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Cell Phenotype Transitions in 
Cardiovascular Calcification
Luis Hortells†, Swastika Sur† and Cynthia St. Hilaire*

Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, 
University of Pittsburgh, Pittsburgh, PA, United States

Cardiovascular calcification was originally considered a passive, degenerative process, 
however with the advance of cellular and molecular biology techniques it is now 
appreciated that ectopic calcification is an active biological process. Vascular calcification 
is the most common form of ectopic calcification, and aging as well as specific disease 
states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. 
In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells 
contribute to the formation of extracellular calcified nodules. Research suggests that 
these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like 
characteristics, however the mechanisms driving the early aspects of these cell transitions 
are not fully understood. Osteoblasts are true bone-forming cells and differentiate from 
their pluripotent precursor, the mesenchymal stem cell (MSC); vascular cells that acquire 
the ability to calcify share aspects of the transcriptional programs exhibited by MSCs 
differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular 
cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, 
whether these vascular cells first de-differentiate into an MSC-like state before obtaining a 
“second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing 
these questions will enable progress in preventative and regenerative medicine strategies 
to combat vascular calcification pathologies. In this review, we will summarize what is 
known about the phenotypic switching of vascular endothelial, smooth muscle, and 
valvular cells.

Keywords: vascular calcification, valvular calcification, cell phenotype transition, vascular smooth muscle cell, 
endothelial cell, valve interstitial cell

inTRoduCTion

In bone formation, there are two different ossification processes, intramembranous 
ossification and endochondral ossification (1). During intramembranous ossification, the 
mineral hydroxyapatite is produced by osteoblasts and secreted into the dense network of 
extracellular matrix (ECM) proteins, together which harden to form a mineralized bone 
structure. Endochondral ossification involves hyaline cartilage and chondrocytes as a precursor 
for the hydroxyapatite nesting. Calcification in areas other than bone or tooth formation is 
pathologic, developing in the ECM of soft tissues, where osteoblasts do not reside. Ectopic 
calcification was once considered a passive and degenerative process, but it is now recognized 
as an active biological process which shares many features of physiological bone formation 
and remodeling, however the precise mechanisms inducing and propagating pathological 
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calcification are not completely understood. The resulting 
pathology from ectopic calcification can induce or exacerbate 
a variety of disease states.

Calcification of the cardiovascular system is one of the 
most frequent expressions of ectopic calcification, and the sites 
exhibiting calcification include the myocardium, heart valves, 
and the large and small arteries of the body (2–4). Myocardial 
calcification presents in two main forms: metastatic and 
dystrophic. The former is associated with aberrations in calcium 
homeostasis and is commonly found in patients with chronic 
kidney disease or kidney failure, as well as hyperparathyroidism 
(5, 6). Dystrophic myocardial calcification is more prevalent 
than metastatic, and occurs as a result of injury due to events 
such as myocardial infarction or infection (7, 8). Calcification 
of the aortic valve, termed calcific aortic valve disease (CAVD), 
encompasses a wide spectrum of pathology, from the stiffening of 
the leaflets (aortic sclerosis) to the presence of calcification that 
impairs leaflet movement and reduces blood flow (aortic stenosis). 
CAVD represents an ever-growing health burden associated with 
substantial costs (9, 10). Aortic valves are composed of three 
leaflets made up of three layers: the collagen-rich fibrosa lines 
the aortic side, the proteoglycan and glycosaminoglycan-rich 
spongiosa in the middle layer, and the elastin and collagen-
rich ventricularis on the side of the left ventricle (3). Valve 
endothelial cells (VECs) cover the surface of the leaflets while 
valve interstitial cells (VICs) reside in all three layers. While both 
VECs and VICs can calcify, nodules of calcification originate in 
the fibrosa along the aortic side (11). In the arteries, calcification 
is divided in two main forms: intimal and medial. While the 
advanced stages of calcification in either arterial layer can invade 
into the other, the origin and course of these pathologies is 
distinct. Calcification of the intima is derived from atheroma 
plaque formation and is driven in part by necrosis, inflammation, 
and changes in endothelial cells (12), while early stages of 
medial calcification are not driven by inflammation but rather 
a breakdown of extracellular matrix, vascular smooth muscle 
cell (VSMC) phenotypic change (13), as well as an accumulation 
of extracellular matrix vesicles that are loaded with a variety of 
proteins, microRNAs, and the calcium and phosphate building 
blocks necessary for mineralization (14). In the field of vascular 
calcification, atherosclerotic intimal calcification is more widely 
recognized and better studied, while non-atherosclerotic medial 
calcification, which commonly occurs in patients with diabetes, 
renal disease, or hypertension, and several genetic diseases, has 
been less studied and therefore the processes that  drive   this 
pathology are less understood (4).

In this review, we will focus on the contribution of cellular fate, 
and how fully differentiated cells can revert to an immature state 
and then acquire an osteoblastic phenotype that drives calcification 
pathogenesis in cardiac tissues, aortic valves, and medial-layer 
calcification. Similar  to osteogenic transitions, chondrocytic 
phenotype changes have also been identified during cardiovascular 
ossification pathobiology (15, 16). Recently, various studies have 
focused on the role of cell phenotype switching. In addition 
to changes in cell function, this phenomenon implies global 
transcriptional modifications that lead to the aberrant activation 
of genes involved in the calcification process.

FibRoblasT To MyoFibRoblasT To 
osTeoblasT-liKe Cell

Studies in murine models have identified that cardiac fibroblasts 
make up close to 25% of the heart tissue (17). While not possessing 
electrical or contractile functions themselves, cardiac fibroblasts 
can couple to cardiomyocytes to aid in the propagation of electrical 
signals, maintain extracellular matrix homeostasis, and secrete 
cytokines and chemokines to modulate the immune system (18, 
19). After injury, these fibroblasts exhibit functions to remodel 
the ECM, alter chemical and mechanical signals, participate in 
angiogenesis, and contribute to fibrosis (20, 21). Cardiac fibroblasts, 
like  fibroblasts of other tissues, can acquire a “myofibroblast” 
phenotype, a state which shares some of the features seen in smooth 
muscle cells, including the ability to contract, the acquisition of 
smooth muscle cell markers such as α-smooth muscle actin (SMA-
α), and secretion of ECM components (21, 22). It is well known 
that ectopic calcification in soft-tissue occurs at sites of injury, 
near the resulting scar tissue generated from fibrotic remodeling 
(23). Considering this, elegant experiments by Pillai et al. sought 
to determine whether cardiac fibroblasts are the source of cardiac 
calcifications (24). In vitro studies showed that with treatment of 
medium that differentiates mesenchymal stem cells into osteoblasts 
(often referred to as osteogenic media) both murine and human 
cardiac fibroblasts, but not endothelial cells, could be induced to 
calcify. In vivo lineage tracing experiments in a murine line prone 
to develop myocardial calcification show that cardiac fibroblasts 
reside amongst the hydroxyapatite minerals in fibrotic areas, 
and further analysis identified osteogenic signatures, such as the 
master osteogenic transcription factor Runx2 (24). This work also 
highlights the important and complex role of inorganic phosphate 
(Pi) and pyrophosphate (PPi) homeostasis. Pi is a building block of 
mineralization, while PPi is generally considered an endogenous 
calcification  inhibitor. Enzymes regulating this homeostasis 
include tissue non-specific alkaline phosphatase (TNAP), which 
metabolizes PPi into Pi, and ectonucleotide pyrophosphatase/
phosphodiesterase-1 (ENPP1) which breaks down ATP into AMP 
and PPi (25). The disease Generalized Arterial Calcification of 
Infancy (GACI) is caused by homozygous inactivating mutations 
in this gene (26, 27). However, Pillai et al noticed that injured 
hearts presenting with calcification also showed increased 
expression of ENPP1. While hydroxyapatite is the most common 
chemical formulation found in ectopic calcification, other chemical 
formulations exist (4), including calcium pyrophosphate dihydrate 
(CPPD) (28). Indeed, the authors found CPPD minerals in calcified 
cardiac tissue (24), suggesting that perhaps ENPP1 was driving 
pathogenesis. A small molecule ENPP1 inhibitor was used and 
prevented this cardiac calcification (24). These results highlight the 
complicated dynamics of Pi/PPi homeostasis and the importance 
of knowing the chemical content of ectopic calcification when 
considering therapeutics. The study also clearly illustrates the 
ability of a fibroblast cell to acquire an osteogenic phenotype, 
but further work is needed to detail the step-wise progression 
that triggers differentiation from a myofibroblast-state down an 
osteogenic lineage.
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The aortic valve also contains a fibroblast-like cell, called the 
valve interstitial cell (VIC). VICs populate all three layers of the 
valve and reside in a quiescent state. The aortic valve is a dynamic 
structure that controls the unidirectional flow of blood from the 
left ventricle to the aorta. In systole, valves open against the wall 
of the aorta, and the reverse pressure gradient in diastole induces 
them to unfurl and stretch out toward the center of the aortic 
annulus, forming a seal to prevent regurgitation. Every heartbeat 
induces this movement which exposes the valve cells and their 
surrounding extracellular matrix to an array of stresses (e.g., 
mechanical, shear, inflammatory). Mechanical and inflammatory 
stresses alone can induce a transcriptionally permissive chromatin 
structure (29, 30). These stresses are also thought to contribute to 
the early events that drive VICs to transition from a quiescent state 
to the activated myofibroblast state, which can go on to become 
calcifying osteoblast-like VICs (3, 11, 31–34).

It is well-established that osteogenic genes such as Runx2, 
osteocalcin, and TNAP are all upregulated in calcifying cells (32, 
35, 36). The induction of these osteogenic genes in myofibroblasts 
is reminiscent of the differentiation of a mesenchymal stem cell 
(MSC) into an osteoblast (37–39). When MSCs themselves are 
seeded onto valve scaffolds and cultured under pulsatile flow 
conditions they acquire a myofibroblast-like phenotype, suggesting 
that exposure to mechanical and flow forces can drive progenitor 
cells to differentiate down the osteogenic lineage (40). In line with 
myofibroblast plasticity, VICs can exhibit the MSC/pericyte-like 
function of providing structural support to valve endothelial 
networks (41). In vitro co-culture assays in matrigel found that VICs 
possess chemo-attractive properties and wrap around sprouts of 
valve endothelial cells (VECs). Together these observations suggest 
that activated myofibroblasts can behave and respond to stimuli 
like MSC-like cells that are then further induced to upregulate 
expression of osteogenic genes (32, 34, 37, 42).

In vitro VICs acquire an activated myofibroblast-like state in part 
via increasing expression of TGF-β, which drives their proliferation, 
migration, and expression of the myofibroblast marker SMA-α (43). 
Activated VICs themselves alter the mechanical properties of the 
valve, creating a stiffer environment (44, 45). Elastic properties 
of the ECM also influence valve cell biology as stiffness promotes 
a calcific phenotype (33). Culturing VICs on a stiffer matrix 
promotes osteogenic differentiation, and specific substrates such 
as fibrin, heparin, and laminin induce the osteogenic transition 
of VICs into calcifying cells. In osteoblasts, ENPP1 generates PPi, 
which when hydrolyzed generates Pi with subsequent formation 
of hydroxyapatite (46), yet interestingly and similar to what was 
found in cardiac calcification, ENPP1 has also been found to 
be highly expressed in calcific aortic valve disease and in VICs 
(47). This release ATP promotes VICs survival, but in disease 
tissues upregulation of ENPP1 depletes the extracellular pool of 
ATP and thus promotes mineralization in VICs by promoting  
apoptosis (47, 48).

Inflammation also contributes to calcification pathogenesis, 
and inflammatory cells are found within and surrounding the 
calcified areas in the valve and heart (7, 49). Murine studies 
show that recruitment of immune cells is an early event in CAVD 
pathogenesis (50). And like the effects of mechanical stretch, 
inflammatory cells, such as mast cells, can also contribute to 

remodeling the ECM via the release of proteases and growth 
factors known to drive both physiological and pathophysiological 
calcification (15). The contribution of inflammation to the early 
progression of osteogenesis on vascular cells was illustrated in vivo 
in the valves and arteries in the atherosclerotic ApoE knockout 
model (51). This study followed the temporal association of 
inflammation and calcification in atherosclerosis and found that 
inflamed areas exhibited high levels of the key mineralization 
enzyme, alkaline phosphatase, before microscopic evidence of 
calcification. PET imaging techniques found a similar temporal 
association in calcified foci in human thoracic aortas (52). The 
inflammatory cytokines TNF-α induced early differentiation of 
human bone marrow-derived MSCs into calcifying osteoblast-
like cells, illustrating that inflammatory pathway activation can 
prime a cell to become osteogenic (53). Additionally, TNF-α signals 
stimulated by high fat diet-induced obesity and type II diabetes 
mellitus promotes aortic Msx2 expression, a transcription factor 
in the BMP signaling pathway, and enhances pro-calcific arterial 
Msx2-Wnt cascades (54). Together this data suggests that in 
atherosclerotic calcification, inflammation precedes calcification; 
subsequent studies should delineate the role of inflammation 
and inflammatory signaling pathways in driving pro-osteogenic 
transcriptional and epigenetic changes.

endoThelial To MesenChyMal 
TRansiTion

Cells of various developmental origins come together to create the 
tissues that comprise the adult vasculature. Angioblasts are the 
developmental precursors to endothelial cells. Once endothelial 
cells are specified de novo vasculogenesis can occur, though the 
precise molecular cues regulating these early processes in vivo have 
not yet  been fully characterized (55). During development, some 
structures are derived from the de-differentiation of endothelial 
cells, a process referred to as endothelial-to-mesenchymal 
transition (EndMT). For example the endocardial cushion tissue, 
which is the precursor of the semilunar valves of the heart, are 
derived from cells that undergo EndMT (56). Endothelial cells 
form a barrier along the lumen of vessels that is held intact by 
endothelial-specific proteins which form tight junctions and 
connections between adjacent endothelial cells (57). In EndMT, 
expression of these markers diminishes and endothelial cells lose 
cell-to-cell connections, enabling their migration and proliferation, 
as well as trans-differentiation. The TGF-β superfamily of cytokines, 
which includes both TGF-βs and BMPs, has several important 
and broad roles such as regulating cell growth and multiplication, 
differentiation or apoptosis, and EndMT. Embryonic EndMT 
processes are regulated by TGF-β signaling (58) via the upregulation 
of transcription factors such as Snail, which drives the detachment 
of the endothelial cells, promoting their phenotype switch (59).

While EndMT is a developmental program, it is also activated 
after vascular injury and stress, such as vein-graft remodeling and 
neointima formation (60), or in disease states such as atherosclerotic 
plaque development and progression (61), cardiac fibrosis (62) 
and CAVD pathogenesis (63). In developmental and pathogenic 
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EndMT, endothelial cells not only lose their markers, but gain 
expression of mesenchymal progenitor cell genes such as Snail1, 
Twist1, Msx1/2, and Sox9, indicative of phenotypic transition (64), 
suggesting that they are switching from their fully differentiated 
phenotype into a pluripotent-like state that has the ability to then 
de-differentiate down another mesenchymal-derived lineage.

The clearest evidence that EndMT contributes to vascular 
calcification is found in the disease fibrodysplasia ossificans 
progressive (FOP), where patients develop calcification in the 
microvasculature in the soft tissue. FOP stems from mutations 
that cause constitutive activation of the TGF-β superfamily receptor 
ALK2 (65), which propagates BMP4 signaling. Calcified lesions in 
FOP patients exhibit evidence of EndMT, as both endothelial (vWF, 
VE-Cadherin), mesenchymal (Sox9), and osteoblast (osteocalcin) 
proteins are co-expressed on cells. This pattern mimics a mouse 
model of the disease. In vitro experiments using endothelial 
cells treated with TGF-β or BMP4 showed these signals induce 
expression of mesenchymal cell markers and allow these cells 
to behave like true MSCs, differentiating down the adipogenic, 
chondrogenic, and osteogenic lineages (66). Thus, in FOP patients 
the constitutively active ALK2 primes vascular endothelial cells 
to transition and acquire mesenchymal-like properties, enabling 
them to differentiate into osteoblast-like calcifying cells. This would 
suggest a step-wise progression from fully-differentiated cell to 
a cell with a progenitor-like state that is then directed down an 
osteogenic lineage.

Aberrant BMP signaling and EndMT also contribute to 
medial calcification in larger conduit vessels. Keutel syndrome, 
a rare autosomal recessive disease, stems from mutations in the 
gene Matrix GLA Protein (MGP), and these patients develop 
ectopic calcification in soft tissue throughout the body, including 
the vasculature (67). MGP acts as a potent inhibitor of vascular 
calcification via binding to and quenching BMP signaling (68, 69). 
The importance of MGP’s inhibitory activities is clearly apparent 
in the MGP-knockout mouse model, which develops extensive 
and severe medial-layer calcification in the large arteries and 
results in death a few months after birth (70). The endothelium of 
MPG-knockout mice exhibits endothelial specific markers (CD31, 
vWF) as well as markers of multipotency (Sox2, Nanog, Oct4) 
and osteogenesis (Osterix). Specifically, this study found that 
expression of multipotent markers occurred before expression of 
osteogenic genes (71). Key to these trans-differentiation events is 
the Yamanaka factor Sox9, as endothelial-specific deletion of this 
gene inhibits calcification on both the MGP and diabetic Ins2Akita/+ 
backgrounds (72). This further suggests that in the transition of 
cells from their fully-differentiated state to an osteogenic state, cells 
pass through a multipotent stem cell-like state.

EndMT also contributes to CAVD pathobiology (73). During 
embryogenesis, valve endothelial cells (VECs) sit atop a layer 
of matrix referred to as the cardiac jelly. A subset of VECs are 
stimulated to undergo EndMT and migrate into this jelly which 
forms the cardiac cushions. By processes that are still not 
thoroughly understood, cardiac cushions morph into the leaflets, 
and the cells within these new structures differentiate into VICs 
(73). As mentioned above, the layers of the valve are rich with 
collagens, elastin, proteoglycans, and glycosaminoglycans, and it is 
well-established that these ECM proteins can initiate and propagate 

signaling events. For example, the glycosaminoglycans chondroitin 
sulfate and hyaluronic acid can drive EndMT in healthy adult VECs 
in a 3D in vitro culture system (74). The constant movement of the 
valves exposes the leaflets to both mechanical and shear forces. 
VECs are directly exposed to these stresses, which are sufficient 
to induce a healthy VEC to undergo EndMT in 3D in vitro models 
(75). The severity of these mechanical forces can elicit differential 
effects; low levels of strain induced Wnt signaling in a 2D model 
using sheep VECs, while high levels of cyclic strain induced 
TGF-β signaling (76). While TGF-β is known to drive EndMT in 
the development of the valves, a study looking for the early drivers 
of EndMT identified that inflammatory cytokines induce EndMT 
via Akt/NF-κB activation in both embryonic and adult VECs, but 
that TGF-β signaling only induced EndMT in the embryonic cells 
(77). Mechanical stress signals may trigger the initiation of EndMT, 
and with the acquisition of an MSC-like state a cell may be more 
readily primed to transdifferentiate into a calcifying cell.

synTheTiC sMooTh MusCle Cells To 
osTeoblasT-liKe Cells

Vascular smooth muscle cells (VSMCs) comprise the medial-layer 
of blood vessels. They are organized in concentric circular layers 
along the elastic lamina, and are surrounded by the extracellular 
matrix and contractile fibers. In healthy adult tissues VSMCs 
reside in a quiescent, contractile state, commonly referred as a 
contractile phenotype (78), but in diseased or damaged arterial 
beds, VSMCs can switch from this fully-differentiated state to a 
proliferative one, referred to as the synthetic phenotype. Synthetic 
VMSCs have diminished expression of contractile proteins such as 
smooth muscle α-actin (ACTA2) or smooth muscle myosin heavy 
chain (Myh11) (79, 80); this dedifferentiation also occurs in the 
development of ectopic vascular calcification (81). With higher 
proliferative capacity and protein synthesis, as well as a progressive 
loss of contractile proteins, synthetic VSMCs seem to have features 
resembling myofibroblasts and MSCs (82). Indeed, an in vitro study 
that compared the gene expression profile of calcifying VSMCs and 
MSCs differentiating into osteoblasts found that while the overall 
transcriptional program differed between these groups, a sub-set of 
genes that make ECM proteins and catalyze biomineralization were 
shared between the two cell types (83). While this demonstrates that 
VSMCs undergo a transcriptional shift, this study was performed 
at the time point when both VSMCs and MSCs produced calcified 
matrix (after 25 days of osteogenic stimulation), and it remains 
unclear if in this process VSMCs undergo a stepwise process 
where they acquire a pluripotent MSC-like state before further 
differentiating into a calcifying cell.

VSMCs in the various vascular beds are derived from different 
embryonic origins. Fate mapping was first used to identify that 
the abdominal aorta SMCs come from splanchnic mesoderm, 
thoracic aorta SMCs from somatic mesoderm, aortic arch 
SMCs from neural crest, and coronary artery SMCs from the 
proepicardium (84). More recently, elegant fate-mapping was 
performed in murine models and found that VSMCs derived from 
the cardiac neural crest extended from the aortic root through 
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the aortic arch, while VSMCs derived from the second heart field 
localized to the ascending aorta (85). More importantly, this study 
identified heterogeneity in the developmental origin of VSMCs 
in the ascending aorta; VSMCs of the inner laminar regions close 
to the intima are derived from cardiac neural crest, while cells 
along the outer laminar area along the adventitial side of the vessel 
wall are derived from the second heart field (85). The different 
developmental origins of VSMCs may be an important key to 
understanding cardiovascular disease pathogenesis. In the case 
of vascular calcification, VSMCs in atherosclerotic lesions from 
the coronaries have a higher propensity to calcify than VSMCs 
of the aortic wall (86). Indeed, our independent studies using 
primary human VSMCs isolated from the coronary and aorta of 
the same patient show that coronary VSMCs readily calcify but 
aortic VSMCs do not (unpublished). Additionally, under similar 
calcifying conditions, Leroux-Berger et al. showed that the VSMCs 
in the aortic arch region, which are neural crest derivatives, calcify 
earlier than the VSMCs in the regions flanking both sides of the 
aortic arch, which are of mesodermal origin. This supports the idea 
that the embryonic origin influences the ability of a cells to calcify  
(87). Further highlighting the distinctions in the calcification 
potential of VMSCs residing in different vascular beds is the genetic 
disease Arterial Calcification due to Deficiency of CD73 (ACDC; 
also, called CALJA) (88). Patients with ACDC develop medial-
layer vascular calcification that is localized to their lower-extremity 
arteries and is dependent on the upregulation of the mineralizing 
enzyme, TNAP (89). Pathological samples showed that calcification 
appears to initiate along the internal elastic lamina, which is 
fragmented and duplicated (88, 90). This data is highly suggestive 
that the ability of healthy VSMCs to transdifferentiate into calcifying 
cells is influenced by the developmental origin. Further exploration 
of this hypothesis could uncover novel epigenetic signatures that 
prime cells to transdifferentiate into osteoblast-like cells capable 
of producing calcified matrix.

Factors such as high concentrations of extracellular 
phosphate and calcium, oxidized lipoproteins and reactive 
oxygen species, and inflammatory cytokines help drive VSMCs 
toward a calcifying phenotype in both atherosclerotic and 
non-atherosclerotic calcification (91–96). The role of TGF-β 
superfamily signaling, which includes TGF-β as well as bone 
morphogenic protein (BMP) cytokines, is well characterized in 
the regulation of skeletal development and bone homeostasis 
(97), and not surprisingly, these pathways are also upregulated 
in the calcification of VSMCs. Advanced atherosclerotic lesions 
exhibit increased levels of TGF-β and bone-like structures (98, 
99), and can induce osteogenic differentiation and calcification 
of VSMCs in vitro (100, 101). As in endothelial cells mentioned 
above, in VSMCs, TGF-β signaling is kept in check by MGP 
(70). MGP exerts its anti-calcific effects via repressing TGF-β 
signaling and allowing Wnt/Notch signaling to keep VSMCs in 
their fully-contractile state (16). Another TGF-β family member, 
BMP2, stimulates VMSCs to uptake inorganic phosphate 
and induces transcription of the osteogenic transcription 
factor RUNX2  (102). In addition to activation of osteogenic 
transcriptional programs, TGF-β signaling contributes to the 
secretion of calcifying extracellular vesicles that accumulate in 
the extracellular matrix of VSMCs (103). While TGF-β family 

cytokines, as well as other stimuli, induce VSMCs to calcify, it is 
still not clear if the phenotypic switch to a calcifying cell happens 
directly from the mature, fully differentiated state, or if there is 
an intermediate MSC-like cell that requires the proper signal to 
acquire an osteoblast-like phenotype (104, 105).

Murine knockout models have shown that Wnt signaling 
may help to drive the osteogenic-like and chondrogenic-like 
differentiation of VSMCs. Conditional deletion of Msx1 and 
Msx2 reduces calcification of VSMCs in atherosclerotic murine 
models via reducing Wnt7b, Wnt5a, and Wnt2 signaling (106). 
And VSMC-specific deletion of the Wnt receptor, LRP6, protects 
against atherosclerotic calcification of VSMCs (107).

VSMCs can also differentiate into a chondrocyte-like state. 
Mice with loss of MGP develop extensive calcification in the large 
vessels and die a few months after birth due to rupture. These 
mice exhibit osteochondrogenic precursors that have the ability to 
differentiate into osteoblast-like and chondrocyte-like cells (108). 
Osteochondrogenic precursors exhibit decreased expression of 
SMC-specific genes such as SM22α and myocardin, and increased 
expression of Runx2. Osteogenesis is driven by increased activity of 
osterix, Msx2, and Wnt/b-catenin, while chondrogenesis is driven 
by decreased activity of Msx2 and increased activity of Sox9, a 
master regulator of chondrogenesis (109). Importantly, VSMCs 
have been shown to express both Runx2 and Sox9 in vitro and in 
vivo. While the expression of Runx2 appears to correlate with the 
onset of calcification in vivo, Sox9 expression is more widespread, 
which suggests Sox9 may regulate  expression of several ECM genes 
shared by both VSMCs and cartilage (110).

a CoMMon denoMinaToR in The Cell 
FaTe swiTCh

The phenotypic switch of a healthy vascular cell into a calcifying 
one requires the upregulation of genes and proteins that 
participate and regulate the calcification process. A common 
denominator in all forms of ectopic calcification is the enzyme 
tissue non-specific alkaline phosphatase (TNAP, in reference to 
the protein; ALPL is the gene encoding TNAP; NM_000478), 
which is both necessary and sufficient for the mineralization in 
physiological and pathological calcification (111, 112). ALPL 
has also been shown to be one of the earliest calcification-
related genes upregulated during ectopic calcification in vivo 
(13). TNAP breaks down pyrophosphate (PPi), an endogenous 
inhibitor of calcification, to Pi, a building block necessary for 
mineralization; the extracellular PPi/Pi ratio drives the ectopic 
calcification process and TNAP is the key enzyme that regulates 
this balance (113). A sophisticated murine model was developed 
which specifically overexpresses ALPL in an X-linked manner 
in VSMCs using the TAGLN promoter, enabling a dose-effect 
of TNAP to be studied (114). In this model, medial-layer 
calcification occurred in a dose-dependent manner and was 
independent of alteration in serum levels of calcium, phosphate, 
or renal function in the mice, highlighting that TNAP activity 
alone can induce calcification. Similarly, this same group used a 
Tie2 system to overexpress ALPL in endothelial cells and found 
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FiguRe 1 |  (a) Three possibilities are operative in ectopic calcification 
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there is a step-wise progression where cells transition through a progenitor-
like state before acquiring an osteogenic phenotype; healthy cells de-
differentiate into progenitor-like cells and are able to stay in this pluripotent 
state for some time, followed by a cue inducing them re-differentiate back to 
their initial state or transdifferentiate into calcifying cells. (b) Coinciding with 
these three possibilities, it is unknown whether these phenotypic transitions 
are regulated at the transcriptional level of osteogenic genes or whether there 
are more global epigenetic changes that alter the cell at a more global level
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