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Summary
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐
based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐
fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled 
CZM/CDM model can capture the flow of energy that takes place between the bulk material that 
forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not 
account for micro‐crack interaction, is calibrated against triaxial compression tests performed on 
Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a 
comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack 
density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The 
CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear 
strength and energy release rate on confining pressure. The cohesive shear strength of the CZM 
is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a 
direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the 
confining pressure. Triaxial compression tests are simulated, in which the shale sample is 
modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing 
the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to 
match to the post‐peak stress/strain curves obtained during experimental tests performed on 
Bakken shale. We find that the energy release rate depends linearly on the shear cohesive 
strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale 
mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged 
zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high 
confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive 
zone alternates with the propagation of continuum damage. The computational method is 
applicable to a range of geological injection problems including hydraulic fracturing and fluid 
storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) 
propagation. Copyright © 2016 John Wiley & Sons, Ltd.

1 Introduction
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In numerical methods, cavities, faults, and fractures are usually modeled as separated or weakly 

bonded surfaces 1, 2, or as notch‐shaped flaws 3. The corresponding governing equations are 

primarily based on fracture mechanics (FM). For instance, fractures are usually represented by 

Griffith macroscopic cracks, which open or slide under the influence of a differential stress 4. In 

classical FM, the fracture is assumed to propagate when the stress intensity factor (SIF) 

(respectively the strain energy release rate) reaches the fracture toughness (respectively the 

strength of the bounding material) at the crack tip 5. Such propagation criteria are only valid for 

purely elastic materials. In non‐elastic continua, models require that the maximum size of the 

plastic or damage zone near the fracture tip be smaller than the specimen or domain dimensions 

by at least two orders of magnitude. In continuum damage mechanics (CDM), models were 

either based on phenomenology 6, 7 or grounded on micromechanics 8, 9. At the scale of the 

representative elementary volume (REV), CDM models were proposed to account for unilateral 

effects 10, 11, microcrack friction 12 and strength difference in tension and compression 13. 

CDM models were also formulated with sophisticated damage internal variables (e.g., 

anisotropic damage tensors 14 and discrete sets of damage tensors 15) in order to represent the 

evolution of the process zone, that is, the area surrounding the crack tip that undergoes inelastic 

deformation. For materials that undergo significant inelastic deformation, the crack tip open 

displacement (CTOD) method, the J‐integral method 16, and cohesive zone models 

(CZM) 17, 18 are more suitable to model macro‐scale fracture propagation.

The concept of cohesive zone was introduced by Barenblatt 19 and was used since then to study 

different types of failure mechanisms. Xu and Needleman 20 used exponential‐shaped traction–

separation models to study the fast growth of cracks in brittle materials under dynamic loading. 

Hutchinson et al. 21-23 used a trapezoidal‐shaped traction–separation model to calculate the 

crack growth resistance in elasto‐plastic materials. The bilinear cohesive zone model was used to

predict the behavior of brittle materials, for example to simulate hydraulic fracturing in 

rocks 2 and to explain fracture patterns in concrete 24. Paulino et al. formulated unified 

potential‐based CZMs to study asphalt and concrete 25-28. CZMs are widely used and 

computationally efficient. In CZMs, the damage path is predefined 29, 30, and the presence of 

smaller‐scale discontinuities in the damage process zone is not accounted for 31. While the need 

for an a priori definition of the crack location limits the problems to predictable and idealized 

propagation paths, using the CZM method allows testing and refining the coupling algorithms 

between the micro and macro‐scales without the added numerical complexity intrinsic to other 

discrete fracture methods (e.g., XFEM, discrete elements, particle codes, etc.). Namely, our 

present focus is to better simulate the propagation of a discrete geometric fracture within a 

damaged region of rock.
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Indeed, neglecting the effects of micro‐cracks leads to ignoring the stiffness degradation of the 

bounding material and therefore to underestimating fracture propagation. A representation of 

rock microstructure, at the scale of the material internal length, is needed to relate the extent of 

the damaged zone to the density, size, and shape of the cracks. Recent studies established an 

explicit relationship between rock grain size distribution and the dimensions of the fracture 

process zone 32. Multiscale strategies were also proposed to couple fracture mechanics criteria 

with a CDM model to represent the evolution of micro‐cracks in the bounding material. For 

instance, Valkó and Economides 33, 34 calculated the velocity of the tip of a hydraulic fracture 

by using a SIF that depends on a scalar damage variable. Mazars and Pijaudier‐

Cabot 35 established an equivalence between the energy dissipated by opening a discrete fracture

and the energy dissipated by a dilute distribution of micro‐cracks. Based on similar 

thermodynamic principles, Jiràsek and Zimmermann 36, 37 used a non‐local damage model to 

predict micro‐crack propagation and the transition to cohesive zone debonding due to micro‐

crack coalescence. Comi et al. 38, 39 used the value and the gradient of nonlocal damage in 

order to predict the transition between smeared continuum damage propagation and discrete 

fracture growth, and to calculate the propagation direction of the macro‐fracture. The energy 

dissipated by CZM debonding is equivalent to that dissipated by CDM non‐local damage 

propagation in the absence of coalescence. An Extended FE method was presented in 40, in 

which local damage is predicted by a gradient‐enhanced CDM model. When local damage 

reaches unity (usually around the fracture tip), the finite element is split along the direction of 

maximum non‐local equivalent strain. Cazes et al. 41 found a method to derive the shape of the 

debonded cohesive zone from non‐local damage. Cuvilliez et al. 42 designed a flexible modeling

framework, in which the transition between continuum damage and discrete fracture can be set 

for any REV size. The computational method explained in 43 relies on homogenization; macro‐

fracture propagation is upscaled from the micro‐crack density tensor. Note that in all the 

multiscale modeling strategies listed, an internal length parameter is explicitly introduced in the 

formulation, which prevents damage localization and mesh dependency problems when 

simulating the softening response.

In the following study, we propose a numerical method that couples a CDM model (for the bulk) 

to a cohesive zone model (for the fracture), in order to simulate the propagation of a discrete 

mode II fracture within a damaged zone. In Section 2, we provide an analysis of the dissipation 

processes that are represented during crack propagation in the CZM and in the CDM differential 

stress induced damage (DSID) model 7, 44. Then we calibrate the CZM/CDM model so as to 

reproduce the stress/strain curves of Bakken shale during typical triaxial compression tests. 

Bakken shale is a tight organic reservoir rock that exhibits representative deformation curves 
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common to many rocks that undergo hydraulic fracturing. We present the calibration method for 

the behavior simulated before the failure peak (Section 3) and after the failure peak (Section 4). 

In Section 5, we calculate the propagation rate of a mode II fracture embedded in a meter‐scale 

damaged zone.

2 Theoretical Framework of the Coupled Model of 
Damage and Fracture Propagation

2.1 Continuum damage mechanics model

In most continuum mechanics models of anisotropic damage, the free energy postulated for the 

solid skeleton is expressed in terms of deformation. As a result, the damage work‐conjugate 

variable Y (called energy release rate or damage driving force in the following) is also a function

of deformation 45-48. In order to better account for states of tensile deformation under 

differential stress, we use the differential stress induced damage (DSID) model, in which the free

energy potential is expressed as a function of stress 7. The damage tensor (noted Ω) is a 

phenomenological internal variable, which controls the degradation of material stiffness along 

principal crack planes. The Gibbs free energy (Gs) is the sum of the damaged elastic deformation 

energy stored in the material, the potential energy that can be released by creating new material 

surfaces and the potential energy that can be released by opening cracks (i.e., potential 

irreversible deformation energy). This free energy potential is expressed as a polynomial that is 

quadratic in stress and linear in damage, which implies that the material is linear elastic in the 

absence of damage 6, 49. The thermodynamic framework of the DSID model is summarized in 

Table  1. Stress/strain relationships are obtained by deriving the Gibbs free energy by stress. 

Damage evolution is controlled by a damage function, similar to the Drucker–Prager yield 

function (expressed in terms of energy release rate instead of stress). The damage flow rule is 

non‐associate, and the damage potential is chosen so as to ensure the positivity of dissipation 

associated to damage. The irreversible deformation due to damage follows an associated flow 

rule, which ensures that dilation due to crack opening takes place in the damage principal 

directions (i.e., in the directions orthogonal to the crack planes). With sustained deformation, it is

anticipated that a non‐associative flow rule would be needed to capture shear dilatancy. We 

captured the resulting shear localization by coupling the DSID model to a CZM of discrete 

fracture. Irreversible shear strains calculated with the DSID model were considered small enough

to justify the use of the DSID associate flow rule.

Table 1. Thermodynamic framework of the DSID model.
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DSID Model

Free Energy

+a3TrσTr(Ω·σ) + a4TrΩTr(σ·σ)

+a3[Tr(σ·Ω)δ + (Trσ)Ω] + 2a4(TrΩ)σ

Damage 

Function

k = C0−C1Tr(Ω)

Damage 

Potential



DSID Model

Flow Rule

Gs: Gibbs 

free energy

ϵE: Total elastic strain C0: Initial damage threshold

σ: Stress 

tensor

δ: Kronecker delta : Undamaged compliance tensor

Ω: Damage 

variable

Y: Damage driving force max(·): Maximum function

E0: Young's 

Modulus

: Damage rate C1: Damage hardening variable

ν0: Poisson's

ratio

H(·): Heaviside function a1, a2, a3, a4: Material parameters

fd: Damage 

function

: Lagrangian Multiplier  and : Projection tensors



DSID Model

gd: Damage 

potential

: Irreversible strain rate σ(p); n(p): Principal stress tensor; vector

At the scale of a continuum REV (i.e., at the material point), the energy dissipated by damage 

can be calculated from the inequality of Clausius–Duhem:

(1)

Where ψs is Helmholtz free energy (defined as the Legendre transform of Gibbs energy), and

 is the incremental deformation power (equal to the power provided by external forces to 

the REV). The total dissipated energy is the difference between external work and 

recoverable strain energy, . Note that in the DSID model, the total elastic 

deformation ϵEis the sum of the purely elastic deformation ϵel (deformation undergone by the 

material in the absence of damage) and of the damaged elastic deformation ϵed (additional 

recoverable deformation caused by material softening). As shown in Figure 1, the decomposition

of deformation allows accounting for two types of energy dissipation processes: micro‐crack 

debonding causing stiffness degradation but no irreversible deformation (term ); 

and micro‐crack opening resulting in residual irreversible strains (term ).

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2553#nag2553-fig-0001


Figure 1
Open in figure viewer  PowerPoint
Evolution of energy potentials in a REV governed by the DSID model.
Caption

2.2 Cohesive zone model

The DSID model assumes that micro‐cracks do not interact; this assumption does not hold when 

damage exceeds a critical value Ωcr. In order to overcome this limitation, we propose to couple 

the DSID model with a fracture mechanics model. Above the critical value Ωcr, continuum 

damage is replaced by a cohesive law (CZM) assigned to a local area representing an initially 

bonded discrete crack with properties set equivalent to the damaged bulk material at the damage 

threshold Ωcr. As the fracture faces debond according to a traction–separation law, the bulk 

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2553
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material surrounding the discrete crack unloads, which results in partial recovery of elastic 

energy.

CZMs that are governed by different force–displacement curves but that have equal cohesive 

strength and equal cohesive energy release rate provide similar predictions of stress and strain 

except close to boundaries 50, 51. The type of traction–separation law in the CZM mostly 

influences the stress and strain fields at the fracture tip 52. We considered a range of real 

deformation tests on our test material (Bakken shale from subsurface core) and found the actual 

form of the traction–separation response to be difficult to constrain without more robust 

laboratory testing. Thus, for simplicity, we chose a bilinear CZM (Figure 2). When the cohesive 

strength is reached (σmax in mode I, τmax in mode II), the relative displacement of the fracture faces 

reaches the threshold value δ0 (cohesive crack tip), and the faces of the cohesive zone start to 

separate. Failure (i.e., complete face separation) is reached at the material crack tip (for a relative

displacement δf), where cohesive strength acting across the cohesive zone surfaces are equal to 

zero. The mechanical work needed to create a unit area of fully debonded crack is referred to as 

the cohesive fracture energy (noted Gc). For a sharp crack embedded in a homogeneous elastic 

body, Gc can be calculated as 18

(2)
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Figure 2
Open in figure viewer  PowerPoint
Bilinear cohesive zone model.
Caption

In elastic materials, the value of the energy release rate Gc is an intrinsic material property that 

can be expressed as

(3)

Where KIC (respectively KIIC, KIIIC) is mode I (respectively mode II, mode III) fracture toughness in

linear elastic fracture mechanics. E′=E in plane stress and E′=E/(1 − ν2) in plane strain. Note that 

for most rock materials, the cohesive strength and the energy release rate depend on the 

confinement stress and thus need to be calibrated for various confinement pressures. 

Confinement also tends to reduce the stress drop depicted in Figure 2 after the peak stress, which

results in a residual shear strength. In this case, the zero in the lower bound of the integral in 
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Equation 2 can be replaced with the residual shear displacement, and Gc is accordingly modified. 

For example, in seismicity and other dynamic studies, it may be important to capture the 

magnitude of the shear‐stress drop.

2.3 Transfers of energy between fracture surfaces and the 
damage zone

As explained in Equation 2, the energy release rate Gc is entirely dissipated in the cohesive zone 

if the bounding material is purely elastic. By contrast, in a material that is subject to micro‐

cracking, fracture propagation is both because of the micro‐crack initiation and debonding within

the bounding material (this is accounted for with the DSID model) and to the separation of 

macro‐crack faces (this is accounted for with the CZM). In other words, the energy release rate 

measured during laboratory experiments includes the energy dissipated to form micro‐cracks in 

the matrix, to produce irreversible strains in the matrix and to propagate the macro‐fracture. 

When a cohesive crack propagates in a damaged elastic REV, the energy balance is expressed as

(4)
In which Ew is the energy supplied by external work, Ec is the energy dissipated by crack 
debonding in the CZM, and Ee and Ein are respectively the stored elastic energy and the dissipated
energy in the bounding material (around the cohesive crack). Ee is the sum of purely elastic 
deformation energy (stored in the undamaged part of the matrix) and deformation energy due to 
recoverable micro‐crack displacement jumps at micro‐crack faces. Ein accounts for both the 
debonding of micro‐cracks (i.e., the creation of material surfaces in micro‐cracks) and for the 
irreversible deformation induced by residual crack openings. We have Gc=Ein+Ec. The question is 
as follows: What is the proportion of mechanical work that dissipates in the form of micro‐cracks
(Ein), and what is the proportion of mechanical work that dissipates in the form of a discrete 
portion of fracture (Ec)? Chandra et al. 51, 53 investigated the influence of the ratio of cohesive 
strength over yield strength σmax/σy for elastic–plastic materials. As shown in Figure 3, the plastic 
work takes a more important percentage of strain energy as the ratio of σmax/σy increases. This is 
commonly referred to as the brittle–ductile transition, and is evidenced in stress/strain behavior 
as an increasingly developed strain hardening zone and lack of a post‐failure stress drop with 
increased confinement.
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Figure 3
Open in figure viewer  PowerPoint
Evolution of the plastic energy and of the cohesive energy dissipated during crack propagation in
an elasto‐plastic material, with the ratio cohesive strength by yield strength σmax/σy. δn is the 
relative displacement of two faces when the traction reaches σy (constant) — adapted from 53.
Caption

By tracking the energy components in different patches within the bounding material and within 

different segments of a cohesive fracture, Shet and Chandra 53 modeled the evolution of the 

elastic energy Ee, the plastic energy Ep (equivalent to Ein in the DSID model), and the cohesive 

energy Ec evolution during fracture propagation. The dissipation of plastic energy (Ep) initiates 

when the yield stress σy is reached. When the stress in the cohesive segments reaches the 

cohesive strength σmax, the cohesive elements and the bounding material elements behind the tip 

are unloaded, plastic dissipation stops (i.e., the cumulated plastic work remains stationary), and 

elastic energy is recovered in the bounding material. However, the cohesive energy continues to 

increase until crack faces are completely debonded. The final crack length depends on the 
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cohesive strength σmax 51. In the following, we calibrate the DSID model coupled with the CZM 

in order to capture micro‐crack propagation followed by macroscopic failure (fracture 

propagation) in shale. We start by determining the initial damage yield threshold (similar to σy), 

and then, we calibrate the ultimate cohesive strength of the damaged material (similar to σmax). By

contrast with the work presented in 53, we quantify the fractions of energy dissipated by micro‐

crack debonding, irreversible micro‐crack opening, and macro‐fracture debonding.

3 Finite Element Damage Model

3.1 Calibration of the continuum damage model

We calibrated the DSID model against experimental stress/strain curves obtained during triaxial 

compression tests performed on Bakken shale samples using ConocoPhillips rock mechanics 

dataset 54. We performed our simulation work on a range of triaxial tests from the different 

Bakken lithologies. However, for simplicity, we focus reporting on a set of results from a single 

representative suite of tests taken from the same depth and lithology but at different levels of 

confinement (Sample B11 shown in Fig. 11). We used a MATLAB algorithm to minimize the 

squared residuals of the distance between experimental results yi and numerical predictions f(x,B)

as

(5)

Where x stands for the vector of known input variables (e.g., strain or stress, depending whether 

the load is controlled in force or displacement) and B is the vector of parameters that need to be 

calibrated. We employed the gradient method to minimize the difference between numerical and 

experimental stress–strain curves:

(6)
γn is the step size; it varies from step to step. The algorithm was initialized with a reasonable 
initial vector B0 and with reasonable minimum and maximum values for the model parameters. 
Optimal DISD parameters (for S below a certain threshold value) are listed in Table 2.
Table 2. Calibrated DSID parameters.

Elasticity Free energy Damage function

E0 ν0 a1 a2 a3 a4 C0 C1 α
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Elasticity Free energy Damage function

GPa − MPa−1 MPa−1 MPa−1 MPa−1 MPa MPa −

46 0.186 7.35 × 10−7 1.21 × 10−4 −3.15 × 10−11 2.39 × 10−12 0.01 1.18 0.399

3.2 Cutting Plane algorithm

We adopt the cutting plane algorithm 55 to implement the DSID model in ABAQUS 

FEMsoftware. The purpose of the cutting plane algorithm, which belongs to the category of 

return mapping algorithms, is to ensure stable and convergent solutions with a reasonable 

simulation time. The elastic predictor problem is solved with initial conditions that correspond to

the converged values of the previous time step. A stress return correction is initiated if the trial 

elastic stress is outside of the yield surface. We follow the steps of the operator splitting 

theory 56 to obtain the incremental non‐linear constitutive relationships that govern the DSID 

model:

Total Elastic predictor Return corrector

dϵ = dϵE+dϵid dϵ = dϵE+dϵid dϵ = 0

dϵid=0

dΩ = 0
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In the aforementioned equations, the total stress increment is obtained by differentiating the 

following constitutive relationship

(7)
as

(8)

The return corrector can be rewritten as

(9)

Equation 9 expresses the rate independent equation of stress relaxation (from a point outside of 

the yield surface to a point on the yield surface). Stress relaxation is calculated iteratively. The 

yield function is linearized around the current values of the state variables, , , as

(1
0)

After discretizing Equation 9 and the damage flow rule, we have

(11)

(12)

After substituting Equation 11 in Equation 10, the Lagrange multiplier is calculated as

(13)

Figure 4 shows the flow chart of the algorithm implemented in ABAQUS UMAT for the purpose

of this study. Note that because the cutting plane algorithm is based on a forward integration of 

the rate equations, it is not unconditionally stable. In order to validate and test the accuracy of the

return mapping algorithm, we compared the results obtained with the cutting plane algorithm 

with those obtained with the direct secant algorithm (which we implemented in MATLAB). We 

simulated pure shear, uniaxial compression, and uniaxial tension by applying strain loads 

of γ12=−2%, ε33=−2% and ε33=2%, respectively. All the other strain components were set to zero. 

We used 1000 loading increments in the direct secant algorithm. For the cutting plane algorithm, 
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we compared the results obtained with MATLAB for 10, 100, and 1000 loading increments, to 

the results obtained with ABAQUS for 50 loading increments applied in a one‐element model.

Figure 4
Open in figure viewer  PowerPoint
Cutting plane algorithm of the UMAT subroutine implemented in ABAQUS for the DSID model.
Solid lines represent computational steps controlled by the programs written in UMAT. Dashed 
lines represent computational steps controlled by built‐in subroutines of ABAQUS.
Caption
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Figure 5 shows the results. Note that higher loading increments (Δγ or Δε) correspond to a lower 

number of increments. For all the cases simulated, the linear elastic response and non‐linear 

damage part are well captured at the material point (MATLAB) and in the one‐element 

(ABAQUS) simulations. The difference between the stress/strain curves obtained with the direct 

secant method and with the cutting plane algorithm is less than 10% for a number of increments 

larger than 50 with the FEM, and larger than 100 with MATLAB. We conclude that the cutting 

plane algorithm is accurate for loading increments that are of the order of 0.01%. Moreover, the 

global FEM equation obtained after assembling all the elementary matrix equations obtained 

with the UMAT subroutine was solved with the ‘standard solver’ built in ABAQUS, which is 

based on an unconditionnally stable algorithm.

Figure 5
Open in figure viewer  PowerPoint
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Verification and accuracy tests. Comparison of the stress/strain curves predicted by the cutting 
plane (CP) algorithm (one‐element tests performed with ABAQUS and material point tests 
performed in MATLAB) and by the direct secant algorithm (material point tests performed in 
MATLAB). The total loading was 2% in all tests; several loading increments were tested.
Caption

4 Calibration of the Cohesive Zone Model

The objective of this paper is to couple the DSID model to a CZM to predict continuum damage 

propagation before and after shear localization. In the following, we propose a calibration 

method that couples the propagation of micro‐cracks (DSID model) to that of macro‐fractures 

(CZM) in mode II. We use a bilinear CZM, which depends on three constitutive parameters: the 

cohesive (shear) stiffness K0, the cohesive (shear) strength τmax, and the energy release rate GIIc(in 

mode II). Based on a sensitivity analysis of τmax and GIIc, we introduce a relationship to account for

the dependence of the cohesive zone failure to the confining pressure. In the following, the 

procedure to determine the material parameters of the CZM is explained. We calibrate the CZM 

against the same experimental dataset as the one used to calibrate the DSID model assigned to 

the finite elements. This calibration stage is required to ensure that multi‐scale crack propagation

is modeled as the transition between damage propagation without and with discrete fracture, 

within the same material—as opposed to the coupled activation of fracture propagation in a 

composite made of a weak layer (CZM) embedded in a brittle continuum (CDM).

4.1 Choice of the cohesive stiffness: numerical requirements

In the finite element method, it is assumed that a cohesive zone has a zero thickness. The 

stiffness of CZM elements is chosen so as to ensure that the effective stiffness of a laminated 

material modeled with a cohesive zone of finite thickness is not influenced by the stiffness of this

cohesive zone (in other words, the stiffness of the bulk material in the laminated composite is 

negligible in front of that of the cohesive elements) 57. Figure 6 shows how the CZM influences 

the deformation of a sandwich laminate. Assuming that shear stress is uniformly distributed in 

the cohesive zone and in the bulk of the bounding material, we have

(14)
where τ is the shear stress, γeff is the effective shear strain of the sandwich laminate element,

 is the shear strain of one of the two bounding layers, and K0represents the cohesive 
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stiffness that relates the cohesive shear with the shear displacement Δ. The 
equilibrium τ = Geffγeff condition requires that the effective shear modulus satisfies

(15)

Figure 6
Open in figure viewer  PowerPoint
Influence of the stiffness of a cohesive zone in a numerical model of laminated material, 
modified from 57.
Caption

Given that the cohesive stiffness should not influence the effective modulus of composite, the 

cohesive shear stiffness must satisfy G << 2K0t. Numerically, the CZM is assigned a stiffness 

expressed as

(16)

With α >> 1. In theory, K0 should be infinite to insure that all the elastic deformation energy is 

stored in the bulk material and not in the cohesive zone prior to debonding (Equation 4). 

However, oscillations were noted for very high values of α 57. We choose for all the 

following simulations, which ensures that the elastic energy stored in the cohesive zone prior to 

debonding is insignificant compared with the total energy release Gc that is dissipated after total 

debonding. Note that according to the derivations earlier, the CZM stiffness does not depend on 

the loading path and thus does not depend on the confining stress.

4.2 Determination of the cohesive strength: critical damage 
value

The cohesive strength is distinct from the stress threshold necessary to trigger damage. In order 

to capture the energy flow between the damaged continuum and the material surfaces of the 

cohesive zone 51, 53, we define the cohesive strength as the stress that marks the transition 

between smeared micro‐cracking (accounted for by the DSID model implemented in finite 
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elements) and discrete macro‐cracking (accounted for by the CZM). Our usage of cohesive 

strength also differs from conventional CZM models (without matrix damage) where the term 

refers to the material's peak strength. Accordingly, we determine the critical continuum damage 

value (i.e., micro‐crack density) earlier that micro‐crack interaction cannot be neglected, and we 

calculate the shear stress necessary to reach this critical damage value in mode II. In order to 

determine the critical damage value, we calculate the damaged shear modulus of a 2D REV that 

contains one set of parallel equally sized cracks, using two methods: first, the DSID model, 

which does not account for micro‐crack interaction; second,Kachanov's micro‐mechanical 

model 58, which accounts for micro‐crack interaction. The difference between the shear modulus

calculated with Kachanov's model and the shear modulus calculated with the DSID model 

increases with damage, because micro‐crack interactions increase with damage. The critical 

damage value is defined as the level of damage earlier that the difference between Kachanov's 

shear modulus and the DSID shear modulus stops increasing. Note that in the DSID model, the 

damage tensor is a phenomenological variable, which is not equal to the micro‐crack density 

defined by Kachanov. Both damage variables account for mesoscale crack development and 

stiffness degradation. In the following, we start by recalling the main equations of Kachanov's 

micro‐mechanical damage model (for the sake of completeness), and we then explain in detail an

original method to determine the critical damage value, which marks the transition from CDM to

CZM.

4.2.1 Kachanov's micro‐mechanical model

In the 2D micro‐mechanical damage model proposed by Kachanov, the stress and strain fields in 

a linear elastic plate containing N cracks subjected to the stress σ∞ at infinity are calculated as 

those in a plate subjected to zero far field stress and containing N loaded micro‐cracks. The faces

of each micro‐crack (i = 1,…,N) are subjected to the traction , in which ni is the 

unit vector normal to the faces of the ith crack. According to the superposition theory for elastic 

media, this problem can be solved by considering N plates containing only one crack subjected to

the traction ti(i = 1,…,N), defined as the sum of and the additional tractions due to stress 

interactions with the other micro‐cracks. The tractions can be determined by solving a system of 

integral equations, as follows 58:

(17)
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In which lj is the half length of the jth crack and τjis the unit vector that is tangential to the faces 

of the jth crack.  (respectively ) is the stress tensor at the current 

point ζion the ith crack, generated by a pair of equal and opposite unit forces located at 

point ζjalong the normal (respectively tangential) direction of the jth crack. Following the 

approximation proposed and validated by Kachanov 58, we consider that the stress applied at 

the ith crack is that because of the traction applied at infinity and the average tractions along the 

faces of the jth cracks. In other words, we assume that the stress at ζj is not sensitive to the 

deviations of tj(ζj) from the average 〈tj〈. This allows transforming Equation 17 into

(18
)

In which

(19)

(20)

(21)

(22)

 is the stress generated at point ζi due to a uniform tensile load of unit intensity applied 
in the direction normal to the faces of the jth crack. Noting x = τj and y = nj, we have 58

(23)

Note that in the last of the aforementioned equations, we corrected a typo in the equations 

presented in 58.  is the stress generated at point ζi due to a uniform tensile load of unit 
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intensity applied in the direction tangential to the faces of the jth crack. Noting x = τj and y = nj, 

we have 58

(24)
In which

Equation 17 allows solving for the tractions ti(ζi). The average relative displacement vector <bi> 
across the faces of the ith crack is found by superposing the displacements due to punctual 
tractions at each point of the ith crack faces 58:

(25)
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In which E0 is the Young's modulus of the matrix (bounding material) between the cracks. The 

fourth order effective compliance tensor  is used to relate the average strain <ε> to the 

applied far field stress σ∞ over a representative area A:

(26)

Where  is elastic compliance tensor without cracks, and ni(ζi) is the unit vector normal to 

the ith crack face at point ζi. We consider flat cracks, for which ni(ζi) is a constant. 

Equation 26 thus becomes

(27)

The expressions of the stress distributions that are involved in the integral terms of 

Equations 17 and 25 are very complex, which makes it challenging to obtain the exact solution 

of the traction and displacement distributions along each crack face. To overcome this problem, 

several approximation methods were proposed 58-61. In the following, we adopt Kachanov's 

approximation method 58, in which Equation 25 is written as follows:

(28)
where <ti> is the mean traction field that applies to the ith crack.

4.2.2 Critical continuum damage value

In the following, we consider a 2D REV that contains cracks perpendicular to the x‐axis, and we 

calculate the shear modulus in the xy‐direction. Stress interactions between micro‐cracks are 

highly dependent on the position of these cracks, that is, the crack pattern has a major effect on 

the overall mechanical response of the REV. Hence, in order to determine the critical damage 

value earlier that the damaged elasticity tensor predicted by the DSID model departs from the 

damaged elasticity tensor expected with crack interactions, we tested several crack patterns 

(Figure 7), denoted as the following: ‘parallel’ (aligned crack centers), ‘zigzag’ (crack centers in 

staggered rows), ‘random’ (crack centers positioned according to a random space distribution) 

and ‘special case’ (random distribution of centers with no cracks close to the boundary).
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Figure 7
Open in figure viewer  PowerPoint
Crack patterns used to compare the damaged shear modulus according to the DSID model and 
according to Kachanov's micro‐mechanics model.
Caption

Two sets of simulations are performed, with REV sizes equal to 10 and 25 times that of the 

cracks. The crack density ρ is defined as

(29)

In the present case, because all the cracks are perpendicular to x‐axis, the elastic moduli are 

affected by the crack density (ρ) in Kachanov's model and by the xx− component of the damage 

tensor (Ωxx) in the DSID model. We simulated the pure shear test at the material point with the 

DSID model, and we used Equation 30 to calculate the effective shear modulus along the xy‐

direction (solid black line in Figure 8). The shear modulus was obtained from the compliance 

tensor:
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(30)

Figure 8
Open in figure viewer  PowerPoint
Damaged shear modulus calculated with the DSID model and with Kachanov's micro‐
mechanical model for a set of cracks parallel to the x‐axis, for various crack patterns. Damage 
propagation is modeled by increasing the length l of a fixed number of equally sized cracks that 
are randomly distributed in the REV of size D, from R = l/D = 0 to R = l/D = 1/25 or 
from R = l/D = 0 to R = l/D = 1/10. Damage initiation is modeled by increasing the number of 
equally sized cracks that are randomly distributed in the REV (with either R = 1/10 or R = 1/25).
Caption

Where Gs is Gibbs free energy expressed in Table 1. We calculated the damaged elastic tensor 

with Kachanov's model for several values of crack density, by either increasing the number of 

cracks in the REV with a fixed crack length (crack initiation), or by increasing the length of a 

fixed number of cracks in the REV (crack propagation). Note that in all simulations, the centers 
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of the cracks were randomly distributed inside the REV, with non‐overlap and non‐intersection 

constraints.

We observe that in the micro‐mechanical model, the evolution rate of the shear modulus with 

damage depends on the crack pattern considered (dashed lines in Figure 8). Overall, the 

evolution rate of the shear modulus with damage is higher in the DSID model than in the micro‐

mechanical model, which accounts for the shielding effects of interacting micro‐cracks. It is 

worth noting that for a given crack pattern though, the value of the damaged shear modulus only 

depends on crack density—and not on the type of damage growth (crack initiation vs. crack 

propagation). Results also show that the lowest (respectively highest) values of damaged shear 

modulus are obtained for the ‘parallel’ pattern (respectively ‘zigzag’ pattern). In nature, crack 

patterns are not periodic in rocks; therefore, we considered a random distribution of crack 

centers. In order to assess boundary effects, we compared the ‘random’ pattern with the ‘special 

case’ and found that removing cracks from the area close to the boundary did not change the 

results significantly neither for the model of crack initiation or for the model of crack 

propagation. Therefore, we did not plot the results obtained with the ‘special case’ in Figure 8. In

the following, we base our calibration on the ‘random’ pattern (Pattern 3). Kachanov 59 found 

that crack interaction could not be neglected for crack densities that exceed ρ = 0.3. We note a 

20% relative difference between the damaged shear modulus predicted by the DSID model for 

Ωxx=0.3 and that predicted by the micro‐mechanical model for a density of randomly distributed 

cracks equal to ρ = 0.3. Although this difference is partly due to the distinct mathematical 

definitions used for ρ and Ωxx, the rate of shear modulus degradation is mainly controlled by the 

interaction or non‐interaction between cracks. The relative difference in shear modulus does not 

change any further when the damage density ρ or the damage component Ωxx increases beyond 

0.3. Thus, in the following, we consider that the relative difference of 20% is a representative 

deviation to mark the transition between continuum damage and discrete fracture, and we set the 

critical damage value as Ωxx=0.3 in mode II. To summarize, the value of 0.3 is not an absolute 

theoretical limit but rather the approximate point where micro‐mechanical behaviors transition 

from being dominantly related to micro‐crack nucleation to including non‐linear effects caused 

by micro‐crack propagation.

4.2.3 Cohesive shear strength under various confining pressures

In our model, the transition between damage propagation without and with discrete fracture (i.e., 

before and after shear localization) is determined by the continuum damage value calibrated 

earlier. The cohesive strength of the CZM is the shear stress at which this critical damage value 

is reached, which varies with the boundary conditions—the confining pressure in particular. In 
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the following, we establish a relationship between the CZM cohesive shear strength τmax and the 

confining pressure, which will allow determining the critical energy release rate GIIc in the last 

part of the calibration. We simulated a confined shear test at the material point with the DSID 

model by applying a hydrostatic confining pressure followed by a shear stress. The shear loading

was stopped when damage in the direction perpendicular to the shear direction reached 30% (i.e.,

Ωxx=0.3). The loading paths followed those of the laboratory experiments used for calibration. 

For hydrostatic confining pressures of 6.9 MPa (1000 psi), 13.8 MPa (2000 psi), 20.7 MPa 

(3000 psi), and 27.6 MPa (4000 psi), we found that the shear stress needed to reach Ωxx=0.3 

was τmax =81.4 MPa, 86.1 MPa, 91.2 MPa, and 96.6 MPa, respectively (Figure 9). We note that 

when Ωxx=0.3, the damage component perpendicular to the shear plane (Ωzz) is higher for higher 

confining stresses.
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Figure 9
Open in figure viewer  PowerPoint
Material‐point simulation of a confined shear test (pure mode II) with the DSID model, up to the 
critical damage value (which marks the transition with the opening of the cohesive zone).
Caption

4.3 Determination of the cohesive energy release rate

After the cohesive strength (defined here as the transition between micro‐scale and macro‐scale 

propagation) is reached, both the cohesive element and the bounding material near the cohesive 

segment [δ0;δf] begin to unload (Figure 10). The elastic energy Ee stored in the bounding material 

located in this area flows into cohesive elements and is transformed into dissipated cohesive 

energy Ec (Equation 4). Note that due to stress concentrations, only the elements that are along 

the fracture faces reach the cohesive strength. As the energy is released from the continuum to 

the fracture faces, the other elements along the fracture faces start unloading.
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Figure 10
Open in figure viewer  PowerPoint
Evolution of the stress/strain state in the damaged zone as a cohesive fracture propagates. Note 
that the displacements and deformation increments that would be obtained in mode II are 
challenging to sketch; therefore, we illustrate the energy flow model in mode I. Note that the 
principle is the same in mode II. Different material points in the bounding material (green shaded
area) are subjected to different stress and damage states. Continuum damage initiates at Py, ahead
of the fracture tip. P0 indicates a damaged state at a material point along the cohesive zone, for 
which stress is less than the cohesive strength. P0‐Pa‐P1 illustrates the stress build‐up along the 
cohesive zone, as the material point gets closer to the tip. P1 marks the material point at the 
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boundary between the bounding material and the cohesive zone for which shear stress reaches 
the cohesive shear strength; the cohesive zone starts to open. P1‐P2‐P3‐P4illustrates the 
progressive unloading of the bounding material from the cohesive crack tip (debonding 
initiation) to the material crack tip (complete debonding). The path P0‐Pa‐Pbillustrates the transfer
of energy from the damaged elastic bounding material to the crack faces. Within the damaged 
zone, the bounding material closer to the material crack tip is subjected to unloading (Pa to Pb). 
At a distance larger than r away from the damaged zone, the bounding material stress state is not 
influenced by the cohesive crack (P0 remains at P0 whatever the location of the material point is 
along the crack).
Caption

Following the approach used by Woelke et al. 23 and Paulino 24, we calibrated the value of the 

cohesive shear energy release rate GIIc by matching a pre‐assumed value of GIIc with the energy 

released during a confined axial compression test conducted in ConocoPhillips rock mechanics 

laboratory. Typical shear failure planes that were observed in many of the Bakken shale plugs 

after triaxial compression tests are shown for sample B11‐3, in Figure 11. In order to simulate the

transition from micro‐scale continuum damage to macro‐scale cohesive zone propagation, we 

modeled cylindrical plugs with the same dimensions as those tested in the laboratory: diameter 

25.4 mm (1 inch) and length 50.8 mm (2 inches). We modeled the planes of weakness observed 

experimentally by single two‐dimensional planar cohesive zone. We used a pure mode II CZM, 

even though the triaxial compression tests do not lead to a pure mode II failure. Indeed it should 

be noted that some of the plugs from other samples failed in a more irregular three‐dimensional 

fracture pattern. For the more complex cases, the cohesive method can still be used; however, 

modeling branching cohesive zones is outside the present scope. In order to avoid convergence 

issues associated with triangular elements in the cohesive zone, we modeled the cohesive zone as

a diagonal plane placed with a slight offset (Δ) from the top and bottom of the sample, as shown 

in Figure 12. This geometric choice allowed us meshing the finite element domain with brick 

elements, which were projected into rectangular cohesive elements. We performed the tests for a 

ratio of offset/sample length equal to Δ/L = 1/10 and Δ/L = 1/40, and verified that the 

stress/strain curve predicted numerically was not sensitive to the offset. In the following 

simulations, we used Δ/L = 1/40.
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Figure 11
Open in figure viewer  PowerPoint
Pictures of Bakken shale samples before (left) and after (right) the triaxial compression test 
leading to mode II failure.
Caption

Figure 12
Open in figure viewer  PowerPoint
Left/right: horizontal/vertical damage (i.e., distribution of vertical/horizontal micro‐crack planes,
normal to the x1/x2 axis) just after failure subsequent to a triaxial compression test (upper half of 
the shale sample). The applied confining pressure was 13.8 MPa and the total displacement 
imposed at the top surface was 0.708 mm.
Caption

In the experiments, friction between the sample and the loading plates is an inevitable source of 

some of the plug damage, but it is difficult to parameterize. Therefore, we assumed that finite 

elements representing the platens and those representing the rock in contact with the platens 
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shared the same nodes. The bounding steel platens were idealized as stiff 2.5 mm plates. For 

steel finite elements, we assumed a linear elastic behavior with E = 200 GPa and ν = 0.3. For 

shale finite elements, we used the DSID model calibrated against triaxial compression tests 

(Table 2).

During the simulation, we approximated the laboratory loading conditions by fixing the 6 

degrees of freedom of the center point in the bottom steel plate to prevent free body movement. 

During the first stage of the simulation, we applied the confining pressure at the top and lateral 

surfaces of the shale sample. Then we applied an axial displacement boundary condition at the 

top face of the top steel plate.

Figure 12 shows the distribution of horizontal damage components Ωxx=Ω11 and Ωyy=Ω22, which 

represent vertical micro‐crack planes (normal to the x1 and x2 axes) in the upper half of the 

sample, just after complete failure. The confining pressure was 13.8 MPa, and the top surface 

was subjected to a uniform quasi‐static loading to represent experiments performed with an axial

strain rate of 10−5s−1. The cumulated displacement at the end of the simulation was 0.708 mm. We 

note that the two horizontal damage components are distributed uniformly in the sample, 

where Ωxx=Ωyy=0.15, or about 15% stiffness degradation at the point macroscopic failure, except 

close to the steel plate. Figure 13 shows the corresponding axial stress distribution at the end of 

the simulation, just after failure. The same boundary effects were noted close the steel plate 

elements. In order to verify the absence of mesh dependency of the model, we performed the 

simulation with three different mesh sizes, in which the whole finite element domain was meshed

with 5100 elements (coarse mesh); 11,400 elements (intermediate); and 23,200 elements (fine). 

For the same confining pressure and vertical displacement imposed at the top plate, stress 

distributions were very similar in the three FE models, except at the interface between the plates 

and rock sample. Figure 14 shows the shear stress distribution along the weak plane modeled 

with the fine cohesive zone just before failure, when the vertical displacement of the top steel 

plate is 0.652 mm. Note that at this stage, the shear stress in all the cohesive elements have 

entered the softening regime; therefore, shear stress is less than the cohesive shear strength. 

Shear stress relaxation occurred first at the top and bottom. Thus, the model captures failure 

localization as observed in the experiments, with an initiation of the debonding close to the steel 

plates.
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Figure 13
Open in figure viewer  PowerPoint
Distribution of axial stress just after failure subsequent to a triaxial compression test with the 
coarse (5100 elements) and fine (23,200 elements) meshes. The applied confining pressure was 
13.8 MPa and the total displacement imposed at the top surface was 0.708 mm. Note that the 
displacements were amplified five times, and compressive stress was counted negative.
Caption
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Figure 14
Open in figure viewer  PowerPoint
Shear stress distribution calculated in the cohesive zone after the initiation of debonding and 
before the total failure subsequent to a triaxial compression test, with the fine mesh (23,200 
elements). The confining pressure was pc=13.8 MPa, and the total displacement imposed at the 
top surface was 0.652 mm.
Caption

After the simulation, we extracted the mean axial stress and average displacement of the top steel

plate. The differential stress was obtained by subtracting the corresponding confining pressure 

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2553
https://onlinelibrary.wiley.com/action/downloadFigures?id=nag2553-fig-0014&doi=10.1002%2Fnag.2553
https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2553


out of the mean stress, and the axial strain was obtained by dividing the mean displacement with 

sample length and subtracting the initial strain due to confining pressure. We calibrated the 

parameters against the stress/strain curve of sample B11‐3, under a 13.8 MPa confinement 

pressure. Figure 15 shows a range of simulated stress/strain curves varying minor numerical 

parameters against several other of the Bakken sample tests run at the same confinement. The 

results show that the calibrated simulated curves fall within the range of the rock mechanics 

tests, showing a good match to the overall deformation response of the suite of laboratory 

samples. In order to capture the specific variability of each test, calibrated parameters would 

need to be derived independently. In reality, each of the Bakken shale plugs reflects some 

lithologic variability, as revealed by XRD data (not discussed here). We tried several values of 

cohesive shear energy release rate (GIIc) until we were able to capture the post‐peak behavior with

enough accuracy. Note that the peak of differential stress corresponds to the cohesive strength 

that marks the transition between smeared damage propagation and discrete fracture propagation.

The bilinear cohesive model captures the softening behavior, especially at low confining 

pressure. As can be seen in Figure 15(b), simulations performed with three different mesh sizes 

provide similar results, which shows that the proposed computational framework is mesh 

independent. It is also noted that the offset distance Δ has no significant influence on the post‐

peak behavior (Figure 15(c)).
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Figure 15
Open in figure viewer  PowerPoint
Experimental and numerical stress/strain curves obtained during triaxial tests under various 
confining pressures. Samples B8–B13 correspond to different lithologies, which results in 
different stress/strain curves. For pc=13.8 MPa, mesh dependency was investigated by using a 
fine (5100 elements), intermediate (11,400), and fine (23,200 elements) meshes. 
For pc=20.7 MPa, the sensitivity of the model to the offset effects was investigated by using two 
ratios of offset/sample length: r=Δ/L = 1/20 and r=Δ/L = 1/40. Note that by construction, the 
adopted cohesive zone model cannot capture the residual stress after failure. This phenomenon, 
due to friction at fracture faces, would require additional parameters and a more sophisticated 
CZM (e.g., 62).
Caption

The energy required to produce shear displacements increases with the normal stress that applies 

on the faces of the cohesive zone; therefore, the cohesive shear energy release rate increases with
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the confining pressure. Figure 16 compares the empirical relationship between simulated 

confining pressure and cohesive shear strength for the CDM (red axis) or cohesive shear energy 

release rate CZM (black axis) domains. We plotted the four previously calibrated cohesive shear 

strengths τmax against confining pressure pc and interpolated a linear relationship between cohesive

shear strength and confining pressure (red line). We simulated seven additional pure shear tests at

the material point (red circles in Figure 16) for confining pressures in the range 0 − 30 MPa. For 

each of these additional tests, we calculated the cohesive shear strength as the shear stress 

necessary to reach a horizontal damage of 30% in the bounding material represented by the 

DSID model. It is verified that the cohesive shear strength obtained in the additional tests 

followed the linear relationship obtained by interpolation. A linear relationship was also 

interpolated between the cohesive strength τmaxand the cohesive shear energy release 

rate GIIcobtained in the CZM calibration procedure (blue squares in Figure 16). Consequently, we 

adapted the bilinear CZM to account for the dependence of the shear strength τmax and energy 

release rate GIIc to the confining pressure, as shown in Figure 17. The modified failure envelope 

conforms better to experimental observations, which indicate that the deviatoric stress necessary 

to initiate fracture propagation and the subsequent energy release rate GIIc both depend on the 

stress normal to fracture faces, the loading strain rate and temperature. Like in previous models 

of frictional CZMs 62, we only considered quasi‐static loading conditions, and we ignored 

thermal effects. In the following simulations of fracture propagation with process zone, we used 

the failure envelope shown in Figure 17 to determine the CZM properties.
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Figure 16
Open in figure viewer  PowerPoint
Linear interpolation curves relating CZM shear strength τmax, shear energy release rate GIIc, and 
confining pressure pc.
Caption
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Figure 17
Open in figure viewer  PowerPoint
CZM failure envelope, modified from the bilinear cohesive zone model to account for confining 
pressure.
Caption

5 Simulation of Fracture Propagation in Mode II 
With Process Zone

In the previous sections, we showed how the parameters for both the CDM and CZM zones can 

be calibrated by using laboratory rock mechanics experiments and three‐dimensional 

simulations. In the following section, we apply the CDM/CZM model to an idealized 2D direct 

shear problem. We perform 2D simulations of mode II fracture propagation in shale at various 

depths (i.e., for various normal pressures applied at the faces of the cohesive fracture). The 

domain and boundary conditions considered are shown in Figure 18. This idealized configuration

may reflect a range of geological scenarios: (1) lateral slip on bonded layers due to a horizontal 

driving force, (2) shear activation of a rough fault (oriented optimally or inoptimally, as shown, 

depending on the vector Ps), or (3) spalling of a weakly confined block subject to asymmetric 

loading. We embedded a horizontal cohesive zone of zero thickness in the middle of a 4 m high, 

6 m wide continuum domain that contained 2160 rectangular finite elements. The bounding 

elements were assigned the DSID model, with the constitutive parameters reported in Table 2. A 

fracture was pre‐assigned on a length of 0.5 m in the cohesive zone. Pure mode II bilinear 
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cohesive zone elements were assigned calibrated values of stiffness, shear cohesive strength, and 

shear energy release rate, as explained in the previous section. We simulated a shear test for two 

confining pressures: pc=5 MPa and pc=25 MPa. For the critical continuum damage value 

calibrated for Bakken shale, we can use Figure 16 to determine the CZM numerical parameters: 

the cohesive zone shear strength is 80.3 MPa at pc=5 MPa and 94.5 MPa at pc=25 MPa, and the 

cohesive zone shear energy release rate is 23.9kJ/m3 at pc=5 MPa and 38.1kJ/m3 at pc=25 MPa.

Figure 18
Open in figure viewer  PowerPoint
Geometry and boundary conditions adopted to simulate macro fracture propagation in mode II in
shale.
Caption

Beyond the initial crack of 0.5 m, we note a as the length of the completely debonded part of the 

cohesive zone, that is, the position of the material crack tip (Figure 18). Figures 19 and 20show 

the distributions of vertical micro‐cracks (Ω11) and horizontal micro‐cracks (Ω22) at several key 

stages of the propagation of the material crack tip. Because of the boundary conditions adopted 

in this simulation, the domain is subjected to horizontal compression in the top part and to 

horizontal tension in the bottom part, which results in the propagation of horizontal damage (Ω11) 

below the cohesive zone. Vertical damage (Ω22) concentrates around the cohesive zone, that is, 

close to the shear plane. This is due to the damage criterion adopted in the DSID model: damage 

propagates when the differential stress exceeds the yield stress, which is reached at points of high
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stress concentration, close to the cohesive crack tip. The intensity of damage is higher 

for pc=25 MPa than for pc=5 MPa. The observation of the propagation of the cohesive zone and 

of the damage zone for several values of a indicates that at low confining pressure (pc=5 MPa), 

both the cohesive fracture and continuum damage propagate simultaneously, whereas at high 

confining pressure (pc=25 MPa), the shear cohesive fracture propagates in a slip‐friction mode, 

that is, the dissipation process is a cycle of continuum damage propagation (which occurs when 

tensile differential stress exceeds the yield stress) and cohesive crack propagation (beyond the 

damaged zone). This difference of propagation mode explains why the distribution of damage is 

more uniform at low confining pressure.

Figure 19
Open in figure viewer  PowerPoint
Horizontal damage (i.e., distribution of vertical micro‐cracks, perpendicular to the x1 axis) around
the cohesive zone when the material crack tip reaches a = 2.5 m, for pc=5 MPa (left) 
and pc=25 MPa (right).
Caption
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Figure 20
Open in figure viewer  PowerPoint
Vertical damage (i.e., distribution of horizontal micro‐cracks, perpendicular to the x2 axis) around
the cohesive zone when the material crack tip reaches a = 0.5 m, a = 1.5 m, and a = 2.5 m 
for pc=5 MPa (left) and pc=25 MPa (right).
Caption

Following the notations adopted in Equation 4, we define
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(31)

The total mechanical work input is equal to the sum of the elastic energy stored in the bounding 

material (Ee), the inelastic deformation energy dissipated in the bounding material (Eir), the 

energy released by opening the micro‐cracks (EΩ), and the energy released by opening the 

cohesive fracture (Ec). For each finite element, we calculate Ee, Eir and EΩ by multiplying the 

mean value of the energy function considered by the area of the finite element. At the scale of the

entire domain, Ee, Eir, and EΩ are obtained by summing the energy of all the finite elements. We 

calculate Ec by multiplying the cohesive energy release rate by the cohesive crack length a. Note 

that we calculated the total energy cumulated and dissipated during the loading phase only, that 

is, after applying the confining stress. As shown in Figure 21, the confining pressure affects the 

magnitude but not the evolution trend of the energy stored and dissipated. Ee, Eir, EΩ, and Ec are 

about 1.4 larger under pc=25 MPa than under pc=5 MPa when the cohesive fracture tip 

reaches a = 2.5 m. We verify that Ec is proportional to a, which is in agreement with the CZM 

shown in Figure 17. Ee mostly accumulates at the early stages of damage and cohesive crack 

propagation. Eir is about three times smaller than Ee and follows a trend similar to that of Ee. The 

energy dissipated by micro‐crack debonding (EΩ) is the only energy component that is smaller 

when pc=25 MPa than when pc=5 MPa. We actually observe that under a confining pressure of 

25 MPa, dissipation by micro‐crack debonding nearly stops when a reaches 0.5 m. This 

observation is in agreement with the fracture propagation modes described previously: at low 

confining pressure, continuum damage and cohesive crack propagate simultaneously, whereas at 

high confining pressure, the propagation of continuum damage alternates with that of cohesive 

crack (slip‐friction mechanism).
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Figure 21
Open in figure viewer  PowerPoint
Evolution of the forms of energy stored and dissipated in the domain as the cohesive crack 
propagates.
Caption

Figure 22 compares the forms of energy dissipated during the propagation of the cohesive 

crack; Ein=EΩ+Eir is the total energy dissipated because of the propagation of continuum damage, 

and Ec is the energy dissipated by opening new material surfaces in the cohesive zone. It is worth

being noted that the energy dissipated due to continuum damage propagation exceeds the energy 

dissipated by cohesive crack propagation. In the early stages of cohesive crack propagation, the 

evolution of the energy dissipated is the same for both confining pressures tested. In a second 

phase (when Ec≃Ein>6 × 104J), the energy dissipated by cohesive crack propagation is larger 

under high confining pressure than under low confining pressure for the same level of energy 

dissipated by continuum damage propagation. This confirms again the propagation mechanisms 

noted earlier: simultaneous propagation of continuum damage and cohesive crack at low 

confining pressure or in the early stage of the shear loading performed at high confining 

pressure, and slip‐friction mechanism in the later stage of the shear loading performed at high 

confining pressure.
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Figure 22
Open in figure viewer  PowerPoint
Comparison of the forms of energy dissipated during cohesive crack propagation in mode II: 
energy released by the creation of new material surfaces in the cohesive zone (Ec) and energy 
dissipated by continuum damage propagation (Ein).
Caption

6 Conclusion

In this paper, we proposed a strategy to simulate mode II fracture propagation at macro‐scale 

accompanied by micro‐crack evolution within the fracture process zone at mesoscale for intact 

brittle material. A CZM is used to represent macro‐fracture propagation. A CDM model, which 

represents micro‐crack propagation, is calibrated against triaxial compression tests performed on 

Bakken shale so as to reproduce the stress/strain curve before the failure peak. We simulate a 
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direct shear test with the CDM model, which does not account for micro‐crack interaction. We 

compare the damaged shear modulus with that obtained, in the same loading conditions, with 

Kachanov's micro‐mechanical model, which accounts for micro‐crack interaction. The results 

show that the critical damage threshold, at which crack interaction cannot be neglected, is equal 

to 0.3. The CZM is assigned a pure mode II bilinear cohesive law. The cohesive shear strength of

the CZM is defined as the shear stress that marks the transition between smeared micro‐crack 

propagation and crack coalescence followed by macro‐crack propagation. We calibrate the 

cohesive shear strength by calculating the shear stress necessary to reach a CDM damage of 0.3 

during direct shear tests performed on Bakken shale. We find that the shear cohesive strength of 

the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in 

which the material sample is modeled as a FE CDM continuum that contains a CZM along the 

plane of weakness. The shear energy release rate of the CZM is fitted in order to match to the 

post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We

find that the energy release rate depends linearly on the shear cohesive strength. Accordingly, we 

propose a modified failure envelope for the CZM to account for the dependence of the shear 

strength and energy release rate on confining pressure. The calibration procedure ensures that the

coupled CZM/CDM model can capture the flow of energy that takes place between the bulk 

material that forms the matrix and the macroscopic fracture surfaces. We then show a simple 

application of the coupled damage propagation model by simulating the propagation of a meter‐

scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its 

damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). 

Under high confining pressure, we observe slip‐friction fracture propagation, that is, the 

debonding of the cohesive zone alternates with the propagation of continuum damage. Hence the

proposed CZM/CDM model captures important tectonic features. Original contributions made in 

this paper include the following: (1) A thermodynamic analysis of the energy transfers between a 

fracture and a bounding continuum subject to softening and irreversible deformation; (2) A 

consistent calibration procedure for a model that accounts not only for the interaction between a 

fracture and its damage zone but also for the transition from continuum damage to macro‐scale 

fracture; (3) A finite element model of fracture propagation in a dynamic damage zone, which 

can distinguish continuous and stick‐slip propagation modes. We are currently extending the 

formulation to the propagation of fractures in mode I and in mixed mode, in order to apply this 

computational method to the design of geological storage and hydraulic fracturing systems.
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