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DEVELOPMENT OF AN S-MATRIX THEORY BASED
 ON THE CALCULUS OF FINITE DIFFERENCES
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'and
o x
T. J. Nelson

Theoretical Group, lLsvwrence Radiation Laboratory

University of California, Berkeley, California

July, 1969

SUMMARY
We investigate the possibility of constructing
‘an S-Matrix theory in which partiél wave expansions are

made in terms of the spin-matrix polynomials

e = . E .J_'. ‘_. B l ai > N ol
Wn(a) = Iz + 5+ 2)/P(z 5 + 2). The technlqué employed

to projectvan‘arbitrary function of 2 onto this basis
is fouﬁd in the calculué of finite differencés. This
circumstance seems to give the theory a flavor father
different from the'conventional approach ﬁhere.pro—
jections are done by means ofvintegréls. In»this pre~

‘liminary treatment we first present the mathematical
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properties of the expansion, showing how aﬁalytic cbn-
tinuation into the.complex n-piane may be done. We then

go on to discuss_the possibility of constructing a boot-
strap dynamics based‘on analyticity, unitarity, and crossing

syrmetry.
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I.. INTRODUCTION

AHistorically, the dévelépment‘of S-ﬁaffix theory has been
clbéely tigd to thé Legendré>ekpanéion of the scattering'amplitude,
(1) Als, z) = }E: (24 + 1) ah(s)Pz(z>‘ ,‘ .

. v .

The reasons for this are as follows:

(1) Flastic unitarity takes a particularly'éimple form fbr
‘az(s) andblendé itself.nafurally,to thé construction of an 
,N/D nethod for doing practicalvcalculation.

(2) By applying the Scmmerfeld-Watson transform to eq. (i),
‘Regge Pole contributions appear. These poles control the high
energy liﬁit in the cross channel and have therefore generated
much”enthusiasm iﬁ high energy phenomeﬁoidgy.f ,

However the Regge representation for the scattering amplitude does not

satisfy the finite energy sum rules exéctly and it is difficult (if

not impossible) to find a form of the Regge pole amplitude which does

not suffer from the double—counting difficulties of the intefference
rodel, ‘These problems were éolved by'Véneziano (1), who guessed a form
of the scattering amplitude which (a) is crossing symmétric, (1) has'
Regge asymptotic behavior, and (c) satiéfieé the finite energy sum
rules exactly. | |

It would be interesting to find an expansion of the scatteriﬁg

amplitude which produces Veneziano poles much like the Legendre expansion .

produces- Regge poles. -This problem was solved. independently by
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Veneziano (2), and by Nelson (3). The spin-matrix polynomial'expansion
used by‘the‘latter has the reflection properties neéded to conétruct
signaturéd amplitudes. 1In éddiiiona there is some literature dealing
with egpansiOns in terms of tﬂesé funcfionsv(h). Ve therefofe base our

work on Welson's expansion .
| - _ . I o ‘ : o »
(@ aswe ) B W L

=0

Oﬁr'motivation is to puréue the reﬁarkable:property of the spin-matrix

 polynomials, ﬁhat'they interuée Veneziané-polés,vhopefully Within the

context of a new dynamical procedure iﬁ S-matrix théofy. |
During‘the COurse of this work, two papers have appeared in

preprint form which we feel have relevance to our boint of view. One,

by Khuri (55, conéentrateé:onvdefiving the Veneziano-representétion from

the Regge representatioh. The.other, by Martin (&), deduces the existénce

of the complex n-plane.




REG) Als, z) =

II. PROPERTIES OF 'cn(s): ‘n = INTEGER

We consider a two-body scattering process described by the
amplitude A(s, z), where 2z and s are the center-of-mass scatbtering
angle and total energy squared, respectively. We ignore complications

<) 2 ‘ - L & -OIp

due to spin, isospin, and subtractions.

Wle will cxpand the scattering amplitude in terms of spin-matrix .

polynomials according to

) .

wl’l( DZ) .

)
o8 I
)

where p 1is an energy-dependent scale factor and Wn(pz) is given by

() W(pz) = Moz + B+ 2)/Moz-2+3) .

2 2

The coefficients cn(s). are to be calculated from the formula

(5j - , c.(s) = Vgn' A(S:'?) ; (=)" Als, -~2z) |
| | e = (n-1)/2

vhere we regard the independent variables as s and £ = pz .

3
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Now the difference operator VZ acting on an arbitrary function
£(z) 4is defined to bLe Vz-f(z) = f(z) - £f(z - 1). It is not difficult
to see that acting n times with the difference operator gives

k

(6) ,v;lf(z)!z @F (P) stz

vhere (E)_ is just the binomial coefficient n!/k!(n - k)! . Let us

suppose that A(s, z) satisfies a fixed~s Mandelstam representation

) , |  D(z', s)
. . l .t 2
(7 B _A(S,‘ z) = = dz' —
(o]
D( -z', 8)
+ -32_ dz' A— s

L z'+ z

' va

where we ignore subtractions. Here the discontinuity functions are defined

to be D, = [A(s, 7 + ie)'j A(s, z - ie)]/ié:_for positive

z and Du = [A(s,_z'; ie) - Als, z +_i€)] /i2 for negative 1z, in the -
1imit € - O+. The first term in each expression tends to the physical

arplitude on the real axis, as usual. Using the result (7)

: % ' (_)k n L - _ Tn+1) Naz) '
v . K z + K (n + 1+ z) 2

N
[93)
N
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and recognizing that this combination of gamma functions coincides with

the Dbeta function, it is easy to see that V? A(s, z) has the simple form

[o0]
k{n 1
9 , = . - =
(9) v als, 2) E (E(2) 2
) k=0
o .
Dt(z', s) Jn( ~z2', 8)
' - '
X dz z' - 2 + k dz ~(z' +z) 4+ k
Z 2
= % dz' B(n + 1, z' - Z}Dt(-z', s)
2o
x

A

dz' B(n + 1,- z' -z) Du(ﬁz'g s) .

=

.- . : o . 0 . . \
This reduces to eq. (7) for n = 0, since V_ A(s, z) = i(s, z) and
B(1, 2" -z2) = (z' - z) . Otherwise ve regard ed. (9) as a generalized
form of the fixed-s Mandelstam representation associated with the

integer n.




If we now return to eq. (7) and. take the difference n times with
respect to the variasble £ = pz, and then set & = (n - 1)/2 as in

eq. (5), we obtain

o o
f AN L 1 = n
(10) cn(s) == dz' p 5 B(n + 1, p.Z' -5 -5)
Z
0]
o B [ e (P a,e)] .
—T } QZ' [o] y ) g B n,+.l, - pz! —-§+—2-,.
. .
0.

There ig 2 reflection property for the beta functions involved here, namely

. n 1y n+l o o o-n 1 .
B(n + 1, pz' -5 +-2-) = (}-) *_B( n+1, -pz' -3~ 5). We find that
eq. (10) simplifies to \
© png Dv(7' s) + (-)'p (=2 sﬂ ‘
1 . th 72 ' u 227 n + 1)
(11) cn(s) - % dz ' 2. 0 1.\2 ' "W (pz") ’
: (pz')” - (5 +3 - n
ZO )
where we have used x T(x) = I(x + 1) in a couple of places and the
reflection property of the spin-matrix polynomials, T . ) _’.

Wr(—pz') = (—)nwn(pz'), as well.

N
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I17. PROPERTIES OF' Cn(s); n COMPLEX

In this section we consider the analilytic continuation of

 Cn<S) wn(pz)/nl into the complex n-plane. These details are needed to

justify the application of the Sommerfeéld-Watson transformation to
Als, z). In Ref. (3) it was assumed without proof that the transformetion

is Justified. Substituting eq. (11) into eq. (3), we obtain

. . © [~ ] : ‘ .
(12) Als, z) = é ;‘% f dz! -
| ' =0 | " Z,

pz' [D,;(Z', s) + (=)’ ( -z, S)] W (p2)

u .
2 , W {pz")

o (p2)% - G+ 3)

For large complex n, we find ]Wn(pz)l ~ (E££~)n/ exp [n + 1+ x|Ix n{/E].

As this is independent of the argument of the spin-metrix polynomizl, the

~ratio of polynomials in pz and pz' appearing in eq. (12) tends to unity.

inn

. : . n . : s '
However the factor (—) = e violates the conditions of Carlson's

theorem,.and SO cn(s) Wn(pz)/nl does not possess a unique cohtinuation :
into the complex n~p1ané. The way around this difficulty is bhoth »
standard and physical, namely we have to apply to Sommerfeld-Watson

‘ : . + .
transformation to the signatured amplitudes A (s, z), where
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o +
L o) )
- = W
(13) #ls, 2) > B O
n=0
4
| 2 ‘[z, ) £ 1 (-2, §)] T(n s )
4 pz[ Z;S_V-Z,S}_ﬂ*t‘)
c (s) = £ dz! L 2 - .
n bis ( Z")kd . E ___1 )2 l‘](pz
. Pz 27 2/ )
0. '
One can recover A(,s', z) - from the signafured amplitudes by using ‘the
reflection property of the spin-matrik polynomials
1 V v o - N - n'n- -
(1) . wn( pz) = (‘) vun_(p'a). s
and this leads to
115) - ‘ 1 + ' + . . - =
(lg, _ A(s_,{z):E A(s, z) 4:_,’-\(3, ~2z) +A (s, z) - A (s, - z)

@ |
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IV. THE POIES OF c(n, s)

g

We can split the integral in eq. (13) into two parts corresponding,

R : in the t-channel say td the low,energy and high energy regioné
. 2 B . ¥ ] .
max :
t
(16) to) -8 az ez Dyz's 8) P(n+ 1)
°n V8T % : N2 4n 12 W {pz')
(pz')” - (5 +3) n
Zq 2 2
2 pz' D (z', s) v
. B az! tt " I'(n + 1)
. \ 5 t
" (pz')° - (5 + 51.)2 W, (ez')

4
max

i. (bt(z', s) - Du( -z', sf) .

A1

Here Zﬁax' defines the region where Dt(z', s) exhibits Regge behavior

}_(lz) ' o D (z', s) ~ (z') (s) 3ozt 2 g .

The large z' behavior of Wn(pz') is proportional to (pz')n and

v therefore, if s is chosen so. that the high energy integfal in eq. (15)

converges, we get a contribution to c(n, s) like

. .‘ . B :‘: l
13 : -
(18) | *(n, 8) = ——=r
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Thus the high energy (i.e. inelasﬁic) region in the crossed
channel is responsible for the simple moviﬁé poles in c(n, s). Nelson
assumed the existence of these poles in showing that the Sommerfeld-
Watson transformation of.the eXpansibn in épin-mafrix polynomials leads
to a Veneziano formula. (One muétralso aésumé fhat thé sum

'a(s) +at) + a(u) 7ha$'a speciél'value, for examplé_ 2 in the process
Veneziano discussed Qrigihally, nﬂ.+ ﬁw.) The present disqussionglends
some degfee of plausibility to the notibn'thafr c(h, s)’:posséSSes

_.suéh pdles; | | |

A few remarks concefﬁing'théiléw energy integral.in eq. (16)

are in order here. We ﬁight try to éaturate Dt(z', é) with a delta
fﬁnctiOh correspondihg to a ﬁérrow resonance in the t-channei. I we do

this in the process .ﬂﬁ* T, with.the rho trajectory given by |

als) = a + bs, _then eq._(i}) shovs that c(n, s) will‘possess é pole

2 - 2 2)

- %m - ~-m

= a., This iast condition
14 w v

at n=ofs) - 1 if b(zﬁé
seems'to.be consistent with e%perimenfal values, and combined with the
Veneziano sﬁpﬁlementary éonditionufﬁr:fhié process,b

a(s).+ alt) +‘a(u) = 3 + bX =2, ensures that the trajectory passes
through unity at s = mp?. HowéVer.this kind éf calculation clearly
displays the diseases associated with the simple polg approximation. Inv
addition to the pol? coming from the term pz' - (% + %) in the

denominator, we also get poles from F(pz' -

s

1, . :
+ E) in the numerator.

—~~

- The latter are displaced by integers above « s) and so viclate the .
Froissart bound. We do not know what conditions on the gggétrum in the

t-channel would suffice to eliminate the ancéstors, but it's obvious-

that they will still occur if we take a finite number of fixed poles.

o
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V. THRESHOID BEHAVIOR OF c (s)

Wé have the two expansions for the scattering amplitude

oo}

. (19) Als, 2) = Z (24 + 1) az(s)"Pﬂ(z)

and the behavior of ag(s) near threshold is known to be

)22

(20)  aye) .

One does not have:to carry the process through completely to see that in

‘re-expanding thevIegendre,polynomials in terms of spin-natrix poiynomials,

cn(s) is given by & sum over all thé az(s) of the same parity for

£ > n . Moreover the coefficients in the expansion are pblynomials of
ordef £ in p-l.' However in .order to ektract the Veneziano fofm_from
the Sommerfeld-Watson transformation,.bne must take P to be- quég.

It follows therefore that the cn(s) tend to constants at threshold. The

sare line of reasoning applies when there are unequal masses in the final

or initial state, as in the process = - mo, -and one can then infer the

behavior of cn(s) from the fact that the.Veneziano amplitude has no
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siﬁgularities other than poles, meaning that the threshold éingularify
must be absant in cn(s). Tt is remarkable that we can only build
Veneziano amplitudes from the.expansion in spih-ﬁatrix polynomials if
the trajectories are linear and have a univérsal‘slopé, and . that . these
properties, which permit us to choose p to bé a universal'constant

times a kinematic. quantity, are approximately true 1in nature.

i
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VI. ‘HADRON_DYNAMICS BASED ON THE
CALCUIUS OF FINITE DIFFERENCES

In this section we discuss the possibility of constructing a

vootstrap dynamics based on analyticity, unitarity, and crossing symmetry.

Elastic unitarity in the s-channel

. + 9 : + gy ‘ .
(21) D (s,t) = —5—175 .dSZI A (s,th) A (s,tl.i) .
32 x (s)

could be used to impose restrictions on the cn(s). However it is not

" too difficult to show that the resulting algebraic equations in the

cn(s) are not diagonal in n . -Another way to proceed is to use

o | | + - +

eq. (21) in the crossed channels to compute D, (z', s). and D, (~z', s)
from some input amplitude, which we would take to be a Venéziano formula.

: _ ' +
We can then use these discontinuities to compute the c, (s) from

: 0 ., + o
(22) )2 [ am = [D; - ;S> i?“ Sile] S ) ;
& % (pz')" - (5 +'§)' Wn(pz')
. , o
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“and finally calculate A(s, z) to first order from

8
"o

| Cefe |
(23 a¥(s, 2) - Z i S

To close the cycle, we can analytically continue eq; (23) into the.
crossed channels and recoméhte the:diséontihuities; We cannot guarantee
beforehand that this iterative procedure for construciing a unitary '
ampiitude will convergé. As has beén emphasized by Veneziano (2), our
input émplitude sétisfies all neéessary requirements.excebt unitarity.

We can only hope tha% this amplitude is sufficiently close to reality so

that it will not be badlydistorted by uhitafity.'
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