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ABSTRACT OF THE THESIS

Scalable Real-Time DDoS Traffic

Monitoring and Characterization

by
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Master of Science in Computer Science

University of California, Los Angeles, 2018

Professor Songwu Lu, Co-Chair

Professor Peter L. Reiher, Co-Chair

High volume DDoS attacks continue to cause serious financial losses and damage to company

reputations, despite years of research in preventing and mitigating them. Many proposed

techniques for handling these attacks assume that the attack has already been detected and

its traffic properly characterized; yet, existing methods of detecting and characterizing such

attacks have not been widely adopted, for various reasons. We describe a scalable real-

time DDoS monitoring system that leverages modern big data technologies to effectively

analyze high volume DDoS attacks. Evaluated on multiple large-scale traffic datasets that

capture recent real-world DDoS attacks and synthetic traffic based on sophisticated attack

characteristics, our approach detects and characterizes these attacks quickly and accurately.

Furthermore, we show that our monitoring system 1) clearly justifies its decisions resulting

from explainable analysis of input traffic volume metrics, thus increasing monitoring trans-

parency and facilitating the diagnosis and debugging of monitoring performance for network

security teams 2) leverages identified attack characteristics to separate benign from malicious

traffic and send helpful defense recommendations, the identified attack characteristics and

malicious traffic traces, to downstream DDoS traffic filtering systems.
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CHAPTER 1

Introduction

DDoS attacks that generate unmanageably large volumes of traffic directed at the victim

continue to cause serious problems. The Mirai botnet performed such an attack on October

21, 2016, resulting in a widespread Internet outage throughout America and Europe [1, 2].

Perhaps the most serious of the many DDoS attacks launched since 1999 [3], this volumet-

ric DDoS attack generated malicious traffic at a jaw-dropping 1.2 terabits per second [1],

successfully taking down major websites such as Twitter, Netflix, Paypal, and CNN [2]. In

network-level or transport-level volumetric DDoS attacks, a flood of traffic overwhelms the

victim server’s bandwidth, router processing capacity, or other network resources, thus ren-

dering the victim unresponsive to legitimate users [4]. Figure 1.1 illustrates a volumetric

DDoS attack targeting a victim server (labeled ”Victim”) in a hypothetical company A’s

enterprise network.

Because such attacks disrupt online services, damage reputations, strain customer re-

lationships, and wreak tremendous financial losses for organizations and companies [3], re-

searchers have proposed many defense systems for volumetric DDoS attacks to mitigate and

filter malicious DDoS traffic [5–12]. Despite these defense approaches, volumetric DDoS at-

tacks continue to increase in severity, growing in duration and average peak traffic sizes over

the last several years [13–18], as demonstrated by the Mirai botnet attacks. Several factors

contribute to this continued growth:

1. Volumetric DDoS attacks are increasing in sophistication

2. Current DDoS defense approaches fail at sufficiently high attack volumes

3. Monitoring, detecting, and characterizing volumetric DDoS attack traffic is challenging,
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Figure 1.1: Volumetric DDoS Attack.

as is separating benign from malicious attack traffic

4. Existing DDoS monitoring solutions are a black box that do not clearly explain why

an attack was or was not detected nor thoroughly characterize a detected attack, thus

decreasing transparency for downstream intervention

Typically, DDoS defense approaches include a monitoring system that analyzes network

traffic and sends the results in real-time to a traffic filtering system, as illustrated in Fig-

ure 1.2. Thus, DDoS monitoring systems play a significant role in successfully defending

against volumetric DDoS attacks. To construct an effective volumetric DDoS monitoring

system, we have identified important objectives in Table 1.1. Many works regarding such

systems do not thoroughly address all the objectives mentioned in Table 1.1 simultaneously.

Other DDoS protection services offered by commercial companies advertise to detect DDoS

attacks and filter malicious traffic in a scalable and real-time manner but do not discuss in

detail the technical implementation of their advertised DDoS monitoring services [19–27].

Thus, we will not reference these commercial services in the related work chapter. Because

such monitoring analysis provides necessary input to traffic filtering systems, this paper fo-
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cuses on the development of a volumetric DDoS monitoring system intended to complement

traffic filtering systems. In fact, the proposed monitoring system of this paper is currently

being integrated with DrawBridge, an advanced traffic filtering system [12].

Figure 1.2: Two Essential Components of a DDoS Defense System.

We propose an effective volumetric DDoS monitoring system that leverages data mining

and modern big data technologies to:

• Analyze high volume and high velocity network traffic offline and in real-time

• Optimize the volumetric DDoS attack detection and characterization model parameters

from large-scale network traffic traces offline

• Accurately detect and characterize attacks from large-scale network traffic traces in

real-time to provide defense recommendations, the identified attack characteristics and

malicious traffic traces, to downstream traffic filtering systems

• Clearly explain how the system arrived at detection and characterization decisions

resulting from network traffic analysis

To expand on explainability, we argue that a volumetric DDoS monitoring system that

can explain its decisions not only increases transparency of network traffic behavior from a

network operator’s perspective but also offers helpful insights that operators can leverage to
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Table 1.1: Important Objectives For an Effective Volumetric DDoS Monitoring System

Objective Importance of Objective

Provide timely and precise infor-

mation for attack intervention

Accurately detecting a volumetric DDoS attack

in real-time is the first goal of defense. Provid-

ing characterizations of detected attacks and de-

fense recommendations to downstream interven-

tion systems helps contain the rapidly growing

damage of the attack.

Process big data in real-time Network traffic data has a high volume and high

velocity nature.

Justify detection and characteri-

zation decisions

Clearly explaining decisions resulting from anal-

ysis of traffic events empowers network security

teams to take more effective actions.

Enable continuous improvement

of volumetric DDoS attack detec-

tion and characterization models

Attacks constantly evolve, so only continuous im-

provement of detection and characterization mod-

els helps to effectively keep up with them.
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take further actions in assessing the overall state of the network and mitigating DDoS attacks.

For example, our proposed monitoring system applies a set of tests that examines easily un-

derstandable and interpretable network traffic volume statistics (taking time-dimension into

account as well) of traffic destined for the monitored servers. Upon detection and character-

ization of a volumetric DDoS attack, our system shows which tests failed to explain how it

reached various conclusions, such as time of detected attack, relevant attack traffic protocol,

targeted victim servers, and attack sources. Hence, network operators not only know why

and how our proposed system arrived at such final decisions but can also leverage specifics

of this explanation to take further interventions and conduct better directed investigations

in mitigating the attack and diagnosing possible causes of the attack respectively. In case

the monitoring system has raised a false alarm, network operators can review the system’s

explanation of the attack alert and characterizations. If the provided explanation does not

seem convincing, network operators may override the monitoring system’s alert to avoid a

false alarm. As discussed in the next chapter, other proposed volumetric DDoS monitoring

systems mostly provide detection alerts, with some generating very limited characterizations

and explanations of the detected attack.

From a big data perspective, volumetric DDoS monitoring systems require modern big

data technologies to process and analyze internet-scale network traffic offline and in real-

time, as discussed in Chapter 4. The computational resources required to process traffic

data of such scale can easily overwhelm single machines, including large powerful ones, but

modern big data technologies only require commodity hardware and software resources to

process internet-scale network traffic in a fault tolerant, distributed, horizontally scalable,

and parallelized manner. Furthermore, many modern big data technologies seamlessly inter-

face with many other useful systems (e.g. data storage and warehousing systems, databases,

data visualization dashboards, high-speed message buses, streaming platforms) and come

packaged with advanced data mining tools that leverage and combine a wide variety of pow-

erful artificial intelligence, machine learning, and statistical techniques to quickly assemble

sophisticated algorithms for detecting, analyzing, and explaining anomalous and rare events

hidden in large-scale data, such as volumetric DDoS attacks and other cyber attacks. We
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show how clearly structured data mining techniques combined with necessary big data tech-

nologies create a scalable real-time volumetric DDoS monitoring system that is effective and

explainable.

This paper is organized as follows. Chapter 2 surveys the state-of-the-art volumetric

DDoS monitoring systems. Chapter 3 describes the volumetric DDoS attack detection and

characterization model used in our proposed monitoring system, and Chapter 4 discusses

how to leverage big data technologies to process large-scale network traffic data. Chapter 5

presents our evaluation results, and in Chapter 6, we discuss future research and conclude.
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CHAPTER 2

Related Work

Many works regarding volumetric DDoS monitoring systems do not thoroughly address all

of the following important aspects simultaneously:

1. Evaluation of detection models on recent real-world volumetric DDoS attacks

2. Characterization of attacks upon detection to send defense recommendations, the iden-

tified attack characteristics and malicious traffic traces, to downstream intervention

systems

3. Real-time and offline analysis of large-scale traces

4. Horizontal scalability of monitoring systems for big data analytics

5. Ability of the monitoring system to explain how it arrived at detection and character-

ization decisions

[28, 30, 34, 35, 37, 38] evaluate the accuracy of their detection models on synthesized at-

tack traces, and [32] does not clearly explain the nature of the traces used for evaluation.

[29, 31, 33, 36] evaluate the accuracy of their detection models on real world DDoS attack

traces; however, these attack traces (except the ones in [33]) refer to well-studied, highly

characterized, and old attack datasets: CAIDA DDoS Attack 2007 Dataset [39], 1999 and

2000 DARPA DDoS Attack Datasets [40]. [33] does not clearly describe or provide references

to their 2005 DDoS attack dataset gathered from a large tier-1 ISP. Furthermore, these old

attack datasets may not have important characteristics present in modern volumetric DDoS

attacks.
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[28, 30, 36, 38] propose algorithms that focus on mere attack detection, while [29, 31–33,

37] propose algorithms with very limited attack characterization abilities beyond detection,

mostly victim identification ([37]’s algorithm focuses on characterizing traffic events as high

rate attacks, low rate attacks, or flash crowds). [35] labels packets as malicious but does not

clearly discuss how their detection modules return specific attack characterizations to label

packets. Detection without thorough characterization of DDoS attacks makes it difficult to

take effective interventions and mitigate attack traffic.

[28–31,34,35,37] present algorithms that can perform in real-time, but these works mostly

focus on developing a computationally efficient algorithm on a single node, which may have

optimized hardware. They do not address leveraging modern big data technologies to process

large-scale network traffic data (in which the volume would overwhelm a single machine) in

real-time and in parallel for DDoS detection. [32,33,36,38] did not implement their algorithm

to run in real-time. Overall, few works address how to leverage modern big data technologies

to construct DDoS attack detection and characterization models offline from and analyze

large-scale network traffic data in real-time. [34] leverages the Hadoop ecosystem, a popular

open source implementation of the MapReduce framework proposed by Google [41, 42], to

parallelize model execution in near ”real-time” on a computer cluster, and [32, 34] leverage

Hadoop to build detection models from large-scale network traffic data offline. However,

the Hadoop ecosystem was designed as a batch processing system, not a real-time streaming

system [41–43]. Furthermore, Hadoop’s MapReduce framework makes it extremely difficult

to implement data mining algorithms.

Overall, [28–33, 35–38] present detection algorithms that cannot easily explain why it

detected (or did not detect) an attack for various reasons, which include:

• Proposing approaches that derive many statistical metrics from traffic traces, where

such metrics are not immediately understandable nor identify specific areas of the

network to investigate

• Feeding many statistical metrics into a black-box algorithm, a chain of complex pro-

cedural algorithms, or statistical models that do not easily explain how they arrived

8



at a detection decision nor identify which input metrics influenced the decision

Of the above related works, we further analyze three recently proposed volumetric DDoS

detection systems [29, 32, 34] that seem interesting or most similar to ours. [29] proposes

to leverage software-defined networking (SDN) and the OpenFlow protocol to implement a

complete system, capable of both volumetric DDoS attack detection and mitigation. Upon

detecting the attack and identifying the victim (through an anomaly detection algorithm that

utilizes a bidirectional count sketch algorithm), this system exploits network programma-

bility that OpenFlow offers to enhance Remote-Triggered Black-Hole (RTBH) filtering for

mitigating the attack. While some may view this system’s completeness (i.e. capable of

both detection and mitigation tasks) as a strength, others may argue that this complete-

ness could lead to inflexibility when deciding upon a technology stack for volumetric DDoS

monitoring and defense. Although [29] briefly discusses their system’s modular architecture,

they do not explicitly address how network operators may easily switch out their proposed

defense system in favor of other preferred defense systems, while still using their proposed

detection system in [29]. Furthermore, [29] does not clearly explain their system’s scalabil-

ity properties with respect to the OpenFlow controller when processing large-scale network

traffic from many attached OpenFlow-enabled devices. While these devices leverage packet

sampling techniques to avoid possible resource depletion of the controller during high traffic

rates, the OpenFlow controller may still become overwhelmed when it has to request flow ta-

ble statistics from a large number of attached devices while separating benign from malicious

traffic through many distinct controller applications.

Both [32, 34] leverage the Hadoop ecosystem to implement a scalable volumetric DDoS

detection system that can process large-scale network traffic traces. More specifically, both

works implicitly or explicitly mention that they leverage Hadoop to mine and extract, from

a large historical dataset of network traffic traces, parameters required by their proposed

detection algorithms. After obtaining these necessary parameters, both show that their

Hadoop implementation of a volumetric DDoS detection system can horizontally scale in

order to detect a volumetric DDoS attack given large volumes of incoming network traf-

fic traces, as illustrated through the results of their scalability experiments. However, as
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previously mentioned in this chapter, the Hadoop ecosystem was designed as a batch pro-

cessing system, not a real-time streaming system [41–43]. Hence, volumetric DDoS detection

systems leveraging Hadoop may struggle to achieve real-time analysis on the magnitude of

seconds and lower. Furthermore, both implement a simple detection algorithm consisting

of a short sequence of steps or computations, the counter-based algorithm, using Hadoop.

However, when network operators elect to use more sophisticated and powerful detection

algorithms, this may affect usability, maintainability, and speed of the detection system. As

mentioned previously in this chapter, the interface offered by the Hadoop MapReduce frame-

work makes it difficult to implement more sophisticated data mining algorithms requiring

many steps or computations. Internally, after each computation of the sequence, Hadoop

writes the resulting output to disk; then, the next computation in the sequence reads as

input this previous output from disk [41–43]. While a few disk reads and writes may not

have a large effect on speed, a long sequence of computations requiring many disk reads and

writes will significantly impact the system’s ability to execute real-time data processing and

analytics. In contrast, our proposed scalable real-time volumetric DDoS monitoring system

leverages Apache Spark [44,45], a modern big data processing system that can not only exe-

cute entire sequences of computations in memory to achieve real-time analytics [41,43,44,46]

but also compress and optimize long sequences of computations into much shorter (but still

conceptually equivalent) sequences of computations [46,47].

Furthermore, all the above works do not address the importance of diagnosing and debug-

ging a volumetric DDoS monitoring system. If the monitoring system does not detect and

characterize an attack well, which aspects of the monitoring system require improvement?

Which input metrics require adjustment? Does each metric provide clear enough semantics

to identify specific areas of the network to investigate? How exactly does each metric and the

internal components of the model influence the final detection and characterization decision

and identification of benign and malicious traces? Due to the limited accessibility to real-

world DDoS attack datasets, lack of gold standard guidelines for synthesizing sophisticated

volumetric DDoS attacks, and constantly evolving attacks, it becomes difficult to determine

whether a monitoring system that performs well on a small collection of real or synthesized

10



DDoS attack traces will actually yield the same performance against modern volumetric

DDoS attacks in the wild. Hence, monitoring systems deployed in defense systems must in-

evitably undergo constant diagnosis and debugging to maintain a strong performance against

attacks in the wild. Our work presents an accurate and explainable volumetric DDoS mon-

itoring system that facilitates diagnosis and debugging operations. Furthermore, we show

how to leverage modern big data technologies to create a horizontally scalable and real-time

monitoring system that sends defense recommendations, the identified attack characteristics

and malicious traffic traces, to downstream traffic filtering systems.

11



CHAPTER 3

DDoS Detection and Characterization

The proposed volumetric DDoS monitoring system includes the following components:

1. A volumetric DDoS attack detection and characterization model that learns the normal

behavior of a network’s traffic volume offline

2. A real-time network traffic processing system that computes metrics from incoming

network traffic, signals an attack when the model (previously computed offline) detects

analyzed metrics indicative of abnormal and high traffic volume behavior deviating

from normal behavior, characterizes the attack, and sends defense recommendations

(identified attack characteristics and malicious traffic traces) to downstream traffic

filtering systems

3. A real-time attack source identification scheme

The following sections describe the conceptual steps behind the volumetric DDoS monitoring

system.

3.1 Training Phase: Constructing the DDoS Detection Model

The training phase refers to learning parameters of multiple volumetric DDoS detection

models offline from:

1. A large enough training dataset containing enough benign network traces to thoroughly

capture normal traffic volume behavior

12



Table 3.1: Trace Data Schema

Trace Data Field Data Type

trace timestamp timestamp

source IP address string

source port integer

destination IP address string

destination port integer

protocol string

packets integer

bytes integer

2. A list of IP addresses corresponding to n server machines to monitor, where network

operators have identified these machines as potential targets and requested protection

from volumetric DDoS attacks

Each trace in the dataset should contain the following values: trace timestamp, source IP

address, source port, destination IP address, destination port, protocol (ICMP, TCP, UDP),

packets (indicator of traffic volume), bytes (another indicator of traffic volume). Table 3.1

shows the data type of each field in a trace.

To begin this phase, divide the training dataset into n subsets, where each subset contains

traffic traces destined only for a unique monitored server on the list, based on simplifying

assumptions that traffic events of different servers are independent of each other. Then,

construct n models offline, one model for each monitored server given its corresponding

subset. Consider the following steps to learn the parameters of the model for monitored

server A given its corresponding subset traces dst A (which contains only traces destined for

A):

13



1. Because traffic protocols play a core part in the identity and nature of traffic events,

divide traces dst A into 3 traffic protocol groups and analyze each group separately.

ICMP traces dst A contains only ICMP protocol traffic traces of traces dst A destined

for A. Similar definitions apply to groups TCP traces dst A and UDP traces dst A.

2. For each traffic protocol group p of traces dst A, compute the following 4 metrics that

approximate normal traffic volume behavior of traces of protocol p destined for A in

an easily comprehensible manner:

• MaxPkts(A, p) = the maximum total # of packets of protocol p that A receives

per unit of time u

• MaxBytes(A, p) = the maximum total # of bytes of protocol p that A receives

per unit of time u

• MaxPktsFromSrc(A, p) = the maximum total # of packets of protocol p that

any source IP address sent to A per unit of time u

• MaxBytesFromSrc(A, p) = the maximum total # of bytes of protocol p that

any source IP address sent to A per unit of time u

Our experiments offline suggest that setting u = 1 minute is a reasonable choice. After

the training phase, each model learns 12 parameters (4 metrics computed for each of the 3

traffic protocol groups) from the initial training dataset. As discussed in the next section,

parameters MaxPkts(A, p) and MaxBytes(A, p) serve as normalization constants applied

to incoming traffic volumes (in packets and bytes) of traffic protocol p destined for A, and

parameters MaxPktsFromSrc(A, p) and MaxBytesFromSrc(A, p) help to identify poten-

tial attack sources targeting A with traffic of protocol p. Figure 3.1 shows a conceptual

picture of the training phase.

3.2 Real-time DDoS Detection and Characterization

To analyze incoming raw network traffic in real-time, a network traffic processing system,

every unit of time u, divides the traffic received during the current unit of time i and the pre-

14



Figure 3.1: Learning Parameters of DDoS Detection Models.

vious k−1 units of time into n subsets, where each subset contains traffic traces destined only

for a unique monitored server on the list. Consider the subset of traces current traces dst A

destined for A during this window of k units of time. From current traces dst A, the system

computes the following 4 metrics for each traffic protocol p:

• NormalizedPkts(A, p, i) = # of packets of protocol p A receives in minute i /MaxPkts(A, p)

• NormalizedPktsMovingAvg(A, p, i) =
∑k−1

j=0 NormalizedPkts(A, p, i− j)/k

• NormalizedBytes(A, p, i) = # of bytes of protocol p A receives in minute i /MaxBytes(A, p)

• NormalizedBytesMovingAvg(A, p, i) =
∑k−1

j=0 NormalizedBytes(A, p, i− j)/k

Note that our experiments offline suggest that:

1. Setting u and i to 1 minute is a reasonable choice, just as it was for the training phase

15



2. Setting the sliding window size k = 5 is a reasonable choice

3. MaxPkts(A, p) and MaxBytes(A, p) refer to parameters computed during the training

phase for the model of A

After computing all 12 metrics (4 metrics for each of the 3 traffic protocols) from current traces dst A

in real-time, we apply Decision Rule 1 to these 12 metrics to determine whether A is under

attack at minute i from traffic of protocol p, where Decision Rule 1 analyzes 4 metrics of the

same protocol at a time from these 12 metrics.

Decision Rule 1 DDoS Attack Detection Rule

if ( NormalizedPkts(A, p, i) > θ1 and

NormalizedPktsMovingAvg(A, p, i) > θ2 ) or

( NormalizedBytes(A, p, i) > θ1 and

NormalizedBytesMovingAvg(A, p, i) > θ2 )

then

Signal that a volumetric DDoS attack with traffic

of protocol p targeting A has occurred at minute i

Overall, the system computes a set of 12 metrics for each monitored server A, B, C, . . . and

applies Decision Rule 1 to each set. Our experiments offline suggest setting θ1 = θ2 = 10

is a reasonable choice, and these thresholds remain the same for any traffic protocol and

any monitored server. Furthermore, the above metrics and decision rule clearly show that

our detection model characterizes an attack by providing the time of the attack, victim,

and volume statistics and protocol of attack traffic. Figure 3.2 illustrates a conceptual

understanding of Decision Rule 1, structured as a decision tree, that the model applies to

traffic volumes (in packets and bytes) of protocol p destined for A at minute i.

Upon detecting an attack of traffic protocol p targeting victim server A during minute

i, the real-time attack source identification scheme obtains a list of all distinct source IP

addresses that sent traffic of protocol p to A during minute i and computes the following

metrics for each distinct source IP address S on this list:
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Figure 3.2: Decision Rules Used In DDoS Attack Detection.

• PktsFromSrc(S,A, p, i) = # of packets of protocol p source S sent to A during minute

i

• BytesFromSrc(S,A, p, i) = # of bytes of protocol p source S sent to A during minute

i

To determine whether S should be labeled as an attack source of A, apply Decision Rule 2.

Decision Rule 2 DDoS Attack Source Identification Rule

if
PktsFromSrc(S,A, p, i)

MaxPktsFromSrc(A, p)
> θ3 or

BytesFromSrc(S,A, p, i)

MaxBytesFromSrc(A, p)
> θ3

then

Label S as an attack source
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Note that MaxPktsFromSrc(A, p) and MaxBytesFromSrc(A, p) refer to parameters computed

during the training phase for the model of A. Our experiments offline suggest setting θ3 = 10

is a reasonable choice, and this threshold remains the same for any traffic protocol, monitored

server, and source IP. Decision Rule 2 shows how our detection and characterization model

determines whether a source IP address S is malicious, further characterizing the attack.

Finally, the system leverages the following identified attack characteristics

• time of attack at minute i

• traffic protocol p of attack

• victim server A

• attacker S

in a simple pattern matching scheme to identify malicious traces. In other words, among the

incoming traffic traces of the current minute i, malicious traces have fields that contain the

above values. These identified attack characteristics and malicious traces form important

defense recommendations that the system sends in real-time to downstream traffic filtering

systems.

Note that the number of computations for this identification scheme is maximally bounded

by the number of traffic traces received during minute i, an arguably significantly lower

number than the possible address space of IPv4 and IPv6 addresses most of the time. For

example, if the monitoring system were to receive 10 million traces at minute i, the identifi-

cation scheme only needs to analyze the traffic volumes sent from at most 10 million distinct

sources. While it is possible for the number of distinct sources present in received traces

to equal the size of IPv4 and IPv6 address spaces, we argue that 1) most attacks have not

reached such volumes 2) such traffic volumes may crash upstream traffic collection systems

forwarding traffic to our monitoring system, a problem beyond the scope of this paper. In

scenarios where all IP addresses in the address space target the network and upstream traffic

collection systems do not crash, we may take a random sample of the incoming traffic traces
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and aggregate distinct source IP addresses into IP address blocks based on a desired IP prefix

scheme to bound the number of computations to a manageable number.

Finally, many DDoS attacks use IP spoofing to conceal their true sources and otherwise

confuse defenders, but in many other cases these attacks do not use IP spoofing. The cur-

rent system specifically targets non-spoofed attacks, with continuing research on addressing

spoofed attacks.

3.3 Explainability of DDoS Detection and Characterization Model

The parameters computed during the training phase and metrics computing during real-time

analysis of incoming traffic clearly summarize the behavior of traffic volume, empowering

network security teams to understand the exact semantics of these parameters and metrics.

To enable the monitoring system to explain its detection and characterization decisions,

we designed Decision Rule 1 to follow the paradigm of a simple decision tree structure, as

illustrated in Figure 3.2, which contains easily comprehensible tests at various levels of the

tree for the following reasons:

• Because the definition of a volumetric DDoS attack implies that a victim server must

have received an inundation of traffic, Test 1 quickly eliminates monitored servers that

have received normal traffic volumes of a certain protocol during the current minute i

• Because non-malicious events that send a high volume of traffic of a certain protocol

toward a server for an extremely short amount of time may frequently occur, Test 2

at the next level of the decision tree filters out such noisy events to decrease the false

alarm rate of the monitoring system. We argue that a system consisting of one simple

threshold test that examines the received traffic volume only at the current time will

result in many false alarms.

• Structuring a sequence of tests in a simple tree structure enables the monitoring system

to: 1) clearly explain how it arrived at certain decisions at the tree’s leaf nodes 2) show

which input metrics at what level of the tree influenced a decision, empowering network
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security teams to take more effective actions 3) easily improve by allowing the addition

of future tests through adding more branches to the tree at desired levels 4) facilitate

diagnosis and debugging of the monitoring system by showing which input metric or

which test at what level made the wrong decision and needs further adjustment

For example, suppose the model detected an attack at minute i and characterized this

attack as having traffic of protocol p targeting A at minute i. Based on the decision tree, A

has received an abnormally high volume of network traffic of protocol type p during minute

i, as indicated by metrics NormalizedPkts(A, p, i) or NormalizedBytes(A, p, i) and Test 1.

This event at minute i is not a false alarm because this spike in traffic destined for A has

consistently remained high over recent history, the past k−1 = 4 units of time, as indicated by

metrics NormalizedPktsMovingAvg(A, p, i) or NormalizedBytesMovingAvg(A, p, i) and

Test 2. This explanation not only helps the monitoring system detect and characterize

DDoS attacks but also identifies how certain metrics and tests influenced the final decision,

facilitating the inevitable tasks of diagnosing and debugging the monitoring system in cases

where it does not perform well against never-before-seen DDoS attacks in the wild. For

example, if Test 1 performs poorly, perhaps the input metrics to this test must improve, the

threshold θ1 should increase for more conservative decisions, or another test should be added

to this same level to yield more insight.

Upon attack detection, the real-time attack source identification scheme provides addi-

tional characterization of the attack, showing how it identifies source IPs as malicious attack-

ers and how metrics PktsFromSrc(S,A, p, i), MaxPktsFromSrc(A, p), BytesFromSrc(S,A, p, i),

MaxBytesFromSrc(A, p) influenced this decision in Decision Rule 2, thus facilitating future

diagnosis and debugging operations in case the computed metrics or tests of the scheme need

to be adjusted to identify attack sources with better accuracy.
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CHAPTER 4

Big Data Technologies for Effective DDoS Monitoring

Given large volumes of network traffic, an effective volumetric DDoS monitoring system must

be able to perform the following offline tasks with reasonable efficiency:

• Store and quickly retrieve large training and test datasets of traffic traces

• Mine insightful metrics indicating normal and attack traffic from large-scale traffic

datasets

• Construct the attack detection and characterization model from the large training

dataset

• Tune models by searching the large parameter space for the optimal parameter values

(in our case, these parameters include unit of time u and i, window size of recent

history k, thresholds θ1, θ2, θ3, and other parameters referenced in Chapter 3)

Table 4.1 displays the sizes of some of the datasets [48, 49, 51] used to construct and eval-

uate the proposed volumetric DDoS attack detection and characterization model. These

datasets represent traffic traces gathered throughout one day. Note that some of the sizes

of the RADB DDOS dataset [51] are estimated because we are currently processing this

dataset. These large datasets suggest that single machines do not provide enough storage

nor computational power to analyze such large datasets.

However, a large enough computer cluster consisting of many small, cheap, and com-

modity machines provides enough storage to contain such large datasets and can efficiently

parallelize expensive computations to conduct complex offline analysis to construct mod-

els in a reasonable amount of time. To achieve this, we suggest using a high performance
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Table 4.1: Size of Sample Trace Datasets

Trace Dataset Size In

Compressed

Format

Size In CSV

Format

Corresp.

Database

Table Size

Num. Traces

In Database

Table

DDOS DNS AMPL 33.5 GB 307 GB 320 GB 3.14 Billion

DDOS CHARGEN 67.1 GB 628 GB 659 GB 6.47 Billion

RADB DDOS 448 GB 4 TB est. 4 TB est. 40 Billion est.

and affordable MPP (massively parallel processing) database [54], such as the Greenplum

database [55], Apache Impala on Apache Kudu [56–58], and the Amazon Redshift database

[59], to develop attack detection and characterization models and tune model parameters

from large volumes of stored network traffic. An MPP relational database not only stores

data in a meaningful and structured way but also leverages many machines in the cluster

to facilitate and accelerate, through horizontally scaling, the process of executing complex

database queries in a parallelized and distributed manner (via the expressive power of SQL)

for interactive data exploration and mining insightful features from the stored structured

data. By leveraging the MPP relational database, data scientists and network security oper-

ators can start building an optimized model, a process which may require multiple iterations

of similar computations to search for the best model parameters, from a large dataset of

network traffic traces, a task difficult to achieve using a standalone single node relational

database.

Given that network traffic software (deployed at observation points) gathers and forwards

incoming network traffic data in real-time, an effective volumetric DDoS monitoring system

must also 1) detect and characterize volumetric DDoS attacks from large volumes of incoming

traffic traces and 2) deliver the analysis results and defense recommendations to downstream

systems for further processing, all in real-time. We define real-time as processing an updated

dataset (spanning a sliding window of k units of time) every stride length u, as illustrated
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in Figure 4.1. Our experiments suggest setting the stride length u =each minute and the

sliding window size k = 5 in minutes, as discussed in Chapter 3. To achieve such real-time

analysis, we leverage the Apache Kafka distributed streaming platform [60] to gather network

traffic data into an intermediate staging area. Then, we utilize the Apache Spark distributed

computing system as a streaming application [43–46] to perform the following each unit of

time u, or each minute in our case:

1. Ingest network traffic data from Apache Kafka and compute metrics from traffic data

2. Analyze these metrics with a model (constructed offline) to detect whether a volumetric

DDoS attack has occurred. If so, characterize the attack, identify attack sources and

malicious traffic traces, and forward these attack characteristics and malicious traces

(the defense recommendations) to downstream traffic filtering systems, all in real-time

Figure 4.1: Higher Work Rates With Shorter Strides.

Figure 4.2 illustrates the proposed large-scale real-time volumetric DDoS traffic moni-

toring and characterization system. To facilitate the rapid ingestion of high volume and

high velocity data, Kafka partitions incoming data records across machines in its cluster

with a partitioning function based on the data record’s corresponding key, provided by the
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Figure 4.2: Leveraging a Parallel Streaming Platform for Real-Time Monitoring.

entity sending data to Kafka. This mechanism ensures that data records are distributed

fairly amongst processing nodes in a cluster, thus fully utilizing a cluster’s computational

resources. Furthermore, many streaming applications, such as Apache Spark, can receiving

incoming data from this source in real-time. More specifically, we leverage Apache Spark’s

streaming module (Spark Streaming [43]) to perform the following in real time using SQL:

1. Process network traffic data from Kafka in a structured relational schema format

2. Extract features from raw network traffic data

3. Apply Decision Rule 1 (see Chapter 3 Section 2) to these features to detect a DDoS

attack

4. Apply Decision Rule 2 (see Chapter 3 Section 2) to identify attack sources and query

raw network traffic data to identify malicious traffic traces based on currently identified

attack characteristics

Specifically, the Spark DataFrame is a fault-tolerant and distributed data structure that

offers a SQL interface to query (streaming) data in a structured format. Spark’s ability to

efficiently perform SQL computations on the DataFrame include the following reasons:

• Computations performed in main memory
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• Spark Catalyst Optimizer performs SQL query optimization [47]

Suppose future testing on more datasets suggests that halving the stride length u yields a

more accurate detection rate. This reduction in stride length doubles the minimum required

work rate to process streaming datasets in real-time, as illustrated in Figure 4.1. If the

initial amount of computational resources does not provide enough capacity for the Kafka

distributed streaming platform and Spark streaming application to analyze the incoming

datasets in real-time given a stride length u, these components can utilize their horizontal

scalability properties to easily gain more computing power. In other words, because these

streaming technologies leverage a computer cluster to parallelize expensive computations

in real-time, adding more nodes to the cluster increases their ability to carry out more

computations in a faster parallelized manner.

To illustrate how the proposed volumetric DDoS monitoring system leverages the previ-

ously mentioned big data technologies to process large-scale network traffic data, we present

our scalable real-time end-to-end framework for the monitoring system as illustrated in Fig-

ure 4.3. When the MPP database has accumulated enough normal traffic data, the monitor-

ing system begins mining insightful features and metrics and learning the attack detection

and characterization model parameters from these features offline. For real-time analytics,

the Spark streaming application receives incoming network traffic from Kafka, computes met-

rics (similar as offline) from the traffic, and applies the optimized detection model (created

offline) to these metrics. Upon detecting an attack, the model characterizes the attack by

returning the time of attack, victim of attack, attack traffic type, and attack sources; these

attack characteristics help identify malicious traffic traces. Then, defense recommendations

(the identified attack characteristics and malicious traces) are sent to downstream traffic

filtering systems.
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Figure 4.3: End-to-End Architecture For Scalable Real-Time DDoS Monitoring.
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CHAPTER 5

Evaluation of DDoS Monitoring System

We evaluated the effectiveness of the proposed volumetric DDoS monitoring system on

three recent and real-world volumetric DDoS attack trace datasets (DDOS DNS AMPL

[48], DDOS CHARGEN [49], and SYN FLOOD ATTACK [50]) supplied by the IMPACT

repository [52] and three synthesized volumetric DDoS attack trace datasets (Deter Experi-

ment 1, Deter Experiment 2, and Deter Experiment 3) gathered by running 3 DDoS attack

experiments on the state-of-the-art DeterLab testbed [53]. All 6 datasets contain at least

the following:

• Traces collected at a border router, which represents the gateway between an enterprise

network and the Internet

• A consecutive sequence of normal traffic traces, used as a training set to learn the

DDoS attack detection model parameters

• IP addresses within the network to monitor

• A consecutive sequence of traffic traces containing episodes of only normal traffic traces

and episodes of both attack and normal traces mixed together, used as a testing set

for evaluation

Note that the 3 synthesized datasets each contain the following:

• Periods of benign traffic, generated by the DeterLab HTTP web client modules from

benign client nodes of the network topology
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• 3 waves of volumetric DDoS attacks, where each wave contains a mix of benign and

malicious traffic. The malicious traffic was generated by the DeterLab flooder modules

from attacker nodes of the network topology

For Deter Experiment 1, the same 6 attackers participate in every attack wave of a

constant bit rate attack. However, for Deter Experiments 2 and 3, different non-overlapping

pairs of attackers launch each attack wave. More specifically, each attack wave of Deter

Experiment 2 is a constant bit rate attack; however, each attack wave of Deter Experiment

3 has a pulsing nature that varies the attack’s bit rate in an attempt to cause confusion.

Figure 5.1 illustrates the realistic network topology created on the DeterLab testbed to run

the 3 DDoS attack experiments. In this network topology, all links are 100 Mbps duplex

links that connect 2 nodes.

Table 5.1 summarizes the results of the proposed volumetric DDoS monitoring system

on all 6 datasets. Note that for the 3 synthesized volumetric DDoS attack trace datasets

gathered, the provided attack descriptions, which include:

• Attack start and end times

• Brief notes on the attack nature

• Victim and attack sources

are the gold standard truths. However, as discussed later in this chapter, for the 3 recent

and real-world volumetric DDoS attack trace datasets, the attack descriptions provided

by network analysts are considered as rough approximations and sometimes incomplete,

especially regarding the attack start and end times for the DDOS DNS AMPL dataset.

Furthermore, network analysts did not provide any identified attack sources, and only the

indicated victim is considered as a gold standard truth.

For the 3 synthesized datasets, our monitoring system correctly identified the attack’s

presence, characteristics in all the attack waves (including the targeted victim IP, the at-

tack traffic protocol, and all the corresponding attackers of each attack wave), and malicious
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Figure 5.1: Network Topology Created on DeterLab.

traces from attackers with 100% accuracy. Figure 5.2 illustrates the normalized traffic vol-

ume in packets received by the designated victim 10.1.2.2 in Deter Experiment 3, the most

sophisticated synthesized DDoS traffic experiment in this paper, where:

• NormalizedPkts refers to the blue line, the number of TCP packets 10.1.2.2 receives

during minute i divided by MaxPkts = 274 (MaxPkts refers to the maximum total

number of TCP packets 10.1.2.2 received during a minute in the training set)

• NormalizedPktsMovingAvg refers to the green line, the moving average ofNormalizedPkts

computed over a sliding window of k = 5 minutes spanning the current minute and

previous 4 minutes

The red line near the bottom of Figure 5.2 refers to the thresholds θ1 = 10 and θ2 = 10,

indicating that when both NormalizedPkts and NormalizedPktsMovingAvg rise above
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Table 5.1: Results of DDoS Attack Detection And Characterization Algorithm On 6 Datasets

Trace Dataset Attack Start and End Attack Descrip-

tion

Detection: Attack Time, Traffic

Type, Identified Attack Sources

DDOS DNS AMPL After 11:00 am – Before

12:00 pm

Reflection and ampli-

fication DDoS attack

on 7/22/2015

10:59 am – 11:13 am, ICMP, N/A

11:28 am – 11:32 am, ICMP, N/A

11:01 am – 11:13 am, UDP, N/A

11:30 am – 11:32 am, UDP, N/A

DDOS CHARGEN ˜11:59 am – N/A Reflection and ampli-

fication DDoS attack

based on CHARGEN

protocol over UDP

on 11/25/2016

11:55 am – 12:00 pm, ICMP, N/A

11:54 am – 12:00 pm, UDP, N/A

SYN FLOOD ATTACK ˜4:18 pm – ˜4:28 pm TCP SYN Flood at-

tack on 3/4/2011

4:17 pm – 4:21 pm, ICMP, N/A

4:17 pm – 4:23 pm, TCP, N/A

Deter Experiment 1 Wave 1: Min 11 – Min 23

Wave 2: Min 35 – Min 47

Wave 3: Min 59 – Min 71

TCP Flood attack in

3 waves, each wave

exhibits constant bit

rate attack and in-

volves all 6 attackers

Min. 11 – Min. 23, TCP, 6 attackers

Min. 35 – Min. 47, TCP, 6 attackers

Min. 59 – Min. 71, TCP, 6 attackers

Deter Experiment 2 Wave 1: Min 11 – Min 23

Wave 2: Min 35 – Min 47

Wave 3: Min 59 – Min 71

TCP Flood attack in

3 waves, each wave

exhibits constant bit

rate attack and in-

volves 2 different at-

tackers

Min. 11 – Min. 23, TCP, 2 attackers

Min. 35 – Min. 47, TCP, 2 attackers

Min. 59 – Min. 71, TCP, 2 attackers

Deter Experiment 3 Wave 1: Min 11 – Min 23

Wave 2: Min 35 – Min 47

Wave 3: Min 59 – Min 71

TCP Flood attack

in 3 waves, each

wave exhibits attack

of pulsing nature and

involves 2 different

attackers

Min. 11 – Min. 23, TCP, 2 attackers

Min. 35 – Min. 47, TCP, 2 attackers

Min. 59 – Min. 71, TCP, 2 attackers

this threshold for any minute, the monitoring system signals an attack alert. See Chapter 3

for a detailed discussion of the above metrics.

Figure 5.2 illustrates that the first wave of the attack is detected between minutes 11

and 23, the second wave between minutes 35 and 47, and the third wave between minutes 59

and 71, a 100% accurate detection rate. Because all the plots (6 total) of the TCP flooding

attack’s traffic volume metrics in packets and bytes for Deter Experiment 1, 2, and 3 look
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Figure 5.2: TCP Network Traffic Volume Plot in Packets of Deter Experiment 3 Dataset.

roughly similar, we show only 1 of these 6 plots. See appendix A to view all plots for Deter

Experiment 1, 2, and 3.

Evaluating the results on the 3 real datasets raises complications because such attacks in

the wild do not come with a set of exact ground truths fully describing the attack or labeling

traces as benign or malicious. Network security analysts examined these traces to establish

the victim IP but provided few ground truths describing the complete and exact nature of the

attack. For example, they roughly identified the attack’s start and end times but not specific

attack sources. Hence, the value ”N/A” in the right most column of Table 5.1 indicates that

it is not possible to validate the correctness of the attack sources identified by the monitoring

system; however, because our real-time attack source identification scheme performed well

on the synthesized datasets, we argue that this same scheme would have identified many

of the attack sources behind the real world DDoS attack traces. Furthermore, due to the

lack of exact ground truths (and therefore a degree of uncertainty in the attack descriptions
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provided by network analysts), we consider the following acceptable:

• Detection of an attack’s start and end time within 5 to 10 minutes of its alleged start

and end time provided by network analysts

• Detection of an attack throughout large portions of its alleged duration

• Identification of attack traffic protocols containing at least one of the alleged attack

traffic protocols (if this detail was supplied in the attack trace description)

Thus, given that:

• Network analysts provided descriptions, with a degree of uncertainty, of the identified

volumetric DDoS attacks in the 3 real datasets, as shown in Table 5.1

• The unknown detection and characterization ground truths (i.e. exact attack start and

end time, traffic protocols relevant to attack, exact attack sources, victims) of the 3

real datasets may not exactly align with the approximate descriptions provided by the

network analysts

• The detection and characterization results of our proposed volumetric DDoS moni-

toring system is consistent with the approximate descriptions provided by network

analysts

we argue that the detection and characterization results of our monitoring system, as shown

in Table 5.1, may match the unknown ground truths of the real-world DDoS attacks better

than the approximate descriptions provided by the analysts. In fact, we can even argue

that our results closely match, with near 100% accuracy, these unknown ground truths. The

remainder of this chapter and Appendix A justifies this argument through analysis of traffic

behavior as it relates to volumetric DDoS attacks.

To visualize traffic volume behavior of the traffic protocols (ICMP and UDP as shown

in Table 5.1) identified as relevant to the detected attack in the DDOS DNS AMPL trace

dataset, Figures 5.3 and 5.4 illustrate the normalized traffic volume in ICMP and UDP

32



packets received each minute by victim 204.38.0.0 of the DDOS DNS AMPL trace dataset,

where minute 23959380 in both figures refers to 11:00 AM on 7/22/2015. The metrics plotted

in these 2 figures have similar semantics as those plotted in Figure 5.2. Because the traffic

behavior of the volumetric DDoS attack in the DDOS DNS AMPL trace dataset seems most

interesting, this chapter focuses on analyzing potential discrepancies between our systems

detection and monitoring results and the rough approximations provided by network analysts

(and how they relate to the unknown ground truths of the attack). For a more comprehen-

sive analysis on all 18 plots (6 plots per dataset) of the 3 real-world volumetric DDoS attack

trace datasets (DDOS DNS AMPL, DDOS CHARGEN, and SYN FLOOD ATTACK), see

Appendix A. As illustrated in Appendix A, we argue that our detection and characterization

results for the DDOS CHARGEN and SYN FLOOD ATTACK datasets match well with ap-

proximate descriptions provided by network security analysts. For the DDOS DNS AMPL

dataset, we next discuss our results in depth to address complications that arise when at-

tempting to compare our detection and characterization results with the approximate de-

scriptions provided by network security analysts.

While Figures 5.3 and 5.4 show that our monitoring system signaled the end of the

attack at around minute 23959420 (11:40 AM), about 20 minutes earlier than the alleged

end time of the attack provided by network analysts (minute 23959440 or 12:00 PM), we

argue that this alleged end time is merely an approximation. Furthermore, our data analysis

suggests that the DDoS attack came in 2 waves, with the 2nd wave ending earlier than 12:00

PM. Perhaps network analysts decided to wait a while before marking the end of the attack

to ensure that they do not miss out on a 3rd wave. Based on Figures 5.3 and 5.4, we argue

that the attack really ended around 11:40 AM and that our detection results are near 100%

accurate. Similar, but minor, complications arise in the other 2 recent real-world DDoS

attack datasets; however, the detection and characterization results of our volumetric DDoS

monitoring system match the approximate descriptions given by network analysts relatively

well.

Overall, our proposed volumetric DDoS monitoring system detects and characterizes

volumetric DDoS attacks simulated in the Deter experiments with 100% accuracy. Due to
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Figure 5.3: ICMP Network Traffic Volume in Packets of DDOS DNS AMPL Trace Dataset.

the lack of exact ground truths, approximate descriptions provided by analysts, and absence

of important details such as exact attack sources, we cannot provide a specific quantitative

measure that rates our system’s detection and characterization performance on the recent

real-world world volumetric DDoS attacks. However, we argue that our system detects and

characterizes these attacks with near 100% accuracy, based on our justifications in previous

paragraphs and the system’s strong baseline performance on the synthesized traces.
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Figure 5.4: UDP Network Traffic Volume in Packets of DDOS DNS AMPL Trace Dataset.
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CHAPTER 6

Future Work and Conclusion

From a network security perspective, future research includes creating a more robust and

sophisticated attack detection and characterization model that:

• Analyzes more network traffic metrics indicative of a volumetric DDoS attack, such as

entropy [35], chi-square [35], information gain [38], bidirectional count [29,31]

• Investigates the importance of other standard network traffic trace fields in DDoS

detection and characterization, such as port number

• Contains more tests to identify stealthier volumetric DDoS attacks, especially spoofed

attacks, and separate out attacks from other traffic events, such as flash crowds

• Employs more advanced tests to identify attack sources

Furthermore, validating the performance of the proposed volumetric DDoS monitoring

system on traffic traces of larger-scale, better, and diverse quality will indicate how to im-

prove current monitoring strategies of sophisticated DDoS attacks. Such real world and

synthesized traces should contain sophisticated attacks (e.g. spoofed attacks), more iden-

tified attack sources, better descriptions, and other anomalous events similar in nature to

DDoS attacks (e.g. flash crowds). Traffic experiments generating synthesized traces should

occur on testbeds capable of supporting larger internet-scale network topologies.

From a big data perspective, future research includes running many scalability exper-

iments on the offline model building and real-time DDoS monitoring pipelines. In both

pipelines, discovering the best partitioning strategy to process network traffic data with

MPP databases and distributed streaming platforms ensures the maximum utilization of a
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cluster’s computational resources. From a deployment perspective, it is important to be able

to formulate the minimum size of the monitoring cluster (e.g., number of nodes, number of

CPUs, memory size, amount of disk storage) required to meet a given offline big data analy-

sis task and real-time DDoS attack monitoring service-level agreement (e.g., stride length u

as described in Chapters 3 and 4) under a given problem size and scope (e.g., attack size s,

number k of servers to monitor across n networks). At a more detailed level, we would like

to understand, for example, the number and size of partitions required to achieve optimal

performance and how to achieve linear scalability for the monitoring cluster.

In conclusion, we propose an explainable volumetric DDoS monitoring system that:

1. Leverages modern big data technologies to accurately detect and characterize both

recent real-world and synthesized DDoS attacks in real-time from large-scale traffic

traces

2. Sends defense recommendations, the identified attack characteristics and malicious

traces, to downstream traffic filtering systems

Constructing an explainable monitoring system that shows how input metrics and internal

rules influence its decisions increases transparency of the approach and facilitates debugging

operations, especially when the system does not perform well against DDoS attacks with new

behaviors. We hope this research and discussion not only motivates the use of modern big

data technologies as a core part of DDoS monitoring and defense solutions but also encour-

ages others to develop explainable monitoring systems. We hope these changes will result

in a wider deployment of monitoring solutions to combat the rapid growth and evolution of

DDoS attacks.
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Appendix A

Network Traffic Volume Plots for Trace Datasets

This appendix illustrates normalized network traffic volume plots of traffic destined for the

victim for all 6 datasets explored in this paper. These datasets include 3 recent and real-

world volumetric DDoS attack trace datasets (DDOS DNS AMPL [48], DDOS CHARGEN

[49], and SYN FLOOD ATTACK [50]) supplied by the IMPACT repository [52] and 3 syn-

thesized volumetric DDoS attack trace datasets (Deter Experiment 1, Deter Experiment 2,

and Deter Experiment 3) gathered by running 3 DDoS attack experiments on the state-of-

the-art DeterLab testbed [53]. See chapter 5 for detection and characterization results of the

monitoring system on all 6 datasets.

In all plots, when normalized traffic volumes (i.e. NormalizedPkts andNormalizedBytes)

and moving averages of normalized traffic volumes (i.e. NormalizedPktsMovingAvg and

NormalizedBytesMovingAvg) destined for a monitored server A both exceed the threshold

during a particular minute i for a certain traffic protocol p, the monitoring system signals

that a volumetric DDoS attack targeting A and involving traffic of protocol p has occurred

in minute i. See chapter 3 for more details on the calculations of these traffic volume metrics

and thresholds, as well as the data mining algorithm that analyzes these metrics.

Note that the monitored victim servers in these datasets may not receive any traffic during

certain minutes. For example, victim 35.7.72.0 of the DDOS CHARGEN dataset does not

receive any traffic between minutes 24667729 and 24667733 (11:29 AM – 11:33 AM). For

visualization purposes, the plotting software linearly interpolates traffic volumes for these

minutes, hence explaining the slight inconsistency between the results for DDOS CHARGEN

in Table 5.1 (see chapter 5) and Figure A.6.
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A.1 DDOS DNS AMPL Trace Dataset Plots

The DDOS DNS AMPL dataset contains network traffic traces gathered at a Merit Network,

Inc. border router on 7/22/2015. The traces capture a real-world reflection and amplification

DDoS attack mostly based on the DNS protocol that targets victim 204.38.0.0 from about

11:00 AM to about 12:00 PM [48]. Figures A.1, A.2, and A.3 illustrate normalized network

traffic volume plots (for each traffic protocol) of traffic destined for the victim around the

alleged time of attack, where minute 23959380 refers to 11:00 AM on 7/22/2015. Figures

A.1 and A.3 show that the monitoring system detected an attack involving ICMP traffic

from 10:59 AM to 11:13 AM and 11:28 AM to 11:32 AM and UDP traffic from 11:01 AM to

11:13 AM and 11:30 AM to 11:32 AM. However, the monitoring system does not detect an

attack involving TCP traffic, as illustrated by figure A.2.

Figure A.1: ICMP Network Traffic Volume Plots of DDOS DNS AMPL Trace Dataset

Figure A.2: TCP Network Traffic Volume Plots of DDOS DNS AMPL Trace Dataset
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Figure A.3: UDP Network Traffic Volume Plots of DDOS DNS AMPL Trace Dataset

A.2 DDOS CHARGEN Trace Dataset Plots

The DDOS CHARGEN dataset contains network traffic traces gathered at a Merit Network,

Inc. border router on 11/25/2016. The traces capture a real-world reflection and amplifica-

tion DDoS attack based on the CHARGEN protocol over UDP that targets victim 35.7.72.0

starting at about 11:59 AM [49]. Figures A.4, A.5, and A.6 illustrate normalized network

traffic volume plots (for each traffic protocol) of traffic destined for the victim around the

alleged time of attack, where minute 24667740 refers to 12:00 PM on 11/25/2015. Figures

A.4 and A.6 show that the monitoring system detected an attack involving ICMP traffic

from 11:55 AM to 12:00 PM and UDP traffic from 11:54 AM to 12:00 PM. However, the

monitoring system does not detect an attack involving TCP traffic, as illustrated by figure

A.5. Note that figure A.4 only shows 6 minutes of normalized ICMP network traffic volume

metrics because network traffic traces gathered at the border router around the alleged time

of attack contain ICMP traces only during this short period.

A.3 SYN FLOOD ATTACK Trace Dataset Plots

The SYN FLOOD ATTACK dataset contains network traffic traces gathered within Merit

Network, Inc. between 4:08 PM and 4:30 PM on 3/4/2011. The traces capture a real-world

syn flood DDoS attack that targets a University of Michigan IRC victim server 143.213.232.0

from about 4:18 PM to about 4:28 PM [50]. Figures A.7, A.8, and A.9 illustrate normalized
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Figure A.4: ICMP Network Traffic Volume Plots of DDOS CHARGEN Trace Dataset

Figure A.5: TCP Network Traffic Volume Plots of DDOS CHARGEN Trace Dataset

Figure A.6: UDP Network Traffic Volume Plots of DDOS CHARGEN Trace Dataset

network traffic volume plots (for each traffic protocol) of traffic destined for the victim around

the alleged time of attack, where minute 21654260 refers to 4:20 PM on 3/4/2011. Figures

A.7 and A.8 show that the monitoring system detected an attack involving ICMP traffic from

4:17 PM to 4:21 PM and TCP traffic from 4:17 PM to 4:23 PM. However, the monitoring
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system does not detect an attack involving UDP traffic, as illustrated by figure A.9.

Figure A.7: ICMP Network Traffic Volume Plots of SYN FLOOD ATTACK Trace Dataset

Figure A.8: TCP Network Traffic Volume Plots of SYN FLOOD ATTACK Trace Dataset

Figure A.9: UDP Network Traffic Volume Plots of SYN FLOOD ATTACK Trace Dataset
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A.4 Deter Experiment Trace Datasets Plots

The datasets of Deter Experiment 1, Deter Experiment 2, and Deter Experiment 3 all contain

84 minutes of only TCP network traffic traces gathered at the designated router node (which

has interfaces 10.1.11.2 and 10.1.2.3), which acts as a gateway node between the victim server

10.1.2.2 and the rest of the network topology (see chapter 5 for network topology). For all

3 synthesized DDoS attack traffic experiments, their traces captured a simulated TCP flood

attack targeting the designated victim server 10.1.2.2 in 3 waves:

• Wave 1 occurs from minute 11 to minute 23

• Wave 2 occurs from minute 35 to minute 47

• Wave 3 occurs from minute 59 to minute 71

For Deter Experiment 1, all 6 attackers participate in each attack wave of a constant bit rate

volumetric DDoS attack; however, for Deter Experiment 2 and Deter Experiment 3, only a

pair of attackers participate in each attack wave, where the attack source pair changes for

each wave (each pair of attackers for each wave does not overlap with other pairs of attackers

for other waves). Furthermore, Deter Experiment 2 simulates a constant bit rate volumetric

DDoS attack for each wave; however, Deter Experiment 3 simulates a volumetric DDoS

attack with a pulsing nature for each wave in an attempt to confuse the volumetric DDoS

monitoring system. Throughout the entire 84 minutes of all 3 experiments, the designated 6

normal web client nodes continue to send HTTP web traffic to the victim server at normal

benign rates. Figures A.10, A.11, and A.12 illustrate normalized TCP network traffic

volume plots of traffic destined for the victim around the time of attack, with each figure

showing that the monitoring system detected attacks throughout the full duration of each

attack wave. Note that figures A.10, A.11, and A.12 only show TCP network traffic volume

plots because all 3 synthesized traffic experiments contain only TCP traffic.

43



Figure A.10: TCP Network Traffic Volume Plots of Deter Experiment 1 Trace Dataset

Figure A.11: TCP Network Traffic Volume Plots of Deter Experiment 2 Trace Dataset

Figure A.12: TCP Network Traffic Volume Plots of Deter Experiment 3 Trace Dataset
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