
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Physics of Interacting Supernova Light Curves

Permalink
https://escholarship.org/uc/item/0dt7d765

Author
Khatami, David

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dt7d765
https://escholarship.org
http://www.cdlib.org/


Physics of Interacting Supernova Light Curves

by

David Kyle-Lansangan Khatami

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Astrophysics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Daniel Kasen, Chair
Professor Raffaella Margutti

Professor Wenbin Lu

Summer 2024



Physics of Interacting Supernova Light Curves

Copyright 2024
by

David Kyle-Lansangan Khatami



1

Abstract

Physics of Interacting Supernova Light Curves

by

David Kyle-Lansangan Khatami

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Daniel Kasen, Chair

When a supernova explodes within a dense circumstellar environment, it creates a highly
energetic shockwave that can be observed across the entire electromagnetic spectrum. The
shockwave emission can be used as an observational probe to infer the properties of the
circumstellar medium (CSM), and learn about how the progenitor star lived out its final
moments before death. Numerous explanations have been proposed to explain the CSM,
with each physical model varying in the amount of expelled mass, its spatial extent, and ge-
ometry. Due to the inherent difficulty in modeling the shock emission from circumstellar in-
teraction, simplified analytic and numerical models are widely used to interpret observational
data. However, the assumptions made in these simplified models, their range of applicability,
and their ability to accurately infer physical quantities is not clear. In this thesis, I have
extended the Monte Carlo radiative transfer code Sedona with advanced multi-physics sim-
ulation capabilities, including one-dimensional finite-volume arbitrary Lagrangian-Eulerian
hydrodynamics, inline multi-group non-LTE opacities, and non-thermal electron populations.
I leverage these capabilities to perform extensive radiation hydrodynamics simulations of in-
teracting supernovae, and construct a broad theoretical framework with which to interpret
their resulting light curves. I find that CSM interaction can produce a wide range of light
curve durations and luminosities, with timescales ranging from hours to months. I demon-
strate their viability in powering a broad range of unusual supernovae. In particular, I show
how CSM interaction is a plausible explanation for the recently-discovered class of fast blue
optical transients, and constrain the CSM properties inferred for this type. For the specific
case of the Type II subclass of interacting supernovae, I perform non-equilibrium multi-group
radiation hydrodynamics simulations to construct time-dependent panchromatic radio to X-
ray spectral energy distributions of the combined supernova and shock emission. I find that
analytic expectations used in the literature disagree with the numerical light curves due
to an evolving non-thermal electron energy population with contributions from both the
forward and reverse shocks, compounded by the effects of inverse Compton scattering and
photo-absorption by a cold dense shell.
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Chapter 1

Introduction

Stars continuously lose mass throughout their lives. The sun steadily expels material from
its surface in the form of the solar wind, at a rate of roughly a few times 10−14 solar masses
per year [1]. Occasionally, the sun will undergo bief eruptive mass loss episodes in what are
known as coronal mass ejections [2]. Just like the sun, massive stars (≳ 8M⊙) also expel
material in the form of a stellar wind. Given their greater masses, the rates will be larger,
typically around ∼ 10−9-10−6M⊙/yr throughout their main-sequence lifetime [3].

As massive stars evolve off the main sequence and begin advanced stages of nuclear
burning in their cores, they undergo an evolutionary change that significantly alters their
stellar structure [4–6]. These structural changes can result in much larger rates of mass loss,
e.g. ∼ 10−6M⊙/yr from a red supergiant wind [7]. Over a long enough period, the star may
entirely lose its hydrogen envelope through this wind [8].

When stars eventually explode as supernovae, we can get a qualitative idea of how sig-
nificant the progenitor star’s mass loss was by determining the chemical composition of the
ejecta from their spectra [9]. If no hydrogen spectral features are present, then the progeni-
tor star must have lost its outermost hydrogen layer by some means. These supernovae are
referred to by astronomers as Type I, to distinguish them from supernovae that do show
hydrogen in their spectra (Type II). Some observed supernovae display not only a lack of
hydrogen, but also no helium features. In some cases, the amount of mass lost can be so
significant to only leave behind an “ultra-stripped” progenitor star that has retained only a
fraction of the mass it was born with [10, 11].

Different physical mechanisms have been proposed to drive periods of enhanced mass
loss, such as through the binary interaction of a nearby companion star gravitationally
stripping its outer layers [12, 13]. Very close in binary systems can even undergo stellar
mergers, expelling a large fraction of the mass in the process [14–16]. Other explanations
that don’t invoke a binary companion also exist. For example, when a massive star reaches an
advanced evolutionary stage, it will undergo changes in the core due to the nuclear burning
of heavier elements (such as carbon and oxygen) [5, 17]. These later burning stages can
become unstable, injecting additional energy that exceeds its gravitational binding energy
[18, 19].



CHAPTER 1. INTRODUCTION 2
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Figure 1.1: Supernova-CSM Interaction diagram. Blue: The location of mass lost from the
star relative to the surface, as a function of time before supernova explosion and assuming
a constant outflow velocity of 50 km/s. Red : The location of the edge of the supernova
assuming ballistic expansion with constant velocity of 10,000 km/s. The star is located at
the right, and the mass loss/supernova move to the left in time.

The common denominator between all of these mass loss mechanisms is the formation
of a circumstellar medium (CSM) around the star. Once the star explodes as a supernova,
the resulting ejecta (moving much faster than the CSM) will overtake and sweep up mass
as it plows outward, forming a shock in the process [20]. This highly energetic shock pro-
duces electromagnetic emission that is readily observable by both ground and space-based
telescopes [21, 22].

Fig. (1.1) illustrates a rough ejecta-CSM interaction “map” of how long ago before
collapse the CSM was ejected from the star; and the location of the outer edge of the
supernova ejecta as it expands outwards (ignoring the potential deceleration of the ejecta
velocity as it sweeps up mass). For the example velocities given in Fig. (1.1), if shock
emission is seen a week after core collapse, then the circumstellar material must have been
expelled by the star roughly a year before its death.

Thus, any given physical model invoked to explain the CSM must predict not only the in-
ferred mass-loss rate but also the expected timing relative to the time of supernova explosion.
Thus, if we can accurately infer the properties of the CSM from the observed electromagnetic
emission, then we will gain insight into how the star lived out its final moments before its
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eventual demise as a brilliant supernova.

1.1 Modeling Challenges

The physical complexity that makes interacting supernovae so fascinating also makes them
extremely challenging to model. The gas temperature and density during CSM interaction
span several orders of magnitude. Temperatures can range from ≲ 104 K in the inner regions
of the supernova ejecta; up to ≳ 109 K in the shocked circumstellar region [23].

We therefore have a radiation hydrodynamics problem at hand. The very same emission
that we observe with our telescopes once played an important role in the hydrodynamical
and thermal state of the gas, due to the strong radiation generated by the supernova and
the shock. Thus, the radiation field must be evolved not just to create synthetic observables,
but also to get the hydrodynamics and plasma conditions right.

Radiation hydrodynamics is an interdisciplinary field that plays an important role in other
areas of astrophysics, including stellar evolution [24], star formation [25], galaxy evolution
[26], and cosmology [27]. It is also important in other areas of physics and engineering,
including inertial confinement fusion [28], atmospheric re-entry [29], planetary defense [30],
and nuclear weapons research. As such, there exists a vast body of literature and an array
of numerical techniques going back decades to accurately simulate radiation hydrodynamics
phenomena [31–33].

Even with extensive scientific investment and variety of applications, radiation hydrody-
namics remains an active area of research. Computer simulations of radiation hydrodynam-
ical phenomena continue to pose a challenge to do accurately. In multiple dimensions, they
can require enormous supercomputing resources to run a single simulation in a reasonable
amount of human time [24]. I highlight some of the general challenges the radiation hydro-
dynamics community continues to tackle, in addition to specific issues in simulating CSM
interaction.

Fluid Dynamics

The mathematical description of fluid dynamics consists of five nonlinear hyperbolic partial
differential equations, reflecting the conservation of mass, momentum (with three compo-
nents), and energy. These five quantities are defined as a function of four independent
variables: three in space, and one in time. Numerical approaches to solving the fluid dynam-
ics equations generally fall in one of two classes: Eulerian and Lagrangian methods. In the
Eulerian approach, the computational mesh stays fixed, while the Lagrangian mesh moves
with the fluid flow. Choosing the right method is highly problem-dependent.

The hydrodynamical behavior during CSM interaction poses a unique challenge to both
methods. The issue is that we must simultaneously resolve the shocked region and the
outwardly expanding supernova ejecta. This would seem to favor a Lagrangian approach.
However, the extreme compression of the shocked region can result in a severe restriction of
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the timestep. As such, an Eulerian approach may be better suited. Given that the shocked
region can be as thin as 10−6 the size of the entire problem domain, advanced techniques
such as adaptive mesh refinement (AMR) must be used to strategically put more zones
around the shock. However, the expanding nature of the supernova ejecta requires one to
continuously enlarge the computational domain, repeatedly restarting and remapping the
simulation output to larger grids as the shock moves out.

New techniques have been developed more recently that retain the attractive features of
both the Eulerian and Lagrangian approaches, while overcoming each of their shortcomings.
These approaches are the class of so-called arbitrary Lagrangian-Eulerian, or ALE, methods.
They move the mesh in order to resolve important features, while ameliorating the zone size
issue of traditional Lagrangian approaches. Different ALE methods have been used both in
astrophysics [34, 35] and other science and engineering fields [36].

Radiation Transport

The radiation field is described by a Boltzmann-type equation, commonly referred to as
the radiative transfer equation. However, it is significantly more complicated than the fluid
equations, falling into a class known as partial integro-differential equations [37]. The reason
it is so difficult to model is its curse of dimensionality: the radiation field is a function of
not four but seven variables; in addition to space and time, the field is also directionally and
energy/frequency dependent. To make matters worse, photons move literally at the speed
of light, rendering many standard explicit numerical techniques inefficient.

There are three major numerical approaches to solve the equation of radiative transfer:
moments-based, Monte-Carlo, and discrete-ordinates (also known as SN). The moments-
based approach circumvents the curse of dimensionality by taking angular moments of the
specific intensity. What we are left with are mean quantities such as the mean intensity (0-th
moment) and radiative flux (1-st moment). If only the 0-th moment is retained, then we are
effectively replacing the Boltzmann transport equation with a diffusion approximation [38].
This is usually a good approximation in optically thick regions, but fails to get the correct
behavior once the gas becomes optically thin and radiation free-streams out (as the signal
speed in diffusion is infinite). As such, ad-hoc flux-limiters have been introduced to correct
for the optically thin limit [39].

The SN method discretizes the radiation field along specific directions, and the equation
of radiative transfer is solved along these “rays” [37]. The numerical convergence of this
approach depends on the number of rays used to model the radiation field. If the angular
discretization is too coarse, “ray effects” can appear due to under-resolved solid angle cov-
erage [40]. These methods are also challenging to parallelize as the method is non-local, i.e.
the solution in one part of the grid depends on the solution across the whole domain.

Last (but certainly not least), there is the Monte Carlo approach [41]. Of the three
methods, it is the closest form of the original kinetic Boltzmann equation. By discretizing
the radiation field into individual particles, we retain a continuous representation of the di-
rectional and frequency dependence of the radiation field. The optical depth then becomes
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a random sampling event, and particle histories are tracked until census. Its numerical con-
vergence thus hinges on ensuring the radiation field is well-sampled by a sufficient enough
number of particles. Like all Monte-Carlo approaches, it is subject to shot noise that de-
creases with particle count as 1/

√
N , where N is the number of particles. Perhaps the most

fatal shortcoming of Monte-Carlo radiation transport is its inefficiency in optically thick re-
gions. In these parts, the extremely small mean free path result in many interaction events,
slowing the simulation down to a crawl. Several acceleration techniques have been proposed
to alleviate this issue [42–44].

Regardless of the chosen approach, the radiative transfer solution must be coupled to the
equations of hydrodynamics that represent the kinetic and thermal state of the gas. As this
coupling can be quite stiff, the transport must be solved implicitly using an iterative method.
For the moments and SN methods, these iterations can be slow to converge, especially in
scattering-dominated regions. For the “implicit” Monte Carlo approach [45], the particles
can become bogged down when there is a tight coupling with the thermal state of the gas.
Additionally, when the fluid velocity becomes non-negligible, one has to be particularly
careful about keeping track of lab- and comoving-frame quantities [46].

The final straw that breaks the camel’s back is the opacity. In the simplest approach, we
can use a frequency-integrated, or grey, opacity. This is usually a good approximation for
regions where e.g. electron scattering dominates, but breaks down when other sources such
as bound-free and line absorption play a role. In the more general case, opacity tables have
been generated for a variety of astrophysical conditions by assuming local thermodynamic
equilibrium (LTE) conditions, including both mean and multi-group (frequency-dependent)
opacities [47, 48]. However, under non-LTE (NLTE) conditions (e.g. during CSM interaction
[49]), the opacity becomes dependent on the radiation field as well, making it impossible to
tabulate. Instead, the individual atomic level populations must be solved for, resulting in
a large system of rate equations [50]. As metals can have thousands of important levels
and millions of transition rates to keep track of, these systems quickly become unwieldy and
various approximations must be made [51, 52].

1.2 Thesis Overview

The thesis is organized as follows. Chapter 2 gives an overview of “normal” supernova light
curves without a circumstellar medium. In it, I discuss the limitations of analytic techniques
widely used to infer properties of supernovae from their light curves, such as the ejecta
and radioactive masses. Chapter 3 introduces a comprehensive theoretical framework for
interpreting interacting supernova light curves. This framework is informed by extensive
radiation hydrodynamics simulations of the ejecta-CSM landscape. In Chapter 4, I describe
improvements to the Sedona Monte Carlo radiative transfer code, namely the new capabil-
ity to perform time-dependent non-LTE multi-group radiation hydrodynamics simulations.
Finally, in Chapter 5 I leverage the capabilities developed in Chapter 4 to simulate the
panchromatic radio to X-ray emission resulting from CSM interaction.
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Chapter 2

Physics of Supernova Light Curves

2.1 Abstract

Simplified analytic methods are frequently used to model the light curves of supernovae and
other energetic transients and to extract physical quantities, such as the ejecta mass and
amount of radioactive heating. The applicability and quantitative accuracy of these models,
however, have not been clearly delineated. Here we carry out a systematic study compar-
ing certain analytic models to numerical radiation transport calculations. We show that
the neglect of time-dependent diffusion limits the accuracy of common Arnett-like analytic
models, and that the widely-applied Arnett’s rule for inferring radioactive mass does not
hold in general, with an error that increases for models with longer diffusion times or more
centralized heating. We present new analytic relations that accurately relate the peak time
and luminosity of an observed light curve to the physical ejecta and heating parameters. We
further show that recombination and the spatial distribution of heating modify the peak of
the light curve and that these effects can be accounted for by varying a single dimensionless
parameter in the new relations. The results presented should be useful for estimating the
physical properties of a wide variety of transient phenomena.

2.2 Introduction

Wide-field surveys are gathering data on an increasing number of common supernovae (SNe)
and related transients such as tidal disruption events, fast-evolving luminous transients,
superluminous supernovae, and kilonovae. The general physics controlling the light curves of
these events is similar – energy deposited either by a propagating shock (e.g. Type II-P SNe)
or a heating source (e.g. radioactivity or a central engine) radiatively diffuses through the
optically thick and expanding ejecta, undergoing adiabatic loses until the radiation reaches
the surface and escapes. Analysis of the observed light curves can provide information on
the ejecta properties and the nature of the powering source.
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With the increasing number of observed transients, there is increased need for fast, em-
pirical techniques to infer their physical properties and discriminate between competing
theoretical explanations. Simplified analytic models are commonly used to analyze observa-
tions and make theoretical predictions (e.g. [53–58]). Most common among these are the
Arnett models [59, 60], in which bolometric light curves are calculated through a simple nu-
merical integral. These models also provide several “rules of thumb” for estimating physical
properties from the light curve brightness and duration. In particular, “Arnett’s rule” states
that the instantaneous heating rate at peak is equal to the peak luminosity [60]. For Type I
supernovae, this rule in principle allows one to extract the mass of radioactive 56Ni [61–65].

Despite the frequent application of these analytic models and rules, a systematic study
of their accuracy and applicability has not been carried out. Previous numerical models of
Type Ia SNe have noted that Arnett’s rule is usually accurate to ∼ 20% [66–68]. For Type
Ib/c SNe Arnett’s rule is typically off by ∼ 50% [69, 70], and for Type II SNe like SN1987A
the error is a factor of ∼ 2 [71]. The reasons for these discrepancies – and why they are more
extreme for certain classes of transients – have not been fully spelled out.

In this paper we carry out a systematic investigation of certain analytic models compared
to numerical light curve simulations. We find that the main limitations in the Arnett models
stem from the assumption that a self-similar temperature profile is immediately established
in the ejecta. This fails to account for the time-evolving propagation of a radiative “diffusion
wave” from the heating source to the surface. The neglect of the diffusion wave is worse for
more centrally concentrated heating sources, which is why Arnett’s rule is worse for more
stratified Type Ib/c SNe and better for more thoroughly mixed Type Ia SNe.

We derive a new relation between the peak time and peak luminosity of transient light
curves which accurately captures the results of numerical models. We study how the relation
depends on the spatial distribution of heating as well as the effects of a non-constant opacity
due to recombination. The new relation is parameterized by a dimensionless constant β, and
works for a variety of assumed heating sources and ejecta characteristics.

In Section 2, we describe the assumptions and limitations of the Arnett light curve models
and Arnett’s rule. In Section 3, we derive the new peak-time luminosity relation and compare
it to numerical simulations. In Section 4, we investigate the relation between the peak and
diffusion time. In Section 5, we examine the effects of concentration of the heating source.
In Section 6, we look into the effects of a non-constant opacity due to recombination on the
light curve and the new relation. Finally, in Section 7, we apply the results and relation to
radioactive 56Ni-powered transients. In Appendix A, we provide a table of the new relation
for a variety of luminous transients.

2.3 Limitations of Arnett-like Models

The analytic light curve modeling approach of [59, 60] (hereafter A80,A82) is widely used
to analyze luminous transients. A closely related “one-zone” modeling approach [56, 72, 73]
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differs in its mathematical details but results in a similar expression for calculating the light
curve.

Assumptions and Light Curve Solution

The Arnett-like models begin with the first law of thermodynamics

Ė = −P V̇ + ε− ∂L

∂m
(2.1)

where E is the specific (i.e. per unit mass) energy density, P the pressure, V = 1/ρ is
the specific volume, ε is the specific heating rate, and L the emergent luminosity. Several
simplifying assumptions are then made: (1) the ejecta is expanding homologously and so the
radius evolves as

Rej(t) = vejt (2.2)

where vej is the maximum ejecta velocity; (2) Radiation pressure dominates over the gas
pressure and so we can express the specific energy density as

E = 3P/ρ = aT 4/ρ (2.3)

where T is the temperature; (3) The luminosity is described by the spherical diffusion equa-
tion

L(r) = −4πr2
c

3κρ

∂e

∂r
(2.4)

where e = ρE is the energy density (per unit volume) and κ the opacity; and (4) the ejecta
is characterized by a constant opacity.

The Arnett models make an additional consequential, but often overlooked, assumption:
(5) The energy density profile is self-similar, i.e., the spatial dependence is fixed and only
the overall normalization changes with time

e(x, t) =
Eint(t)

V (t)
ψ(x) (2.5)

where Eint is the total internal energy of the ejecta and x = r/Rej(t) is the (comoving)
dimensionless coordinate. The dimensionless function ψ(x) describes the spatial dependence
of the radiation energy density, which by assumption does not change with time. Substituting
Eq. 2.5 into the diffusion equation (Eq. 2.4) gives the emergent luminosity at r = Rej

L =
tEint(t)

τ 2d
(2.6)
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where

τd =

[
3

4π

κMej

vejc

1

ξ

]1/2
(2.7)

is the characteristic diffusion time through the ejecta with mass Mej. The quantity ξ =
dψ/dx|x=1 specifies the energy density gradient at the ejecta surface and is a constant when
self-similarity is assumed. The one-zone models make the ansatz ξ = 1. [60] uses a more
sophisticated separation of variables method to derive a self-consistent solution for e(x, t).
This requires making a final assumption: (6) The spatial distribution of the heating is
proportional to the energy density. Eq. 2.1 can then be solved to find

e(x, t) =
Eint(t)

V (t)

[
π

3

sin(πx)

x

]
(2.8)

which gives ξ = π2/3.
To solve for the light curve, the Arnett models integrate Eq. 2.1 over the entire ejecta and

apply the assumptions of homology and radiation energy domination to derive an equation
for global energy conservation

dEint(t)

dt
= −Eint(t)

t
+ Lheat(t)− L(t) (2.9)

where Lheat(t) is the total input heating rate. Using Eq. 2.6 to replace Eint = Lτ 2d/t and
rearranging gives

τ 2d
t

dL

dt
= Lheat(t)− L(t) (2.10)

Arnett’s rule follows, since the condition of an extremum dL/dt = 0 implies L = Lheat.
The ordinary differential equation Eq. 2.10 can be solved for Eint(t) and hence the emer-

gent luminosity

L(t) =
2

τ 2d
e−t2/τ2d

∫ t

0

t′Lheat(t
′)et

′2/τ2d dt′ (2.11)

Both the one-zone and the separation of variables approaches result in the same expression
for the light curve; the only difference is the value of ξ, which reflects different assumptions
about the shape of the self-similar energy density profiles. The diffusion time for the one-zone
models is a factor of π/

√
3 ≈ 2 larger. To avoid confusion, we hereafter define a characteristic

diffusion timescale without any numerical factors

td =

√
κMej

vejc
(2.12)
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and so τd = [3/4πξ]1/2td. Physically, the characteristic diffusion timescale gives the time at
which the expansion timescale texp = Rej/vej equals the diffusion time tdiff = κρR2

ej/c. The
peak time scales with the diffusion timescale tpeak ∝ td, but the numerical coefficient relating
them depends on the distribution of heating, nature of the opacity, and other effects.

The self-similarity assumption will be shown below to limit the accuracy of the Arnett
models. However, this is not a necessary assumption as Eq.2.8 is only the first eigenfunction
of the separated spatial equation. The full solution of the energy density can be expressed
as an infinite sum of higher order eigenfunctions whose normalization will be set by the
spatial distribution of heating and boundary conditions. [74] show how such an approach
can be used to relax the assumptions (5) and (6) and produce more accurate light curves.
However, due to the more complicated nature of the solution, the full solution with higher-
order eigenmodes is rarely used in practice.

Comparison to Numerical Simulations

To assess the accuracy of the Arnett solutions, we compare them to numerical monte-carlo
radiation transport calculations run with Sedona [75] .We adopt similar assumptions as A82:
homologous expansion, uniform density, and a constant opacity. Non-constant opacity will
be considered in Section 6. In this section, the ejecta has a diffusion timescale td = 100 days
and the heating source is at the center and follows Lheat(t) = L0e

−t/ts , where the timescale
ts = 10 days.

Fig. (2.1) compares the numerical light curve to the Arnett analytic solution. The
numerical models have an initial “dark period” until t ∼ 0.1td, before which the photons
have not had sufficient time to diffuse from the center of the ejecta [76]. In contrast, the
analytic solutions predict a steeper rise beginning at t = 0, a consequence of the assumption
that radiation energy is immediately distributed throughout the ejecta. The A82 solution
predicts a peak time a factor of 2 shorter than the numerical result, but gives roughly the
correct peak luminosity. The peak time of the one-zone model is closer to the numerical
simulation, but under-predicts the peak luminosity and is overall too broad. There is no
choice of ξ such that the analytic solution closely matches the numerical light curve.

This inaccuracy of the analytic models is more pronounced for more centrally concen-
trated heating sources. Fig. (2.2) shows numerical models where the heating source has
been uniformly mixed out to dimensionless radius xs, with xs = 0 corresponding to a central
source. The Arnett analytic solution most closely resembles a well-mixed numerical model
with xs ≈ 0.8. We can define a heating-weighted radius where the bulk of heating occurs as

⟨xs⟩ =

(∫ 1

0
x2ėheat(x) dx∫ 1

0
ėheat(x) dx

)1/2

(2.13)

where ėheat(x) is the energy density heating rate at x. For constant heating out to radius
xs, we have the relation ⟨xs⟩ = xs/

√
3. In the Arnett solution, ėheat(x) ∝ e(x) and using

Eq.(2.8) we find that ⟨xs⟩ ≈ 0.4, which indeed corresponds to xs ≈ 0.7.
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Figure 2.1: Light curves from the Arnett solution Eq.(2.11) with different choice in the diffu-
sion timescale factor ξ (red and blue lines), compared with a numerical monte-carlo radiation
transport solution using Sedona (teal line with points). The input heating (dashed black
line) consists of a centrally-located exponential source with luminosity Lin(t) = L0 exp [−t/ts]
with a timescale ts = 10 days and a characteristic diffusion timescale td = 100 days.

The limitation of the Arnett models stems from the assumption that the spatial distri-
bution of the radiation field is self-similar. In reality, for central sources a radiation diffusion
wave initially propagates outwards, only reaching the surface and establishing a self-similar
profile after a timescale ∼ td. In Fig. (2.3), we show the evolution of the energy density
profile defined in Eq.(2.8) for a central exponential heating source. At early times, a dif-
fusion wave propagates outwards, and the self-similar assumption fails. By neglecting this
diffusion wave, the Arnett-like models overestimate the luminosity at early times. For a
more uniformly mixed source, self similarity is established earlier, and so the Arnett models
are more applicable.

Thus, it is a common misconception that the Arnett models assume a centrally-located
heating source – while the energy density increases towards the center, the heating luminosity
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Figure 2.2: Effects of varying concentration, in terms of the dimensionless radius xs. The
heating is uniformly mixed out to xs. The solution of A82 is shown for comparison (red
line), as well as the input heating rate (dashed black line), here an exponential source with
timescale ts = 10 days. Arnett’s rule, which predicts that the input heating rate should
intersect the observed light curve exactly at peak holds only for well mixed sources, xs ≈ 0.8.

peaks close to the surface, producing the faster rise and earlier peak compared to the central-
heating numerical solution.

This likely explains why the A82 solution more closely predicts Type Ia rather than core
collapse SN light curves – Type Ia SN typically have a much larger degree of mixing [66]
while core collapse SNe have more centrally concentrated 56Ni. We explore the effects of the
spatial distribution of the heating source in more detail in Section 5.
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Figure 2.3: Evolution of the energy density profile Eq. (2.5) for a central exponential heating
source. Shown are profiles at different times relative to peak, tp. The self-similar assumption
breaks down at early times as the diffusion wave propagates outward. At times t > tp, the
profile settles into a self-similar shape. Also shown for comparison is the solution of Arnett
in Eq.(2.8) (dashed red line).

Arnett’s Rule

A specific prediction of the Arnett models is that the peak luminosity is equal to the heating
rate at peak, i.e.

Lpeak = Lheat(tpeak) (2.14)

This is commonly referred to as Arnett’s rule (or Arnett’s law) and is widely used to infer
e.g. the nickel mass in radioactive SNe [61, 62].

We see from Fig.(2.2) that Arnett’s rule does not hold in general and that its accuracy
depends on the heating source concentration. For centrally concentrated sources (xs ≲
0.8) Arnett’s law gives an under-estimate of the true peak luminosity, with the error being
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systematically worse for more centralized heating. For nearly fully mixed heating sources
(xs ≳ 0.8) Arnett’s law is an over-estimate.

The failure of Arnett’s rule again stems from the assumption of self-similarity, which
implies a proportionality between the luminosity and the total ejecta internal energy, L ∝ Et.
Under this assumption, the light curve has to peak simultaneously with E(t) – i.e., at the
time when the rate of energy loss, L(t) equals the rate of energy gain, Lheat(t). In reality,
the time-dependent propagation of a diffusion wave means that the luminosity does not
strictly track the internal energy. For central sources, L(t) generally lags E(t) and the light
curve peaks at a time when L > Lheat. For fully mixed cases, L(t) leads E(t) and the light
curve peaks when L < Lheat. Arnett’s law holds only for the case of a specific concentration
(xs ≈ 0.8) for which the light curve coincidentally peaks at the same time as does the internal
energy.

2.4 A New Relation Between Peak Time and

Luminosity

Given the limits of Arnett’s rule, we look for a more robust relationship between the peak
time and peak luminosity of a transient light curve. We proceed by considering the evolution
of the global internal energy, E, and rewrite Eq. 2.9 as

d(tE)

dt
= t[Lheat(t)− L(t)] (2.15)

which integrates to

tE(t) =

∫ t

0

t′Lheat(t
′) dt′ −

∫ t

0

t′L(t′) dt′ (2.16)

Eq. (2.16) is similar to the analysis presented in [77], which considers times t ≫ tpeak when
E(t) = 0. Here we instead consider times around peak t ∼ tpeak. Furthermore, we assume
the initial energy content in the ejecta is zero and ignore the initial stellar radius in our
assumption of homology. Thus, the analysis presented here does not necessarily apply to
Type IIP/L SNe, whose light curves are dominated by the initial shock-deposited energy.

We rewrite Eq. (2.16) as

t2

2
Lpeak =

∫ t

0

t′Lheat(t
′) dt′ + ϵ(t) (2.17)

where

ϵ(t) =

[
t2

2
Lpeak −

∫ t

0

t′L(t′) dt′
]
− tE(t) (2.18)
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The first term in brackets can be shown to be positive (since L(t) ≤ Lpeak) and monotonically
increasing (see Appendix B). The second term tE(t) is also positive and is a decreasing
function when L > Lheat, which is typically obtained for t ≳ tpeak. We therefore anticipate
there may be a time when the two functions cross and cancel to give ϵ(t) = 0.

We express this time as t = βtpeak and rearrange Eq.(2.17) to get

Lpeak =
2

β2t2peak

∫ βtpeak

0

t′Lheat(t
′) dt′ (2.19)

which is our desired expression for Lpeak. In Appendix B we show that for common heating
functions there is indeed a time when ϵ(t) = 0 for a value of β ∼ 1 that can be calibrated
from the numerical simulations and is essentially independent of the heating timescale or
functional form.

Eq.(2.19) can be analytically evaluated for certain heating functions. For example, for
an exponential heating function

Lheat(t) = L0e
−t/ts (2.20)

the peak time-luminosity relation can be evaluated to get

Lpeak =
2L0t

2
s

β2t2peak

[
1− (1 + βtpeak/ts)e

−βtpeak/ts
]

(2.21)

This can be contrasted with Arnett’s rule, which predicts Lpeak = L0e
−tpeak/ts . The two

expressions make similar predictions when tpeak ≪ ts but increasingly diverges for tpeak ≫ ts.
In Fig. (2.4) we compare our expression for Lpeak to those of numerical light curve

calculations for a central exponential heating source with ts = 10 days. The numerical
models span a wide range of ejecta masses, velocities, and opacities, and hence result in a
range of peak times. Eq. 2.21 with β = 4/3 gives a near-perfect match to the numerical
simulations, independent of the ejecta properties. In comparison, Arnett’s rule predicts
systematically too low values of Lpeak and becomes progressively worse for larger values of
tpeak/ts.

The peak time-luminosity relation Eq. 2.19 with β = 4/3 applies for most central heating
functions, as long as the opacity is constant and the density uniform. In Fig. 2.5, we show
the peak time-luminosity relations for both an exponential source and a power-law source
appropriate for magnetar energy injection

Lheat(t) =
L0

(1 + t/ts)2
(2.22)

which can also be analytically evaluated (see Appendix A). Fig. 2.5 shows that the Eq. 2.19
with β = 4/3 accurately reproduces the numerical calculations. In later sections, we show
that the value of β does change if the source heating is spatially mixed or the opacity is
non-constant due to recombination, but that β remains largely independent of the heating
function, source timescale ts, or ejecta diffusion timescale td.
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Figure 2.4: Relation between peak time and peak luminosity for a central exponential source
with timescale ts = 10 days. Numerical radiation transport simulations with various peak
times are shown (circles) compared to Arnett’s rule (black dashed line) and the new relation
Eq.(2.19) with β = 4/3 (solid red line).

2.5 Relation Between Peak Time and Diffusion Time

Analyses of observed light curves often attempt to constrain the ejecta mass and velocity
by setting the observed time of peak, tpeak, equal to the diffusion timescale τd [e.g., 63, 78].
Here we study that relation for constant opacity models, and show that tpeak depends not
only on td, but also on the heating timescale ts.

In Fig.(2.6), we show the dependence of tpeak on the ratio ts/td, for a large number of
numerical models with uniform density ejecta and two different central heating sources. The
models have a range of masses, velocities, and constant opacities, although only the combi-
nation td is relevant for the light curve behavior. For ts/td ≪ 1, the peak time asymptotes
to tpeak ≈ 0.4td independent of ts. In this limit, the source can thus be approximated as an
instantaneous “pulse” of energy deposited at ts. The energy from such a pulse diffuses out
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Figure 2.5: Same as Fig.(2.4), but for different values of ts, and for an exponential (top) and
magnetar (bottom) source. Numerical simulations are shown as points. Lines of constant
diffusion timescales td are indicated (dotted black lines). Eq.(2.19) with β = 4/3 is indicated
by solid black lines, for a given ts.

and peaks at around ∼ 0.4td. In comparison, the Arnett models predict tpeak ≈ 0.2td (see
Fig. (2.1)).

For ts/td ≳ 0.1, the continuing source deposition begins to lengthen the peak time. The
dependence is fairly weak – tpeak only increases by a factor of ∼ 2 as ts changes over three
orders of magnitude, implying that for the sources considered the light curve peak is mostly
powered by heating deposited at early times.

An equation that captures the peak time of numerical models with constant opacity and
central heating is

tpeak
td

= 0.11 ln

(
1 +

9ts
td

)
+ 0.36 (2.23)

In the limit that ts ≪ td, Eq.(2.23) goes to tpeak ≈ 0.4td, while for ts ≫ td it grows logarith-
mically with ts. The relation is relatively insensitive to the functional form of the heating
source (e.g. exponential vs. power-law) as long as the function is smoothly and gradually
declining.

2.6 Spatial Distribution of Heating

Another important effect in shaping the light curve is the spatial distribution of heating
within the ejecta, e.g. different amounts of “mixing” of 56Ni in Type I SNe or assumed
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Figure 2.6: Relation between the source timescale ts and the peak time tpeak, relative to
the diffusion timescale td. Shown are an exponential (teal circles) and magnetar (orange
squares) central heating source. The best-fit Eq.(2.19) is also shown (black dashed line). For
comparison, the Arnett tpeak = td relation is shown.

distribution of magnetar heating (see [79]). Indeed, In Fig. (2.2), we showed how the
spatial distribution impacts both the peak time and luminosity of the light curve, and in
particular found that the Arnett solution and Arnett’s rule are most appropriate for less
concentrated/more uniform heating.

To account for the spatial distribution of heating, we take the heating rate to be uniform
out to a (scaled) radius xs. Fig.(2.7) shows how the concentration affects the time of peak.
The overall effect is to systematically drop the relation, i.e. for a given ts and td, concentra-
tion causes the light curve to peak earlier. This was shown for the case of ts = 10 days in
Fig.(2.2). Interestingly, the peak time does not differ much unless the concentration radius
is greater than xs > 1/3.

In all cases, there is similar behavior of a “flattening” in the relation for ts ≪ td. For the
most mixed case xs = 0.9, the relation flattens as tpeak ≈ 0.1td. This lends further caution to
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Figure 2.7: Relation between source timescale to the peak time, relative to the diffusion
timescale. Different colors indicate different levels of concentration, parameterized by the
concentration radius xs = 0.33, 0.67, 0.8, and 0.90. For comparison, the case of a centrally
concentrated source (xs = 0) is shown (grey squares).

using td as a proxy for tpeak; in addition to depending on ts, there is also another dependence
on xs.

In Fig.(2.8), we show the peak time-luminosity relation for the different spatial distri-
butions of heating, for an exponential source with ts = 10 days. Interestingly, for different
concentrations, the relation Eq.(2.19) still holds. The only difference is in the value of β.
For xs = 1/3, the numerical simulations lie on the β = 4/3 relation, which was found to be
appropriate for a central source. This is in agreement with the results shown in Figs. (2.2)
and (2.7), where the xs = 1/3 does not differ significantly from simply assuming a central
source.

More centrally concentrated heating acts to increase the value of β. For the most uniform
heating, xs = 0.9, β increases by about a factor of 2 compared to a central source. For the
central exponential source used in Fig.(2.7) and a constant opacity, we find that β depends
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Figure 2.8: Peak time-luminosity relation for different spatial distributions of heating.

on xs approximately as

β(xs) ≈
4

3

(
1 + x4s

)
(2.24)

Note that we assume local deposition of the heating source. In reality, for the case of
e.g. 56Ni decay, there is the additional effect of gamma-ray deposition, which introduces
a non-locality to the heating. In particular, gamma rays emitted closer to the center may
deposit their energy farther out (or may escape entirely). Exploring this effect is outside the
scope of this work (although see e.g. [70]).

2.7 Non-Constant Opacity and Recombination

While the previous results assumed a constant opacity, for certain compositions the opacity
drops sharply when the ejecta cools and ions recombine. As the ejecta is typically hotter
at the center, a cooling “recombination front” propagates from the surface inward [80–82].
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Figure 2.9: Light curves of a central exponential heating source with ts = 10 days and fixed
ejecta properties, but varying the recombination temperature Tion. The input heating rate
is shown (dashed black line). The case of Tion = 0K is identical to assuming a constant grey
opacity.

The photosphere is nearly coincident with the recombination front, with a temperature set
by the ionization/recombination temperature Tion.

To account for recombination effects in our numerical calculations, we prescribe a tem-
perature dependence that mimics the behavior of the opacity in hydrogen and helium-rich
compositions, for which electron scattering dominates for T > Tion

κ(T ) = κ0 +
κ0 − ϵκ0

2

[
1 + tanh

(
T − Tion
∆Tion

)]
. (2.25)

The opacity κ = κ0 for temperatures T > Tion but drops to κ = ϵκ0 for T < Tion. The
tanh function ensures a smooth transition over a temperature range ∆Tion. We use ϵ = 10−3

and ∆Tion = 0.1Tion, although our results are not sensitive to the exact values. We take the
temperature T to be equal to the radiation temperature Trad = (E/a)1/4, where E is the
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Figure 2.10: Light curves of a central magnetar heating source with ts = 10 days and fixed
ejecta properties and recombination temperature Tion = 6000K, but varying the heating
energy Es. The input heating rate for each light curve is shown (dashed grey).

energy density and a the radiation constant. This is appropriate for a radiation-dominated
ejecta and wavelength-independent opacity.

Fig.(2.7) shows the effect of changing the recombination temperature Tion, while keeping
the heating source and ejecta properties fixed. These runs use a central exponential source
with timescale ts = 10 days and energy Es = 1050 ergs, and uniform ejecta with mass
Mej = 5M⊙, velocity vej = 109 cm s−1, and opacity κ0 = 0.1 cm2 g−1. For low Tion, most
of the ejecta remains ionized at and after peak and the light curve resembles the constant
opacity case, with the exception of a late-time “bump” that occurs when recombination sets
in and allows radiation to escape more easily. For higher Tion recombination occurs earlier;
for Tion ≳ 6000 K recombination results in a brighter and earlier light curve peak.

When recombination is included, the total heating energy scale, Es, impacts the light
curve morphology. This is in contrast to constant opacity models, where Es simply sets the
normalization of the light curve but leaves the shape the same. Fig. (2.7) shows a set of
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Figure 2.11: Peak time-luminosity relation with recombination effects, for a central expo-
nential heating source with ts = 10 days. Points correspond to numerical simulations with
Tion = 6000K and varying ejecta propertiesMej, vej, κej, as well different values of Es, whose
relative value is indicated by the point size. Blue and orange circles correspond to Eq.(2.29)
with η > 1 and η < 1, respectively. Also shown is Eq.(2.19) for different values of β (lines).

numerical light curves where only Es is varied. At sufficiently large values of Es, the heating
source keeps the ejecta ionized until very late times, and the light curve shape resembles a
constant opacity light curve. As Es decreases, the ejecta recombines earlier, resulting in a
“bump” at late times. For sufficiently low Es, the heating source is unable to keep the ejecta
temperature above Tion, and so recombination impacts the light curve peak.

To determine whether recombination effects are important or not, we can compare the
heating rate to the luminosity necessary to keep the ejecta ionized. The ionizing luminosity
is set by the ejecta radius and the recombination temperature as

Lion ≈ 4πR2
ejσsbT

4
ion (2.26)
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From Section 3, the luminosity will roughly scale as

L ∼ Ests
t2d

(2.27)

We define a ratio of the luminosity to the critical ionizing luminosity

η ≡ L

Lion

∝ c2

4πσ

Ests
κ2M2

ejT
4
ion

(2.28)

We calibrate the proportionality based on numerical simulations of an exponential heating
source to find

η ∼ 0.2Es,51ts,10κ
−2
0.2M

−2
10 T

−4
4 (2.29)

where Es,51 = Es/10
51 erg, ts,10 = ts/10 days, κ0.2 = κ/0.2 cm2 g−1, M10 = Mej/10M⊙, and

T4 = Tion/10
4 K. For η ≲ 1, the heating luminosity is too low to keep the ejecta sufficiently

ionized and so recombination effects become important.
In Fig.(2.11), we show the results of a set of numerical simulations with Tion = 6000K and

various ejecta properties and Es. Interestingly, the numerical simulations with recombination
still fall on the relation Eq. (2.19). The only difference is that the value of β changes.
Specifically, recombination tends to decrease the value of β. Also shown in Fig. (2.11) are
the respective values of η for the numerical simulations. Points with η > 1 are not affected by
recombination at peak, and so fall on the relation with β = 4/3, appropriate for a constant
opacity. For η < 1, recombination is important and the points fall on a smaller β = 0.94
curve.

2.8 Discussion and Conclusions

We have shown how the light curve peak time and luminosity are related for luminous
transients, and derived analytic relations that can be used to infer the physical properties of
the heating mechanism. In particular, Eq.(2.19)

Lpeak =
2

β2t2peak

∫ βtpeak

0

t′Lheat(t
′) dt′

captures the relationship between tpeak and Lpeak where the light curve physics (i.e. recom-
bination and concentration) is contained in the β parameter. Furthermore, Eq.(2.24)

β(xs) =
4

3

(
1 + x4s

)
gives the approximate dependence of β on the spatial distribution of heating. Another useful
result is given in Eq.(2.23) for central sources,
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Figure 2.12: The light curve of SN1987A (blue points) from [83], compared to input Ni+Co
decay of MNi = 0.07M⊙ (solid black) and 0.13M⊙ (dashed black). Also shown is Eq.(2.19)
for 0.07M⊙ of Ni and β = 0.82 (red dashed).

tpeak
td

= 0.11 ln

(
1 +

9ts
td

)
+ 0.36

which shows how tpeak depends not only on the diffusion time td, but also the heating
timescale ts. In addition, recombination will change the value of β compared to a constant
opacity. In Table 1, we give approximate values of β for a variety of transients. In Appendix
A, we evaluate the peak time-luminosity relation for specific heating sources.

For example, one of the common sources of heating in luminous transients is the ra-
dioactive decay chain of 56Ni [61, 62]. In particular, the decay chain of 56Ni →56Co →56Fe
dominates the heating at timescales of interest. Fig.(2.13) shows the peak time-luminosity
parameter space of 56Ni-powered transients, where the relation is given in Appendix A. For
a given peak time and luminosity, one can thus infer an approximate value for the 56Ni mass
for an appropriate choice in β.
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Figure 2.13: Peak time vs. peak luminosity for radioactive Ni-powered transients. Eq.(2.19)
is shown for different values of β = 0.82 (dotted brown), β = 9/8 (solid red), and β = 4/3
(dashed purple).

We now consider the implications of our findings to analyzing observed SNe. In particular,
Arnett’s rule is often used to infer the nickel mass of Type Ia SNe. In Fig. (2.14) we show
the effects of varying the nickel mass MNi in a set of toy Ia models with a total mass
Mej = 1.4M⊙ and constant density and opacity. The inner layers of ejecta in these models
are composed of pure 56Ni, and so higher MNi corresponds to a larger nickel core and less
centrally concentrated heating. As expected, Arnett’s rule works better for larger MNi and
becomes progressively worse for the more centrally concentrated low MNi models. This
suggests that analyses of SNe Ia using Arnett’s rule may be systematically biased, with the
nickel mass of sub-luminous Ia’s being overestimated.

As another case study, we show in Fig. (2.12) the observed bolometric light curve of
SN1987A, a Type II supernova whose primary peak is powered by radioactive 56Ni [71, 83].
The late-time light curve behavior gives a constraint on the 56Ni mass to be MNi ≈ 0.07M⊙.
Arnett’s rule predicts aMNi a factor of 2 too large, whereas using the new relation Eq.(2.19)



CHAPTER 2. PHYSICS OF SUPERNOVA LIGHT CURVES 27

0 10 20 30 40 50
Time (Days)

1042

1043

1044

Bo
lo

m
et

ric
 L

um
in

os
ity

 (e
rg

 s
1 )

Mni = 0.05M

Mni = 0.10M

Mni = 0.40M

Mni = 0.70M

Mni = 1.0M

Mni = 1.3M

Ni+Co Source

Figure 2.14: Bolometric light curves of toy Ia models, with Mej = 1.4M⊙, vej = 109 cm s−1,
κ = 0.1 cm2 g−1 and assuming uniform density. Shown are light curves for different amounts
of nickel massesMNi (heating rate shown as dashed grey lines) and, therefore, concentration.

with β = 0.82 (appropriate for hydrogen recombination Tion ≈ 6000K and a largely centrally-
located Ni-Co heating source, as inferred from numerical simulations (see Fig.(2.11)), gives
MNi ≈ 0.07M⊙, in agreement with the late-time determination.

As another example, we show in Fig.(2.15) the peak time-luminosity relation for the
Type Ib/c SNe models presented in [70]. As noted in their work, Arnett’s rule seems to
overestimate the 56Ni mass of their models. Using Eq.(2.19), we find that the models lie
on a β = 9/8 relation. Given that the models do not have much mixing, we can assume
centrally located heating and attribute any deviation from β = 4/3 to recombination effects.
Interestingly, a β = 9/8 is in agreement with a recombination temperature of Tion = 4000K,
which is roughly that for a C- and O-rich composition. On the other hand, helium has a much
higher recombination temperature and would imply a much smaller β; this indicates that
the 56Ni in the [70] models are primarily diffusing out from the much denser carbon/oxygen
inner ejecta rather than the outer helium ejecta. This is in agreement with the results in
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Figure 2.15: Peak time-luminosity relation of Eq.(2.19) compared to the Ibc models of [70].

[84], who similarly showed that light curve modeling is a better constraint on the C/O core
rather than the helium.

The above examples demonstrate that, in principle, the peak time-luminosity relation
may allow one to infer the composition of the ejecta solely from photometric observations.
Suppose we know from observations of the radioactive tail of SN1987A that it is powered
by 0.07M⊙ of 56Ni, and we assume the nickel to be largely centrally concentrated. From the
peak time and luminosity we can solve for β ≈ 0.94. Since each recombination temperature
has its own unique value of β, we can then infer Tion ∼ 6000K, suggesting a hydrogen-rich
composition.

If the composition, and hence recombination temperature, of an observed supernova is
constrained (e.g. from spectroscopic observations), then the derived value of β may indicate
the spatial distribution of the heating source. For example, one can assume to good approx-
imation a constant opacity for Type Ia SNe. Assuming central heating, this would point to
a β = 4/3, yet SNe-Ia seem to obey Arnett’s rule fairly well, which corresponds to a larger
value of β if using Eq.(2.19). This is in agreement with the results presented in Fig.(2.8),
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since we expect Ia SNe to have a more uniform distribution of heating and hence fall on a
larger β.

The main result, Eq.(2.19), is general enough to be applied to an arbitrary heating source,
e.g. central-engine accretion, a magnetar, kilonovae, etc. Thus, for an observed transient
peak time/luminosity that might be powered by other means than 56Ni, one must simply
choose a different Lin(t) (which need not be analytic). Next, by choosing an appropriate β
(e.g. 4/3 for constant opacity and a central source), one can constrain the heating source
parameters. Note that there still remains a degeneracy in the heating source timescale ts
and energy Es. One is not able to break this degeneracy from the peak time and luminosity
alone. Such constraints require additional information/observations or by putting physical
limits on allowed values.

Several physical effects were neglected in our analysis here so as to isolate the basic
behavior of supernova light curves. The models presented assume spherical symmetry and
adopt a grey opacity. Asymmetries in the ejecta/heating as well as non-grey effects likely play
a role in the overall shape of the light curve, and on the inferred β in the new relation. [85]
show that clumping affects the recombination rate, which would impact the inferred β. We
also used a simple parameterization for the spatial distribution of heating, which was taken
to be uniform out to some radius; more complicated distributions (e.g. from accounting for
gamma-ray deposition throughout the ejecta) warrant further investigation. We further made
the assumption of homologous expansion, which may be violated for supernovae interacting
with a circumstellar material. Because our relations apply to the bolometric peak, errors
can also arise from observational effects, such as uncertainties in the distance, reddening, or
bolometric correction.

Conclusions drawn from the relation presented here are of course conditional on the
specific form of the heating source assumed (e.g. radioactive decay vs. magnetar spindown).
It is thus important to perform consistency checks on the nature of the heating source using
additional information aside from the properties at peak, such as examining the slope of the
late-time light curve tail.

While our comparisons here have demonstrated the limitations of the Arnett-like models,
there exist other analytic models of transient light curves that attempt to account for the
time-dependent diffusion effects that are important for setting the luminosity before and
around peak (e.g. [76, 86, 87]). In future work, we will investigate a broader range of analytic
models, and look for improved methods for calculating analytic light curves. Additionally,
there exist other analytic techniques in estimating properties of the light curve, in particular
the integral relation of [77]. This requires knowing the full shape of the light curve out to
times well after peak, rather than the properties at peak. The Katz integral approach and
the new relation presented here are thus complementary in inferring the physical properties
of the light curve.

There is still much work to be done to understand how/why the peak time-luminosity
relation as well as it does, and in particular to better calibrate its value for specific heating
mechanisms and ejecta properties. Nonetheless, the framework presented here will be useful
for more detailed modeling, as well as providing a fast way to characterize the large number
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of transients to be discovered in current and upcoming surveys.
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Chapter 3

Supernova Light Curves Powered by
Circumstellar Interaction

3.1 Abstract

The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) gen-
erates a strong shock which can convert the ejecta kinetic energy into observable radiation.
Given the diversity of potential CSM structures (arising from diverse mass loss processes
such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients
can display a wide range of light curve morphologies. We provide a framework for classifying
the transients arising from interaction with a spherical CSM shell. The light curves are
decomposed into five consecutive phases, starting from the onset of interaction and extend-
ing through shock breakout and subsequent shock cooling. The relative prominence of each
phase in the light curve is determined by two dimensionless quantities representing the CSM-
to-ejecta mass ratio η, and a breakout parameter ξ. These two parameters define four light
curve morphology classes, where each class is characterized by the location of shock breakout
and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling
relations connecting the luminosity and duration of each light curve phase to the physical
parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of
ejecta and CSM parameters to numerically explore the landscape of interaction light curves,
and to calibrate and confirm the analytic scalings. We connect our theoretical framework
to several case studies of observed transients, highlighting the relevance in explaining slow-
rising and superluminous supernovae, fast blue optical transients, and double-peaked light
curves.

3.2 Introduction

The light curves of typical supernovae are generally understood to be radiation diffusing
from the hot stellar debris produced in the explosion blastwave and often further heated by
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the radioactive decay of 56Ni [6, 88–90]. Diversity in the ejecta/nickel masses and explosion
energies can produce a wide range of light curve durations and luminosities [20, 91]. Recent
all-sky observations have enlarged the domain of transient types (e.g. [92–94]), uncovering
highly luminous events outside of the realm of “typical” supernovae. These events occur on
timescales as short as a day [22, 95, 96], to as long as several months [97, 98]. Their ex-
treme brightness and gamut of timescales pose a challenge to usual explanations of luminous
transients [99].

In typical core-collapse supernovae, roughly half of the explosion energy is converted into
thermal energy from the passage of a strong neutrino-driven shock [100, 101]. Due to the
high optical depths of stellar interiors, most of this energy is lost to adiabatic expansion of
the ejecta [89, 102]. The bulk of the explosion energy is then stored in a reservoir of kinetic
energy of order ∼ 1051 ergs [103]. If this prodigious store of energy can be tapped into and
converted into observable electromagnetic radiation, it can power some of the most energetic
events in the transient sky.

Interaction of the expanding supernova ejecta with a surrounding medium results in
shocks that convert kinetic energy into internal energy of the gas [104] which can be radiated
in a light curve; If the shock is optically thin, a collisionless shock forms and most of the
kinetic energy remains as internal gas energy [105]. This is typically the case for supernova
remnants [106, 107]. While such sites are expected to be efficient sources of energetic cosmic
rays [108–110] and non-thermal radio/X-ray emission [111], they are incapable of powering
the luminous optical transients that are being discovered (e.g. [95]). Instead, these events
require the formation of a radiative shock [112, 113].

The formation of radiative shocks requires the presence of a dense circumstellar medium
(CSM) that is optically thick and moving slowly relative to the ejecta velocity. Supernova
progenitor stars typically lose significant mass to stellar winds over their lifetime [3, 12, 114,
115]. Gradual mass loss in winds will disperse into the interstellar medium. To produce
a dense, local CSM, requires episodes of extreme mass loss that occur shortly before the
supernova explosion. Such mass loss events are often referred to as stellar outbursts, and
numerous explanations have been proposed regarding their origin, such as binary interaction
[10, 13, 16] and wave-driven mass loss from e.g. unstable nuclear burning [15, 18, 116].

Observations of late-stage stellar outbursts [117–119] and the presence of narrow lines in
supernova spectra [9] lend credence to the CSM interaction model as a viable explanation
for at least some of the transients [20, 120–122]. Given the diversity of mass loss rates, they
are an appealing mechanism for atypical supernovae, including superluminous events [49,
97, 99, 123, 124] and the recently emerging class of so-called fast blue optical transients, or
FBOTs [22, 95, 96, 125–127].

The physics of CSM interaction has been extensively researched in the literature [e.g.,
23, 49, 111, 128–130] including both numerical and analytical works that predict the light
curve and spectra of CSM interaction [122, 131–134], as well as models to explain specific
events [130, 135–137]. Different theoretical models, however, may make different physical
assumptions and derive divergent expressions for how the light curve luminosity and duration
depend upon physical parameters. The regions of applicability of such models is not always
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clear, and the degeneracy in parameter estimation when fitting observations with numerical
models is often unconstrained. The same observed light curve, for example, may be fit with
“shock breakout” [135] or “shock cooling” models [138, 139], leading to different inferences
as to the nature of the event.

In this work, we outline a theoretical framework to help clarify the categorization of in-
teraction light curves. We discuss how the physical parameters describing the configuration
of supernova ejecta plus CSM shell can be reduced to two dimensionless parameters that
primarily determine the light curve morphology. The values of these two quantities natu-
rally partition the parameter space of interaction light curves into four classes. We compile
analytic relations that express how the luminosity and duration of the light curve scale with
physical parameters, and clarify their regimes of applicability. We then run a comprehensive
set of spherically symmetric radiation-hydrodynamical simulations of interacting supernovae
and explore the landscape of optical light curves. The numerical models are used to con-
firm the analytic relations and highlight the break in scaling relations that occurs when
transitioning from one light curve class to the next.

The numerical models presented here aim to provide an expansive library of bolometric
light curves for interacting supernova that can aid in the interpretation of observed events.
Follow-up work will explore spectroscopic properties of the models and possible non-thermal
emission mechanisms. In Section 3.3 we give a qualitative overview of CSM interaction, and
the basic physics that controls each phase of the light curve. We give a more quantitative
analysis in Section 3.4, including useful scaling relations for each phase, which we compare
with numerical simulations in Section 3.5. Finally, in Section 3.6 we show how the results can
be used to infer properties of the CSM mass and radius, and discuss the relevance of different
interaction classes to observed classes of transient phenomena. For clarity of presentation,
we provide a more complete description of the numerics and supplementary equations in the
Appendix.

3.3 Qualitative Picture

We provide in this section a qualitative picture of the dynamics of interacting supernovae
and the context of radiation emission. This is used to define the possible morphologies of
the resulting light curves.

System Configuration

We consider supernovae interacting with a single CSM shell of mass Mcsm. Such a config-
uration roughly approximates the structure of material ejected in a presupernova outburst.
The key dimensional parameters of the system are

• Mej: ejecta mass

• Esn: ejecta kinetic energy
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• Mcsm: circumstellar mass

• Rcsm: outer radius of circumstellar material

• κ: opacity

The density profile within the CSM shell is taken to be a power-law ρ(r) ∝ r−s which
transitions to a steep power law cutoff at the outer edge at Rcsm. Usually, we take s = 2 (i.e.
a wind-like CSM) but select models explore different density profiles. The CSM velocity is
assumed to be much less than that of the ejecta and so set to zero.

The ejecta is assumed to be in homologous expansion with a broken power-law density
profile, ρej ∝ r−n (where typically n ≈ 7− 10 in the outer layers of ejecta [140]). The ejecta
is taken to be cold (thermal energy ≪ Esn) with a characteristic velocity vej ≡

√
2Esn/Mej.

These assumptions apply when the radius of the progenitor star is much less than Rcsm,
such that the ejecta are able to expand, cool and reach homology before interaction begins.
Inclusion of initial thermal energy or heating due to radioactivity are unlikely to influence the
interaction dynamics, but could contribute additional luminosity to the light curve. Finally,
we assume that the inner CSM edge is much less than the outer CSM radius, R∗ ≪ Rcsm.

It is helpful to combine the above five physical quantities into three dimensionless param-
eters which determine the morphology of the light curve; and two dimensional parameters
which set the overall luminosity and time scale. The dimensionless parameters are

• η ≡Mcsm/Mej: ratio of CSM to ejecta mass

• β0 ≡ vej/c : ejecta velocity relative to the speed of light

• τ0 ≡ κMcsm/4πR
2
csm: characteristic CSM optical depth

The dimensional scale parameters of the light curve are

• L0 ≡Mcsmv
3
ej/Rcsm: luminosity scale

• t0 ≡ Rcsm/vej: temporal scale

A combination of the dimensionless parameters that will be critical to understanding the
light curve behavior is the breakout parameter

ξ ≡ τ0β0η
−α , (3.1)

where the factor η−α accounts for how shock propagation through the CSM modifies the
velocity scale β0 of the shock. Here α is an order-unity exponent that depends on the mass
ratio η and the power-law exponent, n, of the ejecta density profile in the outer layers,
whose expression is given by Eq. (3.12) and derived in Appendix B. In terms of the physical
quantities, the breakout parameter is

ξ ≈ 10 κMcsm,⊙v9R
−2
4 η−α (3.2)

where κ ≈ 0.34 cm2 g−1 for solar electron scattering, Mcsm,⊙ = Mcsm/M⊙, v9 = vej/10
9 cm

s−1, and R4 = Rcsm/10
4R⊙.
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Figure 3.1: Illustration of the radiative shock structure during ejecta-CSM interaction, with
the different shock features labeled.

Interaction Dynamics

Fig. 3.1 illustrates the structure of a generic interaction shock, with a forward shock propa-
gating into the CSM and a reverse shock decelerating the ejecta. The properties of interaction
light curves depend critically on the forward shock velocity, vsh, which initially is character-
istic of the fast outermost ejecta layers, vsh ≳ vej, but decelerates as the shock progressively
sweeps up the CSM. The degree to which the shock decelerates depends on the relative
masses of the ejecta and CSM, η. If the shock evolves as a power-law in time rsh ∝ tλ, then
we can derive the shock velocity in terms of radius as [141]

vsh(rsh) ≈ vejη
−α

(
rsh
Rcsm

)(λ−1)/λ

(3.3)

where the factor η−α accounts for the shock deceleration, and the order-unity shock exponent
α depends on the density structure of the ejecta and CSM (see Appendix B.2). For Mcsm <
Mej, the shock may decelerate only the outermost layers of ejecta and vsh ≈ vej. However,
forMcsm ≳Mej the shock velocity will be substantially lower than vej. The shock decelerates
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only so long as the density profile is shallower than s < 3. Acceleration of the shock for
s > 3 [142] must be accounted for shocks that reach the outer edge of the CSM, above which
the density drops off steeply.

The properties of the shock can be influenced by radiative diffusion. From Fig. 3.1, the
shock front is located a distance ∆r = Rcsm − rsh from the outer edge of the CSM. The
timescale for photons to diffuse out ahead of the shock and escape is tesc ∼ τsh∆r/c, where
τsh ∼ κρ∆r is the radial optical depth from the shock to the CSM surface. We can compare
this timescale to the dynamical timescale of the shock, tsh ∼ ∆r/vsh for the shock of speed
vsh to traverse the same distance ∆r. The ratio of these two timescales is

tesc
tsh

≈ τsh
vsh
c

(3.4)

When τsh ≳ c/vsh, radiation is trapped at the shock front and advected with the flow.
Radiation pressure mediates the shock, and assuming gas and radiation are in equilibrium
the shock temperature is found by setting the ram pressure 1

2
ρv2sh equal to the radiation

pressure 1
3
aT 4

eq, giving

Tsh = Teq ≈ 105 ρ
1/4
−12v

1/2
9 K (τsh ≳ c/vsh) (3.5)

where ρ−12 = ρ/10−12 g cm−3, and v9 = vsh/10
9 cm s−1. The trapped radiation collects

into a reservoir behind the shock front until it is able to escape at a later time, either due
to the shock reaching the edge of the CSM or due to the shock decelerating sufficiently
that the photon diffusion speed ∼ c/τsh exceeds vsh. When radiation remains trapped in
the expanding medium, photons adiabatically degrade, converting the internal shock energy
back into kinetic energy and decreasing the radiative throughput of the interaction.

When τsh < c/vsh, photons are able to escape ahead of the shock and power the light
curve. If gas and radiation are not in equilibrium, the immediate post-shock temperature is
determined by equating the ram pressure with the gas pressure Pg = ρkbT/µmp, giving

Tsh ≈ 109 v29 K (τsh < c/vsh) (3.6)

which is much hotter than Teq by several orders of magnitude. As photons are not trapped
in the τsh < c/vsh regime, we also need to determine how efficiently the shock can cool. The
thermal radiative cooling timescale is given by

tcool =
1

ϵcκρ

nkbT/(γ − 1)

aT 4
≈ 10−4 s ϵ−1T−3

5 (3.7)

where ϵ = χabs/(χabs + χsc) is the ratio of absorptive to total (absoprtive plus scattering)
extinction and we take the primary opacity source as electron scattering κρ ≈ χsc = neσT ,
ne is the electron number density, and σT is the Thomson cross-section. Thermal free-free
emission [143] is important in cooling the radiative shocks discussed here, where

ϵff ≈ χff

neσT
≈ 10−6 T

−7/2
5 ρ−12 (3.8)
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The free-free cooling time will therefore increase with shock temperature and density as
tcool,ff ∝ T

1/2
sh ρ−1. For high enough shock temperatures (or low enough densities), the

gas will not be able to radiatively cool faster than the shock dynamical timescale. More
specifically, free-free cooling will be efficient so long as tcool < tsh, which holds for shock
optical depths greater than [23]

τsh ≳ 0.3v9 (3.9)

For an optical depth less than 0.3v9, the shock inefficiently cools and is adiabatic. In this
regime, non-thermal emission will become important. Here, we limit our focus to CSM optical
depths where τ0 ≳ 1, and additionally assume non-relativistic shock velocities vej ≲ 0.1c
such that Eq. 3.9 more readily holds across the shock’s evolution. Note that other processes
which may aid in radiative cooling of the shock include lines and bound-free absorption,
increasing the effective ϵ in Eq. 3.7. In particular, from Eq. 3.8 we see that free-free
thermalization becomes less efficient at high temperatures (i.e. faster shocks). [23] show
that at these higher shock temperatures, inverse Compton scattering becomes the dominant
thermalization process, which expands the (τsh, vsh) parameter space in which the shock can
efficiently radiate.

The kinetic luminosity of the forward shock (in the strong shock limit) is approximately
the kinetic energy density ρv2sh/2 times the flux 4πr2shvsh through the shock front,

Lsh ≈ 2πr2shρ(rsh)v
3
sh. (3.10)

A detailed analysis of how the shock heating evolves and eventually escapes to power the
light curve is given in §3.4.

Light Curve Phases and Morphology

We can conceptually decompose the light curve arising from interaction into five phases, as
illustrated in Figure 2.

(0) Dark Phase: The shock is propagating through the CSM, but photons are unable to
escape (τsh ≫ c/vs) and remain trapped at the shock front. The interaction therefore
produces no observable signal.

(1) Shock Breakout: The forward shock front reaches a low enough optical depth (τsh ∼
c/vs) that photons can diffuse ahead of the shock front, and the light curve rises to a
peak.

(2) Continued Interaction: The forward shock continues propagating through the CSM
and photons efficiently escape, such that the luminosity tracks the instantaneous energy
deposition rate of the shock. Additionally, the reverse shock propagates inwards (in
mass), generating additional heating of the ejecta.
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Figure 3.2: Schematic diagram (not to scale) of a CSM interaction light curve and the
distinct phases that appear as the shock evolves in time. Also indicated are the characteristic
luminosity and timescale of each phase, appearing in §3.4 as the boxed equations.

(3) Shock Emergence: The forward shock reaches the outer edge of the CSM resulting
in a sharp drop in luminosity as the shock heating abates.

(4) Shock Cooling: Photons produced at earlier times in deeper shock-heated regions
continue to escape and power the light curve. Continued heating from the reverse
shock or other sources (e.g. radioactivity) may also contribute.

We emphasize that in this terminology ”shock breakout” refers to the escape of photons
from the shock and not the exiting of shock from the system (which we instead label ”shock
emergence”). In some scenarios, ”breakout” and ”emergence” occur almost simultaneously
at the CSM edge and this distinction is not be significant, but in extended CSM it is essential
to consider the case where breakout occurs interior to the CSM edge well before emergence
[131].

The relative prominence of each of the above phases will depend on the parameters of
the CSM/ejecta configuration. As a result, interaction is capable of producing a diversity of
light curve behaviors. By taking τsh ∼ τ0 and vsh ∼ vejη

−α in Eq. (3.4), we get tesc/tsh ∼ ξ,
the breakout parameter defined in Eq. 3.1. If ξ > 1, shock breakout occurs at the CSM
edge; if ξ < 1, breakout will instead occur within the CSM. We can then define four light
curve classes (see Fig. 3.4) based on whether the CSM significantly decelerates the shock
(η > 1, ”heavy CSM”) or not (η < 1, ”light CSM”) and whether breakout occurs at the
CSM edge (ξ > 1) or in its interior (ξ < 1).
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Figure 3.3: The four general classes of CSM interaction light curves, and the color-coded
phases observable in each class. (SBO = shock breakout (Phase 1); CI = continued inter-
action (Phase 2); SE = shock emergence (Phase 3); SC = shock cooling (Phase 4)).

Edge-breakout; Light CSM (ξ ≫ 1, η ≪ 1): In this scenario, the CSM is so optically
thick that shock breakout (phase 2) occurs in the steep density profile just outside the CSM
edge at Rcsm [113, 135]. The breakout of radiation is almost immediately followed by shock
emergence (phase 4), with essentially no phase of continued interaction (phase 3). This leads
to a relatively sharply rising and falling light curve. Shock cooling (phase 5) after the shock
has emerged results in an extended light curve tail after breakout [138, 139].

Edge-breakout; Heavy CSM (ξ ≫ 1, η ≳ 1): As with the previous scenario, breakout and
emergence happen at the edge of the CSM, producing a shapr breakout peak in the light
curve. The subsequent shock cooling phase, however, is more prominent, as the high CSM
mass leads to a deceleration and thermalization of the bulk of the ejecta kinetic energy.
Given the higher mass and lower velocity of the shocked gas, the cooling emission diffuses
out on a longer timescale, leading to a distinct second ”shock-cooling” bump in the emergent
light curve.

Interior-breakout; Light CSM (ξ ≲ 1; η ≪ 1): In this scenario, shock breakout occurs well
before the forward shock has reached the CSM edge (see e.g., [131, 144]). The peak in
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the light curve associated with breakout is followed by an extended continued interaction
phase, where the luminosity tracks the shock kinetic luminosity Eq. 3.10. The slope of the
light curve in the continued interaction phase thus depends directly on the density profile of
the CSM. Once the shock reaches the outer edge of the CSM shell and emerges, the shock
luminosity drops rapidly, leading to a sharp decline in the light curve followed by a shock
cooling tail.

Interior-breakout; Heavy CSM (ξ ≲ 1; η ≳ 1): As with the previous scenario, shock breakout
occurs before the forward shock has reached the CSM edge (see [49, 132]). Given the large
CSM mass, the shock velocity is significantly decelerated as it sweeps up the CSM, such that
the breakout condition τsh ∼ c/vsh is reached within the CSM, resulting in a more gradual
rise to a breakout peak. Following a phase of continued interaction, shock emergence leads
to a modest drop in luminosity as the light curve transitions to shock cooling emission.

3.4 Analytic Scalings

Numerous previous works have considered analytical models and scaling relations for inter-
action light curves (see e.g. [113, 131, 132, 135, 138, 144, 145]). These various results often
contradict each other, usually due to different assumptions made in the derivation which
renders particular results valid only in specific regions of parameter space. Here we present
scaling relations for the light curve luminosity and duration, clarifying the regimes of ap-
plicability within the (ξ, η) parameter space. §3.5 validates these relations with numerical
radiation-hydrodynamics simulations. Equations that correspond to quantities that appear
in Fig. 3.2 are boxed for clarity. Correction factors for the scaling relations, calibrated to
the numerical simulations, are provided in Appendix B.1.

Consider a shell of shocked material at radius r and of thickness ∆r. After a shock has
passed through the shell, the post-shock thermal energy is roughly

Esh = 4πr2∆rρs
v2sh
2

(3.11)

Initially the shock velocity will be of order the ejecta velocity scale, vej = (2Esn/Mej)
1/2.

However, as the shock sweeps up material in the CSM, it is decelerated. From Eq. 3.3, by
assuming the shock radius evolves as a power-law rsh ∝ tλ, we have that the shock velocity
evolves as

vsh(rsh) ≈ vejη
−α

(
rsh
Rcsm

)(λ−1)/λ

where the factor of η−α accounts for the slowing down of the shock, and η = Mcsm/Mej. A
full derivation of vsh, as well as the shock exponents α and λ, is provided in Appendix B.2.

If η ≳ 1, then the bulk of the ejecta kinetic energy is tapped by the interaction, and
α = 1/2 from energy conservation. On the other hand, if η ≪ 1, then only a fraction of Esn



CHAPTER 3. SUPERNOVA LIGHT CURVES POWERED BY CIRCUMSTELLAR
INTERACTION 41

will be thermalized. The amount of deceleration that occurs will therefore depend on the
outer density profile of the ejecta in the η < 1 case, and so

α =

{
1/2, (η ≳ 1)
1/(n− 3), (η ≪ 1)

(3.12)

where n is the power-law exponent of the outer ejecta, ρej ∝ r−n with n ≈ 7− 10 [146]. The
mass ratio between the inner and outer ejecta is equal to (3 − δ)/(n − 3) [140]. For δ = 1
and n = 10, the shock will transition between the inner and outer portions of the ejecta for
η ≳ 0.3.

The time it takes for the shock to reach the outermost shell at r = Rcsm, accounting for
the shock deceleration, is the shock emergence timescale,

tse ≈ ηαt0 , (3.13)

where t0 = Rcsm/vej. Depending on the optical depth of the CSM and how fast the shock
is moving, shock breakout may occur at a deeper shell than the one located at Rcsm, and
must be accounted for. In this case, the light curve begins rising at a time t < tse. We now
separate our analysis into these two breakout regimes.

Scenario 1: Shock Breakout at CSM Edge (ξ ≫ 1):

In this regime, the CSM is sufficiently optically thick that the condition τsh ≈ c/vsh is
not reached until the shock has traversed the entire CSM and begun accelerating down the
steep outer edge. This scenario resembles stellar surface shock breakout in several ways [142,
147], and so we proceed along a similar analysis.

Breakout happens at a radius rbo, where the photons contained in a shell of width ∆rbo
escape. The post-shock energy in the shell is

∆Ebo ≈ 4πr2bo∆rbo

(
1

2
ρbov

2
bo

)
(3.14)

where vbo and ρbo are the shock velocity and CSM density at the breakout location. At
breakout, tbo ≈ tse ≈ ηαt0, radiation escapes from the shell on a timescale comparable to the
dynamical timescale, ∆tbo ∼ ∆r/v, giving a luminosity of

Lbo ≈
∆Ebo

∆tbo
≈ 2πr2boρbov

3
bo (3.15)

When the shock just reaches the CSM edge its velocity is v ∼ vejη
−α, where the factor η−α

accounts for interaction with the bulk of the CSM (see Appendix B.2). Once the shock
passes Rcsm it begins accelerating down the steeply dropping outer density profile, which we
take to be a power law

ρ(r) ≈ ρ0x
−p (3.16)
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where x = r/Rcsm and the exact value of p will not matter in the limit p ≫ 1. We account

for shock acceleration using Sakurai’s law v ∝ ρ−δ̂, [148], where δ̂ ≈ 0.2 for a strong shock
[113]. The shock velocity in the steep outer region is then

vsh ≈ vejη
−αxpδ̂ (3.17)

To find the point xbo where the shock reaches optical depth τ ∼ c/vs we integrate the density
profile

τ =

∫ ∞

x

ρ(r)κdr ≈ τ0x
−p (3.18)

where τ0 = κMcsm/4πR
2
csm and we have assumed p≫ 1. Setting this τ equal to c/vsh where

vsh is given by Eq. 3.17, we can solve for the radius where breakout occurs

xbo =
[
τ0β0η

−α
]1/p(1−δ̂)

= ξ1/p(1−δ̂) (3.19)

where β0 = vej/c and ξ = β0τ0η
−α. For p ≫ 1 we have xbo ≈ 1, but it is important to

use Eq. 3.19 to evaluate the breakout velocity, vbo (from Eq. 3.17) and the breakout density
(from Eq. 3.16). Using these in the expression for the breakout luminosity Eq. 3.15 and
choosing δ̂ = 0.2 gives

Lbo ≈ η−3αξ−1/2L0 (3.20)

where L0 =Mcsmv
3
ej/Rcsm is the characteristic luminosity scale defined in §3.3.

The duration of this breakout emission is ∆rbo/vbo. Given that the optical depth through
the breakout layer τ ≈ κρbo∆rbo is roughly equal to c/vbo, we have ∆rbo = c/κρbovbo so the
timescale is [113]

∆tbo ≈
∆rbo
vbo

≈ c

ρboκv2bo
≈ R

c

1

τ0β2
0

η2αx
p(1−2δ̂)
bo (3.21)

Plugging in xbo from Eq. 3.19 and taking δ = 0.2 gives

∆tbo ≈ ηαξ−1/4t0 (3.22)

Post-Breakout Cooling Emission:

Following shock breakout, energy deposited by the shock at earlier times will begin to diffuse
out from deeper layers. The total energy deposited will be

∆E ≈ 1

2
Mcsm(vejη

−α)2 (3.23)

To derive scaling relations we treat the system in a one zone approximation [138, 149].
Assuming that the remnant expands on a ballistic trajectory after shock breakout with
speed vejη

−α, the radius increases in time as r(t) ≈ Rcsm + vejη
−αt. We can consider two

limits. When the diffusion time is much faster than the expansion time te = Rcsm/vejη
−α,
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Figure 3.4: The breakout parameter ξ in the η, β0τ0 space. Dashed and dotted lines denote
ξ = 1 and η = 1, respectively, separating the four classes in Fig. 3.3.

the remnant can be considered quasi-static with fixed radius Rcsm. The diffusion time is
then ∆t = τ0Rcsm/c, and the shock cooling luminosity Lsc ∼ ∆E/∆t scales as

Lsc ≈ η−3αξ−1L0 (3.24)

In the other limit where the diffusion time is much longer than the expansion time, the
remnant will expand by a significant factor before radiating and we approximate the radius
as r(t) ≈ vejη

−αt. Radiation will escape when the remnant has expanded to the point that
τ ∼ c/vejη

−α which occurs at a time

tsc ≈ ηαξ1/2t0 (3.25)

The shock deposited energy will be reduced due to expansion, such that the thermal energy
remaining when radiation can diffuse out is

∆E ≈ 1

2
Mcsm(vejη

−α)2
(

Rcsm

vejη−αtsc

)
(3.26)
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where the factor in parentheses accounts for the losses due to adiabatic expansion of a
radiation dominated gas from an initial radius Rcsm to a final one at vejη

−αtsc. The peak
luminosity in this shock cooling phase will then scale as Lsc ∼ ∆E/tsc which results in a
similar expression for the luminosity as Eq. 3.24.

Note that Eqs. 3.24 and 3.25 are identical to the expressions found in [138] for the case
of α = 0.15. A more detailed analysis of the shock cooling emission is presented in [149].

Scenario 2: Shock Breakout in CSM Interior (ξ ≲ 1):

If the breakout shell is located within the CSM, then we need to account for the time-
dependent evolution of the shock. In this case, the shock will propagate and be continuously
decelerated within the CSM.

We assume the shock evolves in time as a power law, rsh ∝ tλ, and so at xbo = rbo/R < 1

vbo ≈ vejη
−αx

1−1/λ
bo (3.27)

The shock exponent λ will depend on the CSM density profile for η ≳ 1 and, for η ≪ 1,
the ejecta density profile as well ([128, 141, 150]; see also Appendix B.2),

λ =

{
2/(5− s) (η ≳ 1)

(n− 3)/(n− s) (η ≪ 1)
(3.28)

The breakout luminosity will be roughly equal to the shock luminosity at breakout
(Eq. 3.10),

Lbo ≈ L0η
−3αx

5−s−3/λ
bo (3.29)

where we have assumed a power-law CSM density profile ρcsm ∝ r−s.
In order to calculate the breakout time, we must integrate the CSM density profile to the

breakout optical depth τbo = c/vbo and set vbo equal to Eq. 3.27, which results in a nonlinear
equation that must be solved numerically (see Appendix B.2). Instead, we here approximate
the breakout radius with the expression

xbo ≈
[
τ0β0η

−α
]λk0 = ξλk0 (3.30)

where 0 ≤ k0 ≤ 1. For k0 ≈ 0, xbo ≈ 1 i.e. breakout occurs at the CSM edge; this is the case
discussed in the previous section. Interior breakout xbo < 1 thus requires k0 > 0 and ξ < 1.
Note that k0 = 1 gives tbo ≈ κMcsm/4πRcsmc, which is simply the static diffusion timescale.
This corresponds to the breakout time used in [131] and [132] up to a constant prefactor.

In general, k0 will depend on the configuration of the ejecta and CSM parameters, which
can be viewed as a weighted average of the shock emergence and static diffusion timescales.
If radiation is able to immediately escape the CSM at the onset of interaction, then a choice
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of k0 = 1 is more appropriate. On the other hand, if radiation escapes only once the shock
nears the edge, then k0 ≈ 0. Here we adopt an intermediate value of k0 ≈ 0.6 based on
fits to numerical simulations presented in §3.5, which is appropriate in the regime where the
shock sweeps up a fraction of the CSM before being able to radiate ahead of the shock.

Using this approximation for xbo, the breakout time is then given by

tbo ≈ ηαξk0t0 (3.31)

The breakout duration ∆tbo is proportional to the breakout time; comparison with nu-
merical simulations of §3.5 show that ∆tbo ≈ tbo/2. Finally, to find the breakout luminosity,
we use Eq.3.30 for xbo to get

Lbo ≈ η−3αξσsL0 (3.32)

where σs = [(5− s)λ− 3] k0; the shock exponent λ is given by Eq. 3.28 ; and k0 is the same
as in Eq. 3.30. For the case of n = 10 and s = 2, this gives σs ≈ −0.23 for η < 1 and
k0 ≈ 0.6. For η > 1, σs = −k0, independent of the density profiles. Note that Eqs. 3.31 and
3.32 are equivalent to that derived in [131] for the choice of k0 = 1, λ = 4/5, and α = 1/4
(corresponding to an outer ejecta density profile ρej ∝ r−7 and CSM profile ρcsm ∝ r−2),
where they implicitly work in the η < 1 regime.

Post-Breakout Continued Interaction:

After shock breakout within the CSM, the light curve will continue to be powered by an
additional supply of unshocked CSM, in addition to the reverse shock propagating inwards
through the ejecta [131, 144, 145]. As the shock photons are able to efficiently radiate after
breakout, the light curve tracks the instantaneous shock energy deposition rate Eq. 3.10.
Using the power-law forms of the shock evolution Eq. 3.3 and assuming the forward shock
dominates, the continued interaction luminosity becomes

Lci(t) ≈ L0η
−3α

[
t

ηαt0

](5−s)λ−3

(3.33)

For η ≪ 1 the exponents α and λ are identical to those provided in Eqs. 3.12 and 3.28,
respectively, as these exponents hold for both energy and momentum-conserving shocks [128].
However, for η ≳ 1, the [151] exponents no longer hold, as the blastwave transitions to a
momentum-conserving snowplow whose exponents are given by [141]

α = 1, λ =
1

(4− s)
(η > 1) (3.34)

One interesting property of continued interaction emission is its direct dependence on the
CSM density structure. In particular, if s < 5 − 3/λ then the continued interaction phase
will rise in time. For η ≪ 1 and ejecta density n ≈ 10, this requires a CSM shallower than
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Figure 3.5: Numerical model results in terms of their breakout duration and luminosity for
edge (red) and interior (blue) breakout events separated by light CSM (circles) and heavy
CSM (squares). We also show the shock cooling emission for a subset of edge breakout events
(brown points). Dashed blue and red lines denote Mcsm and Rcsm contours from Eqs. 3.52
and 3.54, respectively. The space of radioactive-powered transients is shown as a shaded
grey region. Here, the models cover ejecta mass/energy in the range 0.1M⊙ ≤Mej ≤ 10M⊙
and 1049 ≤ Esn ≤ 1052 ergs, respectively.
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Figure 3.6: Numerical light curves of CSM interaction for different CSM parameters, assum-
ing fixed ejecta properties Mej = M⊙ and Esn = 1051 ergs. Top row : varying Mcsm for two
fiducial choices of Rcsm in the edge (left) and interior (right) regimes. Bottom row : varying
Rcsm for two fiducial choices of Mcsm in the light (left) and heavy (right) CSM regimes.

s < 5/4.Note also that for a steady wind-like CSM profile s = 2, the light curve will decrease
in time irrespective of the ejecta denisty profile.

The CSM density power-law index, s, does not significantly affect the time of shock break-
out or shock emergence, but it does affect the overall luminosity (see Fig. 3.10). Breakout
luminosity is more luminous for steeper CSM, while the luminosity at shock emergence
Lci(tse) will be more luminous for shallower CSM profiles. Accounting for the density profile
effects in the CSM, the characteristic shock luminosity scales with s as

Lsh,0 =
3− s

4π

[
1−

(
R∗

Rcsm

)3−s
]−1

L0 (3.35)

where R∗ is the inner edge of the CSM and we have assumed s < 3.
Once the shock reaches the outer edge, the light curve will drop with only a residual

amount of shock cooling emission, as nearly all of the shock energy had already been radiated
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Figure 3.7: Correlation of the CSM properties with the breakout luminosity Lbo (left column)
and duration ∆tbo (right column). Points correspond to model light curves in Fig. 3.6, while
lines give the analytic scalings of §3.4 with specific formulae provided in Appendix A. Top
row : dependence of Lbo and ∆tbo on Mcsm, in the edge ξ > 1 (red) and interior ξ < 1 (blue)
breakout regimes. The break in behavior around Mcsm = M⊙ corresponds to the transition
from light (η ≪ 1) to heavy (η ≳ 1) mass regimes. Bottom row : dependence of Lbo and ∆tbo
on Rcsm, in the light (yellow) and heavy (purple) CSM regimes. The break in the scaling
behavior denotes the transition from edge to interior breakout.
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away through continued interaction.

3.5 Numerical Simulations

We perform one-dimensional radiation hydrodynamics simulations of CSM interaction. We
couple the finite-volume moving mesh method of [152] to a gray flux-limited diffusion solver
based on [38] and [153].

We have implemented 1D spherically-symmetric radiation hydrodynamics in Sedona [75,
154], using the finite-volume moving-mesh method described in [152]. We modify the hydro-
dynamics to include radiation using a comoving-frame grey flux-limited diffusion treatment
based on [153, 155] and [38]. We use an operator split approach where the hydrodynamics
and radiation advection is solved explicitly with a second-order Runge Kutta timestepping
with Courant condition CCFL = 0.1; the nonlinear diffusion and matter-radiation coupling is
solved implicitly using a Newton-Raphson method with relative error threshold of ϵ = 10−10.
The resulting linear system for the radiation energy density is directly solved using Thomas’
tridiagonal matrix algorithm [156]. We use an absorbing outer boundary condition for the
radiation.

We use a uniform gray opacity κ for the ejecta and CSM that is constant in time, with
a fiducial value of solar electron scattering, κ = 0.34 cm2 g−1. We take a fraction of the
scattering opacity to be absorptive, i.e. κabs = ϵabsκ, where ϵabs = 10−3 [157]. Note that we
ignore recombination, which may be important in certain cases during lower-temperature
shock interaction (see e.g. [122]).

We initially evolve the simulations with a fixed Eulerian grid of 1024 and 2048 cells for
the ejecta and CSM, respectively. Note that this resolution may be insufficient to completely
resolve the shock structure for cases where the shock radiation efficiently escapes. However,
completely resolving the shock structure is not necessary as we are concerned primarily
with the bulk conversion of kinetic energy into escaping radiation. We have confirmed with
additional simulations that increasing the resolution to resolve the shock structure does not
impact the resulting light curve.

Once the shock nears the breakout layer, we turn on Lagrangian mesh motion to follow
the shock breakout and subsequent expansion, and evolve the system out to late times to
capture shock cooling. We extract bolometric light curves by taking the comoving radiative
flux at the outermost boundary of the domain.

Problem Setup

We assume a spherically symmetric ejecta of mass Mej and energy Esn with initial density
profile given by a broken power law [140, 146]

ρej(r) = fρ
Mej

r3t

[
r

rt

]−(δ,n)

(3.36)
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where the inner and outer density profiles are δ and n, respectively. The normalization
factor is given by

fρ =
1

4π

(n− 3)(3− δ)

(n− δ)
(3.37)

The transition radius of the broken power law is given by

rt = vtt0 (3.38)

where

vt =

√
fvEsn

Mej

(3.39)

and

fv =
2(5− δ)(n− 5)

(n− 3)(3− δ)
(3.40)

We choose an initial time t0 such that rt ≪ Rcsm, the outer CSM radius, with a fiducial
value of t0 = 103 seconds.

The ejecta velocity is assumed to be homologous,

vej(r) = vt

[
r

rt

]
(3.41)

Finally, we initialize the ejecta to be initially cold, with a uniform temperature Tej = 102 K.

CSM Setup

We assume a shell of CSM of mass Mcsm and radius Rcsm. The CSM density profile is
described by a power-law

ρcsm(r) = fcsm
Mcsm

R3
csm

[
r

Rcsm

]−s

(R∗ < r < Rcsm) (3.42)

where

fcsm =
(3− s)

4π

[
1−

(
R∗

Rcsm

)3−s
]−1

(3.43)

Here, R∗ is the inner radius of the CSM, and set to a fixed value of 10−2Rcsm (i.e. R∗ ≪ Rcsm).
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At the outer CSM edge r = Rcsm, we stitch on a steep cutoff layer with density profile

ρ(r) = fcsm
Mcsm

R3
csm

[
r

Rcsm

]−p

(Rcsm < r < (1 + fbo)Rcsm) (3.44)

where p≫ 1, and (1+fbo)Rcsm is the outer radius of the breakout layer. We adopt a fiducial
width for the breakout layer of fbo = 1/3, and a density profile p = 30. The exact numerical
choice of p does not affect the solution (see §3.4), as long as p ≫ 1. Finally, the CSM is
initially stationary (i.e. v = 0) and cold, Tcsm = 102 K.

A full description of the numerical method is given in Appendix (?). We adopt the same
assumptions and parameters described in §3.4. Namely, the ejecta is described by a mass
Mej and kinetic energy Esn undergoing homologous expansion, whose density structure is
given by the broken power-law form of [140]. We assume fiducial values of δ = 1 and n = 10
for the inner and outer ejecta density profiles, respectively.

The CSM extends from an inner edge R∗ to an outer radius Rcsm with mass Mcsm, with
a power-law density profile s. We adopt a fiducial wind-like s = 2 for most runs, unless
otherwise stated, and take R∗ = 10−2Rcsm (i.e. R∗ ≪ Rcsm). Additionally, we attach a
steep cutoff layer at the outer edge of the CSM described by a power-law r−p, which we take
p = 30 as fiducial. As discussed in Sec. §3.4, the exact numerical choice does not matter so
long as p≫ 1. The CSM and ejecta are both initially cold, with T0 = 102 K, and described
by the same uniform gray opacity κ = 0.34 cm2 g−1. We use a thermalization fraction of
ϵ = 10−3. Finally, we initialize the setup at a time t = 103 seconds after explosion. For a
more detailed description of the problem setup and relevant equations, see Appendix ??.

We consider a range of ejecta and CSM properties to cover the diversity of light curves
expected from the different regimes outlined in §3.3. Specifically, we use ejecta masses and
energies between 0.1M⊙ ≤ Mej ≤ 100M⊙ and 1049 ≤ Esn ≤ 1052 ergs. For the CSM, we
consider mass and radii in the range 0.01M⊙ ≤Mcsm ≤ 100M⊙ and 102R⊙ ≤ Rcsm ≤ 106R⊙,
respectively. In total, we ran approximately 100 different ejecta-CSM interaction scenarios
within the numerical parameter space.

For each run, we measure the breakout peak luminosity Lbo and time tbo, as well as the
duration ∆tbo which we take to be the time to rise to peak by one order of magnitude. For
the edge breakout events which feature two light curve peaks, we measure the secondary
peak to determine Lsc and ∆tsc. We also fit a power-law to the continued interaction tail of
interior breakout events to compare with Eq.3.33.

We use the grid to also construct numerical scalings for each phase of each interaction
type. In particular, we adopt fitting formulae for luminosity and time of the i-th phase as

Li = aiη
−3αiξkiL0 (3.45)

ti = biη
αiξcit0 (3.46)

where (αi, ki, ci) are fitting exponents, and (ai, bi) are normalization factors to account for
numerical differences compared to the analytic scalings. The results of the numerical fits for
the different phases and classes, as well as correction factors for the analytic scalings of §3.4,
are given in Appendix B.1.
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Overall Properties of Model Grid

In Fig. 3.5 we show the duration-luminosity phase space of the model grid breakout proper-
ties. We additionally show the secondary shock-cooling peak for the subset of edge breakout
events that have a clear double-peaked light curve. The resulting light curves will have
timescales ranging from very rapid (∼ minutes) to long-lasting (∼ months); and peak lumi-
nosities spanning the sub-luminous 1041 erg s−1 all the way to highly superluminous ∼ 1045

erg s−1 events. The peak luminosities correlate inversely with duration, with a spread in the
trend due to the diversity of CSM and ejecta parameters. Note that more extreme events
in terms of peak properties may be possible for an expanded parameter space broader than
the range considered here.

The flashes from edge breakout events (ξ ≫ 1) tend to occupy the high-luminosity and
short-duration portion of phase space. For CSM radii of Rcsm ∼ 102 − 103R⊙, the edge
breakout flash resembles expected stellar surface shock breakout luminosities and durations,
lasting on the order of a few minutes to hours. Larger CSM radii tend to produce longer-
lasting edge breakouts, as seen in Fig. 3.5. Typical edge breakout luminosities range from a
few times 1043 erg s−1 on the lower end, reaching up to highly superluminous events ≳ 1045

erg s−1 for the most energetic interactions.
The flashes from interior breakouts (ξ ≲ 1) bifurcate into different regions of phase space

depending on the value of η = MCSM/Mej. Heavy CSMs (η ≳ 1) occupy the brighter and
longer-duration of the interior breakouts, spanning days to months in duration and peaks of
∼ 1044 erg s−1. Interior breakouts from light CSMs (η ≪ 1) are comparatively shorter (days
to weeks) and dimmer, with a wider range in peak luminosities from ∼ 1042 to 1044 erg s−1.

Compared to shock breakout, the post-breakout shock cooling emission generally pro-
duces lower peak luminosities and longer durations, comparable to those observed in typical
radioactive nickel-powered transients. If the breakout flash from these events is missed due
to its rapid timescale, it may in practice be hard to distinguish between interaction and
radioactive decay light curves using photometry alone.

Dependence on Circumstellar Mass

To numerically examine the effect of Mcsm on the light curve, we hold constant the ejecta
properties (Mej = M⊙, Esn = 1051 erg) and vary the CSM mass in the range 10−2M⊙ <
Mcsm < 102M⊙. This covers the CSM regime from light (η ≪ 1) to heavy (η ≳ 1). Addi-
tionally, we adopt two fiducial values of Rcsm = 103R⊙ and 105R⊙, which result in an edge
and interior breakout, respectively.

The top row of Fig. 3.6 shows the resulting light curves as a function of Mcsm while
Figure 3.7 plots the dependence of Lpeak and ∆t on Mcsm. The dependencies are non-
monotonic and – as expected from the analytic relations of §3.3 – scale differently in the
regimes of edge breakout (ξ > 1) and interior breakout (ξ < 1) and for η ≪ 1 and η ≳ 1.

In Fig. 3.7, the breakout scalings of Lbo and ∆tbo withRcsm andMcsm are shown compared
to the analytic scalings derived in Sec. 3.4. Overall, the analytics agree well with the
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numerical results, correctly predicting different scalings depending on a light/heavy and
edge/interior breakout scenario. In particular, the turnover in the dependence of Lbo onMcsm

around η ∼ 1 is reproduced for both edge and interior breakouts. The numerical results show
a turnover in the edge breakout case at a lower CSM mass than the analytics predict, as
the shock reaches the shallow inner portion of the ejecta and the self-similar scalings break
down. Specifically, the ratio of outer to inner ejecta mass is equal to (3−δ)/(n−3) ≈ 0.3 for
δ = 1 and n = 10 [140], and so for η ≳ 0.3 the shock behavior changes. Note that the exact
behavior of the transition in the η ≈ 1 range is not well-sampled in our numerical simulations,
which limits the applicability of our analysis for interaction events in this parameter space.

Consider first the case of light CSM (η ≪ 1). If we are in the regime of edge breakout
(ξ ≳ 1) the luminosity of the light curve peak depends only weakly on Mcsm, since breakout
happens at effectively the same radius rbo ∼ Rcsm and velocity vbo ∼ vej (since there is not
much deceleration for η ≪ 1). If breakout occurs in the CSM interior (ξ ≲ 1), the light
curve is slightly brighter for higher values of Mcsm, since the breakout location τ ∼ c/vbo is
reached later during the shock evolution (i.e. at a larger breakout radius rbo).

The breakout duration also scales differently depending on whether we are in the interior
or edge breakout regime. For interior breakouts (ξ ≲ 1), the duration is set primarily by
shock crossing and radiative diffusion, giving a longer duration for largerMcsm. However, for
edge breakouts (ξ ≳ 1) from light CSM, the duration actually decreases with increasingMcsm.
This can be understood by examining Eq. 3.22, where the edge breakout duration depends
on the shock crossing of the breakout layer. For a light CSM, the width of the breakout
layer decreases with increasing Mcsm while the ejecta is not much decelerated vbo ∼ vej, and
so the shock crossing time δrbo/vbo (i.e. breakout duration) decreases.

As we continue increasingMcsm, we enter the heavy CSM regime, η > 1. For this regime,
the entirety of the ejecta is decelerated, and the maximum shock energy of ∼ Esn is reached
at η = 1. Any additional CSM mass beyond Mej only acts to decrease the shock velocity
∼ vejη

−α, resulting in a dimmer light curve. As a result, the heavy CSM η ≳ 1 breakout
luminosity decreases withMcsm, with similar scalings for both edge and interior breakouts, as
shown in Fig. 3.7. Furthermore, the breakout duration increases with Mcsm, with a steeper
dependence for interior breakouts.

In addition to the breakout properties, Mcsm will also impact the the post-breakout
emission, i.e. shock cooling and continued interaction for edge and interior breakouts, re-
spectively. For the edge breakout case in Fig. 3.6, the shock cooling emission becomes
dimmer and longer-lasting with Mcsm. A larger Mcsm results in a longer diffusion timescale,
which keeps the radiation trapped for longer and exacerbates adiabatic losses in the cool-
ing phase. This effect is most pronounced for the heavy CSM, which have a longer-lasting
“plateau” of shock cooling emission, seen in the upper left panel of Fig. 3.6. For light CSM,
the shock cooling appears more as a tail immediately following the breakout emission, while
for heavy CSMs the shock cooling is more distinctly separated from breakout, appearing as
a secondary feature in the light curve well after the breakout has subsided.

The post-breakout emission in interior breakout events is produced through continued
interaction, which powers a tail in the light curve before a sharp drop in luminosity at shock
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Figure 3.8: Numerical light curves for fixed CSM properties and ejecta mass Mej = 5M⊙,
varying the kinetic energy Esn.

emergence. The continued interaction luminosity is more luminous with increasing Mcsm in
the light CSM regime η ≪ 1, since vsh is only minimally decelerated while the CSM density
increases with Mcsm. For η ≳ 1, due to the significant shock deceleration, the continued
interaction luminosity instead decreases with Mcsm. This also leads to a much later shock
emergence time once we reach heavy CSM masses.

The continued interaction tail reaches a maximum luminosity for masses η = 1, whereby
any additional Mcsm > Mej instead results in a less luminous light curve. Furthermore, the
light curve slope becomes steeper as we enter the heavy CSM η ≳ 1 regime, as the shock
begins to behave more as a snowplow blastwave whose exponents are given by Eq. 3.34
instead of the η ≪ 1 exponents in Eq. 3.28.

Dependence on Circumstellar Radius

Here we use the same ejecta properties as in the previous section (Mej =M⊙ and Esn = 1051

ergs), but instead vary Rcsm while keeping Mcsm fixed. We consider CSM radii in the range
102R⊙ < Rcsm < 106R⊙ for two fiducial masses corresponding to a light Mc̊sm = 0.1M⊙ and
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Figure 3.9: Same as Fig. 3.8, but varying the ejecta mass with a fixed Esn = 1051 ergs.

heavy Mcsm = 10M⊙ CSM.
As the models in the bottom row of Fig. 3.6 have fixed Mcsm and ejecta properties, the

criteria ξ > 1 (i.e. breakout occuring at the CSM edge) is reached for Rcsm ≲ 104R⊙. The
light curves display a qualitative change in behavior in the two regimes of edge and interior
breakout, transitioning from a double-peaked breakout with shock cooling for Rcsm ≲ 104R⊙
(ξ ≳ 1) to a single peak with a continued interaction tail for Rcsm ≳ 104R⊙ (ξ ≲ 1).

In Fig. 3.7 the analytic scalings of Lbo and ∆tbo on Rcsm are compared with the numerical
results. In the limit of an edge or interior breakout, the analytic scalings match reasonably
well with the numerical simulations. In the intermediate regime around 104R⊙, the scalings
are less robust, given the assumption of a fixed k0 as introduced in §3.4 for interior breakouts.
Note also that the analytics presented predict an independence of Lbo on Rcsm for the edge
breakout scenario. The numerical simulations qualitatively agree with this prediction, albeit
with a slight positive correlation with Rcsm.

In general, larger CSM radii produce later and longer-lasting light curves, as the shock
takes more time to reach the outer edge of the CSM. Furthermore, with increasing Rcsm and
fixed Mcsm, we are spreading the mass out over a larger volume, which decreases τsh during
interaction. Eventually, Rcsm becomes large enough that we enter the interior breakout
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regime ξ ≲ 1, whose light curve is marked by continued interaction rather than a shock
cooling tail. This behavior holds for both a light and heavy CSM, with the primary difference
of the two CSM mass regimes being the relative prominence of the post-breakout emission.

For small CSM radii such that we are in the edge breakout regime, increasing Rcsm results
in a longer-lasting dark phase, brighter breakout peaks, and a slower breakout rise. This
behavior holds for both light η ≪ 1 and heavy η ≳ 1 CSM masses which also have similar
scalings, shown in Figs. 3.7. The post-breakout shock cooling luminosity increases strongly
as Lsc ∝ Rcsm, although the cooling timescale appears nearly independent of the radius.

As we continue to increase the CSM radius we eventually enter the interior breakout
regime ξ ≲ 1. In this case, the breakout duration and luminosity turn over and begin
decreasing slightly with increasing Rcsm. This break is more pronounced for light CSM
masses, shown in the bottom-left panel of Fig. 3.6. Furthermore, the post-breakout emission
changes from shock cooling to continued interaction at these larger radii. While the shock
cooling luminosity increases with Rcsm, the continued interaction tail becomes less luminous
for larger Rcsm; the decrease is more pronounced for light CSM masses. Finally, while the
shock cooling duration is independent of Rcsm, the continued interaction tail scales directly
with the shock emergence timescale tse ∝ Rcsm.

Dependence on Ejecta Mass and Energy

Next, we consider the case of a fixed CSM, Mcsm = M⊙ and Rcsm = 1014 cm (i.e. fixed
τ0 ∼ 103), while holding Mej = 5M⊙ constant (η = 0.2). We vary the ejecta kinetic energy
across the range 1049 ≤ Esn ≤ 1052 ergs, which is equivalent to a characteristic velocities
between 10−3 ≤ β0 ≤ 0.05.

We show the resulting light curves for the different Esn in Fig. 3.8. We find higher-energy
explosions produce earlier, faster, and brighter light curves, with Lbo ∝ E

5/2
sn ; this is due to

higher kinetic energies producing faster and stronger shocks. The scale of Esn does not just
affect the characteristic timescale and luminosity of the light curve; it can also affect the
type of interaction. As we go to lower energies in Fig. 3.8, eventually we enter the ξ ≲ 1
regime and the shock breaks out within the CSM rather than at the edge. In this case, the
post-breakout emission will change from a shock cooling to a continued interaction phase.

We also examine the effect of a fixed ejecta kinetic energy Esn = 1051 ergs with the same
CSM properties as above, but vary the ejecta mass across 0.03M⊙ ≤ Mej ≤ 100M⊙. We
show the resulting light curves of the Mej range in Fig. 3.9. As we increase Mej > M⊙,
which corresponds to the η > 1 case, the light curves become longer and dimmer since
vsh ≈ vej ∝M

−1/2
ej for fixed Esn. Furthermore, as the amount of energy tapped in the η < 1

case is ∼ Mcsmv
2
sh, we are also fractionally converting less kinetic energy as we increase

Mej. For large enough Mej, the shock velocity drops low enough that the post-breakout
emission transitions from shock cooling to continued interaction, similar to the case of the
lower-energy explosions.

On the other hand, as we decrease Mej below M⊙, we enter the η ≳ 1 regime where the
light curve becomes nearly independent of Mej. This corresponds to the limit of a point
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Figure 3.10: Numerical light curves for a light interior breakout (η ≪ 1, ξ < 1), with different
assumed CSM density profile ρ ∝ r−s. Dashed lines correspond to the power-law expression
for the continued interaction phase Eq. 3.33.

explosion inside the CSM, and the only ejecta parameter that sets the light curve behavior
will be Esn. Furthermore, the exact density structure of the ejecta is irrelevant, unlike the
η ≪ 1 case where the continued interaction tail is set directly by the outer density profile.
In practice, this can make constraining the ejecta mass challenging in this limit due to the
Mej degeneracy.

Radiated Efficiency

The efficiency with which interaction converts kinetic energy into observable radiation is an
important consideration when physically interpreting transients. In particular, for interac-
tion to explain long-lasting luminous supernovae with integrated radiated energy reaching
1051 erg likely requires efficiencies not far below unity. Here we quantify the achievable
efficiency throughout the parameter space.

We can determine the radiated efficiency of our numerical models by integrating the light
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Figure 3.11: Radiated efficiency εrad as a function of the breakout parameter ξ. Points
correspond to numerical simulations for the case of η = 0.1 (blue circles) and η = 10 (orange
squares). Solid lines give the analytic expression in Eq. 3.48 for each choice of η.

curve and comparing it to the initial ejecta kinetic energy,

εrad =
1

Esn

∫
L(t) dt (3.47)

For η ≪ 1, from energy conservation, the interaction will convert a fractionEsh ∼ Esn (vsh/vej)
5−n

of the amount of kinetic energy contained in the steep outermost layer of the ejecta into inter-
nal gas/radiation energy, where vsh ∼ vejη

−α and α = 1/(n− 3) (see Appendix B.2 for a full
derivation). Thus, the radiated efficiency for η ≪ 1, assuming no adiabatic losses and efficient
conversion of shock energy into radiation, is roughly εrad ∼ ηa0 , where a0 = (n− 5)/(n− 3).
For η ≳ 1, this reaches a potential maximum of unity, as the shock will tap into the entirety
of the ejecta kinetic energy.

While the radiation remains trapped in the shocked region, it will suffer adiabatic losses
that acts to degrade the efficiency by converting the radiation back into kinetic energy. For
ξ < 1, adiabatic losses are minimal as the shock radiation is able to efficiently escape. For
ξ > 1, the radiation will be adiabatically degraded by a factor proportional to (td/t0) ∼
(κMcsmv/R

2
csmc)

1/2 ∼ ξ−1/2, where td =
√
κMcsm/vejc and t0 = Rcsm/vej.
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We can interpolate between the regimes of light/heavy CSM and the effect of adiabatic
losses with the analytic expression

εrad ≈
1

(1 + 2/η)a0

(
1 +

ξ

2

)−1/2

(3.48)

where a0 = (n−5)/(n−3) = 5/7 for n = 10. In Fig. 3.11 we show the efficiency compared to
Eq. 3.48 for a series of light (η = 0.1) and heavy (η = 10) CSM interactions, where we vary
Rcsm to produce a range of breakout parameters ξ. The numerical simulations agree well
with Eq. (3.48) across the different interaciton regimes. We see that the efficiency reaches a
maximum in the regime of ξ < 1, i.e the interior breakout regime. In this case, the photons
from the breakout and continued interaction tail are able to escape before incurring much
adiabatic losses, and hence are the more efficient class of interaction. The most efficient case
corresponds to η = 1 and ξ < 1, where we tap almost all of the kinetic energy and quickly
radiate away the shock photons.

In contrast, once we enter the regime of ξ > 1, the photons can no longer quickly
escape, coming out during the shock cooling phase after being adiabatically degraded. This
corresponds to the edge breakout case, and εrad ∝ ξ−1/2. Thus, although edge breakouts
produce some of the more luminous transients expected from interaction, they are also
reduced in their net radiative throughput due to the large optical depths of the CSM. In
Fig. 3.12 we show the radiated efficiency for the case of interaction of a solar mass ejecta
with kinetic energy Esn = 1051 ergs, in terms of the Mcsm-Rcsm space. We see that massive,
extended CSMs are the most efficient interactions, while a compact low-mass CSM only
converts a small fraction of Esn.

There is one other effect that will reduce the radiated efficiency of the interaction, which
occurs when the shock is unable to cool efficiently, as described in §3.3. Specifically, if
the CSM is so optically thin τ0 ≲ 0.3v9, then we enter the adiabatic shock regime, and
few photons are produced. Thus, although low CSM optical depths improve efficiency by
reducing adiabatic losses, it cannot be too low such that the shock is unable to cool. At the
τ0 ≲ 0.3v9 limit, we therefore expect the efficiency to turn over again.

3.6 Discussion

When invoking circumstellar interaction to interpret an observed transient, care must be
taken to ensure that the analysis is self-consistent. That is, we must first decompose the
light curve and identify the separate phases outlined in §3.3, as each phase has a different
dependence on the underlying physical parameters (§3.4). The relative prominence of each
phase and the corresponding scaling are determined by the dimensionless parameters η and
ξ. For example, as shown in Fig. 3.7, the light curve duration and luminosity depend on
Mcsm and Rcsm in a non-monotonic way as we transition from an edge (ξ > 1) to an interior
breakout (ξ < 1), or from a light (η ≪ 1) to heavy CSM (η ≳ 1). Applying an edge breakout
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Figure 3.12: Radiated efficiencies from the interaction of a solar mass ejecta with Esn = 1051

ergs of kinetic energy, for a range of CSM masses and radii. Lighter regions denote higher
efficiencies.

scaling relation to e.g. an interior breakout would result in an incorrect estimate of the
physical parameters of the system.

It may be challenging to observe a light curve at a high enough cadence to see all of the
interaction phases. The flash originating from an edge breakout is a particularly hard phase
to capture, given its fast rise and immediate decline. If we are unable to catch the transient
early enough, only the post-breakout shock cooling emission may be observed. In contrast,
an interior breakout from a heavy CSM will be much easier to observe given its gradual rise
and fairly luminous peak, but the light curve may need to be followed up for a fairly long time
to capture the continued interaction tail and shock emergence drop, which can take more
than a year in certain cases. When all phases of the interaction are not observed, there are
typically degenerate solutions that fit the same light curve photometry with very different
CSM masses and radii (see Figure 3.5). Invoking significant heating by radioactive nickel or
a central engine further increases this degeneracy. In such cases, spectral information can
be valuable for refining the interpretation.

Another issue that can arise when interpreting observed light curve concerns the dark
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phase which is by definition unobservable. This phase obfuscates the exact time of progenitor
explosion. In certain cases, the interaction may completely overshadow the stellar breakout
burst and radioactive heating. In other cases, the transient light curve will be explained by
a combination of early interaction emission followed by heating from additional sources e.g.
radioactive decay [11, 96].

In what follows, we give four case studies of observed transients which apply the theo-
retical framework introduced in this work. We suggest a connection between each observed
transient class and one of the four theoretical interaction classes delineated in §3.3. While
the true mapping may be more multi-faceted than this, we intend only to illustrate how
the general framework can be useful in organizing data samples, as well as to point out the
degeneracies that may arise when trying to fit observed events with interaction models. Due
to these degeneracies, the model parameters may contain significant uncertainty when fitting
to specific events, such as is shown in Fig. (3.14).

Light Interior Interaction as Type Ibcn/IIn Supernovae

CSM interaction has historically been used to explain narrow emission features in supernova
spectra [9, 160, 161], where the narrow lines reflect the slow-moving velocity of the unshocked
CSM. Such transients (i.e. type Ibn, Icn, IIn, and related events) may be associated with
the continued interaction phase that occurs in interior breakout events. Given the typical
luminosity range and inferred velocities, they are likely the result of an η ≪ 1 ”light” CSM
interaction which converts only a fraction of the ejecta kinetic energy into radiation (i.e.
εrad ≪ 1).

Once the breakout radiation has subsided, the light curve will enter the continued inter-
action phase and track the instantaneous shock luminosity L(t) = Lsh, where Lsh is given
by Eq. (3.10). If we assume power-law ejecta and CSM density profiles ρej ∝ r−n and
ρcsm ∝ r−s, then the numerically-calibrated continued interaction phase can be analytically
expressed from Eq. (3.33) as

L(t) ≈ 0.2L0η
−3α

[
t

tse

](5−s)λ−3

(3.49)

where L0 = Mcsmv
3
ej/Rcsm; tse = ηαRcsm/vej is the shock emergence time Eq. 3.13; and the

exponents for the η < 1 regime are given by Eqs. 3.12 and 3.28 as

λ =
(n− 3)

(n− s)
, α =

1

(n− 3)

For the specific case of a constant wind mass loss Ṁ , the CSM density profile is ρcsm(r) =
Ṁ/4πr2vw where vw is the wind velocity. The continued interaction phase of a wind will
therefore evolve as

L(t) ≈ Ṁ

vw
v
3(n−3)/(n−2)
sh R3/(n−2)

w t−3/(n−2) (3.50)
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Figure 3.13: Fits of numerical simulations of each interaction type to several observed tran-
sients spanning a range of durations and luminosities. Open triangles denote upper limits
on the light curve during the dark phase. Data taken from [158] for OGLE-2014-SN-131;
[97] for SN2006gy; [159] for AT2018cow; and [11] for iPTF14gqr.
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where Rw ≈ vwtw is the outer radius of a wind moving at a constant velocity vw for a duration
tw. For our fiducial case of n = 10 and scaled to physical units, this becomes

L(t) ≈ 8.8 · 1043 Ṁyrv
−5/8
w,5 t3/8w,yrv

21/8
sh,8 t

−3/8
1d erg s−1 (3.51)

where Myr is the wind mass loss in units of M⊙/ yr; vw,5 = vw/10
5 cm s−1; tw,yr = tw/1

yr; vsh,8 = vsh/10
8 cm s−1; and t1d is the time in days. From this we see that continued

interaction with a steady wind will always produce a declining light curve. Thus, a flat
or rising continued interaction phase requires a flatter wind density profile created by a
non-constant mass loss episode Ṁw(t).

This class of interaction will display a fairly wide diversity of light curve morphologies
due to its sensitive dependence on the CSM density profile. In Fig. 3.10, we show how
such continued interaction-dominated light curves vary with the density profile. For steeper
CSM profiles, the breakout becomes more luminous and prominent, even though the time of
breakout as well as shock emergence does not change. For η > 1, the shape is not affected
as drastically by the CSM density profile. Given that these events track the instantaneous
shock luminosity, any minute variation in the CSM density profile will show up in the light
curve as a “bump” during the continued interaction phase [162].

Fig. 3.13 shows an example of an observed interacting SN, OGLE-2014-SN-131, a type
Ibn event whose light curve rose gradually then abruptly fell off [158]. In our framework,
this can be interpreted as an η < 1 and ξ < 1 interaction event with a sustained continued
interaction phase. To get a rising light curve in this phase requires a shallow CSM density
profile exponent s < 5− 3/λ, where λ is given above and in Eq. 3.28. For an ejecta density
profile of n = 10, this gives λ = 7/(10 − s) i.e. requiring a CSM density profile shallower
than s < 5/4.

The best-fitting model for OGLE-2014-SN-131 estimates s ≈ 1 to get the correct rise and
peak luminosity, which would indicate an episode of unsteady mass loss compared to the
wind-like s = 2. In this model, the sharp decline in the light curve after peak is associated
with shock emergence from the outer edge of the CSM layer, which leads to a sudden halt
to the interaction power.

Heavy Interior Interaction as Superluminous Supernovae

Some superluminous supernovae have total radiated energies in excess of ∼ 1051 ergs [99]. To
achieve this in an interaction model requires efficient conversion of the ejecta kinetic energy
to radiation (i.e. ϵrad ∼ 1). From Figure 3.12, this can occur for heavy CSM (η ≳ 1) and an
interior breakout scenario ξ < 1 for which adiabatic expansion losses are minimized.

For heavy interior interactions, we can combine the light curve expressions Eqs. 3.31 and
3.32 using the Sedov exponents α = 1/2 and λ = 2/(5− s) (from Eqs. 3.12 and 3.28) to get
a constraint on the CSM mass as

Mcsm ≈ 5κ−2/3L
1/3
bo,44∆t

5/3
bo,30d M⊙ (3.52)
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where ∆tbo,30d = ∆tbo/30 days. This equation only remains valid if the inferred CSM mass
Mcsm is indeed greater than the supernova ejecta mass Msn.

For SN2006gy [97], the observed breakout properties were Lbo ≈ 1.8 · 1044 erg s−1 and
∆tbo ≈ 60 days. Thus, assuming a solar composition κ = 0.34 cm2 g−1, we getMcsm ≈ 40M⊙.

Additionally, for η > 1, the shock emergence timescale Eq. 3.13 can be rewritten using
α = 1/2 to get tse ≈ RcsmM

1/2
csmE

−1/2
sn . For heavy interior breakouts we can then approximate

Esn ≈
∫
L(t)dt = Erad by assuming large radiated efficiencies εrad ≈ 1 from Eq. 3.47. Thus,

our additional CSM constraint based on light curve measurements becomes

Rcsm ≈ 103E
1/2
rad,51M

−1/2
csm,⊙tse,d R⊙ (3.53)

For SN2006gy, the observed measurements were Erad ≈ 1.2 · 1051 ergs and tse ≳ 300 days,
giving Rcsm ≈ 5 · 104R⊙ using Mcsm ≈ 40M⊙ from above.

In Fig. 3.13 we show the best-fit model based on the parameters given in Table ??,
showing that our estimate is fairly close to the above analysis compared to a full numerical
simulation. Note that the model kinetic energy is Esn = 2.5 · 1051 ergs, implying a radiated
efficiency closer to εrad ≈ 0.5. We have also found that a CSM density profile of r−2.5 rather
than the fiducial wind-like r−2 better fits the late-time light curve evolution, which would
be indicative of a non-constant mass-loss episode in producing SN2006gy’s circumstellar
environment.

Finally, note that the continued interaction phase is still present in this case, although it
may be less pronounced as that for Ibn/IIn due to the longer duration and much more lumi-
nous breakout peak, since it takes longer to subside and reveal the underlying instantaneous
shock luminosity Eq. 3.33 with the snowplow exponents Eq.3.34. Similar to the previous
case, any variations in the CSM density profile will be imprinted on the light curve, resulting
in light curve bumps. Such behavior has been seen in superluminous supernovae [163].

Light Edge Interaction as Fast Blue Optical Transients

Interaction may be relevant in explaining the light curves of so-called fast blue optical tran-
sients, or FBOTs [94, 125, 159, 164]. These events generally rise in less than a day to
reach peak luminosities in excess of 1044 erg s−1. Perhaps the most well-studied example is
AT2018cow, also referred to as ”The Cow” [159].

The fast rise and decline of the light curve favors a breakout flash as the theoretical
interpretation, followed by a shock cooling tail. In order to get a rapid breakout flash, we
must be in the edge breakout regime, ξ > 1. Furthermore, the rapid timescale of the shock
cooling implies lowish diffusion times, i.e. η < 1.

To constrain the properties of the CSM in this regime, we can combine the edge breakout
expressions Eqs. 3.20 and 3.22 to get an expression for the CSM radius as

Rcsm ≈ 2 · 103 κ1/3L1/3
bo,44∆t

2/3
bo,d R⊙ (3.54)
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Figure 3.14: Numerical model fits to the light curve of AT2018cow [159], using slightly
different ejecta and CSM parameters. The fiducial model corresponds to the one shown in
Fig. 3.13.

For The Cow which had Lpeak ≈ 3 · 1044 erg s−1 and a rise to peak time of ∼ 1.5 days, this
gives a radius Rcsm ≈ 3 · 103R⊙ (assuming κ = 0.34 cm2 g−1), in rough agreement with the
numerical best fit model shown in Fig. 3.13.

In the η < 1 case, it may be difficult to distinguish between the breakout flash and
subsequent shock cooling tail. In Fig. 3.14 we show how the early part of The Cow can be
fit with a variety of ejecta and CSM parameters, using a slightly different CSM mass than
in Fig. 3.13. All three models give a reasonably good fit to the rise and peak luminosity of
the light curve, i.e. the breakout. Their primary difference around peak is how much of the
early emission comes from the breakout flash vs. shock cooling, each of which is described
by different expressions Eqs. 3.20 and 3.24. It is only until much later that the models begin
to reveal differences during the shock cooling phase, which may be harder to observe due to
its lower luminosity and contamination from other effects such as recombination [122, 137]
or radioactive decay [96].
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Heavy Edge Interaction as Double-peaked Transients

The observed Type Ic SN iPTF14gqr had a fast-rising (∼ 1 day) early luminosity excess,
followed by a more extended primary light curve [11]. This light curve can be explained
in multiple ways. In the original interpretation of [11], shock cooling powered the early
bump while radioactive decay powered the primary light curve. In Fig. 3.15 we use the
same parameters as described in [11], showing that the early excess can indeed be fit by a
shock cooling tail. However, this model also predicts a breakout flash that is two orders of
magnitude more luminous than the brightest measurement. That such an observed breakout
flash was unseen in iPTF14gqr may be a result of the cadence of the observations and the
fact that this flash is primarily in very blue bands that might not have been easily captured
by optical observations.

Alternatively, the double-peaked light curve can be explained entirely by interaction,
without invoking multiple heating sources. Namely, shock breakout produces the initial brief
and luminous peak, while shock cooling produces the secondary longer-duration peak. The
CSM mass must be sufficiently high, otherwise the shock cooling emission blends into the
breakout emission, rather than forming a distinct double-peaked morphology (see Figure 3.6).
This can be quantified using Eqs. 3.20 and 3.24, to write the ratio of the shock cooling peak
to the breakout peak

Lsc

Lbo

∼ ξ−1/2 (3.55)

Similarly, the two timescales are, using Eqs. 3.22 and 3.25,

∆tbo
tsc

∼ ξ−3/4 (3.56)

For scenarios in the regime ξ ≫ 1 these equations imply Lsc < Lbo and ∆tbo < tsc, and hence
distinct double peaks.

In Fig. 3.15, we additionally fit a numerical model to the entirety of iPTF14gqr’s light
curve assuming only interaction (i.e. no radioactive heating), where the first peak is produced
by shock breakout rather than shock cooling. Although the CSM radius and ejecta mass are
comparable in both interpretations, the simultaneous fit of both peaks requires an interaction
consisting of ejecta an order of magnitude less energetic, and a larger CSM mass by a factor
of about 30. In summary, both scenarios are plausible explanations for double-peaked events,
depending on whether one invokes additional heating for the second peak, and whether the
much bluer breakout flash is covered by the bands used.

Caveats and Additional Physics

Several physical processes were neglected in constructing our analysis in order to provide a
broadly applicable yet tractable theoretical framework. In §3.3 we briefly discussed the issue
of inefficient radiative cooling of the shock. This will arise most likely in the η ≪ 1 and



CHAPTER 3. SUPERNOVA LIGHT CURVES POWERED BY CIRCUMSTELLAR
INTERACTION 67

0 5 10 15 20
Time Since Explosion (Days)

1041

1042

1043

1044

1045

 L
bo

l (
er

g 
s

1 )

Mej = 0.1M
Esn = 2 1049 erg
Mcsm = 0.3M
Rcsm = 400R

Mej = 0.2M
Esn = 2 1050 erg
Mcsm = 0.01M
Rcsm = 900R

iPTF14gqr

Figure 3.15: Numerical fits to the light curve of the Type Ic SN iPTF14gqr, with inset model
parameters. The leftmost blue light curve fits only the first peak with a shock cooling tail,
while the broader red light curve fits both the primary peak (shock breakout) and secondary
bump (shock cooling). Light curve measurements taken from [11].

ξ < 1 regime, where the CSM is optically thin and the shock velocity is still sufficiently fast.
The net effect of this is to reduce the radiative throughput and efficiency of the light curve
(see §3.5), and we must account for non-thermal emission processes of collisionless shocks
that are typically encountered in the context of supernova remnants.

[23] have delineated the regimes in which circumstellar shocks behave, where the addition
of inverse Compton scattering expands the space in which the shocks are radiative. They
found that fast-moving (e.g. relativistic) shocks in an optically thin CSM are radiatively
inefficient. Thus, our analysis is applicable only to non-relativistic shock velocities, partic-
ularly where the shock is moving slow enough and the CSM optically thick enough that
free-free cooling is effective.

We have also neglected predictions of the color/spectra of the resulting interaction, which
requires a careful treatment of all the relevant physical processes (e.g. photoionization,
inverse Comptonization, and lines). Thus, our results are only applicable in a bolometric
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sense, which limits the predictive power if we do not have accurate bolometric corrections
of observed events. Of particular interest is the photospheric behavior of the interaction as
the shock progresses, and any reprocessing effects the CSM will have on the shock, such
as “thermalizing” hot X-ray shock photons into optical wavelengths via large bound-free
opacities [23, 49].

While our models and analysis have used a simple constant opacity, the opacity may
change significantly when temperatures become cool enough for atoms to recombine [122].
This is of particular importance for interior breakouts from a heavy CSM, which substantially
decelerates the ejecta velocity resulting in a lower-temperature shock. Additionally, for edge
breakout events, the decreasing temperature of the expanding shock cooling region will drop
low enough that the ejecta also recombines, which will affect the late-time light curves from
these events. Our scalings and models only remain reliable when the temperatures remain
greater than the recombination temperature of the matter.

The configuration of all of our models consists of single a spherical CSM shell with a
sharp outer edge, reminiscent of the CSM produced by an eruptive mass loss episode. When
considering more general CSM configurations our expectations may need to be revised. If, for
example, a long-duration wind produces a gradually declining CSM density profile without
a sharp edge, then the situation will resemble one of our shell models with Rcsm taken to
be very large, such that breakout happens in the CSM interior and the phase of continued
interaction persists indefinitely. If on the other hand repeated episodes of eruptive mass
occur, as for example in pulsational pair-instability supernovae [165], the CSM may consist
of numerous spherical shells. If these CSM shells are well separated, iterative application of
the formalism presented here may be used to analyze each shell interaction individually. It
is also possible that the CSM is non-spherical, with perhaps a disk-like configuration (see
for example [166, 167]). In that case, the physical behavior of the escaping radiation differs
from the spherically symmetric case, as only a sliver of the ejecta will participate in the
interaction.

We have assumed in the analytic scalings and numerical simulations that R∗ ≪ Rcsm,
i.e. the inner edge of the CSM is much smaller than the outer CSM radius. However, it is
possible to expect geometrically “thin” CSM shells due to e.g. brief episodes of mass loss,
where R∗ ∼ Rcsm. This introduces an additional physical parameter to the dynamics that
must be explicitly accounted for. In the case of an edge breakout, where radiation is only
able to escape once the shock reaches Rcsm, the value of R∗ does not influence the resulting
light curve or breakout duration, although it can alter the time of shock emergence relative
to the supernova epxlosion, tse ∼ ηα(Rcsm − R∗)/vej. The effect of a thin CSM shell will be
most prominent for an interior breakout and resulting continued interaction phase, shown
by the explicit dependence of R∗ in Eq. (3.35).

Finally, we have also assumed in our analytical treatment that the forward shock domi-
nates the light curve at all phases, and the shock luminosity terminates at shock emergence.
In reality, a reverse shock will form at the interface of the shocked ejecta region, illustrated
in Fig. 3.1, which will provide an additional luminosity source for the light curve [111, 145].
The strength of the reverse shock depends on the CSM mass, where a larger contribution is
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expected in the η > 1 heavy CSM regime. [144] have shown that the reverse shock can be
an important source of emission during the continued interaction phase. The reverse shock
will also persist for some time after shock emergence, i.e. during the shock cooling phase.
We have confirmed the existence of a luminous reverse shock in our numerical simulations,
which is especially prominent for the η > 1 models. Further analytic study and numerical
investigation is necessary to fully characterize its behavior.

3.7 Conclusions

CSM interaction significantly expands the light curve duration and luminosity phase space
that normal supernovae may otherwise occupy. This is due to the efficient conversion of the
large store of ejecta kinetic energy from the preceding supernova, into radiation at the shock
front. Here, we articulated a conceptual framework to interpret interaction light curves. We
decompose the interaction light curve into five distinct phases, each of which may produce
distinct features in the light curve morphology. We separate interaction light curves into
four distinct classes, which depend on a combination of (1) where shock breakout occurs;
and (2) the relative masses of the ejecta and CSM.

In §3.4 we derived quantitative relations for the qualitative picture given in §3.3. We
provide scaling relations for each of the light curve phases, using a simplified model for
the shock evolution. We then confirmed in §3.5 the analytical model by running a grid
of one-dimensional radiation hydrodynamics simulations across a broad parameter space.
Finally, we provided four case studies of observed transients in §3.6 to demonstrate how the
framework can be used in practice.

Our results should be useful to study stellar mass loss through observations of super-
nova light curves. In particular, different physical mass loss mechanisms will have distinct
predictions regarding the progenitor and structure of the CSM [15, 18]. While light interior
breakouts can be explained by interaction with a typical stellar wind, heavy interior break-
outs will require prodigious mass loss from a supermassive progenitor [116]. In other cases,
the small radii necessary to produce edge breakouts will require episodes of significant mass
loss near the end of the star’s life [96].

We have limited our analysis to the bolometric properties of the interaction light curve.
The broadband spectra and observed colors also likely provide important information per-
taining to the interaction, particularly given the wide range in shock temperatures that can
result depending on how efficiently the shock can cool. We might therefore find that each
light curve phase has a distinct color evolution and photospheric behavior. An accurate
bolometric correction of the light curve may require detailed coverage from X-ray to opti-
cal wavelengths [23], although these capabilities are recently becoming attainable (see for
example [21, 22]). This poses a unique observational challenge in several ways, particularly
for the edge breakout flash due to its brief timescale and likely rapid color evolution. We
have also neglected any non-thermal emission that may be produced by the shock, which is
of particular importance in understanding radio observations of interacting supernovae.
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In addition to the broadband colors, it would be interesting to connect the spectral
evolution of the interaction to the different light curve phases and classes. Narrow emission
lines have been the hallmark signature of interaction as it implies slow-moving material
above the heating at the shock front. While the presence of narrow lines favors interaction,
the absence of such features does not preclude CSM interaction as the mechanism behind
the light curve. Interior breakouts are the natural interaction type to expect such features,
while edge breakouts may have little to no narrow lines in their spectra as the bulk of the
CSM has already been swept up. An accurate investigation of interaction spectra requires
running expensive non-LTE radiation hydrodynamics simulations, such as is done in [49] for
the case of a heavy interior breakout.

In constructing a broadly applicable light curve framework, we have neglected several
important physical effects that will influence the results presented in this paper. Poten-
tially important effects are briefly discussed in §3.6 and warrant further investigation. Of
particular interest include how asymmetric CSM configurations affect the observed phase
properties, since the shock will only occupy a fraction of the full 4π solid angle of the ejecta.
Indeed, several mass loss mechanisms such as binary interaction may produce a more disk-
like geometry. The shock region is also prone to hydrodynamical instabilities which require
high-resolution multidimensional radiation hydrodynamics simulations to fully investigate.
It is unclear how such effects impact the resulting phases and classes discussed in this work.
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Chapter 4

Computational Methods in Supernova
Light Curve Modeling

4.1 Introduction

In Chapter 2, I considered the case where the hydrodynamics was described simply by ho-
mologous expansion, and used a frequency-independent (grey) opacity. In Chapter 3, I then
extend for the effect of radiation hydrodynamics by using a grey flux-limited diffusion ap-
proach. While both approaches provide reasonable results when discussing bolometric light
curves, they fail to accurately capture the complex physics behind frequency-resolved emis-
sion. We therefore require a multigroup radiative transfer approach coupled to a hydrody-
namics scheme. Furthermore, since non-equilibrium radiation fields can drive the excitation
and ionization state of the plasma, we furthermore require an inline NLTE approach during
each numerical substep. Finally, we must also account for potential non-thermal contri-
butions from relativistic electrons, which is important when studying radio emission from
circumstellar interaction [105].

In this chapter, I present extensive developmental efforts in the Sedona code [75] that
implement efficient multigroup radiation hydrodynamics capabilities and self-consistently
account for all of the necessary physical processes. I give a brief overview of the implicit
Monte Carlo implementation [45, 154, 168], highlighting NLTE modifications in the original
approach. Next, I give a numerical description of our finite-volume hydrodynamics scheme
[152], including a novel implementation of arbitrary Lagrangian-Eulerian (ALE) mesh motion
that is particularly well-suited to problems with strong compression around shocks.

I then discuss the implementation of inline non-LTE atomic kinetics to get physically
accurate ionization and excitation states of the plasma, and various acceleration techniques
to speed up the inline computational cost. I explore the various opacity contributions,
including an approximate method of handling unresolved line emission. I introduce an
explicit Compton scattering approach, which includes temperature coupling with the plasma.
Finally, I discuss a non-thermal electron particle transport method to evolve relativistic
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electrons due to collisionless shock injection. Details of the atomic data that goes into the
kinetics and opacities are described in Appendix E.

4.2 Implicit Monte Carlo Radiation Transport

The lab-frame equation of radiative transfer is given by [46, 75, 154]

1

c

∂Iν
∂t

+ n̂ · ∇Iν = −χνIν + ην (4.1)

(4.2)

Here ην is the emissivity, which is related to the extinction coefficient χν through the source
function Sν ≡ ην/χν .

It is more intuitive to move into the comoving frame, where we make the following
assumptions: (1) all absorption and emission processes, including scattering, are isotropic;
and (2) scattering in the comoving frame is elastic/coherent [154].

The extinction coefficient and emissivity can be decomposed into an absorptive and
scattering component:

χ0ν = α0ν + σ0ν (4.3)

η0ν = j0ν + ηs0ν (4.4)

Here j0ν is the thermal emissivity of the gas.
We can define an absorptive fraction of the opacity as

ϵν =
α0ν

χ0ν

(4.5)

where ϵν = 0 corresponds to the case of pure scattering, while ϵν = 1 is the case of pure
absorption.

Now in LTE, the thermal emissivity is related to the opacity through Kirchoff’s law:

j0ν = α0νB0ν(T ) = ϵνχ0νB0ν(T ) (4.6)

where B0ν(T ) is the Planck function at the local gas temperature T .
Next, we define a quantity U = aT 4 and rewrite the comoving-frame thermal emissivity

as

j0ν = ϵνχ0νb0ν
cU

4π
(4.7)

where we have also introduced the dimensionless Planck function

b0ν =
B0ν∫
B0ν′dν ′

=
B0ν

acT 4/4π
=

4π

cU
B0ν (4.8)
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In order to convert back into the lab frame, we perform a Lorentz transformation to get the
expression

jν = ϵνχνbν
cU

4π
Pη (4.9)

where

Pη(ν, n̂) =

(
ν

ν0

)
b0ν
bν

(4.10)

captures the effects of doppler shifting on the frequency and angle distribution of the emis-
sivity.

Our recast lab-frame transfer equation then becomes

1

c

∂Iν
∂t

+ n̂ · ∇Iν = −χνIν + ϵνχνbν
cU

4π
Pη + (1− ϵν)χνJν (4.11)

The goal of the implicit Monte Carlo method is to handle the nonlinearity of U in a numer-
ically stable manner, due to potentially stiff coupling with the gas temperature from both
absorption and emission [45]. To proceed further, we now turn our attention to the time
evolution of the gas internal energy/temperature. The gas temperature equation, accounting
for heating and cooling processes, is

cV
dT

dt
=

∫
ϵνχ0ν (cE0ν − 4πB0ν) dν (4.12)

where cv = nkb/(γ − 1) is the volumetric heat capacity, and

E0ν =
4π

c
J0ν =

1

c

∮
IνdΩ (4.13)

is the comoving-frame radiation energy density.
At this point we introduce the energy and Planck mean opacities:

χ0E =

∫
ϵνχ0νE0νdν∫
E0νdν

(4.14)

χ0P =

∫
ϵνχ0νB0νdν∫
B0νdν

(4.15)

and so the temperature equation becomes

cV
dT

dt
= cχ0EE0 − cχ0ParT

4 (4.16)

where E0 =
∫
E0νdν. Using the definition of U = aT 4, we can rewrite this as

1

β

dU

dt
= cχ0EE0 − cχ0PU (4.17)
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where

β ≡ 4aT 3

cV
(4.18)

Our aim is to formulate a stable time-stepping method. Discretizing in time, we have

Un+1 − Un

∆t
= cχn

0Eβ
nEn

0 − cχn
0Pβ

nŪ (4.19)

where ∆t = tn+1 − tn is the timestep size, and the n superscript for the quantities indicates
that we are holding the begining-of-timestep values fixed for the absorbed radiation energy
density and coupling coefficient β. The overbar denotes an appropriately time-averaged
quantity, which we can write as a Crank-Nicholson type linear combination of the beginning
and end-of-step values:

Ū = (1− α)Un + αUn+1 (4.20)

where α is a free parameter between 0 and 1, with 0 being fully explicit and 1 being “im-
plicit”. In practice, α must be greater than 0.5 (or 0.75 according to others) to guarantee an
unconditionally stable method, which usually refers to preventing the occurrence of spurious
oscillations and potentially negative values for the temperature [45].

“Solving” for the time-averaged quantity we get

Ū = fnU
n + (1− fn)

χn
0E

χn
0P

En
0 (4.21)

where we have introducted the Fleck factor [168]

fn =
1

1 + αcβnχn
0∆t

(4.22)

The gas temperature is then updated as

cV
T n+1 − T n

∆t
= cχn

0EE
n
0 − cχn

0P Ū (4.23)

= fncχ0EE
n
0 − fncχ0PU

n (4.24)

Thus, we see that both the absorption and emission are suprressed by an amount equal to
the Fleck factor fn.

Returning back to the radiative transfer equation, we replace the U appearing in the
thermal emissivity with Ū :

1

c

∂Iν
∂t

+ n̂ · ∇Iν = −χνIν + ϵνχνbνfn
cUn

4π
Pη

+(1− fn)Pη

[∫ ∮
Rn

ν ϵνχνIν dΩdν

]
+ (1− ϵν)χνJν

(4.25)
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where Rn
ν is the effective scattering redistribution kernel :

Rn
ν =

ϵνχνBν(T
n)∫

ϵνχνBν(T n)dν
(4.26)

From this, what we see is that the thermal emission is reduced by a factor of fn, the second
term on the right hand side. Furthermore, what the implicit Monte Carlo method introduces
is a term that appears like a scattering term, the third term on the right hand side. A
fraction of the true absorptive opacity equal to (1− fn) instead acts to scatter the photon.
This process is inelastic, described by the redistribution kernel that depends on the thermal
emissivity through Rn

ν .

NLTE Modifications to the IMC Method

One of the assumptions made in the original derivation of the Fleck factor is that the thermal
emissivity is described in LTE conditions:

jν = ϵνχνBν(T ) (4.27)

This assumption is what causes the T 4 factor to pop out from the integrating the Planck
function over frequency. However, under NLTE conditions, the source function may no
longer be a blackbody. We therefore attempt to account for NLTE effects while still using
the machinery of the fleck factor by retaining the T 4 dependence in the derivation, but
replacing the Planck mean opacity that appears in the fleck factor with a “generalized”
Planck mean:

χ̃0P =

(∫
jν

ϵνχν
dν∫

jν dν

)−1

(4.28)

where jν here is the NLTE emissivity calculated from the atomic kinetics. In LTE where we
can use Kirchoff’s law, this reduces back to the Planck mean opacity.

Finally we also modify the effective scattering kernel to use the NLTE emissivity:

Rn
ν =

jnν∫
jnν dν

(4.29)

This is only a crude attempt at attempting to include NLTE effects in the original IMC
method, which was designed around the assumption of LTE emissivities. A more thorough
investigation is needed to find a more robust method, which is outside of the scope of this
thesis. That said, our approach is better than nothing.

Numerical Procedure

At the beginning of each timestep, we isotropically emit Nemit equal-energy packets per zone
(which is done in the comoving frame), where

E0p =
fimcLth∆V∆t

N
(4.30)
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where Lth = 4π
∫
j0νdν0 is the total thermal emissivity of zone i. The frequency of each

packet is sampled from a CDF constructed from the emissivity.
The packets are evolved from the start of timestep t to the end t + ∆t using a history-

based Monte Carlo approach. Namely, for each particle, we calculate the distance to the
next interaction event as

lk =
1

χν

[− ln(R)] (4.31)

where R is a uniform number between 0 and 1. This distance is compared to the distance to
the boundary of the cell or domain, as well as the distance to the end of the timestep cδtk.

If the interaction distance is the shortest, we then determine what type of interaction
occurred. We draw another random number R′ between 0 and 1. If R′ > ϵν , then the packet
undergoes a scattering (e.g. Compton). If R′ < ϵν , we then draw a third random number R′′

in the range of 0 and 1. If R′′ > fimc, the fleck factor, then the packet undergoes an “effective
scatter’, which samples a new isotropic direction, and changes its frequency by sampling the
local emissivity CDF. If R′′ < fimc, the packet is absorbed and we cease tracking the history
of the particle.

Particles are tracked until they either reach the end of the timestep, are absorbed, or
escape at one of the boundaries. If the particle escapes from the outer boundary, then we
tally its contribution to the emergent specific luminosity as

Lν =
4π

∆t∆νg∆Ω

∑
Ep (4.32)

where ∆Ω is the solid angle bin. At the start of a new timestep, we emit new particles as
well as continue tracking the packets that remain from the last timestep.

Construction of Estimators

The comoving frame radiation field is constructed by the pathlength estimator approach
[154], which sums over the paths of all particles during a timestep

J0ν =
1

4π

1

∆V∆t∆νg

∑
p

Eplp
(ν0
ν

)2
(4.33)

where ∆νg is the width of the frequency group that contains particle p. The radiation
four-force vector is constructed as

cG0
0 = c

∫
ϵνχ0νE0νdν − 4π

∫
j0ν dν (4.34)

where E0ν = 4πJ0ν/c, and j0ν is the thermal emissivity in the comoving frame.
The radiation fource contribution is constructed as

G0 =
1

c

∫
χ0νF0ν dν (4.35)



CHAPTER 4. COMPUTATIONAL METHODS IN SUPERNOVA LIGHT CURVE
MODELING 77

where

F0ν =
1

c∆V∆t∆νg

∑
p

Eplp
(ν0
ν

)2
n̂0 (4.36)

where n̂0 is the direction of the photon packet in the comoving frame.

4.3 Finite-Volume Arbitrary Lagrangian-Eulerian

Hydrodynamics

The equations of radiation hydrodynamics to O(v/c) are [31, 154]

∂ρ

∂t
+∇ · (ρv) = 0 (4.37)

∂ (ρv)

∂t
+∇ · (ρvv) +∇P = G0 (4.38)

∂
(
ρ
[
v2

2
+ e
])

∂t
+∇ ·

[(
ρ
v2

2
+ ρe+ P

)
v

]
= cG0

0 + v ·G0 (4.39)

We can write the hydrodynamics equations as a system of conservation laws as [169]

∂U

∂t
+∇ · F = S (4.40)

where

U =

 ρ
ρv

ρ
(

v2

2
+ e
)
 (4.41)

F =

 ρv
ρvv + P[

ρ
(

v2

2
+ e
)
+ P

]
v

 (4.42)

and

S =

 0
G0

cG0
0 + v ·G0

 (4.43)

In 1D spherical symmetry, the conservation equations become

∂U

∂t
+

1

r2
∂

∂r

(
r2F
)
= S+ Sgeom (4.44)
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where

Sgeom =

 0
2P/r
0

 (4.45)

is a “geometric” source term due to the flux divergence in spherical coordinates [152, 169].

Finite-Volume Method

In a finite-volume discretization, the domain is divided into control volumes, or cells, with
cell-centered coordinates ri. In 1D spherical symmetry, the cells have an inner and outer face
with radial coordinates ri−1/2 and ri+1/2, respectively. Cell volumes are therefore calculated
as

∆Vi =
4π

3

(
r3i+1/2 − r3i−1/2

)
(4.46)

Cell faces are defined as

∆Ai±1/2 = 4πr2i±1/2 (4.47)

By integrating quantities over the control volume and applying the divergence theorem, the
conserved system becomes

dŨi

dt
+

∮
∂Vi

F · dA = S̃i (4.48)

where the over-tilde denotes quantities integrated over the control volume, e.g. Ũi = Ui∆Vi.
For the equations of hydrodynamics, these quantities evaluate to the total cell mass, total
momentum, and total (internal + kinetic) energy.

For an explicit time discretization between times tn and tn+1, we therefore get

Ũn+1
i = Ũn

i −∆t
∑
k

F ·∆Ak + S̃i∆t (4.49)

where ∆t = tn+1− tn, and the sum k runs over the faces of cell i. In 1D spherical symmetry,
there are two sums: the inner dAi−1/2 and outer dAi+1/2 faces, respectively.

The critical ingredient in a finite-volume method is an accurate estimate of the numerical
flux at the faces Fi±1/2. This is done by solving a Riemann problem at the cell face [169],
given the state quantities at the left and right sides UL and UR, respectively.

What we are given in the finite-volume method are cell-averaged quantities, i.e. Ui =
Ũi/∆Vi for r ∈

{
ri−1/2, ri+1/2

}
. What we require for the Riemann problem are quantities

at the cell faces. A simple approach would be to simply take the cell-centered value to be
the face-centered quantity, which reduces the method to a first-order approach.
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Instead, we can take a more accurate approach (although potentially prone to numerical
instabiltiies) by performing a left/right piecewise linear reconstruction [35, 152]. For a cell
face located at ri−1/2, the left/right reconstructed states are

UL = Ui−1 + (∇U)i−1 ·
(
ri−1/2 − ri−1

)
(4.50)

UR = Ui + (∇U)i ·
(
ri−1/2 − ri

)
(4.51)

Our next step is to calculate the cell gradients in a manner that is both accurate and
numerically stable. This is particularly important in the presence of large gradients, i.e.
shocks. This is the essence of slope limiters, which forms an enormous body of previous and
ongoing work.

The limited slopes are written as

(∇U)limi = ξi (∇U)′i (4.52)

where

(∇U)′i =
1

2
(1 + ω)∇Ui−1/2 +

1

2
(1− ω)∇Ui+1/2 (4.53)

∇Ui−1/2 =
Ui −Ui−1

ri − ri−1

(4.54)

∇Ui+1/2 =
Ui+1 −Ui

ri+1 − ri
(4.55)

and ω ∈ {−1, 1} is a free parameter with ω = 0 corresponding to a cell-centered scheme
which is what we take here.

There are multiple expressions for the slope limiter ξi which depend on the ratio of the
up- and downwind gradients,

r =
∇Ui−1/2

∇Ui+1/2

(4.56)

We use the SUPERBEE-type limiter [169, 170], given by

ξ(r) =


0 r ≤ 0,
2r 0 < r ≤ 1/2,
1 1/2 < r ≤ 1,
min [r, ξR(r), 2] r > 1.

(4.57)

where

ξR(r) =
2β

1− ω + (1 + ω)r
(4.58)
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with β another free parameter which we take to be 1.
With the left UL and right UR reconstructed states appropriately calculated and limited,

we next need to actually solve the Riemann problem in order to determine the fluxes. We
use an HLLC Riemann solver [171] to calculate the numerical flux at each face as

FHLLC =


FL 0 ≤ SL,
F∗

L SL ≤ 0 ≤ S∗,
F∗

R S∗ ≤ 0 ≤ SR,
FR 0 ≥ SR.

(4.59)

here, the left-right fluxes are found by evaluating the flux for the left/right reconstructed
quantities, FL = F(UL) and FR = F(UR). The wavespeeds are (in the absence of any mesh
motion) given by

SL = min {vL − cs,L, vR − cs,R} (4.60)

SR = max {vL + cs,L, vR + cs,R} (4.61)

where vL,R and cs,L/R are the fluid velocities and sound speeds using the reconstructed
quantities. The wavespeed estimate in the Star region is

S∗ =
PR − PL + ρLvL (SL − vL)− ρRvr (SR − vR)

ρL (SL − vL)− ρR (SR − vR)
(4.62)

where ρL,R PL,R are the left/right reconstructed gas density and pressure, respectively.
The left/right star fluxes are given by

F∗
K =

S∗(SKUK − FK) + SK(PK + ρL(SK − vK)(S∗ − vK))D∗

SK − S∗
(4.63)

where K = L,R and

D∗ =

 0
1
S∗

 (4.64)

for the density, momentum, and energy fluxes.
The last thing needed is an appropriate time-stepping method. We use a three-step

Runge Kutte algorithm [172] to advance the conserved quantities from U(n) = U(tn) to
U(n+1) = U(tn+1):

U(1) = U(n) +∆tL
(
U(n)

)
(4.65)

U(2) =
3

4
U(n) +

1

4

[
U(1) +∆tL

(
U(1)

)]
(4.66)

U(n+1) =
1

3
U(n) +

2

3

[
U(1) +∆tL

(
U(2)

)]
(4.67)

where ∆t = tn+1 − tn and L (·) is the hydro substep.
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ALE Mesh Motion

Interacting supernovae provide several unique challenges to numerically model. Eulerian
methods are favored for problems with strong shocks and have been used in previous studies
of CSM interaction [49, 173]; however, they must rely on either a large of number of cells to
resolve the shock; or more advanced numerical techniques, such as adaptive mesh refinement
[174]. This problem is especially pronounced for radiative shocks where the shock width will
be of order the radiation mean free path [31], and becomes exceedingly small once the shock
becomes optically thin. In addition, in order to follow the shock breakout and shock cooling
phases, an ambient medium is required for the material to expand into, which adds another
layer of difficulty in evolving the light curves out to late times post breakout.

Due to these difficulties, a Lagrangian approach seems more favorable, as the grid will
naturally move with the interaction. This comes at the drawback of poorly resolving the
shock compared to an Eulerian approach. Furthermore, Lagrangian methods will suffer
from severe mesh distortion at the shock front [175], as material is swept up into a shell and
compressed to a great degree, leading to an exceedingly small timestep constraint. In order
to overcome this issue, one must rely on similar techniques as in Eulerian methods, such as
coarsening regions where the mesh is too distorted.

Moving mesh methods have been used previously in various astrophysical contexts [34]; in
particular [152] and [166] have demonstrated their utility in modeling interacting supernovae.
Moving mesh methods belong to a wider class of numerical techniques known as direct ALE
methods [176], where the mesh is moved during the timestep by setting the new mesh node
locations (in contrast to indirect ALE methods, which evolve a timestep assuming a fixed
mesh, followed by a remapping phase to the new mesh positions; see e.g.). One approach is
to solve a Poisson equation on the domain based on a user-defined mesh potential [177]. The
mesh potential acts to steer cells to be of equal mass and/or volume, using the same numerical
method as done for the self-gravity solver. Other methods rely on solving a set of moving
mesh partial differential equations (so-called MMPDE methods), where the system itself
depends on time, to prevent artificially large jumps in mesh location for time-independent
systems [178].

Our primary objective is to move the domain in a mostly Lagrangian manner while
providing a higher degree of resolution around the shock front. In addition, we would also
like to prevent severe mesh distortion that occurs in Lagrangian methods around shocks. In
the shock region, we would like the mesh to behave in a more Eulerian fashion.

To accomplish this, we add fictitious mesh “springs” that couple the mesh nodes to each
other. In 1D, the net force acting on the i-th node is

Fi = ki+1/2

(
∆ri+1/2 − δxi+1/2

)
− ki−1/2

(
∆ri−1/2 − δxi−1/2

)
(4.68)

where ∆ri+1/2 = ri+1 − ri is the cell width, ki±1/2 are the fictitious spring constants, and
δxi±1/2 are the fictitious spring rest lengths. We solve the coupled spring system across the
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entire mesh such that the net force acting on each node is zero:

N∑
i=0

Fi = 0 (4.69)

We then set the mesh velocities in a timestep such that the mesh positions at the end of
that timestep correspond to the solutions rsi of the mesh spring:(

dr

dt

)n+1/2

i

=
rsi − rni
∆tn

(4.70)

There is a freedom of choice in defining both the spring constants ki±1/2 and the spring
rest lengths δxi±1/2. To achieve our desired Lagrangian behavior, we set the spring rest
lengths based on the fluid velocity

δxi+1/2 = rni+1 − rni + (vni+1 − vni )∆t
n (4.71)

where vi =
(
vi+1/2 + vi−1/2

)
/2 is the face average of the cell-centered velocities vi±1/2. Next,

we prevent mesh distortion by enforcing a minimum δxmin and maximum δxmax for the
spring rest lengths, i.e.

δxi+1/2 = min
{
δxmax,max

[
δxmin, r

n
i+1 − rni +

(
vni+1 − vni

)
∆tn

]}
(4.72)

The mesh spring length therefore acts to prevent the cell from being compressed below δxmin,
or from becoming too large above δxmax. This spring resistance then affects the rest of the
mesh nodes in the domain to account for the nonzero force resulting from non-Lagrangian
mesh motion. In practice, we set δxmax = L/Ncell and δxmin = fspringL, where L is the
domain size and fspring = 10−5 for this work. Note that for δxmax → ∞ and δxmin → 0, the
mesh springs will give purely Lagrangian motion.

The mesh spring constants determine the degree to which cells will adjust to compensate
for any non-Lagrangian motion in the grid (i.e. around the shock front). Stiffer springs (i.e.
larger spring constants) will tend to resist deviations from Lagrangian cell motion as well
as the cell minimum/maximum size thresholds. We set the spring constants to be inversely
proportional to the cell sizes at the begining of the timestep,

ki+1/2 =
(
rni+1 − rni

)−1
(4.73)

Our numerical tests show that this choice of spring constant provides the desired behavior of
concentrating the mesh resolution around the shock region. At each timestep, the coupled
system of linear equations is solved for the mesh spring positions to get the mesh velocity
during the timestep In 1D, this forms a tridiagonal system of equations which we solve
using Thomas’ algorithm [179], incurring negligible cost compared to the hydrodynamics
and radiation substeps.
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4.4 Non-LTE Atomic Kinetics

The atomic state of the gas is given by the number densities (or atomic populations) of level
j for each charge state/ion i for all species. Let nij denote the number density of level j of
charge state i, normalized such that ∑

i

∑
j

nij = n (4.74)

where n is the total species number density. Additionally, letQi denote the charge state/ionization
fraction for charge state i, normalized such that∑

i

Qi = 1 (4.75)

Furthermore, let fij denote the relative level population for a level within charge state i,
normalized such that ∑

j

fij = 1 (4.76)

Thus, we can write the individual level number density as

nij = Qifijn (4.77)

Local Thermodynamic Equilibrium (LTE)

In local thermodynamic equilibrium (LTE), the relative level population is given by a Boltz-
mann distribution at the local electron temperature Te, i.e.

fij =
gij
Zi

e−βEij (4.78)

where β = 1/kbTe is the inverse temperature; gij is the level statistical weight/degeneracy;
and

Zi(Te) =
∑
j

gije
−βEij (4.79)

is the ion partition function.
The charge state distribution Qi is given in LTE by the Saha equation, where the relative

population of two successive ionization states is [50, 75]

Qi+1

Qi

=
1

neλ3
2Zi+1

Zi

e−βχi (4.80)
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where χi is the ground ionization energy of charge state i, and the thermal electron de-Broglie
wavelength is given by

λ =

(
h2

2πmekbTe

)1/2

(4.81)

As the Saha equation only gives relative charge populations for successive ionization
states, we need to normalize to get the actual charge distribution. Care must be taken when
doing this numerically, as the partition function ratio can become enormous and so a direct
normalization may run into machine-precision errors.

What one can instead do is first search for the iso-sequence peak. This is done as follows:
starting with the neutral charge state, we iterate until we find the first ratio such that
Qi+1/Qi < 1, which is identified as the isosequence peak ipk. We then arbitrarily set the
charge population Qipk = 1. We then work left and right of the isosequence peak by setting
the neighboring charge states using the ion ratios calculated using Eq. (?). Finally, we then
renormalize all charge states so that

∑
iQi = 1.

Finally, note that the charge state distribution (CSD) depends on the electron number
density ne, which itself depends on knowledge of the CSD,

ne = n
∑
i>0

(i×Qi) (4.82)

where we skip the neutral state i = 0 since it contributes no free electrons. Thus, we must
iterate the equation for charge conservation along with the Saha-Boltzmann distribution
(although note that the ion partition functions and relative level populations only need
to be calculated once). We use a Brent-Dekker root-finding algorithm to accomplish this
numerically, and set a fractional electron number density convergence threshold of 10−3.
This method is easily generalized to an arbitrary mixture of multiple atomic species.

Once the charge state distribution Qi and relative level populations fij are known, then
we can evaluate individual atomic opacities and other quantities of interest, such as the mean
molecular weight for the equation of state (EOS).

Non-Local Thermodynamic Equilibrium (NLTE)

When LTE no longer holds, we must instead solve a system of rate equations for the level
populations and charge state distribution [50, 180].

The rate equations are given by

dnij

dt
= −nij

(
Iij +

∑
k ̸=j

Ei,j→k

)
+
∑
k ̸=j

nikEi,k→j +
∑
l

ni+1,lRi+1,l→j +
∑
l

ni−1,lIi−1,l→j

(4.83)

The first term in parentheses gives the loss rate due to ionizations and recombinations Iij out
of the charge state i, as well as (de)-excitations Ei,j→k within the charge state. These include
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Figure 4.1: Radiative recombination rate coefficient of hydrogen. Black lines show Sedona
for the case of spontaneous (dashed) and spontaneous+stimulated recombination (solid).
For comparison, we show the recombination rate calculated with Cretin [181](red line) as
well as the results of Nahar [182].

both radiative and collisional contributions. The second term accounts for (de)-excitations
into the (i, j) state from within the charge state i; the third and fourth terms gives potential
contributions from ionization and recombinations of a different charge state into the (i, j)
state (three-body, radiative, and dielectronic). These are typically only non-zero if j is either
a ground state or K− or L− shell state [181](i.e. inner hole state).

The ionization/recombination rate from the (i, j) state is given by a combination from
collisional and photoionization processes:

Iij = Pij(Jν) + neCij(Te) + ne

∑
l

[Ri,j→l(Jν , Te) + neCi,j→l(Te)] (4.84)

The first and second terms account for photoionization and collisional ionizations, respsec-
tively. The third term in brackets gives the radiative (spontaneous+stimulated) and three-
body recombination rates into a level of charge state i− 1, if (i, j) is a ground or inner-shell
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state. Note that we do not include excitation/ionization from non-thermal electrons, which
could be additional terms in the rate equation.

The (de)-excitation rates are given by∑
k ̸=j

Ei,j→k =
∑
l<j

[
Ai,j→l + Bi,j→lJ̄ + neCi,j→l(Te)

]
+
∑
u>j

[
Bi,j→uJ̄ + neCi,j→u(Te)

]
(4.85)

The first term in brackets gives the de-excitation rate of state (i, j) into a lower state (i, l) with
l < j, where J̄ is the mean intensity averaged over the transition line profile (and assuming
complete redistribution within the line). Ai,j→l and Bi,j→lJ̄ give the spontaneous and stim-
ulated radiative emission contributions, respectively; and neCi,j→l(Te) gives the collisional
de-excitation rate. Similarly, Bi,j→uJ̄ and neCi,j→u(Te) give the radiative (photoabsorptive)
and collisional excitation rates.

Note that the electron number density ne appears in the collisional and recombination
terms. As such, the rate equations must be iterated along with the equation of charge
conservation, just as in the LTE case. We use the Brent-Dekker root-finding algorithm for
this as well, the major difference in the NLTE case being the need to re-evaluate the rates
for each iteration. Note that we hold the radiation field Jν fixed throughout the iterations.

Autoionizing Resonances and Dielectronic Recombination

At this point it is worth discussing how autoionization and dielectronic recombination are
handled. Some codes such as CMFGEN [52] treat autoionizing transitions as resonances in
the bound-free cross-section. Indeed, the process looks fairly similar to a photoionization and
radiative recombination if the energy carrier is a photon (versus say a collisional transition)

Xi + hν ⇐⇒ X∗
i ⇐⇒ Xi+1 + e− (4.86)

Here, X∗
i denotes an autoionizing state within charge state i, which is a metastable atomic

state whose energy lies above the ionization threshold. As this is a metastable state, it will
either decay (via a radiative or collisional transition) into a lower energy level of charge state
i, or undergo an autoionization resulting in the ejection of a free electron and an ion in
charge state i+1. The inverse process, known as dielectronic recombination, occurs when a
free electron comes into resonance with a nucleus in charge state i + 1, a process known as
resonant capture. If this metastable configuration then decays to a non-autoionizing bound
state, then the net outcome is a recombination.

Our approach is to explicitly include such autoionizing states, which act as an intermedi-
ary between two successive charge states. As such, the process of autoionization is accounted
for due to radiative and collisional excitations of a bound state (i, j) into an autoionizing
state (i, a), which appears as a normal excitation term in Ei,j→a. These autoionizing states
are distinct from a bound state since, in addition to normal radiative decay into a lower
bound state (i, j) they also have a “spontaneous autoionization” rate Ai,a into the i + 1
charge state that acts as an additional term in Iij. The inverse process of resonant capture
and can be obtained from detailed balance [181, 183].
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Figure 4.2: Dielectronic recombination rate coefficient of C V. For comparison, we show the
AUTOSTRUCTURE results [183], showing excellent agreement.

Numerical Methods

We assume statistical equilibrum [50], also referred to as steady-state, in evaluating the level
populations and charge state distribution, i.e.

dnij

dt
= 0 (4.87)

Due to the large dynamic range of the level populations, we prefer instead to work with the
departure coefficients [184]

bij =
nij

n⋆
ij

(4.88)

where n⋆
ij denotes the level population under LTE conditions. Namely, in LTE, all departure

coefficients evaluate to bij = 1. Given the radiation field Jν , local electron temperature Te,
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and the current iteration value of ne, we evaluate all collisional and radiative rates for each
zone. We then solve the linear system of equations

Mb = c (4.89)

where M is the rate matrix consisting of all the levels of all charge states of each species;
and b = bij. Note that we close the system using the statement of number conservation∑

ij

nij = n (4.90)

where

n =
ρx

Amp

(4.91)

is the total species number density, x the mass fraction, and A the atomic weight. In practice,
this is accomplished by replacing one of the rows r of the rate matrix with entries equal to
n⋆
ij/n, and the right hand side to

c =



0
0
...
1
0
...
0


(4.92)

where the nonzero entry corresponds to the r-th row.
The rate matrix can be ill-conditioned and cause numerically unstable results for the

level populations, such as negative or NaN values [180]. We therefore multiply the number
conservation row (and right hand side) by a constant factor equal to |tr(M)|, which denotes
the absolute value of the trace of the rate matrix.

The linear system is solved using the Eigen numerical linear algebra library [185]. As the
number conservation row results in a non-block-diagonal structure, we are forced to use a
dense solver routine. However, given that we are using reduced atomic models that consist
of at most several hundred levels per species [181], the performance cost is usually modest.
We solve the system by performing an LU decomposition with full pivoting [186]. We have
found that partial pivoting is numerically unstable for elements heavier than helium.

4.5 NLTE Solver Acceleration Techniques

Including an NLTE solution inline for every zone in the mesh, at each timestep, can quickly
dominate the computational expense relative to the other physics including transport, the
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latter of which is typically what we want to keep as the most expensive physics substep [181].
Without appropriate acceleration, this added expense can bog down the simulations to the
point of being unable to fully run simulations long enough for the desired science results. This
is no good. As such, we have implemented several user-configurable acceleration methods
for speeding up the NLTE kinetics step, which we describe below.

Near-LTE Switch

The easiest NLTE acceleration technique is to simply do an LTE solution when certain
criteria are met. At extremely high temperatures and low densities, all species will be
near or completely ionized, and so an LTE solution will typically suffice (especially since
the dominant opacity will come from free-free rather than bound transitions, and so we
can get away with less accurate level and charge state information). We set a maximum
temperature Tmax above which we perform a simple LTE solution. For the elements used in
our simulations we typically set Tmax = 3 · 108 K. This forces the shocked circumstellar gas,
which can contain a pileup of zones due to the Lagrangian/ALE compression of the mesh at
shock fronts, to use the approximate LTE solution.

We have also implemented another more sophisticated LTE switch that compares the
gas and radiation temperatures. Given the radiation field Jν , we can define a radiation
temperature

Tr =

(
E0

a

)1/4

(4.93)

where E0 = (4π/c)
∫
Jνdν. We then compare the fractional difference of Tr with the local

electron temperature, relative to a user-defined threshold ϵ. If

|Tr − Te|
Te

< ϵ (4.94)

then the local conditions are likely close to LTE, and we activate the switch. We use ϵ = 0.1
as a fiducial value for our simulations. Note that it is possible for Tr and Te to still be close
and not in LTE conditions; in these cases, other indicators might be better suited, e.g. the
color temperature or deviation from Bν .

Isosequence Windows

In most plasmas of interest, there are usually only a handful of charge states that contain non-
negligible populations. For example, it is unnecessary (and potentially even more numerically
unstable) to solve the full linear system of e.g. Fe containing all levels of all 27 charge states.

What we can instead do is retain only the levels from the relevant charge states, which
is accomplished by defining an isosequence window around the peak charge state. Let ipk
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denote the isosequence peak. We define an isosequence width ∆iiso, i.e. our isosequence
window consists of charge states in the range [imin, imax], where

imin = max {0, ipk −∆iiso} (4.95)

imax = min {ipk +∆iiso, Z} (4.96)

The total number of charge states we keep is therefore at most Nmax = 2∆iiso + 1. For
species with Z ≤ Nmax, we therefore retain all charge states. We find ∆iiso = 3 to provide
identical results compared to a full isosequence window, and so all charge states are retained
for all species up to nitrogen.

The major challenge is identifying what the isosequence peak iiso is in the first place,
which itself depends on the NLTE solution. As such, we iteratively solve the NLTE solution
using a “sliding window”. At first iteration, we set the isosequence peak peak to be the LTE
value, ipk = i⋆iso. We then calculate the rates and solve the linear system consisting of the
subsystem of the levels that belong to one of the retained window charge states. From this
solution, we then calculate what the new peak is, i′pk. For the next iteration, we then “slide”
the isosequence peak as

i
(k+1)
pk = i

(k)
pk + sign

{
i
′

pk − i
(k)
pk

}
(4.97)

Namely, we either increment or decrement the next iteration’s isosequence peak by one,
depending on if the returned NLTE peak is to the left or right of the most recent iterations
value. We then repeat this procedure until the k and k + 1-th isosequence peaks are equal.
We find this sliding method to be more stable than simply setting the next iteration of the
NLTE solve equal to i′pk, and usually converges in fewer than 2 or 3 iterations (or 0 if in LTE
conditions).

Selective Charge Conservation

One of the major slowdowns in evaluating the NLTE solution is due to the fact that the
free electron number density ne appears in several of the rate quantities (collisonal and
recombination). As such, the NLTE solution must be iterated with the statement of charge
conservation, thus requiring a new NLTE solution at every iteration. However, it is often the
case that only one or two elements will dominate the contribution to ne, such as hydrogen
and helium in solar-composition plasmas.

We can accelerate the solve by excluding the NLTE solution from all elements other
than e.g. hydrogen and helium within the charge conservation iterations. Once ne has been
appropriately converged with the retained NLTE species solutions, we then follow up and
perform a single NLTE solve for the skipped species using the ne returned by the iterated
solution. We then correct for ne by adding on the contribution from the skipped species. If
warranted, we re-solve the NLTE solution using the corrected ne for all species if larger than
the uncorrected value by a specified amount (e.g. 10%).
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Figure 4.3: Iron absorption opacity at supernova-relevant conditions. The DCA opacities
[181] used in this work are shown as a solid black line, giving overall good agreement com-
pared to when run with the Cretin code (red line). The blue line shows the iron opacity
when using the CMFGEN atomic data [52], which itself uses the Kurucz linelist [75, 187].
The iron opacity provided by LANL TOPS [48] is also shown for copmarison (grey line).

Hydrogen and helium only have 1 and 2 bound charge states and therefore have much
fewer levels than metals. Given that the electron number density can be slow to converge
(which from experience typically requires 10-30 Brent iterations for optically thin regions in
CSM interaction problems), bypassing the heavier elements can result in enormous compu-
tational savings up to an order of magnitude or more.

4.6 Radiative Opacity and Emissivity

Once the kinetic state state of the plasma is known, we can then calculate the radiative
opacities and emissivities used by the transport package. While the opacities are defined
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as continuous in frequency, we assume that we have a discretized frequency grid with bin
centers {νg} consisting of G groups, which we take to be logarithmically spaced. Opacities
and emissivities for that bin are then taken to be constant at the value computed at bin
center.

Bound-Free

The bound-free opacity from level j of charge state i of each species is [184]

αbf
i,j = nijσij(ν)− ni+1,cσij(ν)

[
nij

ni+1,c

]
⋆

e−hν/kbTe (4.98)

The first term is the direct extinction from photo-absorption, while the second term accounts
for stimulated emission from the continuum state (i+ 1, c) that the (i, j) state photoionizes
to. The star denotes quantities in LTE and is given by a Saha-Boltzmann distribution as[

nij

ni+1,c

]
⋆

= λ3ne
gij

2gi+1,c

eχ̃ij/kbTe (4.99)

where χ̃ij = χij + ϵi+1,c with χij the ionization energy of the (i, j) ionizing state, and ϵi+1,c

is the excitation energy above ground of the continuum state being ionized into (ϵi+1,c = 0 if
the continuum state is the ground state of i+1). The thermal electron de-Broglie wavelength
is given by

λ =

(
h2

2πmekbTe

)1/2

(4.100)

As such, we can write the opacity as

αbf
ij (ν) = nijσij(ν)− ni+1,cneσij(ν)Φij(ν, Te) (4.101)

where

Φij(ν, Te) = λ3
gij

2gi+1,c

exp [− (hν − χ̃ij) /kbTe] (4.102)

The total bound-free opacity from each species is then summed over all levels of all ionizing
states

αbf
ν =

∑
i,j

αbf
ij (ν) (4.103)

We can alternatively use the total species number density n, the charge state distribution Qi,
and relative level populations fij, such that the level number density is given by nij = nQifij,
and so

αbf
ν

n
=
∑
i

∑
j

Qifijσij(ν)− ne

∑
i

∑
j

Qi+1fi+1,cΦij(ν, Te)σij(ν) (4.104)
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Similarly, the bound-free emissivity is given by

jbfij (ν) = ni+1,cσij(ν)

[
nij

ni+1,c

]
⋆

(
1− e−hν/kbTe

)
Bν(Te) (4.105)

=
2hν3

c2
ni+1,cσij(ν)

[
nij

ni+1,c

]
⋆

e−hν/kbTe (4.106)

We can rewrite this expression as

jbfij (ν) =
2hν3

c2
ni+1,cneσij(ν)Φij(ν, Te) (4.107)

The total bound-free emissivity from each species is then

jbfν =
2hν3

c2
ne

∑
i

∑
j

ni+1,cΦij(ν, Te)σij(ν) (4.108)

Again using the total species number density and the charge+level state distributions, we
have

jbfν
n

=
2hν3

c2
ne

∑
i

∑
j

Qi+1fi+1,cΦij(ν, Te)σij(ν) (4.109)

Free-free

The thermal free-free, or Bremsstrahlug, absorption coefficient for each species is given by
[188]

αff (ν)

n
=

4e6

3mehc

(
2π

3kbme

)1/2

T−1/2ν−3
(
1− e−hν/kbT

)
neḡff

∑
i>0

i2 ·Qi (4.110)

where ḡff is the thermally-averaged free-free Gaunt factor. The free-free emissivity is given
through Kirchoff’s law

jff (ν) = αff (ν)Bν(T ) (4.111)

We set the Gaunt factor to unity, although there exist accurate tables across a range of
densities and temperatures [189]

Bound-bound

The bound-bound opacity from a transition from lower level l to upper level u, assuming
complete redistribution in the line, is [184]

χl
ν =

hν

4π
nlBluϕlu(ν)

[
1− nugl

nlgu

]
(4.112)
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where Blu is the Einstein B coefficient, ϕlu(ν) is the line profile of the transition, and the
term in brackets corrects for stimulated emission. We can write this in terms of the total
line cross section as

χl
ν = nlσluϕ(ν)

[
1− nugl

glnu

]
(4.113)

where

σlu =
πe2

mec
flu (4.114)

and the oscillator strength is given in terms of the spontaneous emission coefficient as

flu =
mec

3

8π2e2ν20

gu
gl
Aul (4.115)

where hν0 = Eu − El is the frequency of the transition.
The total bound-bound emissivity is given in terms of its source function as

jlν = αl
νS

l
ν (4.116)

where

Sl
ν =

2hν3

c2
1

gunl

glnu
− 1

(4.117)

Total bound-bound opacities and emissivities are then taken as the sum of all included
transitions between levels of all charge states.

If the line profile is dominated by thermal Doppler broadening (which is usually a good
approximation at high temperatures and low densities), then it is given as a Gaussian with

ϕ(ν) =
1√
π∆νd

e−(ν−ν0)2/∆ν2d (4.118)

where

∆νd =
ν0
c
vth (4.119)

and vth =
√

2kbT/mi is the thermal ion velocity.
As our atomic levels are in reality superconfigurations that consist of an averaging over

levels with the same principal quantum number [181, 190, 191], transitions are instead given
as unresolved transition arrays (UTAs) with a UTA energy width ∆E [180, 192]. The UTA
contribution is added to the Doppler broadening as ∆ν = ∆νd +∆E/h.
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Approximate Unresolved Line Treatment

For the radiation hydrodynamics simulations, it will often be the case that the frequency
mesh is too coarse to resolve individual line profiles. As such, we require an approximate
treatment of line absorption and emission without needing to perform full spectral line
transport. We therefore average photo-excitations over the frequency group in which they
fall in. I.e.

ϕ(ν) =

{
1/∆νg, νg−1/2 ≤ ν ≤ νg+1/2

0, otherwise.
(4.120)

Next, we need to make sure that, in LTE, the source function correctly reduces to the Planck
function. We start with the expression from the equivalent two-level atom approach [50],
which approximates the source function as

Sν = ϵνBν + (1− ϵν)J̄ (4.121)

We rewrite this to get an expression for ϵnu as

ϵν =
Sν − J̄

Bν − J̄
(4.122)

Clearly when Sν = Bν for LTE, ϵν = 1.
The thermal contribution to the opacity and emissivity is given by

ϵν =
Sν

Bν

(4.123)

The thermal line emissivity is then written as

jlν = ϵνχ
l
νBν (4.124)

While this may seem like a pointless rewriting of the same thing, it is numerically advanta-
geous for unresolved line profiles. The reason for this is that the source function is defined
in terms of the atomic level populations, therefore:

ϵν =
Sν

Bν

=
exp [hν0/kbT − 1]

gunl

glnu

− 1
(4.125)

However, our frequency grid is defined in terms of bin center frequencies νg ̸= ν0, i.e. the
frequency at which opacities and emisisvites are defined is not the same as the transition
frequency. By writing the line epsilon in this way, we ensure that LTE is correctly recovered
for the radiation field and therefore level populations.

Next, we account for potential trapipng and destruction of lines through the use of escape
factors [193, 194]. Our net line emissivity equation therefore becomes

jlν = ϵνχ
l
νBνP

l (4.126)
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where P l ∈ {0, 1} are the escape factors. If lines are either trapped in resonance at the
excitation, or destroyed by some other means such as collisional de-excitation, then P l → 0.
On the other hand, if line radiation is able to freely escape from the emitting region, then
P l → 1.

We write the escape factors consisting of both a resonant line scattering escape in the
wings contribution, as well as line destruction probability, as

P l = Pesc × (1− Pth) (4.127)

The static escape probabilities are taken from [193] using the Holstein factors

Pstatic =

{
τ−1
0 (π ln τ0)

−1/2 , τ0 ≥ 2.5
exp [−τ0/1.73] , τ0 < 2.5

}
(4.128)

where

τ0 ≈
nlσlu
∆νd

L (4.129)

and L is a characteristic length scale of the problem, which we take to be the zone size.
In addition to the static escape factors, we also account for line escape due to velocity

gradients using the Sobolev approximation [194]:

Psob =
1− exp [−τs]

τs
(4.130)

where the Sobolev optical depth is given by

τs =
nlσlu
∆νd

vth
|dv/ds|

(4.131)

To interpolate between static and Sobolev limits, we use the approximation in [194]

P l = Pstatic(1− Psob) + Psob (4.132)

For strongly scattering lines, it is possible for the line to be “destroyed” by collisional
de-excitation [50]. The probability that the line is collisionally de-excited is

Pth =
1

1 +
Aul

neCul∆τl

(4.133)

where we use van Regemorter’s approximation [195] for the collisional rate coefficient:

Cul ≈ 3.9
kbT

hν0
T−3/2 gl

gu
flu (4.134)
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Note that the rate of collisional de-excitation is increased by a factor equal to the line optical
depth ∆τl, as each line scatter provides another opportunity for the line to be collisionally
de-excited.

The final form for our net line emissivity, accounting for potential line trapping and
collisional line destruction, is

jlν = ϵνχ
l
νBνPesc(1− Pth) (4.135)

In order to correctly recover LTE conditions and radiative equilibrium, we therefore add
an absorptive opacity contribution equal to

αl
ν =

jlν
Bν

(4.136)

The net effect of this approximation is that line emission is suppressed in highly optically
thick or collisionally dominated regions, effectively assuming they are destroyed. In optically
thin regions, we get a reasonable approximation for the emissivity for e.g. line cooling. Note
that the inclusion of a non-zero opacity is a strictly numerical kluge, as the use of escape
factors presumes the opacity to be zero once the line escapes. As mentioned earlier, the
kluge is necessary to get correct temperature behavior in optically thick regions by forcing
the source function to Bν [180].

Non-thermal Synchrotron

We allow for the possibility of synchrotron absorption and emission due to a population of
non-thermal electrons. The synchrotron emissivity emitted by a non-thermal electron with
energy ε = γmec

2 and Lorentz factor γ, averaged over pitch angle, is [143]

P (ν, γ) =

√
3

2

e3B

mec2
F
(
ν

νc

)
(4.137)

where B is the magnetic field strength,

νc(γ) = γ2
eB

2πmec
(4.138)

and the dimensionless function F(x) is given by

F(x) = x

∫ ∞

x

K5/3(ξ)dξ (4.139)

where K5/3(ξ) is the modified Bessel function of the second kind with order 5/3. The
asymptotic limits are

F(x) ≈

{
4π√
3Γ( 1

3
)

(
x
2

)1/3
x≪ 1√

π
2
e−xx1/2 x≫ 1

(4.140)
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We find a good functional fit to better than 1% with the piecewise approximation

F(x) ≈


1.32x1/3 x ≤ 10−3

0.84x0.27 10−3 < x ≤ 0.2

0.57e−0.3x2
0.2 < x ≤ 2

0.96x1/2e−x x > 2

(4.141)

Let N(γ)dγ denote the number density of non-thermal electrons with Lorentz factor between
γ and γ + dγ. The total synchrotron emissivity is therefore given by

jsynchν =

∫
P (ν, γ)N(γ) dγ (4.142)

In addition to emissivity, synchrotron can also act as an absorption source, commonly
referred to as synchrotron self-absorption when referring to absorption of the synchrotron
emissivity from the same non-thermal electrons.

The synchrotron absorption coefficient is given by [188]

αsynch
ν =

c2

8πhν3

∫
ε2P (ν, ε)

[
N(ε− hν)

(ε− hν)2
− N(ε)

ε2

]
dε (4.143)

where again ε = γmec
2. Several textbooks [188, 196] then expand to first order in hν to get

αsynch
ν = − c2

8πν2

∫
ε2P (ν, ε)

∂

∂ε

[
N(ε)

ε2

]
dε (4.144)

Here we instead take a different approach, as the derivative of the number density can be
subject to numerical noise and may be a poor approximation. We assume that hν ≪ ε, and
so we can rewrite the term in brackets as

N(ε− hν)

(ε− hν)2
− N(ε)

ε2
≈ −2hν

ε3
N(ε) (4.145)

Thus, the final expression for synchrotron absorption is given by

αsynch
ν = − c2

4πν2

∫
P (ν, ε)

ε
N(ε)dε (4.146)

Note that this is identical to the expression derived in [188] for the case of a power-law
distribution of electrons, up to a constant factor equal to (p+ 2)/2.

4.7 Compton Scattering

The electron scattering coefficient is given by

χes(ν) = neσTFKN(ν) (4.147)
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where ne is the free electron number density, σT = 8πe4/3m2
ec

4 the Thomson cross section,
and

FKN(ν) =
3

4

(
1 + x

x2

[
2(1 + x)

1 + 2x
− ln(1 + 2x)

x

]
+

ln(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

)
(4.148)

is the Klein-Nishina correction where x = hν/mec
2. In the limit that x ≪ 1 (hν ≪ mec

2),
FKN = 1 [188].

We take the approach done in [197], which takes its implementation from [198] while
accounting for relativistic effects by using a Maxwell-Juttner distribution for the thermal
electrons, which is important in the high shock temperatures reached during CSM interac-
tion. After being transformed into the comoving frame of the plasma, the photon is addi-
tionally transformed into the electron rest frame by using a rejection sampling technique to
get the electron velocity vector in the comoving frame, ve. This is due to the fact that it is
more likely for the photon to be scattered by electrons moving towards the photon. Once
an acceptable electron velocity has been found and the photon moved into the electron rest
frame, a new direction is selected by sampling from the differential cross-section of Compton
scatering

P (θ, x) =
3

8

1

(1 + x− x cos θ)2

[
x− x cos θ + cos2 θ +

1

1 + x− cos θ

]
(4.149)

Once the direction has been selected, the new packet frequency and energy, in the electron
rest frame, are

ν ′

ν
=
E ′

E
=

1

1 + x(1− cos θ)
(4.150)

The photon is then Lorentz transformed out of the electron rest frame, and then again from
the comoving to the lab frame. The difference in energy before and after the scatter is tallied
in a Compton absorption quantity Ecomp, which is negative if there is a net gain of energy
of the photons from the electrons (i.e. inverse Compton cooling).

Test Problem

We follow the problem description and setup as in [197]. Photons with number density nγ

are initialized at a single frequency ν0 in a uniform static region of fully ionized gas with
initial electron temperature Ti and number density ne, with electrons constituting a fraction
fe of the total number density of particles. Gas and radiation exchange energy via Compton
scattering until they come into equilibrium at a temperature Tc, with the radiation forming
a Wien spectrum with chemical potential µc.

The mean intensity of the Wien equilibrium distribution is

Jν =
2hν3

c2
exp

[
−
(
hν

kTc
+ µc

)]
(4.151)
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Figure 4.4: Numerical test of Compton scattering. Shown is the evolution of the gas and
radiation temperatures to the equilibrium Tc = 1.04× 108 K (left) and the spectrum (right)
with photons initially at hν/kTc ≈ 0.028 (grey) evolving towards the equilbriium Wien
distribution Eq. (4.151), indicated by a solid black line.

with a corresponding photon number density of

nγ = 16π

(
kbTc
hc

)3

e−µc (4.152)

and equilibrium radiation energy density Er = 3kbTcnγ. The equilibrium temperature and
potential can be solved in terms of the initial conditions to get

Tc =
hν0
kb

kbTi

hν0
+ nγ

ne
fe (γad − 1)

1 + 3nγ

ne
fe (γad − 1)

(4.153)

µc = − ln

[(
hc

kbTc

)3
nγ

16π

]
(4.154)

For our test, we set Ti = 109 K, ne = 2.5×1017 cm−3, nγ = 2.38×1018 cm−3, ν0 = 6×1017

Hz, fe = 0.5, and γad = 5/3. The equilibrium values are then Tc = 1.04×108 K and µc = 15.9.
The test uses 5 × 104 particles and is run for t = 0.04 seconds, with constant timesteps of
size ∆t = 10−6 seconds. The results are shown in Fig. 4.4.

4.8 Relativistic Electrons

When the optical depth of the circumstellar shock drops below of order c/vsh, the shock
can enter the collisionless regime [199], where the shock transition layer is mediated by
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long-range collective plasma processes rather than coulomb collisions [200]. One interesting
aspect of collisionless physics is that it opens up the possibility for efficient shock particle
acceleration [200]. This phenomena is responsible for energetic cosmic rays that appear in
various contexts, particularly in the field of supernova remnant shocks with the interstellar
medium, and their impact on galaxy evolution [201].

In circumstellar shocks, we are interested in possible signatures of this non-thermal elec-
tromagnetic emission in supernova light curves. While the bulk of the energy is carried by
the ions, the electrons are primarily responsible for any observable emission, particularly at
radio and x-ray wavelengths due to synchrotron radiation (although hadronic emission can
contribute additional gamma-ray emission, [202]).

A fully self-consistent calculation would require a kinetic approach, such as is done in
hybrid PIC codes [200]. Unfortunately, the numerical resolution needed to capture the col-
lisionless transition layer, which is of order the plasma skin depth, can be many orders of
magnitude of order O(103−106) smaller than the dynamical scale of the evolving circumstel-
lar shock. As such, we require a subgrid treatment of the non-thermal electron population
that captures the essential physics of injection at the shock front due to particle acceleration,
and the energy losses in the plasma as the simulation evolves.

Shock Injection

We base our method on that persented in [203]. Our first step is to identify the phase-space
distribution of non-thermal electrons that are injected by a collisionless shock. Let ε = γmec

2

be the energy of a non-thermal electron, where γ is the Lorentz factor. Furthermore, let
N(γ)dγ denote the number density of non-thermal electrons with Lorentz factors between γ
and γ + dγ.

Suppose a given zone/cell is flagged as containing a shock, with volumetric shock heating
rate Q̇sh which we estimate using the method in [166] by comparing the end-of-step internal
energy to the isentropic case. We assume that a fraction ϵe of the shock heating goes into
a population of non-thermal electrons. The change in the non-thermal electron population
from shock injection is therefore [

dE(γ)

dt

]
sh

= ϵeQ̇shJ (γ) (4.155)

where

E(γ)dγ = γmec
2N(γ)dγ (4.156)

is the energy contained in non-thermal electrons, and J (γ) is the shock injection spectrum,
normalized such that ∫

J (γ)dγ = 1 (4.157)
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We assume that the shock injection spectrum is a power-law distribution from γmin to γmax,

J (γ)dγ = CJ γ
−pdγ (4.158)

where

CJ = (1− p)γp−1
min

[(
γmax

γmin

)1−p
]−1

(4.159)

Energy Losses

After the shock injects a population of non-thermal electrons, they will continuously lose
energy to several physical processes. One mechanism is through adiabatic expansion of the
shocked region: [

dE(γ)

dt

]
ad

= −E(γ)∇ · v (4.160)

In spherical symmetry, the divergence evaluates to

∇ · v =
∂v

∂r
+

2v

r
(4.161)

A special case is homologous expansion v = r/t, which gives ∇ · v = 3/t and so an initial
electron population subject purely to adiabatic losses evolves as E(γ) = E0 (t/t0)

−3.
In addition to adiabatic losses, the non-thermal electrons may lose their energy due to

Coulomb collisions with thermal electrons. Technically, they can also collide with other non-
thermal electrons, but because of the much larger energy γmec

2 ≫ kbTe assumed, they will
occur much less frequently.

In the test particle approximation for an electron with energy ε, the rate of plasma
energy losses from collisions with a population of thermal electrons with number density ne

and temperature Te is [203, 204][
dε̃

dt

]
coll

= −7.7 · 10−5neλeeε̃
−1/2

(
1− 3.9

7.7

Te
ε̃

)
(4.162)

where ε̃ = ε/1 MeV is the electron energy measured in MeV, and λee ∼ 10 is the Coulomb
logarithm for electron-electron collisions. From this, we see that less-energetic electrons
will lose energy from Coulomb collisions more quickly compared to more energetic ones.
Generally, Coulomb losses will be sub-dominant relative to other loss mechanisms discussed
in this section.

Another important process that modifies the non-thermal electron population is from in-
verse Compton scattering off of “cold” photons, where by cold we mean hν ≪ γmec

2. During
CSM interaction, the photon population will come primarily from photospheric emission of
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the supernova at early times, followed by post-shock free-free emission form the forward and
reverse shocks. The rate of energy losses due to inverse Compton scattering is [188][

dε

dt

]
IC

= −4

3
cσTγ

2Urad (4.163)

where σT is the Thomson cross-section, and

Urad =
4π

c

∫
Jνdν (4.164)

is the radiation energy density at the non-thermal electron location from a radiation field
with mean intensity Jν . Inverse Compton will more strongly impact electrons with large
Lorentz factors.

The final process we include comes from synchrotron losses. In order to account for
synchrotron emission, we need to furthermore know the magnetic energy density

UB =
B2

8π
(4.165)

where B is the magnetic field. There are several ways in which the magnetic field can be
sourced. One example comes from the ambient magnetic field B0 from the pre-supernova
environment, which can be further compressed in the shocked region to increase the energy
density. Another possibility is from magnetic field amplification that is expected to occur in
collisionless shocks [205]. It has been argued that in this case, the magentic field may reach
equipartition with the non-thermal energy [200, 206]. If possible, this can result in a much
stronger magnetic field (and therefore much greater synchrotron emission) compared to the
case of shock compression of a pre-existing field.

We assume efficient field amplification such that the magnetic energy density is propor-
tional to the non-thermal electron energy

UB = ϵB

∫
E(γ)dγ (4.166)

Note that this is different from the usual definition of ϵB used in the literature [105]. Energy
equipartition with the non-thermal electrons will therefore correspond to the case of ϵB = 1.
Since the non-thermal electron population evolves in time (due to continued injection at the
shock, as well as the various loss mechanisms), the magnetic field will as well.

Once the magnetic field is known, the loss rate due to synchrotron radiation is approxi-
mated as [188] [

dε

dt

]
synch

= − 1

6π
cσTγ

2B2 (4.167)
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Numerical Implementation

The equation that we need to evolve is given by

∂E(γ)

∂t
+ v · ∇E(γ) = ϵeQ̇shJ (γ)− E(γ)∇ · v −N(γ)

{[
dε

dt

]
coll

+

[
dε

dt

]
IC

+

[
dε

dt

]
synch

}
(4.168)

The second term on the left-hand side accounts for advection of the non-thermal electrons
by the bulk flow. On the right are the sum of the shock injection source term, as well as the
various loss processes discussed in the preceding sections. Note that by creating an entirely
local (zone-by-zone) subgrid model, we are assuming the Larmor radius is sufficiently small
such that the non-thermal electrons are trapped by the magnetic fields.

We use a particle transport approach to evolve the nonthermal electron distribution [203].
At the start of each timestep, we inject N equal energy nonthermal electron packets in zones
where Q̇sh > 0. We calculate Q̇sh during the hydro substep as described using the method
in [166]. The energy of each packet emitted in the zone is set to be

∆E =
ϵeQ̇sh∆V∆t

N
(4.169)

where ∆V is the zone volume and ∆t the timestep size. Each packet’s Lorentz factor is
sampled by constructing a CDF of the injection spectrum J (γ).

We then substep each particle from time t to time t + ∆t using Nt substeps of the
hydro-limited step,

∆tsub =
∆t

Nt

(4.170)

where we typically choose Nt = 1000.
During each subcycle, we decrease the packet energy by the corresponding amount for

each loss process. Once the end of timestep has been reached, if the packet energy falls below
a threshold ∆E/E0 < 10−3 of its initial energy, we kill the particle and cease tracking of it.
We then census the remaining particles on the grid to construct the numerical estimate for
N(γ).

Once the electron distribution N(γ) at the end of the timestep is constructed, we then
calculate the magnetic field. Next, we construct the synchrotron emissivity. In the transport
step, during the thermal emission, we additionally emit synchrotron radiation packets using
the constructed non-thermal emissivity CDF.

4.9 Discussion and Conclusions

Due to the novelty of these simulation capabilities, more thorough code testing and bench-
marking is needed to ensure the validity of the simulation output. While we have carried
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out the standard radiation hydrodynamics tests as performed in the literature, as well as
0D tests of the other physics such as Compton equilibration [197], there is a notable lack of
available multi-group radiation hydrodynamics benchmarks due to its inherent complexity.
More complete testing, in addition to comparisons with the non-LTE radiative transfer code
Cretin [181], is ongoing to ensure the robustness of the Sedona implementation.

We have provided extensive modifications to the original Sedona code to do fully self-
consistent multi-group non-LTE radiation hydrodynamics. In particular, the new physics
provides the capability to fruitfully investigate multi-frequency emission from circumstellar
interaction, which we discuss in the following chapter. Other astrophysical problems of
interest include magnetar-powered supernovae [207]; wind-reprocessed emission from tidal
disruption events [208, 209]; common envelope evolution and recombination-powered light
curves [14, 210]; and other high energy astrophysical environments with non-thermal radio
and/or x-ray emission (e.g. AGN and accretion disk reflection spectral modeling [211]).
Additionally, while our hydrodynamics scheme is currently only limited to 1D, the transport,
atomic kinetics package, and non-thermal electrons work in 2D and 3D, which opens the
realm to investigate many interesting phenomena with asymmetries.
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Chapter 5

Panchromatic Emission from an
Interacting Supernova

5.1 Introduction

In Chapter 3, I provided a broad framework with which to interpret the diversity of interact-
ing supernova light curves. Due to the simplifying assumptions of a frequency-independent
and constant opacity, the framework only provides insight into the bolometric properties
of the shock emission. However, interacting supernovae are observed to be panchromatic
events, detectable not just in the optical but also radio and x-ray wavelengths [212–214].

Most works rely on analytic estimates of the radio and x-ray emission in order to extract
physical quantities such as the CSM mass and radius [105, 215]. Given that the analytic
models are independently constructed, they can at times give inferred parameters that dis-
agree [216]. It is therefore essential to determine which, if any, of these analytic estimates is
valid through the use of detailed numerical simulations.

Fortunately, the extensive improvements made to Sedona as discussed in 4 now puts
such a task within reach. In this chapter, I perform time-dependent non-equilibrium multi-
frequency radiation hydrodynamics simulations of an interacting supernova. Inspired by the
recent event SN2023ixf [217, 218], I focus on the specific case of a Type IIP supernova with
an extended CSM surrounding the ejecta.

5.2 Numerical Setup

Included Physics

At each timestep, we solve inline the non-LTE atomic kinetics of the atomic mixture using
the Cretin DCA atomic models (described in Appendix E), accounting for all relevant colli-
sional and radiative rates. The atomic level populations are used to calculate the frequency-
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dependent opacity, with lines included by using the approximate treatment discussed in
Chapter 4.

Along with the NLTE radiation hydrodynamics, we also evolve non-thermal electron
populations created in shocked regions. We assume that the shock injects a fraction ϵe of
the numerically estimated zone shock-heating rate, with the injection spectrum assumed to
be a power-law with N(γ) ∝ γ−3 between Lorentz factors γmin = 1 and γmax = 106. The
non-thermal electrons are evolved in time using a substepping procedure, accounting for the
combined effects of coulomb, adiabatic, synchrotron, and inverse Compton losses. We then
use the evolved non-thermal electron distribution to emit synchrotron radiation, which is
tracked during the radiation transport step. We estimate the magnetic field needed in the
expression for synchrotron by assuming equipartition with the non-thermal electrons, i.e.
Umag = B2/8π =

∫
E(γ)dγ. We also assume electron-ion equilibrium of the thermal plasma,

i.e. both electrons and ions are characterized by the same temperature Te = Ti.
Finally, in order to account for late-time optical emission, we include a time-dependent

energy source term for the radioactive decay of Nickel-56 and Cobalt-56 for a nickel mass
Mni. We spread the source term out to an ejecta velocity coordinate of 2000 km/s.

Ejecta-CSM Setup

We assume that the supernova ejecta is expanding homologously with a broken power-law
density profile [140, 219]

ρej(r) = fρ
Mej

r3t

[
r

rt

]−(δ,n)

(5.1)

where rt = vtt0 and

vt =

√
fvEsn

Mej

(5.2)

The numerical coefficients are given by

fρ =
1

4π

(n− 3)(3− δ)

(n− δ)
(5.3)

fv =
2(5− δ)(n− 5)

(n− 3)(3− δ)
(5.4)

where we adopt fiducial values of δ = 0, n = 10. We assume an initial radiation energy
density profile in the ejecta of [59]

Erad(r) = arT
4
0

sin (πx)

πx
(5.5)

where x = r/R∗, with R∗ the outer edge of the ejecta. The CSM is given similarly by a
power-law

ρcsm(r) = fcsm
Mcsm

R3
csm

[
r

Rcsm

]−s

(5.6)
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where

fcsm =
(3− s)

4π

[
1−

(
R∗

Rcsm

)3−s
]−1

(5.7)

and Rcsm are the inner/outer radius of the CSM, respectively. We assume a stationary
wind-like CSM with s = 2 and vcsm = 0, and an initial temperature Tcsm = 104 K.

Fiducial Model

We use an ejecta mass of Mej = 10M⊙, outer CSM radius Rcsm = 2 · 1016 cm, and CSM
mass corresponding to a mass-loss rate of 10−4M⊙ yr−1 and wind velocity of 50 km s−1. The
simulation is initialized at a time t0 = 10 days with initial ejecta temperature 5 · 104 K.
We assume the ejecta contains a radioactive mass MNi = 0.05M⊙ whose heating is locally
thermalized by the ejecta. We account for atomic opacities of hydrogen, helium, and oxygen
as a representative metal. We use mass fractions of xH = 0.75, xHe = 0.25, and xC = 0.005.
Both the ejecta and CSM are assumed to have identical chemical compositions. We set the
non-thermal shock energy injection parameter to ϵe = 0.01 and energy equipartition of the
magnetic field ϵB = 1 with the non-thermal electrons. Note that the ϵB definition used here
is not identical to that previously used in the literature (such as e.g. [105]).

Numerical Parameters

The opacities and output spectra are defined frequency grid between 107 and 1021 Hz. We use
approximately 1000 logarithmically spaced frequency groups spanning this frequency range.
The ejecta and CSM are divided into 400 and 600 uniformly-spaced zones, respectively. The
ALE mesh spring is used with CFL of 0.2, a constant spring constant and minimum zone
size of 1012 cm. At each timestep, we emit 32 thermal particles per zone, along with 2 · 104
non-thermal synchrotron particles. We include Compton scattering in zones with electron
scattering optical depths less than ∆τes = 5. For zones with optical depths larger than this,
we instead add a fraction of the electron scattering opacity ϵ = 10−4 to be absorptive to
mimic the effects of Compton thermalization. In order to minimize spurious temperature
fluctuations, we limit the fraction change in gas temperature between timesteps to be at
most 20%. For the non-thermal electrons, we inject 100 tracer particles at each zone with
a non-zero shock heating rate, sampling an energy CDF corresponding to a γ−3 injection
spectrum. We track the non-thermal electrons until their energy falls below 10−4 their initial
energy. We evolve all of the aforementioned processes and their coupling out to a time of 300
days since explosion. We then tally the escaping emission ton construct frequency-dependent
light curves, with time bin sizes of 1 day.
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Figure 5.1: Time evolution of the panchromatic spectral energy distribution (SED) for the
interacting type II supernova, from photospheric (20 days) to nebular times (∼ 300 days).

5.3 Panchromatic Spectral Energy Distribution

In Fig. 5.1, we show the resulting spectral energy distribution (SED) of the circumstel-
lar interaction, covering the early photospheric to later nebular phases. The SED contains
contributions both from the cooling supernova ejecta, as well as thermal and non-thermal
emission from the shocked region. The interaction produces observable and luminous emis-
sion across the electromagnetic spectrum, owing to the multitude of radiative processes.

At early times, up to roughly 100 days, the bulk of the radiation comes from photospheric
emission generated by the supernova ejecta, resulting in a near-Planckian distribution that
peaks in the optical and near-UV range. [220] At these frequencies, the shock interaction
emission contributes very little. Once the the supernova ejecta has completely recombined
(at times ≳ 100 days), the optical continuum is replaced by strong nebular lines, primarily
Hα [221]. These lines are superimposed on the optically thin synchrotron spectrum. One
notable effect of shock interaction is the electron scattering of emission features, broadening
the wings of the lines [220].

There is a notable lack of observable emission in the FUV and EUV frequency range
of ∼ 1016 to 1017 Hz. In the absence of any absorptive processes, the radiation in this
region would come from free-free emission from primarily the reverse shock and to a lesser
extent the forward shock and optically thin synchrotron. However, the reverse shock is
obscured not only by the unshocked CSM, but also by the formation of a cold dense shell
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Figure 5.2: Time evolution of the radio to submm spectrum. Red dashed line gives a power-
law fit to the high-frequency end of Lν ∝ ν−1. Dotted black line gives the expected power-law
slope for an optically thin synchrotron spectrum Lν ∝ ν(1−p)/2 with p = 3. Solid grey line is
the expected power-law slope for self-absorbed synchrotron.

overlying the shock region [20]. These components will obfuscate the shock radiation through
bound-free absorption, particularly from helium and oxygen. For these model parameters,
the absorption comes primarily from He II and O VI. However, as the shock propagates
outwards, the amount of absorbing material decreases (due to expansion and decreasing
line-of-sight optical depth) and the reverse shock begins shining through, starting at higher
frequencies and progressively filling in the UV region.

Radio Emission

The radio through submm emission comes entirely from non-thermal synchrotron emission
of relativistic shock-accelerated electrons. Fig 5.2 shows the spectral evolution between
1 GHz and 3000 GHz. The spectrum is characterized by a steep low-frequency rise to a
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Figure 5.3: Radio to Submilimeter light curves for the frequency range 500 MHz to 3000
GHz. Dashed line shows an approximate fit to optically thin synchrotron, while the dotted
line is the synchrotron self-absorption+free-free model [215].

peak, followed by a more gradual power-law tail to the submm range. As the interaction
evolves in time, the spectral peak progressively shifts to lower frequencies and higher specific
luminosities, peaking at around 300 GHz at 250 days.

The steep lower-frequency rise is caused by external free-free absorption by the overlying
unshocked CSM, As the shock propagates outwards, the amount of free-free absorbing ma-
terial decreases, and so the frequency cutoff at which the radio emission becomes optically
thin to free-free moves to progressively longer wavelengths. There is a slight softening in the
spectral rise near the peak frequency, implying that synchrotron self-absorption is starting
to impact the observable emission.

At frequencies higher than the peak frequency, the spectral slope follows the usual op-
tically thin synchrotron emission expected from a power-law distribution of non-thermal
electrons [188]. However, as we start going to frequencies greater than ≳ 200 GHz, the
spectrum appears to steepen, from ν−1/2 to ν−1. This is due to the combined effects of in-
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verse Compton and synchrotron losses of the non-thermal electrons. As both loss processes
scale with the Lorentz factor as γ2, the more energetic electrons will be more susceptible to
energy losses, thus steepening the non-thermal electron distribution compared to the shock
injection spectrum.

The impact of inverse Compton is more readily seen in Fig. 5.3, which shows the light
curves for radio through submm wavelengths. In particular, during the plateau phase of the
type II supernova, there is a copious amount of soft photospheric photons streaming through
the shocked region. This results in inverse Compton cooling of the non-thermal electrons,
decreasing the total synchrotron throughput they are able to produce.

However, at around ∼ 80 days, the supply of soft photons drops precipitously as the
ejecta recombines and the photospheric emission fades. As a result, at submm frequencies,
a sudden rise in the radio luminosity occurs that is coincident with the end of the plateau
phase, indicating a direct connection of the impact of inverse Compton cooling.

The optically thin synchrotron radiation seems to decline more gradually than analytic
expectations, following a t−1/2 compared to t−1 expected in [222]. This is due to the fact
that synchrotron is being radiated at not just the forward, but also the reverse shock. The
combined effect of these two shocks results in a flattening in the time evolution, which is
something also seen in the x-ray emission discussed in the next section. Interestingly, the
analytic expression of [215] appears to provide a remarkably good fit to the numerical light
curves, albeit with slightly modified numerical values.

X-ray Emission

The x-ray emission from interacting supernova comes from the free-free emission of T ≳ 107

K shock-heated plasma. In Fig. 5.4, we show the x-ray spectral evolution in the range of 0.1
to 300 keV. The x-ray emission will come from both the forward and reverse shock, each with
different density and temperature conditions. As such, the x-ray spectra shows a notable
reverse shock excess at early times around a few keV, superimposed on the forward shock
free-free continuum. The reverse shock bump also appears to drop off steeply around 800
eV due to oxygen bound-free absorption.

Interestingly, the large reverse shock excess seems to rapidly fade early on during the
interaction. This is due to the delayed formation of a cold dense shell between the forward
and reverse shock regions. As the reverse shock is obfuscated by the overlying cold dense
shell, much of it will be photo-absorbed. Note that this absorption doesn’t occur for the
forward shock emission, as it lies above the cold dense shell relative to our observing line of
sight. Nonetheless, there still appears to be an excess emission between 1 and 10 keV, as
a single-component free-free continuum would be flat, while the spectra appear to show a
slight slope. Thus, some of the reverse shock emission may still be able to escape through
the cold dense shell.

Similar to the radio emission, as the shock moves outwards, the amount of external
bound-free photoabsorption from the unshocked CSM decreases. Thus, at later times, there
is a gradual increase in the amount of soft (0.1-1 keV) emission that is observable. Finally, as
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Figure 5.4: Time evolution of the soft to hard X-ray spectrum. Dashed black line gives a
power-law fit to the 1-10 keV component of E−1/2.

the ejecta decelerates and the shocked region cools and adiabatically expands, the decreased
temperature causes the free-free turnover of both the forward and reverse shocks to move to
progressively lower energies.

5.4 Discussion and Future Work

This simulation of the panchromatic emission from an interacting supernovae demonstrates
how one can self-consistently model the full electromagnetic spectrum using a single model.
While the numerical results seem give qualitatively good agreement with analytic estimates,
there are notable differences that are not usually accounted for in simplified modeling. In
particular, these preliminary results have shown the significant impact the reverse shock can
have on both the radio and x-ray emission. One further novelty of these simulations is the
ability to naturally form a cold dense shell, something which has been previously invoked
but rarely included in modeling interacting light curves.
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Figure 5.5: X-ray light curves for the energy range 0.5-300 keV. Dashed line gives a fit to
the hard x-ray emission of t−1, as expected from optically thin free-free emission from the
shocked region [223]. Dotted line gives a fit to the soft component of t−1/2.

The other important finding is that inverse Compton scattering plays an important role
in shaping the radio emission due to its effect on the non-thermal electron distribution.
Namely, inverse Compton cooling of the fast electrons leads to a steeper spectral index in
both the electron distribution and, as a consequence, the synchrotron emission.

There is still much work to be done to fully investigate how the panchromatic SED
changes for different ejecta and CSM properties. In particular, for a dense enough CSM,
the shocks can become collisional [104], and so the non-thermal component will disappear.
It would be interesting to determine what the criteria is in order for radio emission to
appear during CSM interaction, and what its presence or absence tells us about the event.
Additionally, the dense CSM interaction should begin contributing significantly to optical
and UV wavelengths, thereby altering the overall morphology of the SED.

Another aspect not explored here is how different supernova progenitors impact the
resultant SED. In particular, stripped-envelope supernovae will have a much different pho-
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tospheric evolution compared to the plateau of Type II supernovae [115]. Combined with
their differing chemical composition, ejecta mass, and shock velocity, it remains to be seen
what the panchromatic SEDs of e.g. Type Ibn and Icn supernovae look like, which we leave
for future work.

One simplification we have made is our approximate treatment of the opacities. In
particular, we have used a single representative metal, oxygen, to qualitatively capture the
effects of metal line cooling and photo-absorption. Recent observations of SN2023ixf indicate
the presence of K-shell emission from neutral Fe [218]. The exact structure of this feature,
along with the nebular lines, is something that can be obtained through spectral post-
processing of these radiation hydrodynamics simulations, using a resolved line treatment.
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Appendix A

Additional Expressions for the Peak
Time-Luminosity Relation

A.1 Expressions for the Peak Time-Luminosity

Relation

From Section 3, we found an expression for the peak time-luminosity relation as

Lpeak =
2

β2t2peak

∫ βtpeak

0

t′Lheat(t
′) dt′ (A.1)

where Lpeak is the observed peak luminosity at the peak time tpeak, Lheat(t) is the time-
dependent heating rate, and β is a constant that depends on opacity/concentration effects.
Eq.(A.1) can be evaluated analytically for several functional forms of Lheat(t).

Suppose the heating source can be written most generally as

Lheat(t) =
Es

ts
H(t, ts) (A.2)

whereH(t, ts) is the time-dependent component of Lheat(t), ts is the heating source timescale,
and Es the characteristic heating energy. Equivalently, the heating source can be expressed
in terms of a characteristic luminosity by setting L0 = Es/ts.

Let τ = tpeak/ts be the ratio between the peak time and source timescale. Then the peak
luminosity can be evaluated to get

Lpeak =
2Ests
β2t2peak

× f(τ, β) (A.3)

where f(τ, β) depends on the exact functional form of H(t, ts). For an exponential source,

H(t, ts) = exp [−t/ts] (A.4)
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the integral can be evaluated to get

f(τ, β) = 1− (1 + βτ) e−βτ (A.5)

In Table 1, we give the analytic expressions of f(τ, β) for a variety of heating functions
H(t, ts). The choice of β again depends on opacity/recombination effects, as well as the spa-
tial distribution of heating. In Table 2, we give approximate values of β based on numerical
results.

Radioactive Two-Decay Chain

Numerous transients are powered by the radioactive decay of synthesized elements, e.g. 56Ni
in Type I and IIb/pec supernovae.

Consider a decay chain consisting of 0 → 1 → 2 with decay timescales t0 and t1, respec-
tively (ignoring the contribution to heating of species 2). The total number of the species at
time t is expressed as

N0(t) = Ne−t/t0 (A.6)

N1(t) = N
t1

t1 − t0

(
e−t/t1 − e−t/t0

)
(A.7)

where N = N0(0), and it is assumed that N1(0) = 0. Let Q0, m0, Q1, and m1 be the decay
energies and species mass. Define heating rates per unit mass as

ε0 =
Q0

m0t0
(A.8)

ε1 =
Q1

m1(t1 − t0)
(A.9)

Then the heating luminosity can be expressed as

Lheat(t) =M
[
(ε0 − ε1)e

−t/t0 + ε1e
−t/t1

]
(A.10)

where M = Nm0 is the total initial mass of species 0.
With this expression we can derive the peak time-luminosity relation as

Lpeak =
2ε0Mt20
β2t2peak

[(
1− ε1

ε0

)(
1− (1 + βtpeak/t0)e

−βtpeak/t0
)

+
ε1t

2
1

ε0t20

(
1− (1 + βtpeak/t1)e

−βtpeak/t1
)] (A.11)
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Radioactive Nickel Decay

Supernovae of Type I and IIb/pec are powered primarily by the radioactive decay of 56Ni
followed by 56Co [61, 62]. The heating function can be written in terms of the nickel mass
MNi as

Lheat(t) =MNi

[
(εNi − εCo) e

−t/tNi + εCoe
−t/tCo

]
(A.12)

where εNi = 3.9 ·1010 erg g−1 s−1 and εCo = 6.8 ·109 erg g−1 s−1 are the specific heating rates
of Ni- and Co-decay, and tNi = 8.8 days and tCo = 111.3 days are the decay timescales.

We can evaluate the peak time-luminosity relation in terms of β as

Lpeak =
2εNiMNit

2
Ni

β2t2peak

[(
1− εCo

εNi

)(
1− (1 + βtpeak/tNi)e

−βtpeak/tNi
)

+
εCot

2
Co

εNit2Ni

(
1− (1 + βtp/tCo)e

−βtp/tCo
)] (A.13)

Let tp = tpeak/day be the peak time in days. Using the numerical values of εNi, εCo, tNi, and
tCo we get a more compact numerical expression (accurate to within ∼ 1%) as

Lpeak = 1046
(
MNi

M⊙

)
1

β2t2p
×

[34.78− (1 + 0.114βtp) exp (−0.114βtp)

−33.78 (1 + 0.009βtp) exp (−0.009βtp))] erg s
−1

(A.14)

Magnetar-powered Supernovae

The spindown luminosity of a magnetar is generally described by [73, 224–226]

Lmag(t) =
Emag

tmag

l − 1

(1 + t/tmag)
l

(A.15)

where l = 2 for magnetic dipole spin-down,

Emag =
INSΩ

2

2
= 2× 1050P−2

10 erg (A.16)

is the magnetar energy with P10 = P/10ms is the spindown period, and

tmag =
6INSc

3

B2R6
NSΩ

2
= 1.3B−2

14 P
2
10 yr (A.17)

is the spindown timescale with B14 = B/1014G the magnetic field strength. For l = 2, we
get

Lpeak =
2Emagtmag

β2t2peak

[
ln(1 + βτ)− (1 + 1/(βτ))−1] (A.18)

were τ = tpeak/tmag.
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Accretion-Powered Transients

Another interesting heating source is that of an accreting compact object [227]. Let Ṁ ∼
Macc/tacc be the accretion rate of mass Macc and timescale tacc. We here consider two
functional forms of accretion luminosity. The first is of constant heating that “shuts off”
after a time tacc,

Lacc(t) =
ϵMaccc

2

tacc
Θ(t− tacc) (A.19)

where Θ(t− tacc) is the Heaviside step function, and ϵ is the radiative efficiency. Substituting
this into Eq.(2.19) we get

Lpeak =
ϵMacctacc
β2t2peak

(A.20)

Another functional form of interest is that of an n = −5/3 power law, appropriate for fallback
accretion

Lacc(t) =
ϵMaccc

2

tacc

(
t

tacc

)−5/3

(A.21)

Again evaluating this source in Eq.(2.19) we get

Lpeak =
6ϵMaccc

2tacc
β2t2peak

[(
βtpeak
tacc

)1/3

− 1

]
(A.22)

Kilonovae

The kilonova heating rate from the radioactive decay of r-process elements can be parame-
terized as [53, 228–230].

Lheat(t) = ε0Mej

(
t

t0

)−η

× f(t) (A.23)

where ε0 ≈ 1011 erg g−1 s−1 is the specific heating rate, Mej is the ejecta mass, t0 ≈ 1 day,
and η ≈ 1.3. The function f(t) gives the thermalization efficiency with which the radioactive
decay energy is able to deposit as heat in the ejecta.

[231] suggest an analytic approximation of the thermalization efficiency of electrons

f(t) =

(
1 +

t

te

)−1

(A.24)
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where

te ≈ 12.9M
2/3
0.01v

−2
0.2 days (A.25)

is the electron thermalization timescale, M0.01 =Mej/0.01M⊙, and v0.2 = vej/0.2c the ejecta
velocity.

Evaluating the integral for η = 1.3 and the above approximation for the thermalization
efficiency, we get

Lpeak = 2.86ε0Mej

(
t0

βtpeak

)1.3

2F1 (0.7, 1, 1.7,−βtpeak/te) (A.26)

where 2F1(a, b, c, x) is the hypergeometric function which we approximate by a functional fit
of

2F1 (0.7, 1, 1.7,−βtpeak/te) ≈ (1 + βtpeak/te)
−1/2 (A.27)

Thus, the peak time-luminosity relation for kilonova is approximately

Lpeak = 2.86ε0Mej

(
t0

βtpeak

)1.3

· (1 + βtpeak/te)
−1/2 (A.28)

Assuming the r-process heating is uniformly mixed throughout the ejecta, we choose an
approximate β ≈ 2 based on numerical simulations.

A.2 Derivation of the Peak Time-Luminosity Relation

In Section 3, we showed that a simple relation holds between the peak time and luminosity
of a light curve

Lpeak =
2

β2t2peak

∫ βtpeak

0

t′Lheat(t
′)dt′ (A.29)

assuming there exists some time t = βtpeak such that ϵ(t) = 0, where we defined

ϵ(t) =

[
t2

2
Lpeak −

∫ t

0

t′L(t′) dt′
]
− tE(t) (A.30)

Our goal, then, is to motivate that such a time when ϵ(t) = 0 exists. We define two quantities

F(t) =
t2

2
Lpeak −

∫ t

0

t′L(t′) dt′ (A.31)

and

E(t) = tE(t) (A.32)
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Thus, the time when ϵ(t) = 0 also implies

F(t) = E(t) (A.33)

Initially, E(t) will rise as heat is deposited and trapped in the optically thick ejecta. Even-
tually, the expanding ejecta becomes optically thin, allowing radiation to freely escape. As
a result, any heating goes directly into the light curve, L(t) = Lheat(t). This implies that
E(t) = 0 at late times t≫ tpeak.

Since E(t) is continuous, if F(t) is a monotonically increasing function of time and F(t) <
E(t) for some t, then it follows that F(t) and E(t) must intersect.

Taking the derivative in time of F(t) we get

F ′(t) = t [Lpeak − L(t)] (A.34)

Since L(t) ≤ Lpeak by definition, it follows that

F ′(t) ≥ 0 (A.35)

and so F(t) is indeed a monotonically increasing function of time.
Next, we need to show that there exists a time such that F(t) < E(t). At t = 0 we have

F(t) = E(t) = 0. For small t, we can expand the derivative of E(t) to get

E ′(t) ≈ t
[
Lheat(0) + tL′

heat(0)− t2L′(0)
]

(A.36)

≈ tLheat(0) +O(t2) (A.37)

where we make use of the fact that L(0) = 0. Similarly, for F(t), we get

F ′(t) ≈ t
[
Lpeak − t2L′(0)

]
(A.38)

≈ tLpeak +O(t3) (A.39)

If the condition Lheat(0) > Lpeak is satisfied, then

E ′(t) > F ′(t) (A.40)

for small t. Since F(0) = E(0) = 0, we have that, at early times, E(t) > F(t). Combined
with the monotonicity of F(t) and the fact that E(t) → 0 at late times, it follows that E(t)
and F(t) must intersect. In other words, there exists a time such that ϵ(t) = 0 and the peak
time-luminosity relation holds.

There is a-priori mathematical justification for Lheat(0) > Lpeak, however in physical
cases of interest (e.g. radioactive decay, magnetar spindown, etc.), this seems to be a valid
assumption, whereby Lheat(t) is monotonically decreasing in time. Furthermore, both dif-
fusion and adiabatic degradation act to spread out and decrease the heating luminosity in
time. This is confirmed in our numerical simulations for a wide variety of heating functions,
wherein all the light curves seem to indicate Lheat(0) > Lpeak (see e.g. Figs. (2.1) and 2.2).
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Figure A.1: Comparison of the quantities E(t) (solid lines) and F(t) (dashed lines) as a
function of time, for a central heating source with different functional forms and source
timescales. The time when E(t) = F(t) gives the value of β.

Another mathematical possibility is that F(t) and E(t) intersect more than once. As-
suming Lheat(0) > Lpeak, since F(t) is monotonically increasing, such behavior requires E(t)
to “oscillate”, i.e. there exists more than one time that dE/dt = 0. It is unclear whether
such behavior is physical.

In summary, it is difficult to prove definitively that the peak time-luminosity relation
holds for an arbitrary heating function. For a variety of monotonically decreasing heating
functions, we have confirmed numerically that Lheat(0) > Lpeak. Furthermore, this inter-
section appears to occur only once. In Fig.(A.1), we show the behavior of E(t) and F(t)
for a subset of numerical simulations, assuming a central source and constant opacity. We
pick different functional forms (exponential and magnetar-like) as well as different source
timescales. In all cases, the time when ϵ(t) = 0 is nearly identical, with β ≈ 1.3.
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Appendix B

Supplementary Equations and
Derivations of Circumstellar
Interaction

B.1 Numerical Scalings

In §3.5 we performed numerical simulations of CSM interaction to determine the scaling
behavior of the different light curve phases, and compare against the analytics presented in
§3.4. Namely, we proposed fitting formula of the i-th phase luminosity and timescale of

Li = aiη
−3αiξkiL0 (B.1)

ti = biη
αiξcit0 (B.2)

where L0 =Mcsmv
3
ej/Rcsm, t0 = Rcsm/vej, η =Mcsm/Mej, and the breakout parameter is

ξ = β0τ0η
−α ≈ 10κMcsm,⊙v9R

−2
4 η−α (B.3)

Here, β0 = vej/c (where vej =
√

2Esn/Mej), τ0 = κMcsm/4πR
2
csm, v9 = vej/10

9 cm s−1,
Mcsm,⊙ =Mcsm/M⊙, and R4 = Rcsm/10

4R⊙. The value of α in the breakout parameter can
be estimated from analytic arguments (see Appendix B.2) as

α =

{
1/2, (η ≳ 1)
1/(n− 3), (η ≪ 1)

(B.4)

where ρej ∝ r−n is the outer ejecta density profile, and n ≈ 7 − 10 [140].Note that the
scaling of α = 1/(n − 3) for η ≪ 1 breaks down when the shock reaches the flatter inner
portion of the ejecta. This occurs when the amount of swept up CSM mass exceeds the
mass contained in the steep outer ejecta. The ratio of outer to inner ejecta mass is equal to
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Light Edge Breakout
Shock Breakout

Shock Cooling

Heavy Edge Breakout

Shock Breakout

Shock Cooling

Figure B.1: Schematic diagram with numerically calibrated scalings for edge breakout light
curves, in the light (left) and heavy (right) CSM regimes. Assumes ejecta density profile
ρej ∝ r−10 and CSM density profile ρcsm ∝ r−2. More general scalings for other profiles given
in §3.4.

(3 − δ)/(n − 3) = 2/7 for the fiducial power-laws. Thus, for CSM masses Mcsm ≳ 0.3Mej,
the behavior of the shockwave will change.

The scaling exponents (ai, ki), (bi, ci), and αi are fit to the numerical simulations described
in §3.5. The numerical fits are given for each interaction class and phase in Figs. B.1 and
B.2, which we then convert into physical scalings below. Note that the models assume an
n = 10 ejecta density profile, and an s = 2 CSM density profile. For more general density
profiles, refer to the analytical scalings in §3.4.

Light Edge Breakout (η < 1, ξ > 1)

Lbo ∼ 7M1/7
csmM

−25/28
ej E5/4

sn κ
−1/2c1/2 (B.5)

∆tbo ∼ 0.1 M−1/14
csm R3/2

csmM
25/56
ej E−5/8

sn κ−1/4c1/4 (B.6)

tbo ≈ tse ∼ 0.7 M1/7
csmR

1
csmM

5/14
ej E−1/2

sn (B.7)

Lsc ∼ 8M−2/7
csm R1

csmM
−5/7
ej E1

snκ
−1c (B.8)

tsc ∼ 0.2M4/7
csmM

5/28
ej E−1/4

sn κ1/2c−1/2 (B.9)
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Light Interior Breakout
Shock Breakout

Continued Interaction

Shock Emergence

Heavy Interior Breakout
Shock Breakout

Continued Interaction

Shock Emergence

Figure B.2: Same as Fig. B.1 but for interior breakout events, for light (left) and heavy
(right) CSM regimes. Assumes ejecta density profile ρej ∝ r−10 and CSM density profile
ρcsm ∝ r−2. More general scalings for other profiles given in §3.4.

Heavy Edge Breakout (η > 1, ξ > 1)

Lbo ∼ 5M−3/4
csm E5/4

sn κ
−1/2c1/2 (B.10)

∆tbo ∼ 0.2M3/8
csmR

3/2
csmE

−5/8
sn κ−1/4c1/4 (B.11)

tbo ≈ tse ∼ 0.7M1/2
csmR

1
csmE

−1/2
sn (B.12)

Lsc ∼ 8M−1
csmR

1
csmE

1
snκ

−1c (B.13)

tsc ∼ 0.5M3/4
csmE

−1/4
sn κ1/2c−1/2 (B.14)

Light Interior Breakout (η < 1, ξ < 1)

Lbo ∼ 0.9M53/140
csm R−11/20

csm M
−111/112
ej E111/80

sn κ−9/40c9/40 (B.15)

tbo ≈ 2∆tbo ∼ 0.6M23/35
csm R−1/5

csm E−1/5
sn M

1/7
ej κ3/5c−3/5 (B.16)

tse ∼ 0.7M1/7
csmR

1
csmM

5/14
ej E−1/2

sn (B.17)

Lci(t) ∼ 0.5M5/8
csmR

−5/8
csm M

−15/16
ej E−21/16

sn t−3/8 (B.18)
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Heavy Interior Breakout (η > 1, ξ < 1)

Lbo ∼ 2M−3/4
csm E5/4

sn κ
−1/2c1/2 (B.19)

tbo ≈ 2∆tbo ∼ 0.5M3/4
csmE

−1/4
sn κ1/2c−1/2 (B.20)

tse ∼ 0.7M1/2
csmR

1
csmE

−1/2
sn (B.21)

Lci(t) ∼ 0.8M−1/2
csm R1/2

csmM
3/4
ej E3/4

sn t−3/2 (B.22)

B.2 Derivation of Shock Similarity Exponents

In §3.4, we introduced power-law forms of the radius with time as

rsh(t) ∼ Rcsm

(
t

ηαt0

)λ

(B.23)

where t0 = Rcsm/vej,and η =Mcsm/Mej. The shock velocity is similarly expressed as

vsh(t) =
drsh
dt

∼ vejη
−α

(
t

ηαt0

)λ−1

(B.24)

These two expressions can be combined to get the shock velocity in terms of the shock radius
as

vsh(rsh) = vejη
−α

(
rsh
Rcsm

)(λ−1)/λ

(B.25)

For a power-law CSM density ρcsm(r) ∝ r−s with inner radius R∗ and outer radius Rcsm, the
amount of mass swept up by the shock will go as

δM(rsh) =

∫ rsh

R∗

4πr2ρcsm(r) dr (B.26)

≈Mcsm

(
rsh
Rcsm

)3−s

(B.27)

where we have assumed in the last step that R∗ ≪ Rcsm.
The shock radius and velocity depends on the two similarity exponents (α, λ), which in

turn will depend on η. We now derive the shock equations and exponents in the different
regimes.

Light CSM Regime (Mcsm < Mej)

If η < 1, then the steep outermost layer of the ejecta will dominate the bulk of the shock
evolution. Only a portion of the ejecta mass of order ∼Mcsm will participate in the interac-
tion.
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The amount of momentum contained in the ejecta above a radius r0 is

δ(Mv) =

∫ ∞

r0

4πr2ρej(r)v(r) dr (B.28)

If we assume the ejecta expands homologously, v = r/t, we can write the ejecta density
profile as a power-law in velocity coordinates,

ρej(v0) =
fρMej

v3ejt
3

(
v0
vej

)−n

(B.29)

where ρ0(t) ∼ Mej/(vejt)
3 and fρ is a constant of order unity (see Appendix ??). The

momentum above a velocity coordinate v0 is therefore

δ(Mv)(v0) =
4π

(n− 4)
fρMejvej

(
v0
vej

)4−n

(B.30)

As the shock runs through the CSM, it sweeps up as mass δMsh at a velocity vsh. From
conservation of momentum,

2δMshvsh = δ(Mv)(vsh) (B.31)

Using Eq. B.26 for the swept up mass and Eq. B.30 for the ejecta momentum, we get

Mcsm

(
rsh
Rcsm

)3−s

vsh ≈Mejvej

(
vsh
vej

)4−n

(B.32)

where we have dropped order-unity constants. Using vsh = drsh/dt and rearranging to solve
for rsh, we get

rsh(t) ∼ Rcsm

(
t

η1/(n−3)t0

)(n−3)/(n−s)

(B.33)

From this, we see that the similarity exponents in the light CSM regime η < 1 are

λ =
(n− 3)

(n− s)
, α =

1

(n− 3)
(η < 1) (B.34)

These similarity exponents hold for both adiabatic and radiative shocks in this regime.

Heavy CSM Regime (Mcsm > Mej)

If the CSM mass exceeds the ejecta mass, η > 1, then the interaction will tap the entirety of
the ejecta kinetic energy, and will obey a blastwave evolution. The behavior of the blastwave
depends on whether it is adiabatic or radiative.
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Adiabatic Blastwave (Sedov)

Once the shock sweeps up of order δMsh ∼ Mej, the shock transitions into a blastwave. If
the blastwave is adiabatic, then energy is conserved and so

Mejv
2
ej ≈ δMshv

2
sh (B.35)

where we have assumed the bulk of the ejecta kinetic energy is located near the shock front.
Using Eq.B.26 for δMsh and vsh = drsh/dt, we get

rsh(t) ∼ Rcsm

(
t

η1/2t0

)2/(5−s)

(B.36)

which is the usual Sedov-Taylor blastwave solution for a power-law medium ρ ∝ r−s. Thus,
the similarity exponents for an energy-conserving blastwave are

λ =
2

(5− s)
, α =

1

2
(η > 1) (B.37)

Radiative Blastwave (Snowplow)

If radiation is able to escape ahead of the shock, then energy is no longer conserved. Instead,
from conservation of momentum, we have

Mejvej ≈ δMshvsh (B.38)

Using Eq.B.26 for δMsh and vsh = drsh/dt, we therefore get that a radiative blastwave will
evolve in time as

rsh(t) ∼ Rcsm

(
t

ηt0

)1/(4−s)

(B.39)

which gives the evolution for a momentum-conserving “snowplow” blastwave in a power-law
medium. Thus, the similarity exponents for a radiative blastwave are

λ =
1

(4− s)
, α = 1 (η > 1) (B.40)

Shock Breakout Radius

Shock breakout occurs when the shock optical depth τsh equals c/vbo, where vbo is the break-
out velocity that depends on time. To find this point, we integrate the shock optical depth
to the breakout radius

τbo = −
∫ rbo

Rcsm

κρcsm(r) dr ≈ − τ0
(1− s)

[
x1−s
bo − 1

]
(B.41)
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where τ0 = κMcsm/4πR
2
csm and xbo = rbo/Rcsm. For a shock radius that evolves in time as

a power-law rsh ∝ tλ and using the fact that vsh = drsh/dt, the breakout velocity can be
expressed in terms of xbo as

vbo ≈ vejη
−αx

1−1/λ
bo (B.42)

Setting τsh = c/vbo we get a non-linear equation for xbo

(1− s)x
1/λ−1
bo = −β0τ0

ηα
[
x1−s
bo − 1

]
= −ξ

[
x1−s
bo − 1

]
(B.43)

where β0 = vej/c and ξ = β0τ0η
−α. In general Eq. B.43 must be solved numerically for xbo,

given β0, τ0, η
α, and the density profile s. For the case of s = 2 we can write this as

x
1/λ
bo = (1− xbo) ξ (B.44)

Note that in the limit of xbo ≪ 1, the breakout location becomes

xbo ≈ ξλ =
[
β0τ0η

−α
]λ

(B.45)

Furthermore, for the case of ξ ≫ 1 (β0τ0 ≫ ηα) Eq. B.43 is simply xbo ≈ 1. We can
interpolate between these two regimes with a free parameter k0 as

xbo ≈
(
β0τ0
ηα

)λk0

≈ ξλk0 (B.46)

where 0 ≤ k0 ≤ 1, which is our proposed interior breakout expression Eq. 3.19 used in Sec.
3.4. Note that Eq. B.46 is equivalent to Eq. B.45 for the choice of k0 = 1. Using the fact
that xbo = rbo/Rcsm from the earlier shock derivation, this corresponds to a breakout time of

tbo ≈
κMcsm

4πRcsmc
(B.47)

which is the static diffusion time. For the case of k0 ≈ 0, we instead have xbo ≈ 1 and so
tbo ≈ tse ≈ ηαt0, the shock emergence time. In general, k0 will take on an intermediate value
between these two regimes, and comparison with numerical simulations discussed in Sec. 3.5
and Appendix B.1 show that k0 ≈ 0.6 works reasonably well for a range of interior breakout
interactions.
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Appendix C

Numerical Implementation of
Flux-limited Radiation Diffusion

Unlike a Monte-Carlo method discussed later, in very optically thick regions, the radiation
field will be near-Planckian (i.e. in equilibrium) with the transport well-described by Fick’s
law of diffusion. In the following, we work in the comoving frame to O(v/c), and also limit
ourselves to grey (frequency-integrated) equations.

The flux-limited diffusion method is essentially a “moments”-based method, which solves
the radiative transfer equation by expanding the specific intensity Iν in terms of its angular
moments. The first and second freuqency-integrated moments of in the comoving frame are

∂E0

∂t
+∇ · (vE0) +∇ · F0 +P0 : ∇v = −cG0

0 (C.1)

and

∂F0

∂t
+∇ · (vF0) = c2∇ ·P0 = F0 · ∇v = −c2G0 (C.2)

where P0 is the comoving radiation pressure tensor, and : denotes a tensor contraction. Here
we have dropped acceleration terms which are O(v2/c2) (Lowrie & Morel 2001; Mihalas &
Mihalas 1984). Furthermore, in what follows, we drop the term F0 · ∇v, which is negligible
in the streaming and diffusion limit (Mihalas & Mihalas 1984, although see Lowrie et al.
2001 for a discussion of this term in intermediate regimes).

In order to proceed, we need to adopt a closure that relates the radiation pressure tensor
and flux to the energy density. In the flux-limited diffusion approximation, the comoving
flux is proportional the the comoving energy density gradient

F0 = − cλ

χ0R

∇E0 (C.3)

where χ0R is the Rosseland mean opacity, and λ is the flux limiter such that λ→ χ0RE0/|∇E0|
in the optically thin limit (and so |F0| = cE0, while λ = 1/3 in the optically thick limit. We
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adopt the Levermore & Pomraning (1981) flux limiter

λ =
2 +R

6 + 3R +R2
(C.4)

where

R =
|∇E0|
χ0RE0

(C.5)

The corresponding radiation pressure tensor is

P0 = E0

[
1− f

2
I+

3f − 1

2
n̂0n̂0

]
(C.6)

where n̂0 = F0/|F0|, I is the identity tensor, and the Eddington scalar is given by

f = λ+ (λR)2 (C.7)

The comoving frame equation for the radiation energy density then becomes

∂E0

∂t
+∇ · (vE0)−∇ ·

(
cλ

χ0R

∇E0

)
+

1− f

2
E0∇ · v +

3f − 1

2
E0n̂0n̂0 : ∇v = −cG0

0 (C.8)

The corresponding four-force vector in FLD is

G0 = −λ∇E0 (C.9)

and

cG0
0 = cκ0P

(
E0 − arT

4
)

(C.10)

In the gas equations, conservation of mass remains unchanged, while we use the FLD forms
of of the radiation four-force for the source terms given above. For example, the total gas
energy (kinetic + internal) equation becomes

∂
[
ρ
(

v2

2
+ e
)]

∂t
+∇ ·

[(
ρv22 + ρe+ P

)
v
]
+ λv · ∇E0 = cκ0P

(
E0 − arT

4
)

(C.11)

Using the fact that

∇ ·
[
1− f

2
vE0

]
=

1− f

2
v · ∇E0 +

1− f

2
E0∇ · v (C.12)

we can rewrite the radiation energy density equation as

∂E0

∂t
+∇ ·

[(
3− f

2

)
vE0

]
−∇ ·

(
cλ

χ0R

∇E0

)
=

1− f

2
v · ∇E0 −

3f − 1

2
E0n̂0n̂0 : ∇v − cκ0P

(
E0 − arT

4
) (C.13)
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Finally, if we work with the total (gas kinetic + internal + radiation) energy density equation
we have

∂ET

∂t
+∇ ·

[(
ET + P +

1− f

2
E0

)
v

]
−∇ ·

(
cλ

χ0R

∇E0

)
=

(
1− f

2
− λ

)
v · ∇E0 −

3f − 1

2
E0n̂0n̂0 : ∇v

(C.14)

where ET = ρv2/2 + ρe+ E0 is the total energy.
To see the behavior of the equations, consider the optically thick limit where λ = f = 1/3

and P0 = E0/3I. Then the radiation energy equation becomes

∂E0

∂t
+∇ ·

(
4

3
vE0

)
−∇ ·

(
c

3χ0R

∇E0

)
=

1

3
v · ∇E0 − cκ0P

(
E0 − arT

4
)

(C.15)

The total energy equation becomes

∂ET

∂t
+∇ · [(ET + PT )v]−∇ ·

(
c

3χ0R

∇E0

)
= 0 (C.16)

where PT = P + E0/3 is the total (gas + radiation) pressure.
When solving the coupled equations of radiation hydrodynamics, we require a time-

stepping method that handles the potentially stiff radiation source/sink terms. Furthermore,
an explicit treatment of the radiation diffusion will be limited by a much stricter timestep

∆t <
χ0R∆x

2

c
(C.17)

As a result, it is usually more advantageous to treat the diffusion and source/sink terms with
an implicit scheme. On the other hand, the radiation advection and work terms can generally
be stably treated explicitly since they operate on a fluid flow timescale. The splitting of the
radiation terms into two different time-stepping treatments is known as an implicit-explicit
(IMEX) scheme, which we now discuss separately below.

Implicit Subsystem

We treat the gas-radiation coupling and diffusion terms explicitly as these terms can become
stiff and require unacceptably small timesteps with an explicit method. The subsystem we
solve is

d (ρe)

dt
= +cκ0P

(
E0 − arT

4
)

(C.18)

∂E0

∂t
−∇ ·

(
cλ

χ0R

∇E0

)
= −cκ0P

(
E0 − aT 4

)
(C.19)
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Using a Backward Euler method in time:

(ρe)n+1 − (ρe)n

∆t
= cκn0P

[
En+1

0 −
(
aT 4

)n+1
]

(C.20)

En+1
0 − En

0

∆t
−∇ ·

(
cλn

χn
0R

∇En+1
0

)
= −cκn0P

[
En+1

0 −
(
aT 4

)n+1
]

(C.21)

Note that here we take a semi-implicit approach where the flux limiter and opacities are
constant over the update, set to the beginning-of-timestep value. The implicit subsystem is
solved iterately using Newton’s method. Specifically, define two values

Fe = (ρe)n+1 − (ρe)n −∆tcκn0P

[
En+1

0 −
(
aT 4

)n+1
]

(C.22)

Fr = En+1
0 − En

0 −∆t

{
∇ ·
(
cλn

χn
0R

∇En+1
0

)
− cκn0P

[
En+1

0 −
(
aT 4

)n+1
]}

(C.23)

The system update to the Newton iterations are then[
(∂Fe/∂T )

(k) (∂Fe/∂E0)
(k)

(∂Fr/∂T )
(k) (∂Fr/∂E0)

(k)

] [
δT (k+1)

δE
(k+1)
0

]
=

[
−F (k)

e

−F (k)
r

]
(C.24)

where δT (k+1) = T n+1,(k+1) − T n+1,(k) and δE
(k+1)
0 = E

n+1,(k+1)
0 − E

n+1,(k)
0 . By forming the

Schur’s complement of the Newton iteration, we can eliminate δT from the iteration update
to get the (k + 1) update for the radiation energy density as[

(1− η) cκ0P +
1

∆t

]
E

(k+1)
0 −∇ ·

(
dn∇E(k+1)

0

)
=

(1− η) cκ0P
(
aT 4

g

)(k)
+

1

∆t

{
En

0 − η
[
(ρe)(k) − (ρe)n

]} (C.25)

where dn = cλn/χn
0R,

η = 1− 1

1 + β(k)cκ0P∆t
(C.26)

and

β(k) =
4
(
arT

3
g

)(k)
ρcv

(C.27)

At each iteration, the gas energy density is then updated as

(ρe)(k+1) = η (ρe)(k) + (1− η) (ρe)n + (1− η) cκ0P∆t
[
E

(k+1)
0 −

(
arT

4
g

)(k)]
(C.28)



APPENDIX C. NUMERICAL IMPLEMENTATION OF FLUX-LIMITED RADIATION
DIFFUSION 148

We can write this into a form of

A(k)E
(k+1)
0 −∇ ·

[
D(k)∇E(k+1)

0

]
= rhs(k) (C.29)

where

A(k) =
(
1− η(k)

)
cκ0P +

1

∆tn
(C.30)

D(k) =
cλ(k)

χ0R

(C.31)

rhs(k) =
(
1− η(k)

)
cκ0P

(
arT

4
g

)(k)
+

1

∆tn

{
En

0 − η(k)
[
(ρe)(k) − (ρe)n

]}
(C.32)

Implicit System in 1D

In one dimension, the system to be solved is

AiEi −
1

∆ri

[
Di+1/2

(
Ei+1 − Ei

ri+1 − ri

)
−Di−1/2

(
Ei − Ei−1

ri − ri−1

)]
= rhs (C.33)

where we have dropped the (k) superscript and 0 subscript for brevity; whole indices denotes
cell-centered quantities, and half indices denote face-centered quantities. Rewriting this as[
Ai +

1

∆ri

(
Di+1/2

ri+1 − ri
+

Di−1/2

ri − ri−1

)]
Ei −

[
1

∆ri

Di+1/2

(ri+1 − ri)

]
Ei+1 −

[
1

∆ri

Di−1/2

(ri − ri−1)

]
Ei−1

= rhs

(C.34)

For the face-centered coefficients, we take two approaches for constructing a face-centered
coefficient from cell-centered values. The first is a simple averaging of the two cells

Di+1/2 =
Di+1 +Di

2
(C.35)

Another option is to do a weighted average based on the distance of the face to each of
the cell centers.

Di+1/2 =
∆ri+1Di +∆riDi+1

∆ri +∆ri+1

(C.36)

For equal-sized cells, this reduces to a simple averaging of the two cell coefficients. For
unequally-spaced cells, the coefficient is weighted more heavily for the cell closest to the
face.

We can write this as a linear system of equations

Mx = b (C.37)
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where x = E
(k+1)
i , b = rhs(k), and the matrix coefficients are given by

Mi,i−1 = − 1

∆ri

Di−1/2

(ri − ri−1)
(C.38)

Mi,i = Ai +
1

∆ri

[
Di+1/2

(ri+1 − ri)
+

Di−1/2

(ri − ri−1)

]
(C.39)

Mi,i+1 = − 1

∆ri

Di+1/2

(ri+1 − ri)
(C.40)

In spherical symmetry, all the coefficients and right-hand side are multiplied by a metric
factor of r2.

Comparison with Implicit Monte Carlo Simulations

The flux-limited diffusion (FLD) approximation has the advantage of being computationally
inexpensive compared to other more accurate methods for radiation hydrodynamics, such
as moment-based [232], discrete ordinates [233], variable Eddington tensor [234], and Monte
Carlo methods [154]. FLD is particularly well-suited for optically thick problems, where the
diffusion approximation is valid. However, the approximation breaks down once we enter
the optically thin regions, which FLD addresses in an ad-hoc manner with a flux limiter.
This situation is of particular concern in the ξ < 1 interaction models.

To test the validity of our FLD results, we run the same interaction problem using the
implicit Monte Carlo method of [154], which is a much more accurate but also costly approach
to solving the equations of radiation hydrodynamics. We use the same finite-volume moving
mesh hydrodynamics method of [152] for the implicit Monte Carlo simulations, and adopt
identical model parameters as the FLD runs.

In Fig. 18 we show the numerical light curves of the AT2018cow (ξ > 1) and OGLE-
2014-SN-131 (ξ < 1) models (parameters listed in Table 1) for the two different transport
methods. Overall we find excellent agreement across the different light curve phases in
both cases, although FLD overpredicts the shock cooling tail in the Cow model by about
∼ 10− 20% at early times.
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Figure C.1: Numerical light curve comparison using the AT2018cow (left) and OGLE-2014-
SN-131 (right), using flux-limited diffusion (solid blue line) and implicit Monte Carlo radia-
tion hydrodynamics (dashed red line).
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Appendix D

Atomic Data

D.1 Configuration-Averaged Atomic Structure

There are various levels of fidelity in which the atomic structure is calculated. The balancing
act is in having both completeness of atomic states (i.e. configurations, levels, and terms)
and accuracy of individual state information (level energies, transition rates, etc.). This is
a highly problem-dependent task, as greater degrees of completeness and accuracy come at
the cost of a larger computational burden.

For our purposes, we are interested in getting the ion charge states and temperature
coupling correct and to extract time-dependent broadband continuum emission. Namely, we
are not seeking a fully spectrally-resolved atomic model set. Thus, we use configuration-
averaged atomic models provided by Cretin, which averages atomic levels by their principal
quantum number only. We therefore only consider super-transitions n → n′, where each n
represents the sum of all levels and/or terms described by principal quantum number n.

D.2 Radiative Rates

Photoionization/Radiative Recombination

Photoionization and radiative recombination refer to the forward and inverse processes

Xi + hν ⇐⇒ Xi+1 + e− (D.1)

The left process is referred to as photoionization, which is when a photon with energy above
the ionization energy χi of the Xi state is absorbed and ejects a free electron into the
continuum with kinetic energy

1

2
mev

2
e = χi − hν (D.2)

which acts to heat the plasma. The reverse process, referred to as radiative recombination,
occurs when a free electron is captured by an ion in charge state i + 1 into a bound level
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of charge state i. The sum of the free electron kinetic energy and the ionization energy is
carried away as a photon with energy

hν =
1

2
mev

2
e + χi (D.3)

As such, recombination is generally viewed as a “cooling” process if the photons are able to
escape.

The radiative ionization, or photionization, rate is parameterized by a frequency-dependent
bound-free cross-section σij(ν) for level j of charge state i. The cross-section is zero below
the threshold frequency hνij = χij, where χij is the ionization energy of state (i, j).

The photoionization rate of level j of ion i to ion i+ 1 is expressed as

Pij = 4π

∫ ∞

νij

Jν
hν
σij(ν) dν (D.4)

The final state in ion i + 1 is usually taken to be the ground state. However, in certain
cases it can also represent an inner-hole excited state (i.e. K- or L-shell states). These are
particularly important when interested in Fe K-shell fluorescence at X-ray energies.

The inverse rate, known as radiative recombination, contains the sum of both a spon-
taneous and stimulated term and can be obtained from the photoionization rate through
the principle of detailed balance. Assuming a Maxwellian distribution of free electrons with
nubmer density ne at temperature Te, it is expressed as

Rij = 4π

[
nij

ni+1,c

]
⋆

∫ ∞

νij

σij(ν)

hν

(
Jν +

2hν3

c2

)
e−hν/kbTe dν (D.5)

where [
nij

ni+1,c

]
⋆

= λ3ne
gij

2gi+1,c

eχ̃ij/kbTe (D.6)

gij is the statistical weight/degeneracy, χ̃ij = χij+ϵi+1,c with χij the ionization energy of the
(i, j) state, and ϵi+1,c is the excitation energy above ground of the continuum state (which
is 0 if the continuum/recombining state is the ground state); and

λ =

(
h2

2πmekbTe

)1/2

(D.7)

is the thermal electron de Broglie wavelength. We can rewrite the recombination rate as

Rij =
2πneλ

3gij
gi+1,c

∫ ∞

νij

σij
hν

(
Jν +

2hν3

c2

)
e−(hν−χ̃ij)/kbTe dν (D.8)
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Photo-(De)excitation

The radiative excitation and de-excitation rates are given by the combined processes of
absorption (excitation), spontaneous emission (de-excitation), and stimulated emission (de-
excitation). The process of photo-excitation and spontaneous emission is described by

Xl + hν0 ⇐⇒ Xu (D.9)

Stimulated emission refers to the process

Xu + hν0 ⇒ Xl + 2hν0 (D.10)

Note that radiative excitation processes do not themselves directly alter the thermal state
of the gas, as the energy is trapped in the bound states of the ion. What is often referred to
as “line cooling” is actually the combined process of collisional excitation extracting energy
from the thermal pool of free electrons (or ions to a lesser extent), followed by spontaneous
emission of a photon carrying energy away from the system.

Conversely, line thermalization refers to when a resonant photon excites a bound state,
which is then collisionally de-excited before decaying back down (or fluorescing), adding the
photon’s energy into the thermal pool.

The spontaneous emission rate is given by the Einstein-A coefficient Aul from the upper
to lower state u and l, respectively. We can rewrite the Einstein A values in terms of a
dimensionless quantity known as the oscillator strength

flu =
gu
gl

mec
3

8π2e2ν20
Aul (D.11)

where ν0 = (Eu − El) /h is the transition frequency. The radiative excitation rate from
photoabsorption is given by

BluJ̄ =
1

hν0

4π2e2

mec
fluJ̄ (D.12)

where

J̄ =

∫
Jνϕlu(ν) dν (D.13)

is the radiation intensity averaged over the transition line profile ϕlu(ν).
The radiative de-excitation rate comes from both spontaneous and stimulated emission:

Aul + BulJ̄ = Blu

[
2hν30
c2

+ J̄

]
(D.14)
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where we have made use of the Einstein relations of the three coefficients and assumed
complete redistribution in the line in writing the last expression, as

glBlu = guBul (D.15)

Aul =
2hν30
c2

Bul (D.16)

In our numerical implementation, when the frequency grid is too coarse to resolve indi-
vidual line profiles, we instead replace the radiation field averaged over the line profile with
the geometric mean

J̄ =
√
Jg−1Jg+1 (D.17)

where Jg±1 is the radiation field in the groups to the left and right of the bin g the transition
falls in. This allows us to approximately capture the effect of excitation by a continuum
radiation field, and will also roughly get LTE radiative excitation.




