
on the time courses of ICNs to reduce the effect of remaining noise, which may not be wholly
removed using ICA, and to improve the detection of dynamic FNC patterns (Allen et al., 2014).
ICN time courses were detrended by removing linear, quadratic, and cubic trends. The six
motion realignment parameters and their derivatives were regressed out. Outliers were detected
based on themedian absolute deviation, similar to that implemented in AFNI 3Ddespike (https://
afni.nimh.nih.gov/), and replaced with the best estimate using a third-order spline fit to the
clean portions of the time courses. Bandpass filtering was applied using a fifth-order Butterworth
filter with a cutoff frequency of 0.01–0.15 Hz.

Intrinsic Connectivity Network Estimation

For the initial work in this paper, we utilized spatial ICA with several model orders (25, 50, 75,
and 100) to identify ICNs at multiple spatial scales. Similar to most ICA-based studies of fMRI,
we implemented group-level spatial ICA followed by a back-reconstruction technique to es-
timate subject-specific independent components time courses.

We used the GIFT toolbox (https://trendscenter.org/software/gift/; Calhoun & Adalı, 2012;
Calhoun et al., 2001; Iraji, Faghiri, et al., 2020). First, subject-specific spatial principal com-
ponents analysis (PCA) was applied to normalize the data and to allow subjects to contribute
similarly in the common subspace. The subject-specific PCA also has denoising and compu-
tational benefits (Erhardt et al., 2011). We retain maximum subject-level variance (greater than
99.99%). While the subject-specific PCA privileges subject differences at the subject level, the
group-level PCA favors subject commonalities (Erhardt et al., 2011). All subject-level principal
components were concatenated together across the time dimension, and group-level spatial
PCA was applied to concatenated subject-level principal components. N (25, 50, 75, and 100)
group-level principal components that explained the maximum variance were selected as the
input for spatial ICA to calculate N (25, 50, 75, and 100) group independent components.
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Infomax was chosen as the ICA algorithm because it has been widely used and compares
favorability with other algorithms (Correa et al., 2007; Correa et al., 2005). For each model
order (N = 25, 50, 75, and 100), the Infomax ICA algorithm was run 100 times and clustered
together within the ICASSO framework (Himberg et al., 2004). The run with the closest inde-
pendent components to the centrotypes of stable clusters (ICASSO cluster quality index > 0.8)
was selected as the best run and used for future analysis (Ma et al., 2011). This is an important
point and facilitates replicable results. Next, the subject-specific independent components
time courses were calculated using the spatial multiple regression technique (Calhoun
et al., 2004). At each time point, the contribution of each independent component to the
BOLD signal was calculated using linear regression (Calhoun et al., 2004).

We selected a subset of independent components as ICNs if they are stable (ICASSO stability
index > 0.8) and depict common ICN properties including (a) dominant low-frequency fluctua-
tions of their time courses evaluated using dynamic range and the ratio of low-frequency to high-
frequency power; (b) peak activations in the gray matter; (c) low spatial overlap with vascular,
ventricular; and (d) low spatial similaritywithmotion and other known artifacts. Finally, ICNswere
grouped into functional domains based on prior knowledge of their anatomical and functional
properties (Allen et al., 2011).

Static and Dynamic FNC Calculation

We calculated static and dynamic functional network connectivity between every single pair of
ICNs across all model orders to effectively capture functional integration and interaction across
different spatial scales. For a subset of data (15%) with a sampling rate different from 2 s, ICN time
courses were interpolated to 2 s. Minimum data length across all subjects was selected for further
analysis. Static FNC (sFNC) was estimated by calculating the Pearson correlation between each
pair of ICN time courses resulting in one sFNC matrix for each individual. Each element of the
sFNC matrix is the functional connectivity between a pair of ICNs.

In contrast to sFNC, which uses the full length of scan, in dynamic FNC (dFNC), we calcu-
late multiple FNC matrices for different time segments of scan (i.e., FNC matrices for durations
smaller than the whole time series; Iraji, Faghiri, et al., 2020). As a result, we can study var-
iations in FNC over time. Here, we used a window-based approach with the slide step size of
2 s (maximum overlap between consecutive windows). A recommended window size is
between 30 s and 60 s (Iraji, Faghiri, et al., 2020); thus, we chose the middle value (44 s, time
point increment is 2 s). A tapered window was created by convolving a rectangle window
(width = 44 s) with a Gaussian (σ = 6 s) and was used to calculate windowed FNC. This results
in a series of windowed-FNC matrices over time (FNC as a function of time) containing dFNC
information.

Next, we identified dFNC states fromwindowed-FNCmatrices using the k-means clustering, in
which each cluster represents one dynamic state (Iraji, Faghiri, et al., 2020). We applied a
two-stage k-means clustering. First, windows with local maxima with FNC variances were
selected for each subject, and k-means clusteringwas applied to the set of all subject-specific local
maxima (also knownas exemplars).Weused the city-block distancemetric because it is suggested
to be a more effective dissimilarity measure than Euclidean distance for high-dimensional data
(Aggarwal et al., 2001). K-means clustering was repeated 100 times with different initializations
using the k-means++ technique to increase the chance of escaping local minima. The resulting
centroids were then used to initialize a clustering to all 93,451 (827 subjects × 113 windows)
windowed-FNC matrices. The optimal number of dFNC states was selected based on the elbow
criterion by calculating the ratio of within- to between-cluster variance and running the clustering
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procedure for 1 to 15 clusters. Subject-specific dFNC states were next estimated by averaging
windowed FNC of time windows assigned to a given state.

We repeated the dFNC state identification procedures using two alternative ways to ensure
that the dFNC states are not biased to the clustering algorithm. (a) We first applied k-means
clustering at the subject level and then concatenated the subject-level centroids for group-level
clustering and identifying dFNC states. 2) We directly applied k-mean clustering to all 93,451
(827 subjects × 113windows) windowed-FNCmatrices.We also evaluated the clustering results
using Euclidean and correlation distances.

Group Comparison Analysis

We evaluated sex-specific differences in multiscale sFNC and dFNC between the control group
(CT) and the individuals with schizophrenia (SZ). For each sex cohort, male and female, we sep-
arately assessed diagnostic group differences, that is, male controls versus male individuals with
schizophrenia (maleCT vs. maleSZ) and female controls versus female individuals with schizo-
phrenia (femaleCT vs. femaleSZ). We used a general linear model (GLM) with age, data acqui-
sition site, and mean framewise displacement as covariates. Framewise displacement is the sum
of changes in the six rigid-body transform parameters (framewise displacement(t) = |Δdx(t)| +
|Δdy(t)| + |Δdz(t)| + |Δα(t)| + |Δβ(t)| + |Δγ(t)|). Mean framewise displacement was added to
the GLM to account for any residual motion effect that was not removed in the previous three
motion-removal steps. The statistical analysis results were corrected for multiple comparisons
using a 5% false discovery rate (FDR). It is worth mentioning that all statistical analysis results
were combined (sFNC and dFNC; male and female; across all model orders) and corrected for
multiple comparisons, which is more conservative than correcting for each statistical analysis
separately.

Next, we evaluated sex-specific differences for the sFNC and dFNC features that showed a
significant difference between the control group and individuals with schizophrenia in either of
the sex cohorts (“maleCT vs. maleSZ” and/or “femaleCT vs. femalesSZ”). For each feature, we
compared the difference of the t value of the GLM statistic between two sex cohorts (“t value of
maleCT vs. maleSZ”− “t value of femaleSZ vs. femaleCT”) with a null distribution. The p value of
the t value of difference was corrected for multiple comparisons using the same procedure
explained in the previous paragraph.

The null distribution was created by randomly permuting sex labels within each diagnostic
group. In other words, the diagnostic label remained intact; individuals with schizophrenia
remained schizophrenia, and control subjects remained in the control group, and only the
sex labels were randomly permuted. Furthermore, the number of females and males in each
diagnostic group did not change. This permutation process was repeated 5,000 times. For each
permutation, the GLM was applied to two null male and null female cohorts independently.
For each feature, the difference of the t value of diagnosis for two null cohorts was calculated.
This results in 5,000 samples of the null distribution for each feature.

We also studied sex-specific differences at the domain level across different spatial scales.
For static FNC and each dynamic state, the average FNC was calculated within and between
seven functional domains both within and between four model orders (e.g., “CC25-DM25 and
“CR50-VS100”). For example, “CR50-VS100” is the average FNC between every pair of ICNs
that belong to the cerebellum domain model order 50 and ICNs that belong to the visual
domain model order 100. This results in a 28 × 28 domain-level functional integration matrix.
The static and dynamic state domain-level functional integration matrices were then evaluated
for sex-specific differences.
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Relationship With Symptom Scores

We further evaluate whether the multiscale functional network connectivity pairs showing
sex-specific changes in schizophrenia are related to the symptoms of schizophrenia. The posi-
tive and negative syndrome scale (PANSS) scores are available for the FBIRN dataset, while the
MPRC dataset includes the Brief Psychiatric Rating Scale (BPRS) scores. We transformed BPRS
total scores to PANSS total scores using the matching obtained from 3,767 individuals (Leucht
et al., 2013). Next, we evaluated the relationship between the PANSS total score and domain-
level features with significant sex-specific differences. Correlation analyses were conducted after
regressing out age, site, and mean functional domain and corrected for multiple comparisons.

RESULTS

Multi-spatial-Scale Functional Segregation: Intrinsic Connectivity Networks

We performed spatial ICA with 25, 50, 75, and 100 components on rsfMRI data from 827
subjects to functionally segregate the brain at different spatial scales. Based on the criteria
explained in the Materials and Methods section (see Intrinsic Connectivity Network
Estimation subsection), we identified 15, 28, 36, and 48 independent components as ICNs
for model orders 25, 50, 75, and 100, respectively. Detailed information of the ICNs, includ-
ing spatial maps, coordinates of peak activations, and temporal and frequency information,
can be found in the Supporting Information, Supplementary 1. ICNs were grouped into seven
functional domains, including cognitive control (CC), cerebellum (CR), default mode (DM),
subcortical (SB), somatomotor (SM), temporal (TP), and visual (VS). Figure 2 illustrates the

Figure 2. Visualization of the intrinsic connectivity networks (ICNs) identified from four ICA model orders of 25, 50, 75, and 100. ICNs were
grouped into seven functional domains based on their anatomical and functional properties. The functional domains are cognitive control (CC),
default mode (DM), visual (VS), subcortical (SB), cerebellum (CR), somatomotor (SM), and temporal (TP). Columns represent the composite maps
of seven functional domains for four ICAmodel orders and aggregated. Each color represents the spatial map of one ICN thresholded at |Z| > 1.96
(p = 0.05).
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composite views of functional domains for each model order and aggregated. Each composite
view is obtained by thresholding and overlaying associated ICNs. For example, the first image
in subplot (CR, ICA25) was obtained by thresholding (|Z| > 1.96) and overlaying two ICNs as-
sociated with the cerebellum domain in model order 25. Table 2 shows the number of ICNs for
each model order and functional domain. The results suggest that as the model order increases,
the number of ICNs increases, and the brain and the functional domains segregate into more
functional sources (ICNs). For instance, the subcortical domain consists of only one ICN in model
order 25, enclosing the whole subcortical regions, while it parcels into spatially distinct ICNs
as model order increases. However, the number of ICNs does not increase proportionally with
model order. While some functional domains break into more ICNs as the model order in-
creases, others demonstrate a smaller amount of changes in the number of ICNs and their
spatial distributions across model orders studied in this work. For example, we observe sig-
nificant changes in the ICNs associated with the cognitive control domain across model orders,
particularly between model order 50 and 75, while the number of ICNs are the same for model
order 50 and 75 for the somatomotor and visual domains. Interestingly, across different model
orders, we observed ICNs with high spatial overlap (high spatial similarity) but clearly distinct
features. The second row of Figure 5 shows two distinct ICNs with high spatial overlap associ-
ated with the primary motor cortex.

Dynamic Functional Integration: Static/Dynamic Functional Network Connectivity

Figure 3 (A, I) and Figure 4 (A, I) display block and finger plots of the group-level multiscale
functional integration computed using the entire scan length (i.e., static functional network
connectivity, sFNC). Static FNC shows similar patterns for control groups, individuals with
schizophrenia, males, and females. In the block plot, we sort ICNs by functional domain
and then by model order. The block plot of sFNC resembles previous single model-order stud-
ies, showing modular organization within functional domains across model orders. Consistent
with prior literature (Allen et al., 2011), we observed an overall negative association (anti-
correlation) between the default model and the rest of the brain, particularly the visual, soma-
tomotor, and temporal domains, during rest. Interestingly, this negative association was more
prominent between model orders, for example, between the default mode of model order 25
(DM25) and the somatomotor of model order 100 (SM100). We also observed strong FNC
between the somatomotor, temporal, and visual domains, and between the subcortical and
cerebellum domains. Figure 3 suggests that the FNC within functional domains is stronger than
between functional domains, and this pattern is consistent for both within and between model

Table 2. The number of intrinsic connectivity networks (ICNs) for each model order and functional
domains, cognitive control (CC), cerebellum (CR), default mode (DM), subcortical (SB), somatomotor
(SM), and temporal (TP).

CR CC DM SM SB TP VS Total

IC25 2 3 4 2 1 1 2 15

IC50 3 6 5 5 2 3 4 28

IC75 4 11 6 5 3 3 4 36

IC100 5 14 8 7 4 3 7 48

Total 14 34 23 19 10 10 17
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Figure 3. Block plot of multiscale functional integration. ICNs are sorted by functional domain and then by model order. Row A is the result
of static FNC analysis, and rows B to E represent the four dynamic states. Column I is the average FNC matrix for static FNC and dynamic FNC
states. Column J shows the result of group comparison between male individuals with schizophrenia (SZ) and the male control group (CT).
Column K shows the result of group comparison between SZ and CT individuals in the female cohort. In columns J and K, the upper triangular
shows the t value of statistical comparisons, and the lower triangular shows statistically significant differences after FDR correction for multiple
comparisons (FDR-corrected threshold = 0.05). Column L shows the result of the statistical comparison between the differences observed in the
male cohort versus the female cohort. The upper triangular in column L shows the differences between the t value of statistical comparisons in
male and female cohorts (“t value of maleSZ vs. maleCT” − “t value of femaleSZ vs. femaleCT”), and the lower triangular shows the
SZ-associated abnormal patterns that are significantly different between male and female cohorts after FDR correction. Cognitive control
(CC), default mode (DM), visual (VS), subcortical (SB), cerebellum (CR), somatomotor (SM), and temporal (TP).
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Figure 4. Finger plot of multiscale functional integration. ICNs are sorted by model order and then by functional domain. Row A is the result
of static FNC analysis, and rows B to E represent the four dynamic states. Column I is the average FNC matrix for static FNC and dynamic FNC
states. Column J shows the result of group comparison between male individuals with schizophrenia (SZ) and the male control group (CT).
Column K shows the result of group comparison between SZ and CT individuals in the female cohort. In columns J and K, the upper triangular
shows the t value of statistical comparisons, and the lower triangular shows statistically significant differences after FDR correction for multiple
comparisons (FDR-corrected threshold = 0.05). Column L shows the result of the statistical comparison between the differences observed in the
male cohort versus the female cohort. The upper triangular in column L shows the differences between the t value of statistical comparisons in
male and female cohorts (“t value of maleSZ vs. maleCT” − “t value of femaleSZ vs. femaleCT”), and the lower triangular shows the
SZ-associated abnormal patterns that are significantly different between male and female cohorts after FDR correction. Cognitive control
(CC), default mode (DM), visual (VS), subcortical (SB), cerebellum (CR), somatomotor (SM), and temporal (TP).
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orders. The similarity in FNC pattern within and between model orders can be observed in the
finger plots (Figure 4), where ICNs are sorted first by model order and then by functional do-
mains. The finger plot (Figure 4) shows functional domain modular patterns (stronger FNC
within functional domains compared with between functional domains) between model or-
ders similar to within model orders.

Focusing on brain dynamics, dynamic FNC (dFNC) analysis shows variations in FNC over
time, which give rise to distinct functional integration patterns (dFNC states). The elbow cri-
terion identified four as the optimal number of states. Figure 3 and Figure 4 show the dFNC
states. These states are fully reproducible and identified using different clustering procedures
(see the Static and Dynamic FNC Calculation section above). State 1 accounts for 23.76% of
all windows (percentage of occurrences, POC = 23.76%), and it is dominated by a strong
anticorrelation pattern between the default mode and other functional domains, which can
be related to the role of the default mode in reconciling information and subserve the base-
line mental activity. State 2 (POC = 38.3%) is distinct by weaker FNC, particularly weaker
between functional domains potentially representing the brain’s global segregation state. In
contrast, State 3 (POC = 21.31%) demonstrates overall positive FNC across the cerebral cor-
tex, potentially representing global functional integration. Of particular note, the cerebellum
shows overall negative FNC with cerebral functional domains in State 3. The negative asso-
ciation between the cerebellar domain and sensorimotor functional domains is prominent in
State 4 with POC = 16.60%. State 4 can be distinguished with strong functional integration
between the visual, somatomotor, and temporal domains, and their anticorrelation patterns
with the rest of the brain. This state also shows strong functional integration between the
subcortical and cerebellar domains.

Sex-Specific Differences in Individuals with Schizophrenia

Multiscale functional integration was further studied by evaluating sex-specific differences in
multiscale sFNC and dFNC between the control group (CT) and the individuals with schizo-
phrenia (SZ). In Figure 3 and Figure 4, columns J and K show the statistical analysis for each
sex cohort using a general linear model (GLM) with age, data acquisition site, and mean frame-
wise displacement as covariates.

In general, sFNC shows more differences between SZ and CT in both sex cohorts than
each dFNC state individually; however, the total number of tests that survived FDR correc-
tion is comparable between sFNC and dFNC (Supporting Information, Supplementary 2). In
the female cohort, 576 FNC pairs show significant differences in both sFNC and dFNC,
while we identified 638 and 402 FNC pairs showing significant differences only in sFNC
and dFNC, respectively. In the male cohort, the number of FNC pairs that show significant
differences in both sFNC and dFNC is 1,076, and the numbers of FNC pairs that show sig-
nificant differences only in sFNC and dFNC are 720 and 640, respectively. Furthermore,
dFNC analysis shows that in the female (male) cohort, 790 (1,246) and 3 (21) FNC pairs,
respectively, show significant differences in only one dynamic state and all four dynamic
states.

Individuals with schizophrenia show reduced sFNC strength within and between the SM
and TP domains in male and female cohorts. Looking at dFNC results, we observed these dif-
ferences emerge in different states for male and female cohorts, that is, mainly in State 3 for the
male cohort and State 4 for females. We observed that the sex-specific differences in the SM
and TP domains are more pronounced in dFNC states, particularly in State 4. Individuals with
SZ also have weaker sFNC and dFNC within the VS and between VS domain and SM and TP
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domains. Furthermore, with a few exceptions, we observed an overall sFNC and dFNC in-
crease between the SB and the CR, on the one hand, and the SM, the TP, and the VIS on
the other hand. We observed the strongest sex-specific differences in State 4 between the
VS and the CR.

The results also show significant differences between male and female cohorts across
other functional domains in both sFNC and dFNC. For instance, the sFNC between the
CC and DM shows significant differences in SZ-related alterations between male and female
cohorts.

The sex-specific differences are more prevalent in State 4 than sFNC and other dynamic
states (Supporting Information, Supplementary 2). The number of FNC pairs that show signif-
icant sex differences in both sFNC and dFNC is only nine. The results also suggest that the
largest sex-specific changes in schizophrenia are mainly observed in the dFNC State 4, and
that they belong to the between model-order FNC (Figure 5). Interestingly, we observed op-
posite patterns of alterations for male and female cohorts in several significant differences. For
instance, Figure 5 (R1, D4) shows significant differences in the dFNC State 4 (D4) in both male
(C2) and female (C3) cohorts. However, while in the male cohort, the strength of dFNC in State
4 reduced in SZ (t value = −3.32), in the female cohort, the strength of FNC increased in the SZ
cohort (t value = 3.65) compared with the control group.

One of the advantages of using msICA is that it allows us to see how the same region can
contribute to different ICNs at different spatial scales and how the functional connectivity be-
tween these ICNs varies across different populations (Figure 5, R2).

Investigating sex-specific differences at the domain level across different spatial scales, we
observed that sex-specific differences are more prominent in the dFNC compared with the
sFNC. Significant differences exist within the subcortical domain between model order 75
and 100 (SB75-SB100) in sFNC and dFNC State 1 (Figure 6). State 2 shows sex-specific differ-
ences between the subcortical and temporal domains within and between several model or-
ders (Figure 6). State 3, on the other hand, shows sex-specific differences between the
cerebellar and somatomotor across different model orders (Figure 6). Like ICN-level compar-
ison, dynamic State 4 reveals the most sex-specific differences, including the temporal, visual,
and default mode domains.

While sex-specific differences show stronger effects of schizophrenia in males (male diff −
female diff > 0) for functional domain connectivity associated with the SM and the VIS, we
observe the opposite pattern for the rest of the differences. One exception is the within-
temporal domain functional connectivity between model order 25 and 50 in the dFNC
State 4.

For sex-specific changes at the domain level, we also evaluated the correlation with
the PANSS total score. We observed strong correlations with p value < 0.05 in the male
but not the female cohorts for four domain-level features. They include the following: (a
and b) within the subcortical domain between model order 75 and 100 (SB75-SB100) in
sFNC with the correlation values of 0.281/−0.117 (male/female) and dFNC State 1 with
the correlation values of 0.173/−0.197 (male/female); (c) within the temporal domain be-
tween model order 25 and 50 (TP25-TP50) in dFNC State 4 with the correlation values of
0.277/−0.062 (male/female); and (d) between the visual domain model order 25 and the
temporal domain model order 75 (VS25-TP75) in dFNC State 4 with the correlation
values of −0.300/−0.024 (male/female). Among these, SB75-SB100 (sFNC) and VS25-
TP75 (dFNC State 4) survived multiple comparison corrections (Supporting Information,
Supplementary 3).
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Figure 5. Static and dynamic functional network connectivity (sFNC/dFNC) pairs that show the largest sex-specific multiscale changes in
schizophrenia (SZ) presented in 12 rows in order. (S) represents the results of sFNC, and (D1) to (D4) show the results of dFNC for dynamic
State 1 to 4, respectively. (A) and (B) display the sagittal, coronal, and axial views of the peak activation of intrinsic connectivity networks
(ICNs) associated with each FNC pair. (C1) is the FNC strength. (C2) indicates the t value of statistical comparisons between typical control and
individual with schizophrenia in the male cohort. Positive (negative) values indicate stronger (weaker) sFNC/dFNC in individuals with schizo-
phrenia (SZ) compared with the control group. (C3) represents the t value of statistical comparisons between typical control and individual
with schizophrenia in the female cohort, where positive and negative values indicate the same pattern as (C2). (C4) shows the t value of
comparing schizophrenia-related changes between male and female cohorts (“t value of maleSZ vs. maleCT” − “t value of femaleSZ vs.
femaleCT”). Asterisk sign * indicates the statistical comparisons that survived multiple comparisons (5% false discovery rate, FDR).
Cognitive control (CC), default mode (DM), visual (VS), subcortical (SB), cerebellum (CR), somatomotor (SM), and temporal (TP). The number
after the functional domain abbreviation is the model number; for example, DM25 means the default model domain from ICA model order 25.
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Figure 6. Sex-specific differences at the domain level across different spatial scales. Cognitive control (CC), default mode (DM), visual (VS),
subcortical (SB), cerebellum (CR), somatomotor (SM), and temporal (TP). The number after the functional domain abbreviation is the model
number; for example, DM25 means the default model domain from ICA model order 25.
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DISCUSSION

Multiscale Dynamic Interactions: Functional Segregation and Integration

Studying brain functional connectivity has improved our understanding of brain functions and
the impact of brain disorders. However, currently, studying functional connectivity over-
whelmingly disregards functional connectivity across multiple spatial scales. Existing studies,
at best, apply data-driven approaches like ICA to study functional interactions at single model
order but overlook the FNC within and between multiple spatial scales, while the majority of
them uses fixed anatomical locations of the same size (e.g., a sphere with the same radius),
which in addition to disregarding multiple spatial scales interaction, ignores differences in the
spatial distribution of functional sources.

In this work, we present an approach to study multi-spatial-scale dynamic functional inter-
actions, that is, dynamic changes that occur within and among different spatial scales, a topic
that the field has overlooked. We leveraged the approach to study schizophrenia’s alterations
and its sex-specific differences, which have also been understudied as most schizophrenia
research focuses on only single spatial scale FC and non-sex-specific alterations of
schizophrenia.

Multiscale ICA

Our results show that multiscale ICA (msICA) using the Infomax algorithm is an effective, adap-
tive tool to identify functional sources at multiple spatial scales. Higher model order ICAs seg-
regate the brain and functional domains into more ICNs with, in general, higher spatial
granularity. For instance, the subcortical domain splits into more ICNs as the model order in-
creases from 25 to 100. However, ICA does not enforce a limitation on each ICN’s spatial
extent. Instead, ICA considers the multivariate association in the BOLD signal to segment
the brain. As a result, msICA enables us to visualize functional segregation occurring at differ-
ent levels of granularity across the brain. This is a desirable characteristic, as we know func-
tional homogeneity varies across the brain and functional domains. The differences in
parcellation granularity across functional domains provide additional information about the
brain that needs to be studied in the future.

Furthermore, msICA captures the multifunctionality of brain regions and identifies distinct
ICNs with high spatial overlap (for example, see the second row of Figure 5). Additional studies
are needed to evaluate the neurophysiological basis to explain these variations. Furthermore, in
this study, we focus on only four model orders of 25, 50, 75, and 100. Future studies should
reduce the incremental steps and increase the range of model orders to effectively capture ICNs
associated with a larger number of spatial levels of functional hierarchy (Iraji, Fu, et al., 2019).
Recently, we used 1K-ICA, ICA with a model order of 1,000, to parcel the brain into very fine-
grained functional sources (Iraji, Faghiri, et al., 2019). Furthermore, future studies should
explore differences across the different back-reconstruction approaches (Erhardt et al., 2011).
Developing techniques that simultaneously estimate ICNs for multiple model orders can
improve the estimation of ICNs across multiple scales. Finally, considering the recent findings
on spatial dynamics (Iraji, Deramus, et al., 2019; Iraji, Fu, et al., 2019; Iraji, Miller, et al., 2020),
future works should also consider spatial dynamic functional segregations, as the spatial pat-
terns of functional sources may vary over time.

Multi-spatial-Scale dFNC

A window-based dFNC approach (Allen et al., 2014; Iraji, Faghiri, et al., 2020) was adopted to
characterize the multi-spatial-scale dynamic functional interactions. To our best knowledge,
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this is the first study that looks at sFNC/dFNC across multiple mode orders. While we observe
consistency and similarity of sFNC/dFNC both within and between model orders, there are
also distinct differences in FNC patterns across FNC patterns. The differences are more distin-
guishable when there are larger differences in model orders, such as between model orders 25
and 100 (see, for example, Figure 4A, B, and E). This further highlights the importance of
including a wider range of model orders in future studies.

Another important point is how we identify dFNC states. In this study, dFNC states were
identified using all 127 ICNs; however, the brain may experience different states and/or
temporal changes across different spatial scales. Higher functional hierarchy levels have less
homogeneity and more dynamic behavior (Iraji, Fu, et al., 2019). Therefore, we expect more
dynamism in the low-model-order ICAs. Future work should focus on variation in dFNC states
and their timing across multiple model orders and differentiate between global and scale-
specific dFNC states. It would also be interesting to extend the same multiscale idea to the
number of clusters for the dFNC analysis. Different cohorts (e.g., male, female, control, and
schizophrenia) may depict different characteristics at different scales.

Furthermore, similar to multi-spatial scales, brain functional segregation and integration can
occur at different temporal scales and frequencies; thus, future studies can benefit from multi-
temporal scale functional interactions. Developing multi-spatiotemporal-scale analytic ap-
proaches and methodological frameworks to study functional sources is a crucial future
avenue of investigation.

Finally, there is a rich repository of dynamic analytical approaches and secondary analysis
that can be used to evaluate multi-spatial-scale brain dynamics (Chang & Glover, 2010;
Kaboodvand et al., 2020; Karahanog�lu & Van De Ville, 2015; Lindquist et al., 2014; Miller
et al., 2016; Yaesoubi et al., 2015).

Schizophrenia

We further investigated the advantage of multi-spatial-scale analysis in schizophrenia and
identifying sex-specific changes. Our results suggest disruptions in sFNC/dFNC across func-
tional domains. Compared with controls, individuals with schizophrenia show reduced
sFNC/dFNC within and between the visual, somatomotor, and temporal domains in both male
and female cohorts (Figure 3). Previous studies that looked at differences between typical con-
trols and individuals with schizophrenia also report hypoconnectivity across these functional
domains using various approaches (Anticevic et al., 2014; Damaraju et al., 2014; Faghiri et al.,
2021; Iraji, Deramus, et al., 2019; Iraji, Fu, et al., 2019; Kim et al., 2014; Shinn et al., 2015).
Our study both confirms and extends previous findings. We identify significant differences be-
tween males and females in several FNC pairs, mainly showing larger schizophrenia-related
changes in males than in female cohorts. This can be related to differences in clinical obser-
vations, including males presenting more severe overall symptoms, worse outcomes, and
slower responses to treatment (Li et al., 2016). Greater SZ-related changes across these do-
mains in males are also present at the domain level in dFNC State 4 within the temporal do-
main and between the temporal and visual domains (Figure 6).

Individuals with schizophrenia show hyperconnectivity of the subcortical domain with the
visual, somatomotor, and temporal domains with notable exceptions in dFNC State 4. Unlike
sFNC and dFNC in other states, dFNC State 4 has an overall negative association between the
subcortical and the visual, somatomotor, and temporal domains (Figure 3). Certainly, temporal
lobe anatomical and functional differences have been linked repeatedly to the expression of
positive symptoms in schizophrenia (Barta et al., 1990; Shenton et al., 1992; Woodruff et al.,
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1997). We also observe different patterns of schizophrenia-related changes in male and female
cohorts. Dynamic FNC State 4 also shows distinct sex-specific differences in the cerebellum
domain connectivity patterns, where we observe the opposite pattern of alterations, particu-
larly between the cerebellum and visual domain in the male and female cohorts (Figure 3).
Cerebellar dysconnectivity patterns have been linked to negative symptom expression in
schizophrenia (Brady et al., 2019).

The domain-level analysis suggests that major sex-dependent schizophrenia alterations at a
large scale are mainly associated with the subcortical, cerebellar, temporal, and motor do-
mains. Interestingly, most of the sex-specific differences were observed between model order
and associated with dFNC states, highlighting the importance of multiscale dynamic analysis
(Figure 4 and Figure 6).

In short, our findings are aligned with and extend previous schizophrenia studies, and we
observed explicit sex-specific differences, particularly distinct dFNC patterns in State 4. These
demand further investigations into the multi-spatial-scale dFNC and sex differences in SZ.
However, these findings should be interpreted with caution and considering the limitations
of the study.

First and foremost, considering the sex differences in the age of onset, future longitudinal
studies should be used to study the role of the age of onset on the sex-specific differences in
schizophrenia and evaluate the relationship between time and sex-specific differences over
time. Long-term effects of medication and treatment, which cannot be accounted for
(Moncrieff & Leo, 2010), might impact observed differences. Including unaffected close rela-
tives sharing genetic risk, that is, at-high-risk unmedicated subjects, can help us better under-
stand changes in brain function (Pearlson & Stevens, 2020). The unbalanced number of
samples between groups is another limitation of the studies. While we control for sex differ-
ence and the null distribution was created with the same female to male ratio, future studies
should focus on datasets with larger numbers of females.

Biomarkers and the Importance of Sex-Specific Characteristics

According to the NIH Biomarkers Definitions Working Group, a biomarker is defined as “a
characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”
(Biomarkers Definitions Working Group, 2001). As such, a diagnostic biomarker is defined
as a characteristic or feature capable of detecting or confirming the presence of a (subtype
of ) disease or condition of interest (Califf, 2018). At the same time, numerous studies have
observed sex differences in schizophrenia, including in the age of onset, in experiencing neg-
ative and positive symptoms, and in response to treatments (Nawka et al., 2013; Li et al., 2016;
Seeman, 2019). Therefore, the biomarkers for schizophrenia might be somewhat different for
males and females.

This study’s premise is that sex influences differences in schizophrenia characteristics, and
we introduce a dynamic multi-spatial-scale framework to obtain candidates for sex-specific
biomarkers from rsfMRI data. We observed significant sex-specific differences across several
functional domains, including in subcortical and temporal connectivity patterns, which also
significantly correlate with symptom scores in males but not females. Interestingly, the affected
functional domains have been frequently reported to be altered in SZ and touted as having
potential to serve as identifying biomarkers. Our results suggest that sex-specific functional
connectivity changes might be related to schizophrenia symptoms and underlying causes
and emphasize the importance of carefully incorporating sex in the development of
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diagnostic/predictive/monitoring biomarkers. While sex and schizophrenia can be identified
straightforwardly, there has been very little work looking at sex and schizophrenia differences
across different spatial scales in resting fMRI data. The incorporation of sex as a biological
variable within the context of schizophrenia may help shed new light on the neurobiological
mechanisms of schizophrenia. Future studies should leverage these findings and incorporate
sex into feature selection and classification algorithms to identify a set of sensitive
schizophrenia-related features for use in updating nosological categories and building diag-
nostic and predictive models.

CONCLUSION

Brain dynamic functional interaction can occur at different spatial scales, which has been un-
derappreciated. In this work, we propose an approach that uses multiscale ICA and dFNC to
study brain function at different spatial scales. This results in a more comprehensive map of
functional interactions across the brain. This not only solves the limitation of using fixed an-
atomical locations but also eliminates the need for model-order selection in ICA analysis.
Therefore, we propose multiscale ICA (msICA), and future multi-spatial-scale methods should
be broadly applied in future studies. Going forward, we can further improve the proposed
approach by incorporating explicit spatial dynamics andmulti-temporal-scale features of functional
sources. We leverage the proposed approach to study male/female common and unique aspects of
sFNC/dFNC in schizophrenia, which have not been investigated despite previous reports on sex
differences on the prevalence, symptoms, and responses to treatment. The majority of sex-specific
differences occur in between-model-order and associated with dFNC states, further highlighting
the benefits of our proposed approach. Future studies are needed to validate our findings and
evaluate the further benefits of multiscale analysis.
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