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EPIGRAPH

The edge of evening...the long curve of people all wishing on the first star....

Always remember those men and women along the thousands of miles of land and sea.

The true moment of shadow is the moment in which you see the point of light in the

sky. The single point, and the Shadow that has just gathered you in its sweep...

—T. Pynchon, Gravity’s Rainbow
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ABSTRACT OF THE DISSERTATION

Philosophical Implications of Inflationary Cosmology

by

Casey David McCoy

Doctor of Philosophy in Philosophy

University of California, San Diego, 2016

Professor Craig Callender, Chair

This dissertation is an investigation of the conceptual and physical foundations

of cosmological inflation. Cosmologists have long claimed that inflation solves certain

fine-tuning problems with the previous standard model of cosmology, the highly

successful big bang model of the universe. The major contributions of the dissertation

are an analysis and a critique of the arguments cosmologists could be construed as

making to support this claim, arguments which have been taken as the standard

rationale for the initial (and even continuing) widespread acceptance of inflation

in cosmology. There are four chapters. In the first I establish the context of the
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investigation by clarifying the notion of a cosmological model (the central component of

which is a relativistic spacetime) and explaining important features of the cosmological

models underlying the big bang model. In the second chapter I analyze and criticize

the aforementioned standard motivation for the inclusion of inflation in modern

cosmological models and address the question of whether inflation solves the big bang

model’s fine-tuning problems. The main conclusion of this chapter is that there is

at present no good argument that inflation solves the big bang model’s fine-tuning

problems. In chapters three and four I delve deeper into the fine-tuning argument

apparently favored by cosmologists, namely the one that depends on interpreting

fine-tuning in terms of probabilities or likelihoods. In chapter three I show how

probabilities are implemented, interpreted, and justified in classical statistical physics,

introducing a novel interpretation of statistical mechanics along the way. In the final

chapter I put the formal implementations, the interpretations, and the justification

of probability from chapter three to work in the context of cosmology. I ultimately

claim that the many challenges I raise in the chapter are decisive for current and even

forseeable approaches to defining cosmological probabilities.
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Introduction

This dissertation is an investigation of the conceptual and physical foundations

of cosmological inflation, one of the central components of the modern standard theory

of cosmology, the ΛCDM model. The ΛCDM model is essentially an elaboration of

the previous standard model of cosmology, the well-known hot big bang (HBB) model.

Whereas in the HBB model it was assumed that only matter and radiation of the kinds

investigated by other branches of physics exist in the universe, the ΛCDM model also

incorporates dark energy (which may be in the form of the cosmological constant Λ),

cold dark matter (CDM), and a brief period of inflationary expansion (which may be

caused by an unknown scalar field called the inflaton). This accelerated, exponential

spatial expansion is assumed to occur in the very early universe.1 (One may usefully

and intuitively compare it to the inflation of a balloon, which decreases the curvature

of the balloon’s surface and smooths small irregularities.) The microphysical natures

of these additions are under investigation, but remain unknown at the present; they

at least do not appear to be related to anything in the standard model of particle

physics. Observations however support the inclusion of the additional dark components,

indicating that the present energetic constituents of the universe are dark energy (69%

of the total energy density), dark matter (26%), and normal matter and radiation

(5%).

Inflationary theory plays an interestingly different role in the ΛCDM model

than dark energy and dark matter. Cosmologists have long maintained that inflation

solves certain fine-tuning problems with the HBB model (Guth 1981; Albrecht and

1The idea was originally proposed by Guth in the early 1980s (Guth 1981), with the basic idea
also found in work that appeared shortly after Guth’s seminal paper (Albrecht and Steinhardt 1982;
Linde 1982).

1
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Steinhardt 1982; Linde 1982, 1984; Olive 1990; Dodelson 2003; Mukhanov 2005;

Weinberg 2008). Observations over the past several decades have increasingly indicated

that the spatial geometry of the universe is close to flat; they have also indicated

that the constituents of the universe are remarkably uniform (on large, cosmological

length scales). Cosmologists have argued (and continue to argue) that the HBB

model requires “special” initial conditions in order to explain this observed flatness

and uniformity of the universe. Due to (for example) their extreme precision or

intuitive “unlikeliness,” these initial conditions are thought to be unduly special, such

that many cosmologists have felt that the initial conditions themselves are in need

of explanation, and moreover present a significant conceptual problem for the HBB

model. Cosmologists have offered inflationary expansion as an explanation for the

presently observed conditions and as a solution to the problem, for it remains generally

supposed that inflation gives rise to flatness and uniformity dynamically, and in a way

that makes these conditions expected (Belinsky et al. 1985).

The major contributions of the dissertation are an analysis and a critique of

this argument, which has been taken as the standard rationale for the initial (and

even continuing) widespread acceptance of inflation in cosmology. There is, however,

another important rationale for the adoption of inflation: Cosmologists generally

believe that inflationary theory is empirically confirmed. When inflation is treated as

a quantum theory, one obtains precise predictions of departures from the observed

general uniformity of the universe, as was quickly discovered by cosmologists working

on inflation and similar ideas (Mukhanov and Chibisov 1981; Mukhanov 1982; Guth

and Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen et al. 1983). These departures

in particular appear in what is known as the cosmic microwave background (CMB)
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radiation, a remnant of the decoupling of photons from matter in the early universe,

and have been spectacularly confirmed by satellite observations in the last couple

of decades. Although assessing the empirical confirmation of inflationary theory is

an interesting project worthy of careful investigation, it is beyond the scope of this

dissertation.2

Although a clear account of the HBB model’s fine-tuning problems and of

how inflation is meant to solve them is of value in its own right, an analysis of this

case is significant for its implications to broader issues in the philosophy of science

as well. I note especially one particular motivating line of thought here. It begins

with remarks by Earman and Mosteŕın (1999), who emphasize what I described above,

namely that the HBB model’s fine-tuning problems are not problems concerning the

HBB model’s consistency or empirical adequacy; rather the problems appear to raise

concerns over the kind of explanation given by the model for certain physical features

of the universe—features of the universe which are accessible to observation such

as spatial uniformity and flatness. One might wonder though, “How can solving

such mere explanatory problems represent progress towards an empirically successful

theory?”

The context of inflationary cosmology provides a concrete case to investigate

this question. At present the best argument for inflationary theory is not that it

(allegedly) solves the HBB model’s fine-tuning problems; instead it rests on the striking

empirical confirmation of inflationary theory’s predictions of a very precise spectrum

of anisotropies of the CMB (White et al. 1994; Hu and Dodelson 2002).3 If this

2See (Ijjas et al. 2013; Guth et al. 2014; Ijjas et al. 2014) for recent discussion based on observational
results from the Planck satellite, and (Smeenk 2003, Ch. 7) for a philosophical assessment of the
empirical confirmation of inflation which raises several important concerns.

3Potentially the CMB’s polarization could play a confirmatory role as well (Kosowsky 1996).
(Planck Collaboration 2015) has the latest observational results for both the anisotropy and polariza-
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latter argument is successful—and it at least appears to be taken as such by most

contemporary cosmologists—then inflationary theory may be reasonably considered

an empirically successful theory whose predictive successes go beyond the HBB model.

Therefore the inclusion of inflation in our cosmological models represents progress

over the HBB model.

Yet it is important to note that these predictions were unforeseen at the time of

inflation’s proposal. Insofar as scientific progress may be gauged by solving scientific

problems (Kuhn 1996; Laudan 1978), one nevertheless has an explanatory story linking

inflationary theory’s putative success at solving the HBB model’s fine-tuning problems

with the later confirmation of its observational predictions. Roughly speaking, one

might say that by solving the HBB model’s conceptual problems, inflationary theory

proves itself to be a progressive research program suitable for further development

and empirical test. Although even so there is no guarantee that its predictions will

be borne out, one’s confidence in the theory is justified by its past problem-solving

success.

The viability of some such story depends however on whether inflation does in

fact solve the HBB model’s fine-tuning problems. If it does not, then the widespread

adoption of inflationary theory well in advance of its striking empirical confirmation

demands some other philosophical rationalization, else one is left to attribute this

recent progress in cosmology on the irrational adoption of an ill-motivated idea—a

collective decision which turned out to be implausibly lucky given the (ostensible)

eventual empirical confirmation of the idea.

These considerations lead to a general argument that favors relaxing from

tion spectrums.
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the strongly empiricist stance found in physics and in much philosophy of science

(including that found in (Earman and Mosteŕın 1999)). I introduce this argument only

to show how significant the case of inflation is for issues in the philosophy of science,

and the ramifications of the work I undertake in this dissertation. First, to recap a

few salient points from above, recall that in 1980 the old standard model of cosmology,

the HBB model, was, within its ranges of applicability, empirically adequate and

consistent. It could however only explain the observed flatness and uniformity of the

universe by assuming extremely special initial conditions of the universe. One therefore

would say that the Big Bang model is fine-tuned. Now, cosmologists claimed that

this fine-tuning is problematic, and moreover that inflation solves these fine-tuning

problems. On the basis of its solution to these fine-tuning problems, inflation is quickly

and widely accepted within the discipline, although it appears initially to make the

same empirical predictions as the Big Bang model.

At this point there is a general question to ask: Why is inflation accepted? Is

it merely for sociological reasons? Or are there some methodological grounds? There

were, at least, no apparent empirical reasons to do so. In familiar historical cases, like

that of phlogiston theory, a prior theory tends to retain standing until there is an

empirical reason to abandon it. Nevertheless, the attention paid to inflation quickly

led to the discovery of novel predictions of a precise spectrum of tiny irregularities

in the uniformity of the universe. These predictions were much later confirmed by

satellite experiments built to go look for them. So, why should a theory that had no

empirical motivation be so surprisingly or improbably successful? It seems that either

cosmologists were extraordinarily lucky in adopting the theory (and their adoption of

it was merely due to sociological reasons), or there is a methodological explanation for
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it (which in this case appears to be based on problem solving or explanation). Since

it seems that we should generally favor methodological explanations over attributions

of extraordinary luck, one naturally concludes that there is a truth-conducive (meta-

empirical) method that explains the (empirical) success of inflation and its adoption

by cosmologists.

The plan of the dissertation is as follows.

In chapter 1 I establish the context of the investigation. Cosmology as a science

is principally concerned with modeling the large-scale structure of the universe through

the use of the general theory of relativity (GTR), models of which are relativistic

spacetimes. The crucial modeling assumptions underlying the HBB model are (roughly)

that the universe can be decomposed into space and time, and what is known as the

cosmological principle (CP), which holds that space and its material constituents are

(nearly) uniform (in a precise sense). All the foregoing assumptions are standard in

cosmology, and so are rarely explicitly justified. Although my general aim is not to

investigate these basic assumptions and their justification, it is important to clarify

them and their significance, for many of these details matter for my investigation.

Accordingly, I detail some salient features of cosmological models (§1.2) such as

their ranges of applicability (§1.2.3), briefly explore the rationale for using relativistic

spacetimes as such (§1.2.1), and indicate why I restrict attention to single universe

cosmological models and do not consider multiverse models (§1.2.2). I clarify the

symmetry assumptions in standard cosmology (the CP) (§1.3.1), present details of the

Friedman-Robertson-Walker (FRW) spacetimes that follow from these assumptions

(§1.3.2), introduce the initial value formulation of GTR (§1.3.3), and provide some

important facts concerning the more realistic perturbed versions of FRW spacetimes
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(§1.3.4). The existence of cosmological horizons in FRW spacetimes is important for

understanding the HBB model’s fine-tuning problems, so I summarize the arguments

that reveal the presence of singularities of FRW spacetimes (§1.4.1) and therefore the

presence of particle or event horizons therein (§1.4.2). Finally I relate in brief the

observational basis for the HBB model (§1.5).

In the first half of chapter 2 I analyze and criticize the aforementioned standard

motivation for the inclusion of inflation in modern cosmological models. First I

rehearse the physical facts which lead physicists to intuit that the HBB model has fine-

tuning problems (§2.2)—the horizon problem, the uniformity problem, and the flatness

problem. The analysis and critique of their general argument scheme follows (§2.3).

I consider several possibilities for interpreting the specialness of the required initial

conditions and for judging them problematic, including that the initial conditions

are too precise, that they are too symmetric, and that they are too unlikely. I argue

that cosmologists’ fine-tuning allegations are best interpreted as stating the latter.

One would then say that a cosmological model is fine-tuned if it is improbable or

unlikely according to some attribution of probabilities. In this chapter I merely assert

that the attribution of probabilities to cosmological models is unjustified and fails

to have a sensible interpretation; in the chapters 3 and 4 I support this claim fully

by raising several conceptual and technical challenges which show the prospects of

cosmological likelihoods to be quite dim at best, and empty at worst. Although some

of the other possible, non-probabilistic ways to understand fine-tuning evade these

considerations, I argue that there are strong prima facie challenges to the viability of

these interpretations as well. I therefore conclude that there is at present no compelling

justification for the adoption of inflation based on fine-tuning arguments.
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In the second half of chapter 2 I address the question of whether inflation

solves the HBB model’s fine-tuning problems, supposing for sake of argument that

these fine-tuning problems can be adequately justified. I supply some useful facts

about inflation in the context of GTR (§2.4.1), as well as some details about the

implementation of inflation as a scalar field (the inflaton) (§2.4.3). I discuss the usual

stories of how inflation solves the fine-tuning problems, including the flatness problem

and the uniformity problem (§2.4), and the horizon problem (§2.4.2). How inflation

solves these problems ultimately depends on the interpretation of fine-tuning and

what counts as a solution to a fine-tuning problem (§2.5.1). I therefore conclude the

chapter by assessing whether inflation does in fact solve the fine-tuning problems

according to the interpretations given in the first part of the chapter (§2.5.3), using

a familiar debate over the need to explain the supposed low entropy state of the

universe as a preliminary example (§2.5.2). In some cases it can be said that inflation

undoes a fine-tuning, e.g. when fine-tuning is understood as a high degree of symmetry,

however in these cases it is unclear why the fine-tuning is problematic. In other cases

it cannot be said that inflation solves the fine-tuning problem, e.g. when fine-tuning is

understood as a matter of likellihood.

In chapter 3 I begin to make good on my claim that the likelihood interpretation

of fine-tuning fails. To understand how likelihoods (such as probabilities) can have

physical significance, it is worth looking at how they are successfully implemented

elsewhere in physics (§3.2). Indeed, cosmologists’ intuitions about likelihoods appear to

come from their implementation elsewhere in physics, especially in classical statistical

mechanics. However many of these intutions, I suggest, are based on an inadequate ap-

preciation of the philosophical and foundational issues involved in statistical mechanics.
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Since the possible formal explications of likelihood are manifold, I mostly concentrate

on the most familiar measure-theoretic applications of probability in physics; I do

so also because the most prominent approach to cosmological probabilities (Gibbons

et al. 1987) adapts the measure-theoretic implementation of probabilities in classical

statistical mechanics to GTR.

I first demonstrate how the Liouville measure naturally arises from the sym-

plectic geometry of classical mechanics in the hamiltonian formulation (§3.2.1). Since

GTR is a classical field theory with an infinity of degrees of freedom and the symplectic

manifolds of classical statistical mechanics are finite-dimensional, it is necessary to

generalize the methods of the latter to classical field theories in order to attribute cos-

mological probabilities to cosmological models in all generality (§3.2.2). However there

are clear technical problems facing this naive approach (for which reason, assumedly,

cosmologists restrict attention to sets of cosmologies which can be described with a

finite number of degrees of freedom). I then discuss the justification and interpretation

of statistical mechanical probabilities (§3.3) to set up the following chapter, where I

assess whether cosmological probabilities can be justified and interpreted similarly.

Since the interpretation of probability carries a particular sense in philosophy, I first

serve notice that I will be characterizing interpretation somewhat differently than usual

(§3.3.1). My interest is not so much with general conceptual analyses of probability,

but with identifying what aspect of a statistical mechanical system is stochastic. I

argue that there are essentially three (observationally indistinguishable) things that

can be considered random in statistical mechanics: the observable properties of a

system, the microstate of the system, and the initial conditions of the system (§3.3.2).

I then show how the so-called Gibbsian interpretation of statistical mechanics is best
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understood as a “stochastic observables” interpretation (§3.3.3), and the so-called

Boltzmannian interpretation is best understood as a “stochastic initial conditions”

interpretation (§3.3.4). I conclude the chapter by arguing that the justification of a

particular choice of probability measure in statistical mechanics is not a priori, but

must be a posteriori (§3.3.5).

In chapter 4 I put the formal implementations, the interpretations, and the

justification of probability from chapter 3 to work in the context of cosmology. I first

consider three philosophical problems with the application of probabilities to cosmo-

logical models (§4.2). I should emphasize that by cosmological probabilities I mean

probabilities attributed to relativistic spacetimes. Probabilities find many justifiable

applications in cosmology, but these are benign applications of statistical modeling

within a spacetime. The first problem is the justification of a reference class (§4.2.1),

i.e. of the appropriate space of possible cosmologies. The second is the interpretation

of cosmological probabilities (§4.2.2). I argue that the only reasonable interpretation

of cosmological probabilities is that they pertain to an initial random trial over the

possible cosmologies. The third problem is the justification of cosmological likelihoods

(§4.2.3). There I argue that since probabilities must be justified by correspondence

with empirical frequencies, there can be no adequate justification in single-universe

cosmology—the choice of measure is radically underdetermined and therefore without

physical significance. In the next section I consider the implementation of likelihoods

on the space of possible relativistic spacetimes (§4.3). I point out several technical chal-

lenges that face any such implementation—even if the foregoing conceptual problems

can be overcome. Most of the discussion of cosmological likelihoods therefore sensibly

concentrates on simpler finite-dimensional spaces of cosmologies, and especially on
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the measure proposed by Gibbons et al. (1987) (§4.4). I begin this section by giving

a careful derivation of the measure by way of the initial value formulation of GTR

(§4.4.1). Various cosmologists, including Hawking, Page, and Carroll, have argued

that the flatness problem does not exist according to this measure. I show that this

interpretation is seriously mistaken, for they overlook some important facts which I

point out in my derivation or make arbitrary choices that undermine the justification

of the measure (§4.4.2). I conclude by assessing arguments concerning the probability

of inflation (§4.4.3) and the uniformity problem (§4.4.4) on the basis of this measure,

although with these I mostly echo the judgments of (Schiffrin and Wald 2012) in their

critique of this literature.

I ultimately claim that the challenges raised in this chapter are decisive for

current approaches to defining cosmological probabilities. I believe they should also

incline one to doubt that cosmological probabilities are justifiable or can be well-

defined in general—at least insofar as one thinks of them as arising from classical

considerations. Thus if inflation is to be adequately motivated as a component of our

best cosmological theory, one must find grounds other than that it makes our universe

more likely. As said, cosmologists generally agree that the best support for the theory

is found in quantum mechanical considerations and their empirical consequences,

especially the prediction of departures from uniformity of the cosmic microwave

background (a point which deserves a careful philosophical assessment). Indeed, it

seems that if cosmological probabilities are to have a firm, objective grounding, they

must come from a fundamentally probabilistic theory with cosmological scope, i.e.

some theory of quantum cosmology. Perhaps physics would therefore be best served by

dropping talk of the horizon and flatness problems altogether (especially in texts and
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reviews), and concentrate on the issues of understanding the universe as a quantum

system, and especially whether inflation can play an important role in this project.

Although quantum cosmology goes beyond the scope of this dissertation, I believe

that there is good reason to think that inflation can do so.

Nevertheless, the problem of understanding the widespread adoption of inflation

remains. The putative empirical success of inflation suggests that cosmologists were

right to adopt the theory, i.e. it represents real progress over the HBB model. Yet

its adoption was based ostensibly on its success at solving conceptual problems with

the HBB model. Although it is possible that these conceptual problems are of little

moment and the choice was an irrational guess, it seems preferable to hypothesize

that it was methodologically justified. I have argued however that if we interpret

the HBB model’s fine-tuning problems as depending on improbable initial conditions,

then inflation is (probably) not a solution to them. Therefore either the likelihood

interpretation of the fine-tuning problems is incorrect and there is another sensible

interpretation of these problems, or these problems were not important drivers of

scientific progress in cosmology. In the latter case there must be another rational

explanation for the adoption and eventual empirical success of inflationary theory, else

it seems that inflation was just a tremendously lucky guess. This latter view clashes

strongly with the attitude that science progresses rationally. Only in the absence of

an alternative should we be inclined toward it.

Although cosmologists appear to favor the improbability interpretation, I have

suggested other plausible ways of interpreting the special initial conditions of the HBB

model in a way that inflation does solve them. It may be, then, that the fine-tuning

of the HBB model is real, and inflation does provide the solution to the fine-tuning
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problems. But it has not yet been made clear what is problematic about fine-tuning

understood in these alternate ways; attempting to make it so seems to me to be a

worthy project.

It is also possible that conceptual problems like these are not important or

reliable drivers of scientific discovery, or at least not in this case. That is to say, it

may be that thinking about such problems leads to the proposal of new theories,

yet nothing in the problem statement actually tracks a real, objective problem of

the previous theory. If that were the case, it is not so important to ask, “Does

inflation solve the HBB’s fine-tuning problems?” Rather one might be led to ask

different questions altogether...for example: “Why is inflation a good theory?” or

“Why was inflation a good theory when it was proposed?” Again, the best argument

for inflation now is that it suggests new empirical predictions which can be and

have been verified observationally, yet when inflation was proposed, none of these

observational consequences was known. At that time there was nothing to suggest

that inflationary models were more empirically adequate than the HBB model, but

theorists enthusiastically adopted them. Were there reasons to think the inflationary

approach was better than continuing with the basic theoretical framework of the HBB

model and considering inflation only as a speculative theoretical alternative?

As I show in chapter 2, one of the most salient features of the inflationary

mechanism is that it relaxes the horizon constraint while also reversing the dynamical

instability of flatness in FRW models. Does this “unexpected explanatory coherence”

have any methodological significance? This fact about violating the strong energy

condition in FRW models was there all along, but was overlooked (perhaps because

“matter” that failed to satisfy the strong energy condition was not thought to exist) until
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Guth stumbled upon it (more or less accidentally). But without a prior investigation

of the issue, the discovery that both problems are connected together might be seen as

a strong suggestion to pursue the solution that solves both. Such a discovery mirrors

in a way the unexpected empirical confirmation of novel predictions of a theory, the

latter an often acknowledged virtue of a theory. Thus there is an intriguing suggestion

that in this episode a kind of theory confirmation not based on direct observation

has played an important role, and has moreover led to further scientific progress in

cosmology.4 These foregoing ramifications of this dissertation’s arguments are ripe for

further investigation.

4Amplifying this line of thought, Dawid (2013) argues that unexpected explanatory coherence
can be an important facet of assessing a theory’s viability and confirmation, particularly in the
case of theories like string theory or in the case of cosmology where empirical confirmation often
remains out of current, foreseeable, or even potential reach—“it gives the impression that physicists
are on the right track” (Dawid 2013, 45). But an argument from such unexpected explanatory
coherence can hardly be conclusive—there may be, for example, “so far insufficiently understood
theoretical interconnections at a more fundamental level, of which the theory in question is just
one exemplification among many others” (Dawid 2013, 46), or the correct theory may solve the
problems in independent ways, such that the coherence previously found was ultimately irrelevant
and misleading.



Chapter 1

Relativistic Cosmology

1.1 Introduction

Cosmology in the 20th and 21st centuries has been mostly based on the rela-

tivistic spacetime models of the general theory of relativity. In the latter half of the

century attention focused on a particular standard model of cosmology, the hot big

bang model, which is based on the Friedman-Robertson-Walker set of spacetimes.1

The HBB model’s successes are many. Particularly notable agreements between its

theoretical predictions and observations are (1) expansion as exhibited by redshift-

distance relations (e.g. the Hubble diagram), (2) light element abundances in accord

with big bang nucleosynthesis (BBN), and (3) the observation of the cosmic microwave

background, the relic blackbody radiation released when photons fell out of equilibrium

with electrons.2

1Friedman’s name is often written “Friedmann” in Roman script, but he was no German; he was
a Russian with only one ‘n’ at the end of his name: See, e.g., (Friedman 1922)

2A classic review of the HBB model’s successes is (Peebles et al. 1991). There are numerous
physics sources on cosmology or general relativity. As general references I have especially drawn
on (Dodelson 2003; Mukhanov 2005; Weinberg 2008; Baumann 2009) for cosmological material and
(Hawking and Ellis 1973; Wald 1984; Malament 2012) for material on general relativity.

15
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The HBB model has evolved in recent decades to what is usually called

the ΛCDM model, the contemporary standard model of cosmology. It differs from

the classic HBB model by introducing three features: (1) dark energy (Λ for the

cosmological constant), (2) cold dark matter, and (3) inflation. This dissertation

investigates the third feature—inflation. The initial motivation for inflationary theory

was concern over certain “scientific problems” (§2.3) with the HBB model. Although

the HBB model was highly successful and well-confirmed, there are certain features of

it that some physicists have felt were puzzling. The most significant of these problems

are the so-called horizon problem and flatness problem, although some others are

sometimes mentioned (Linde 1990, 1984).

Chapter 2 is an exploration of the nature of these two problems and how

inflationary theory is supposed to solve them. This chapter is intended in part to

provide the basic cosmological background necessary for explaining these issues and to

address some important preliminary issues. The plan of the chapter is as follows. First

I discuss general issues concerning cosmological models (§1.2), such as their content,

connection to theory and observation, scope, and applicability. Certain features of

cosmology, e.g. the uniqueness of the object of study and the severe limitations on

observation, are important themes in what follows. In §1.3.2 I summarize the most

important aspects of FRW spacetimes and perturbed FRW spacetimes, the spacetimes

which underlie the empirical successes of the HBB model. After that I discuss (§1.4)

singularities in GTR and particle horizons in FRW spacetimes, both important topics

for understanding the horizon problem. The final section summarizes the status of

cosmological observations (§1.5), with particular attention on observations of the

CMB.
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1.2 Cosmological Models

The scientific practice of cosmology is centrally concerned with constructing

models of the universe (or at least of parts of the universe), and testing their predictions

against observations. It will be useful to introduce some terminology for discussing

these models, which are sometimes referred to as cosmologies. A cosmology or

cosmological model will be taken to include the following two elements:3

1. A relativistic spacetime, i.e. a model of GTR (Hawking and Ellis 1973; Wald

1984; Malament 2012). Such a model will sometimes be specified symbolically

as M = (M, g) or M = (M, g, T,Λ), where M is the spacetime manifold, g the

spacetime metric, T the stress energy tensor, and Λ the cosmological constant.4

M satisfies the Einstein field equation (EFE)

Rab −
1

2
gabR− Λgab = 8πTab, (1.1)

where R is the Ricci tensor and R is the Ricci scalar.

2. A physical model of various observational, cosmological phenomena—including

phenomena that have a negligible backreaction on the spacetime geometry and

those that are represented explicitly in the spacetime model via T (or Λ). These

phenomena may be represented by particles (whose trajectories are represented

by a curve in M) or fields (represented by tensor or spinor fields) of various kinds,

3An explicit definition of a cosmology is not typical in the cosmological literature, although
something much like what I specify is what cosmologists have in mind. Ellis and his collaborators
are a notable exception, providing fairly explicit definitions similar to the one given here. Cf. (Ellis
and Stoeger 1987, 1698), (Ellis and van Elst 1999, 5), (Ellis 1999, A40), (Ellis et al. 2012, 20). A
similar notion can also be found in (Cotsakis and Leach 2002).

4M is a Hausdorff, connected, paracompact four-dimensional manifold and g is a metric tensor
field associated with M which is of Lorentz signature (1, 3).
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e.g. perfect fluids (Misner et al. 1973, ch. 22), classical fields (Wald 1984, app.

E), or quantum fields (Wald 1994); one also requires equations which describe

their dynamical evolution (represented by the relevant equations of motion).

More typically one specifies a statistical model, i.e. a distribution function of the

particles in the model and an associated Boltzmann equation for the evolution

of this distribution.

I also draw attention to the following two additional features of models for

their bearing on the various issues I discuss later:

3. An identification of the empirically accessible properties of the model that

provide a link to experiment or observation.5 Roughly what one wants specified

here is a set of predictions that are testable in principle (directly or indirectly),

such as power spectra, galactic redshifts or counts, light element abundances,

etc.

4. A range of applicability in terms of the physical quantities of the theory. Ranges

of applicability for various models are limited in cosmology, for example, by

5There is a great deal of complexity in connecting cosmological models to observation(Ellis 1999,
A45ff). As a representative example of the various challenges one faces when comparing theory with
cosmological observations, Olive, Steigman, and Walker offer the following comments on comparing
light element abundances to the predictions from big bang nucleosynthesis:

To test the standard model it is necessary to confront the predictions of BBN with the
primordial abundances of the light nuclides which are not ‘observed’, but are inferred
from observations. The path from observational data to primordial abundances is long
and twisted and often fraught with peril. In addition to the usual statistics and insidious
systematic uncertainties, it is necessary to forge the connection from ‘here and now’ to
‘there and then’, i.e., to relate the derived abundances to their primordial values. It is
fortunate that each of the key elements is observed in different astrophysical sites using
very different astronomical techniques and that the corrections for chemical evolution
differ and, even more important, can be minimized. (Olive et al. 2000, 394)

Although the various difficulties of comparing theoretical predictions to observational data are of
considerable interest to investigate, they are beyond the scope of this investigation. The observations
and their connection to the models that I discuss will avoid these complications and consider
observations to be ‘ideal’ (Ellis et al. 1985).
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choice of some averaging length scale, by energies where a theory is thought not

to hold, or by times where assumptions about homogeneity or isotropy may not

hold.

In the remainder of this section I comment on some issues attendant to these

features of cosmological modeling, ones that are either of some interest or are recurring

themes in what follows (the empirical significance of these models is discussed separately

in §1.5).

1.2.1 Relativistic Spacetimes

It is plain that not all cosmologies which have ever been devised fit into

the definition of cosmological model as a relativistic spacetime and physical model.

Nevertheless, modern cosmology is principally concerned with the spacetime models of

GTR. These spacetime models usually do not appear with a detailed physical model

in practice, since the matter contents, as far as GTR is concerned, are completely

represented by the stress energy T . In many applications the non-gravitational

interactions of matter, as one would find in a physical model, are ignored and important

general results achieved, for example gravitational lensing and the redshift-distance

relation. Indeed, relativistic spacetime models, such as the standard FRW models, are

frequently referred to as cosmological models themselves, without a full specification of

the matter content of the model, because of gravitation’s importance to cosmological

dynamics. My rationale for decomposing cosmological models into a relativistic

spacetime model and a physical model is (on the one hand) to highlight the importance

of general relativistic dynamics on cosmological scales, and (on the other) to stress

that the details of the matter contents of the model nevertheless depend on some
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underlying physics.

Why do gravitational phenomena play such an important role on cosmological

scales? One occasionally finds attempts at an explanation by way of what one might

call a “physicists’ a priori” argument.6 (That is to say, it is made prior to confirmation

of a model, not prior to experience altogether.) It is somewhat of an aside to pursue

the matter, but for a basic understanding of why cosmological models are essentially

relativistic spacetimes it is worth a few words.

Physicists often remark that there are four fundamental “forces” which op-

erate in our present universe. Three of these (the electromagnetic force, the weak

nuclear force, and the strong nuclear force) are given a fundamental presentation

through quantum field theory (QFT), namely in the standard model of relativistic

particle physics (where “forces” arise from interactions via bosonic fields). The fourth,

gravitation, is presently understood not as a force like the others (though particle

physicists conjecture a particle, the graviton, that mediates gravitational interactions),

but rather as spacetime curvature’s influence on the motion of physical objects, which

objects influence the curvature of spacetime in return. All known physical interac-

tions therefore are presently understood to take place fundamentally in a relativistic

spacetime of some kind: in elementary QFT this is Minkowski space; in GTR it is any

relativistic spacetime permitted by the theory.7

The argument for why the gravitational force is the only relevant one for

cosmological phenomena is by elimination. The nuclear forces are “short-range” forces,

6Examples of the following argument can be found in (Ellis et al. 2012, 19) and (Ellis 2007, 1185).
7If all known physical forces were adequately unified under a single theoretical framework (as

in string theory) or if there were just an adequate theory of quantum gravity, then a cosmological
model would presumably be a model of this theory. Since no quantum theory of gravity has proven
itself capable of producing physically applicable models as defined above, cosmological models are
presently based on theories that may be viewed as incomplete.
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so they cannot be directly responsible for the dynamics of large-scale structures in

the universe. Both electromagnetism and gravitation by contrast are “long-range”

forces which could be theoretically important to cosmological dynamics.8 One then

claims that electromagnetism is plausibly irrelevant (one would observe annihilation

or repulsion on large-scales, and macroscopic bodies tend to be electrically neutral as

well)—despite being enormously (∼ 1025) stronger than gravity—whereas gravity is

plausibly relevant (gravitational attraction is observed on large-scales and cannot be

shielded). Thus one concludes that the basic ingredient of a cosmological model is

gravity. Since our best theory of gravity is GTR, cosmology should be based upon

general relativistic spacetimes.9.

Although the argument appears straightforward and fairly plausible, there are

nonetheless some significant assumptions being made. For example it assumes that

the four fundamental forces are all the forces that exist in the universe. The evidential

warrant, however, for these forces is derived from particular and proximate circum-

stances, viz. experiments on Earth or perhaps at best in our galactic neighborhood.

By describing them as fundamental, one is clearly assuming the universality of these

forces. Certainly this assumption is widely accepted. One need not, however, grant

the universality of the theories that describe these forces.10

8Other long-range forces are not theoretically excluded (Dolgov 1999), and there have been some
proposals of new forces to explain cosmological observations (Brisudova et al. 2002). Since the
argument is by elimination of known forces and new forces have not been shown to exist, they are
not relevant to this argument.

9Of course this is not to say that nuclear and electromagnetic effects are irrelevant—indeed they
are, but they appear in the physical model of a given cosmological model. And just as one may use
Newtonian gravitation theory as an approximation in appropriate circumstances, one may of course
use classical electromagnetism, hydrodynamics, and other theories when they hold approximately.

10Cartwright, for example, claims that

...granting the validity of the appropriate inductions, we have reason to be realists
about the laws in question. But that does not give us reason to be fundamentalists.
To grant that a law is true—even a law of “basic” physics or a law about the so-
called “fundamental particles”—is far from admitting that it is universal—that it holds
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Of course it does make methodological sense to try to apply what one knows in

novel circumstances. An extension of empirically-confirmed physics to the universe at

large plausibly suggests that gravity dominates electromagnetism at large-scales, so it is

sensible to use models of GTR when constructing cosmological models. It need not have

been, however, even if we assume the universality of QFT and GTR. There is no reason

to exclude theoretically, for example, a charge asymmetry in the universe which could

potentially cause cosmological electromagnetic phenomena; indeed various attempts

have been made to explore models of the universe incorporating such phenomena,

from decades ago (Lyttleton and Bondi 1959) to more recently (Dolgov and Silk 1993).

It is no surprise that our empirically-tested physical theories are insufficient

to constrain model choice in cosmology without significant input from cosmological

observation. In a paper setting out such constraints on charge asymmetry, Caprini

and Ferreira echo this remark, noting that

...even though electric charge conservation is well established on Earth,
this may not imply directly the overall neutrality of the universe: to be
able to draw this conclusion, one would have to assume in addition that
charge has to be conserved on all scales and during the entire evolution
of the universe. This may not be the case and the determination of a
cosmological constraint on the charge asymmetry of the universe is of
conceptual importance. (Caprini and Ferreira 2005, 10)

Yet there are (at least) two major obstacles that make this more than science as usual

(Smeenk 2013). First, in cosmology the need for such observational constraints is

in tension with significant observational limitations due to our severely constrained

spatiotemporal extent (Ellis 2007, 1206). This is a theme of great importance in

everywhere and governs in all domains. (Cartwright 1999, 24)

Harré (1962, 104), in an early philosophical investigation of modern cosmology, also makes a similar
point: “...it is by no means clear that we are justified in accepting without question the peculiarly
cosmological extension of the concepts of physical sciences.”
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cosmology, one which will arise in various places below, and will be discussed further

in §1.5. Second, certain methodological and philosophical problems arise from the

uniqueness of the universe (Ellis 2007, 1216), an issue to which I now turn because of

its importance in delimiting the scope of this investigation.

1.2.2 Universe or Multiverse

The object of study in cosmology, the universe, is often stated to be the

totality of everything that (physically) exists. Obviously some idealization is necessary

because of the complexity of the universe on small scales. Thus the usual aspiration

of cosmology as a science in practice is to produce models that capture the large-scale

structure and evolution of the universe.

The assumption that the universe is everything that there is makes cosmology

distinctive among physical sciences, since it is concerned with modeling an object in

the complete absence of other similar objects to which it can be compared by empirical

means (Ellis 2007, 1216). Various apparent problems, both physical and philosophical,

arise from the supposed uniqueness of the universe (Munitz 1964; Goenner 2010).

Other areas of research in physics concerned with modeling physical objects, such as

condensed matter physics, high energy physics, etc., do not face such problems. In

these areas the theories used to model the objects of interest are developed and assessed

directly by empirical means—observation and experiment—through the variability

and invariability of these objects.

If there are no other universes (or at least there are no other empirically

accessible universes), then, on the face of it, it seems as if there can be no properly
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“cosmological laws of nature” and hence no theory of cosmology.11 If cosmology is

to be a science, then cosmologists are seemingly left to apply the physical theories

that hold within the universe to the universe at large. In other words, the “laws of

cosmology” must be adapted or borrowed from the known laws of physics, although,

as noted earlier, there is perhaps some reasonable concern about the justifiability of

this procedure. In any case, it does seem that “cosmology relies on extrapolating local

physical laws to hold universally” (Smeenk 2013, 1).

One may address at least some of the symptoms of this methodological problem

by attempting to extend the notion of a multiplicity of objects, characteristic of typical

scientific investigations, to cosmology. By denying the uniqueness of the universe and

accepting the possibility of a multiverse of universes, the degree of difference between

cosmology and the rest of physics appears lessened. We again have a set of objects,

whether conceived of as all physically existing or as mere possibilia, whose variability

and invariability we hope to assess.12

There is little reason at the present, however, to think that the scientific

11The point has long been recognized by cosmologists and debated by philosophers (Munitz 1962)
and physicists (McCrea 1970) in the context of the HBB cosmology. “For the fact that there is at
least one but not more than one universe to be investigated makes the search for laws in cosmology
inappropriate” (Munitz 1962, 37). In a classic early review of cosmology, McCrea writes that

...cosmology is usually described as the study of the universe as a whole or of the
large-scale properties of the universe. We seem now to have discovered the reason why
this description is suitable. It appears that at some stage in extending the scale of
physics there comes a real difference from ordinary physics; at that stage we reach
cosmology. (McCrea 1953, 324)

McCrea locates this difference in terms of coming to grip with what exists “actually” or “accidentally”
versus with what exists “typically” or “generally”. Although this terminology is not especially apt,
it is meant to suggest the challenge to conventional scientific methodology raised by theorizing
about the universe at large. Interestingly, contemporary cosmologists are very concerned to propose
cosmological theories where our universe is indeed typical or general. The role of typicality or
generality in inflationary theory, and cosmological theory more generally, is the central topic of
chapter 4.

12(Carr 2007) is a recent collection of articles in which the status of the multiverse is debated by
leading physicists.
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method’s epistemic successes will carry over to cosmology by adopting the multiverse

view, especially owing to the exceedingly dim prospects of empirically assessing

variability and invariability among universes (Aguirre and Tegmark 2005).13 Indeed,

in order to differentiate itself from the assumption of a unique universe, the multiverse

assumption must hold that a single universe in the multiverse is a totality in some

sense. For the terminology to make sense there ought to be in-principle-limits to

empirical accessibility between universes, and so the crucial element of empirical

assessment may even be completely lacking in an extreme multiverse scenario.14

If the restriction of scientific methodology to traditional experimental methods

were an inappropriate limitation and there were other valid means of assessing variabil-

ity and invariability in physics apart from empirical means, then perhaps introducing

multiverse scenarios would be acceptable scientific practice. Frequently what motivates

interest in multiverse scenarios is a desire to explain instances of “fine-tuning” and

“special initial or boundary conditions,” especially the much discussed fine-tuning of

the universe for the existence of life. The usual scientific methods have few resources

to explain the values of free parameters in theories and models and in principle no

means to explain particular values of free parameters in fundamental theories. Thus

recourse is often made to anthropic arguments (Ellis et al. 2012, 542ff.) or arguments

based on the generality or probability of certain possibilities (Ellis et al. 2012, 546ff.)

13“Theorizing about the universe as a whole is a precarious enterprise, as Kant so forcefully argued.
It requires a long stretch beyond the relatively safe routines of inductive science. Expectations as to
what sort of order we should expect to find, or alternatively as to what should, at the cosmic level,
count as order, are bound to dominate” (McMullin 1993, 360).

14There is by no means an agreed-upon definition of the multiverse. As an example of a different
definition, McCabe (2010, 630) claims that “in modern mathematical physics and cosmology, a
multiverse is defined to be a collection of possible physical universes.” This however fails to clarify
the concept of a multiverse without the additional specification of the relevant notions of possibility
and of physical universe. As there is a range of such notions, one finds many kinds of multiverses.
Tegmark (2004) offers a popular hierarchy of kinds.
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that require a multiverse to make finely-tuned or special conditions expected.

Does everything in physics demand explanation, even when we do not have

the relevant empirical constraints? To many cosmologists it is a matter for science to

determine an answer to this question. Einstein once remarked, “What really interests

me is whether God had any choice when he created the world.” For cosmology to be a

science, in the opinion of many of its practitioners, God must not have had much choice,

“otherwise it would simply amount to ‘cosmic archeology,’ where ‘cosmic history’ is

written on the basis of a limited number of hot big bang remnants” (Mukhanov 2005,

229). Yet some argue that explaining fine-tuning and special initial conditions by

invoking multiverses and anthropic arguments is unjustifiable, in particular due to

the lack of any means of empirically verifying such claims (Ellis et al. 2004). This

claim however assumes that there are no other valid means of assessing variability

and invariability in physics apart from empirical means. Is it justifiable to make this

assumption?

The demand that something should be explained ought to depend on the

existence of a truth-conducive method that can establish the grounds for that expla-

nation. Empirical methods have for a long time now offered the means for reliably

procuring the grounds of scientific explanations, and we think so when a theory’s

theoretical predictions are empirically confirmed. That these methods lack the means

to explain everything cannot be taken as a fault in the method, until it is demonstrated

convincingly that other such means exist and are truth-conducive. Since the matter

is not settled, I choose to set aside multiverse-based and anthropic arguments in the

following.15

15The epistemic situation in cosmology is similar in many respects to that in quantum gravity
research, and notably string theory, which has long suffered criticism for a lack of any means of
empirical confirmation. Dawid (2013) argues that non-empirical theory confirmation plays a crucial
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In any case, inflationary theory does not necessarily presuppose a multiverse,

although cosmologists sometimes claim that there is a sense in which a multiverse

scenario is a natural consequence of standard inflationary mechanisms. This aspect of

inflationary theory is known as eternal inflation (Linde 1986; Guth 2007), and it is

even claimed to have predictions which are potentially observable (Feeney et al. 2011).

While eternal inflation is on the forefront of the minds of many theoretical cosmologists

(and introduces a host of fascinating issues worthy of philosophical investigation),

I choose to focus on the simpler case of one-universe versions of inflation, for the

philosophical and foundational issues there are of sufficient interest without introducing

the additional quantum mechanical complications of eternal inflation. Multiverses

that “physically exist” will therefore be set aside henceforth, although the role of a

space of possible universes—which can be described as a multiverse—will be central

in the following chapters on the inflationary proposal’s merits.

1.2.3 Ranges of Applicability

Any physical theory or practical model of a physical object possesses in-

principle or practical ranges of applicability—the fourth feature of cosmological models

mentioned above. For example a fundamental theory has unlimited validity (in

principle) but fairly restrictive ranges of practical application. These ranges are

generally expressed in terms of physical quantities such as length, mass, etc. Outside

the range of validity inaccuracies in the model become too large to ignore—the model

gives the wrong results. So, for example, Newtonian particle mechanics (with gravity)

role in the development and assessment of string theory. Ideas such as this are relevant to inflationary
theory, itself a speculative proposal in the vein of string theory, but an investigation into this is
beyond the scope of this dissertation.
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has both an upper and lower limit of validity in terms of length, which is just to say that

above and below certain length scales Newtonian particle mechanics makes empirically

falsifiable predictions (in principle). Similarly, the simple harmonic oscillator model

has a limited range of application to macroscopic springs or pendula, outside of which

the model is no longer a good representation of the physical object.

Empirical investigation attempts to establish the ranges of validity and the

ranges of applicability, but theoretical considerations may suggest them as well. For

example, it is often remarked that GTR “breaks down” at small “Planck-scale” lengths

(or high energies).16 We obviously have no empirical evidence that GTR fails in its

description at these scales, since these scales are experimentally and observationally

inaccessible, but it is widely thought that quantum effects become relevant such that

the classical description of relativistic spacetime becomes invalid. It usually follows

from this line of reasoning that a quantum theory of gravity is needed in order to

describe the early universe, and there is therefore a small-scale limit of applicability

on cosmological models.

This particular restriction on cosmological models is relevant to an important

aspect of proposals of likelihood measures in cosmology (ch. 4), so it is worth saying

a bit more on how it arises. As remarked above, GTR and QFT describe different

phenomena, but since all of these phenomena occur in the universe they must either

be accounted for in a cosmological model or be negligible at the scale of applicability

of the model. The spacetimes of GTR can, and frequently do, serve as backgrounds

on which other physical theories can be modeled in a physical model, e.g. as is done

16There is also the alleged breakdown of GTR in singular spacetimes to consider, a topic discussed
at length in (Earman 1995). FRW spacetimes generically possess spacetime singularities (§1.4.1),
which fact has provoked no small amount of effort by cosmologists to contrive ways to avoid them.
In fact, early work by Starobinsky (1980) on inflationary-like models had precisely this goal in mind.
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in QFT on curved spacetime (Wald 1994). This approach is permissible so long as

there is a negligible backreaction on the spacetime geometry, i.e. effects governed by

the “foreground” theory are “small enough” that the assumptions grounding the use

of the spacetime background remain satisfied. Satisfying this condition means we can

neglect the inclusion of foreground fields or particles in the stress-energy tensor T .

This is necessary since fields and particles affect the spacetime geometry dynamically

in GTR. But in GTR there is no sense to be made of quantum fields affecting the

spacetime geometry, except insofar as they can be represented as classical fields or

particles. So if quantum effects become significant enough, it seems that backreaction

on the spacetime geometry can no longer be ignored—the cosmological model is no

longer applicable.

There are also various issues that arise when one considers large-scale applica-

bility that are currently under a great deal of discussion in the cosmological literature

(Clarkson et al. 2011). These will not play a significant role in my discussion of

inflation, but they are of independent philosophical interest so I will say a few brief

words. When cosmologists say that the universe is homogeneous and isotropic, they

generally mean that it is so when “small-scale” inhomogeneities and anisotropies

are averaged out. Cosmological models are implicitly thought to have an averaging

length corresponding to the lower end of the scale of large-scale applicability. This

averaging process is never made explicit, and in any case there is currently no generally

applicable notion of averaging in GTR, a problem which has been raised byEllis (1984);

Ellis and Stoeger (1987).17

Still, it is reasonably simple to understand the relevant notion of averaging,

17Ellis continues to point to this as an outstanding problem in cosmology (Ellis et al. 2012, 16ff.).
The most noteworthy efforts to solve it have been by Zalaletdinov (1992, 2008)
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at least in principle. Suppose we wish to model some system of molecules as a fluid.

Supposing that at some averaging length the individual masses of the molecules are

sufficiently well-approximated by a mass density, it may then be the case that a

theoretical description of the system can be given by fluid dynamics. In the example

the averaging process depends on comparing a more accurate, but more complicated

model (the molecular model) to the simpler yet approximately correct description (in

terms of a continuous fluid). Using an inter-model comparison of this sort can be

useful for determining the averaged model’s range of applicability theoretically.

In GTR giving a precise explication of averaging is quite complicated. Ellis

(1984) in particular has identified a cluster of problems which come from considering

the effects of averaging in the context of GTR (Ellis 2011; Clarkson et al. 2011).

Although these remain unsolved, on their basis some have even claimed that the

appearance of an effective cosmological constant in the concordance model (the best

fit ΛCDM model) may be solely due to backreaction from coarse-graining (Kolb et al.

2010; Buchert and Räsänen 2012); others have demurred and argued that this kind

of backreaction is cosmologically negligible (Ishibashi and Wald 2006). Since these

foundational issues of averaging and ranges of applicability involve inter-theoretic

(and intra-theoretic) relations, they should be of great interest to philosophers.

1.3 Geometry of the Standard Big Bang Model

Given the nature of cosmology, i.e. its reliance on extrapolating known physical

theory to model spacetime and its contents on large-scales, it may seem like cosmology

is simply an exercise in fitting a model to observational data. There are two basic

approaches that one might take in selecting a particular cosmological model to do
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this fitting. A specific relativistic cosmology may be proposed and then justified

through the derivation of its empirical consequences and confirmation via observation,

using observational data to fix remaining free parameters. Alternatively one may

attempt to determine the spacetime geometry of a relativistic cosmology directly

through observation (Ellis et al. 1985).18 Unfortunately this observational approach

is not possible given fairly severe observational limitations, both practical and in

principle (§1.5). Thus it seems one must propose cosmological models based on

certain assumptions of what the universe is like, and test their empirical adequacy

with the recognition that such models are seriously underdetermined by observations

(Butterfield 2012, 2014).

Accordingly this section begins with a brief discussion of the fundamental

symmetry assumptions made in cosmology to produce the standard HBB cosmology

(§1.3.1). These are the Copernican principle (CopP) and the cosmological principle

(CP). Following a discussion of these principles, I reproduce standard results that

follow from application of these assumptions in the context of GTR, in particular

about the features of the FRW spacetime models (§1.3.2) and perturbed versions

thereof (§1.3.4), as these results are utilized frequently in the following chapters. I also

introduce in §1.3.3 the initial value formulation of GTR, for it will play an important

role in ch. 4.

1.3.1 Symmetry Assumptions in Cosmology

The Copernican principle states that we do not occupy a privileged (spatial)

position in the universe. Beisbart and Jung (2006) use this formulation in their logical

18Ellis (1984) calls the first the “standard approach” and the second the “observational approach.”
The latter was advocated originally by Kristian and Sachs (1966).
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and historical analysis of the CopP and CP, claiming the former historically carried the

existential presupposition that there is a privileged position in the universe. Logically

it need not. For the Copernican Principle to be true either there is a privileged

position in the universe and we simply do not occupy it, or else there just is no

privileged position in the universe at all. The CopP is motivated historically by the

past failures of cosmologies that held that we do occupy a privileged position in the

universe, whether the exact center, which clearly would be a privileged position, or

otherwise. Of course the failure of a handful of cosmologies in no way guarantees the

truth of the CopP.

The CopP however is not the principle that is usually assumed by cosmologists.

Cosmologists typically assume the logically stronger CP. The cosmological principle

states that the universe is spatially homogeneous, i.e. it rejects the existence of

privileged spatial positions in the universe. If one holds the CopP and denies that

there are privileged (spatial) positions in the universe, then it follows that the universe

has no privileged position, i.e. it is spatially homogeneous. Spatial homogeneity is

typically glossed as “everything looks the same in every place (at every time).” The

CP is also sometimes taken to state that the universe is spatially isotropic. Spatial

isotropy can be thought of as amounting to the claim that “everything looks the same

(from some place) in every direction (at every time).” I will reserve the designation

CP for the assumption that the universe is spatially homogeneous, and refer to the

stronger assumption of spatial homogeneity and isotropy as CP+.19 Finally, I note

19It has appealed to some to extend the Cosmological Principle beyond spatial homogeneity (and
spatial isotropy in the case of CP+) to spatial and temporal homogeneity (and isotropy). This is
sometimes called the Perfect Cosmological Principle (PCP). The PCP was assumed in the formerly
popular Steady State (SS) model, but observations, such as the CMB, suggest that the PCP is false
in our observational past. The PCP, in some form, is revived in some multiverse scenarios like eternal
inflation, which explain the apparent violation of the PCP in our observational past as a feature only
of our universe and not the multiverse at large.
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that a spacetime which is spatially isotropic around every point is necessarily spatially

homogeneous, for which reason it is to some extent redundant to say that a spacetime

is spatially homogenous and isotropic (McCabe 2004).

If one merely adopts the CP rather than the CP+, i.e. assumes that the universe

is only spatially homogeneous, then a larger class of spacetime models are in accord

with the EFE. Among the spatially homogeneous models of GTR are the Bianchi and

Kantowski-Sachs models (Ellis et al. 2012, 456ff.). They are of interest as potential

cosmological models under the supposition that the apparent approximate isotropy of

the universe from our cosmic locale belies an overall anisotropic universe. Naturally

there are isotropic but inhomogeneous models as well, and classification schemes have

been developed, based on isometries for example, such that one can exhibit classes of

models with various degrees of homogeneity and isotropy, and exhibit models with

these symmetries that are exact solutions of the EFE (Wainwright and Ellis 1997;

MacCallum 1979). My attention will be primarily focused on the FRW models in

the following, although occasional considerations from other exact solutions will be

relevant.

Beisbart (2009) argues that as yet there is no convincing justification of the

CP for the entire universe. If one restricts justification to empirical confirmation, then

he is surely correct on this point, since we can have no observational evidence of the

character of the universe beyond our particle horizon (in principle), and only indirect

evidence of events beyond our observational horizon (§1.4.2). The virtue of assuming

the CP is that it puts a strong constraint on the permissible models of GTR. The

CP+ places an even stronger constraint. If we assume that the universe is spatially

homogeneous and isotropic, i.e. the CP+, then spacetime has a maximum number



34

of spatial symmetries: six—three spatial translations and three rotations. Although

time translation and spacetime boosts are not symmetries by the CP+, due to the

spatial symmetries spacetime boosts in different directions are equivalent. Thus the

assumption of the CP+ greatly simplifies the EFE, yielding two coupled differential

equations from the typical ten. These models (those that satisfy the EFE under

assumption of the CP+) are the FRW models.20

1.3.2 Friedman-Robertson-Walker Spacetimes

As I will be making use of some facts about the FRW models in the following

chapters, it is convenient to record them here.21 An FRW model is a relativistic

spacetime M that can be foliated by a one-parameter (t) family of homogeneous and

isotropic spacelike hypersurfaces Σt orthogonal to ξ, a future-directed, twist-free, unit

timelike field on spacetime manifold M . The spacelike hypersurfaces can be thought

of as “space” and the parameter t as time.

Recalling the EFE (1.1),

Rab −
1

2
gabR = 8πTab + Λgab,

we first specify the form of the stress energy tensor T .22 The most general form T

that is compatible with the assumption that the universe is spatially homogeneous

20These models are sometimes also referred to as FLRW models, recognizing Georges Lemı̂tre’s
contributions to understanding expanding cosmologies.

21For a complete derivation of the results given here in similar notation see (Malament 2012).
Numerous cosmology texts cover similar ground. Standard, recommended references include (Dodelson
2003; Mukhanov 2005; Weinberg 2008; Baumann 2009), but I do not follow their notation or coordinate-
heavy approach. Other useful, recent texts include (Peter and Uzan 2009; Ellis et al. 2012). A
mathematically-oriented survey of cosmology in the philosophical literature is (McCabe 2004).

22The cosmological constant Λ is conventionally absorbed into the matter contents of an FRW
spacetime—it appears on the “right-hand side” of the EFE rather than the “left-hand side.”
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and isotropic is equivalent to the energy of a perfect isotropic fluid. Therefore T is

given by

Tab = (ρ+ p) ξaξb − pgab, (1.2)

where ρ is the fluid’s energy density field, p is the fluid’s isotropic pressure field, and

our choice of ξ defines the fluid’s four-velocity field.23

Since the FRW model exhibits such a high degree of symmetry, the EFE reduce

to two coupled non-linear ordinary differential equations with matter described by T

called the Friedman equations. The standard forms of these two equations, the first of

which is usually just called the Friedman equation and the second of which I will call

the Friedman acceleration equation:24

(
ȧ

a

)2

− 8π

3
ρ = − k

a2
; (1.3)

ä

a
= −4π

3
(ρ+ 3p). (1.4)

The scale factor a, the energy density ρ, and pressure p, are the only dynamical

variables. If the scale factor, which can be considered a real-valued, non-negative

scalar field, uniform on spatial hypersurfaces of M , strictly increases or decreases for

some period of time, as it does in HBB models, it can be used as a time parameter.

The parameter k represents the spatial (Gaussian) curvature and has been scaled (by

absorbing a constant factor into a) to take one of three values: +1, 0, and −1. These

correspond to constant positive curvature, zero (flat) curvature, and constant negative

curvature.

23I use the metric signature (+ - - - ), so ξaξa = 1.
24Here I write overdots to indicate directional derivatives with respect to the four-velocity of the

cosmic fluid, e.g. ȧ = ξa∇aa.
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The scale factor a represents the expansion (or contraction) of the cosmic fluid.

One also often makes use of the Hubble parameter H, which gives the expansion rate:

H =
ȧ

a
. (1.5)

The Friedman equations can be written in terms of the Hubble parameter as

H2 − 8π

3
ρ = − k

a2
; (1.6)

Ḣ +H2 = −4π

3
(ρ+ 3p). (1.7)

The energy contents of the spacetime determine the spatial geometry (curvature)

for all time, so if the spacelike hypersurfaces of a spacetime are flat at one time, they

are flat at all times (even though the energy density and pressure are typically time-

dependent). It is therefore often useful to define the critical density ρcr, the energy

density at which the spatial curvature is flat:

ρcr =
3H2

8π
. (1.8)

The Hubble parameter can be interpreted as the instantaneous rate of volume

increase, per unit volume, under the fluid flow associated with the fluid’s four-velocity

ξ. In a volume V the rate of change of volume V̇ = ξa∇aV is given by

V̇ = 3HV. (1.9)

As an illustration of the interpretation of a and H, consider that a unit volume at scale
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factor a0 = 1 will grow with a according to V = a3. Then it follows that V̇ = 3ȧa2

and equation 1.9 is clearly satisfied:

V̇ = 3ȧa2 = 3
ȧ

a
a3 = 3HV. (1.10)

A natural choice of coordinates in the context of FRW spacetimes is what are

known as co-moving coordinates. These are coordinates chosen so that the distance

between fluid elements does not change with time. This is the sense of the term

co-moving—the coordinates move with the fluid. In such coordinates multiplying

by the scale factor gives the physical distance. This distance explicitly accounts for

physical expansion or contraction (unlike co-moving coordinates). Let r represent the

radial distance between two galaxies that are co-moving with the cosmic fluid (so r is

a co-moving distance). If the universe is expanding then the physical distance d is r:

d = ar, and a = d/r, i.e. the scale factor is explicitly the ratio of physical distance to

co-moving distance.25

So far only the concept of expanding and contracting spacetimes with constant

spatial curvature has been introduced. In order to determine the temporal evolution

(expansion or contraction rates) and curvature, one must specify the energy contents

of the FRW model by specifying ρ and p. This is not the same as specifying a physical

25Taking directional derivatives with respect to the fluid four-vector ξ gives

ḋ =
ȧ

a
d = Hd. (1.11)

This famous equation is known as Hubble’s Law. It says that the physical (recession) velocity of an
object (like a galaxy) is equal to the Hubble parameter times the physical distance. If the Hubble
parameter is approximately constant then one has a linear relation between distance and recession
velocity that Hubble famously verified by surveying galactic redshifts. His momentous discovery
was crucial to the widespread adoption of the expanding universe cosmology. In general (and in
particular in our universe) the Hubble parameter is not a constant, although it was thought to be
in the past, hence the oft-used but unfortunate name Hubble “constant.” One may let the term
“Hubble constant” refer instead to the present value of the Hubble parameter, usually denoted H0.
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model, although the specification of a physical model would determine ρ and p, since

certain assumptions about the form of these two fields results in different evolutionary

behavior.

The first case to consider is pressure-free matter (p = 0), or what cosmologists

call dust. It is easy to show that the Friedman equations imply the following equation,

the continuity equation for a perfect fluid (∇a T
ab = 0):

ρ̇+ 3H(ρ+ p) = 0. (1.12)

For dust this equation implies that ρ ∝ a−3, i.e. as the universe expands, the energy

density of dust decreases volumetrically. All kinds of “normal” matter is treated as

dust in cosmology, including dark matter and “baryons.”26.

The next case is radiation. Radiation has energy density equal to three times

the pressure (ρ = 3p). All manner of relativistic particles are treated as radiation in

cosmology, in particular photons and neutrinos. For radiation the Friedman equations

imply that ρ ∝ a−4. As the universe expands, the energy density of radiation decreases

faster than volumetrically. Because of this fact, in a universe that begins radiation

dominated (like ours), i.e. the energy density of radiation is much larger than the sum

of other kinds of energy density, there will eventually come a time when the universe

becomes matter-dominated. For our universe matter-radiation equality happened

quite long ago (§2.4).

The final case to consider is the cosmological constant. A cosmological constant

is equivalent to a perfect fluid whose energy density is additively inverse to its pressure

26“Baryons” is a catch-all term in cosmology for non-relativistic matter, not just baryons. Non-
relativistic leptons have a negligible cosmological effect, hence the choice in terminology.
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(ρ = −p). The energy density of the cosmological constant is usually denoted Λ. The

Friedman equation implies that Λ ∝ H2 in an otherwise empty universe, one that has

only a cosmological constant (the de Sitter cosmology). Such a universe expands at

an accelerated rate, as the continuity equation shows (ä ∝ Λ). Our universe not long

ago entered into a cosmological constant-dominated phase, or something much like it.

In §2.4 I show that an inflationary phase also behaves like a cosmological constant

dominated universe, since it expands at an accelerated rate. This behavior is crucial

to the inflationary solution to the fine-tuning problems of the HBB model discussed

in chapter 2.

It is typical to make energy densities dimensionless by dividing by the critical

density, e.g. by defining a parameter Ω = ρ/ρcr, the ratio of the total energy density

to the critical density. Similarly, one defines Ωγ as the energy density of photons, Ωdm

as the energy density of dark matter, Ωb as the energy density of baryons, ΩΛ as the

energy density of the cosmological constant, and so on. One can then rewrite the

Friedman equation as

1− Ω = − k

(aH)2
. (1.13)

This equation is useful for understanding the flatness problem (§2.2.2).

Energy conditions are often assumed to hold for T for various purposes (Curiel

forthcoming). For example, in standard versions of the singularity theorems (§1.4.1)

the strong energy condition (SEC),

(
Tab −

1

2
Tgab

)
ξaξb ≥ 0, (1.14)
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is assumed to hold. For FRW spacetimes the SEC is satisfied iff

(ρ+ p) ≥ 0 and (ρ+ 3p) ≥ 0. (1.15)

The weak energy condition (WEC) is

Tabξ
aξb ≥ 0, (1.16)

For FRW spacetimes the weak energy condition is satisfied iff

ρ ≥ 0 and p ≥ −ρ. (1.17)

The weak energy condition is satisfied for all the kinds of energy and matter considered

in cosmology. Dust and radiation (and combinations thereof) satisfy the strong energy

condition, but a cosmological constant dominated universe does not.

It is useful to define the equation of state w = p/ρ. Then the continuity

equation is

ρ̇+ 3Hρ(1 + w) = 0. (1.18)

It follows that ρ ∝ a−3(1+w) when w is constant, from which one can verify the previous

results about the evolutionary behavior of dust, radiation, and the cosmological

constant. One can also use the equation of state and the Friedman equations to derive

the “deceleration” equation:

äa

ȧ2
= −1

2
(1 + 3w)

(
1 +

k

(aH)2

)
. (1.19)
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The sign of the equation’s right hand side is necessarily the same as the sign of ä, so

we can interpret this equation as indicating whether the scale factor is accelerating or

decelerating. Define the deceleration paramater q as the additive inverse of the left

hand side. Then the equation reads

q =
1

2
(1 + 3w)

(
1 +

k

(aH)2

)
. (1.20)

One can immediately infer that the expansion is accelerating (q < 0) if k 6= −1 and

w < −1/3.27 This requires ρ+ 3p < 0, i.e. a violation of the strong energy condition

in FRW spacetimes. In short, a violation of the strong energy condition implies

accelerated expansion—the basic condition of an inflationary epoch (§2.4).

Finally, the spatial metric h is given by projecting the spacetime metric g onto

a spatial hypersurface Σ:

hab = gab − ξaξb. (1.21)

One can compute from the spatial metric the spatial curvature (in FRW spacetimes

the spatial curvature K is a constant). The extrinsic curvature will be denoted πab

and is defined as

πab = hma h
n
b∇m ξn. (1.22)

The spatial metric h of a spatial hypersurface Σ in FRW spacetimes is homogeneous

and isotropic. In FRW spacetimes the extrinsic curvature is given by

πab = H hab. (1.23)

27It turns out that the expansion is accelerating if k = −1 and w < −1/3, but it is less obvious.
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The spatial metric and extrinsic curvature will be important in §1.4.1 for showing

that FRW spacetimes, with certain additional conditions, are singular, and in chapter

2 when the uniformity and flatness problems of the HBB model are explained in the

context of the initial value formulation of GTR.

1.3.3 Initial Value Formulation

It is well-known that GTR has an initial value formulation (Wald 1984, ch.

10), i.e. GTR can be usefully reformulated as a deterministic theory for spacetimes of

special cosmological interest, such that given appropriate initial data, future and past

data are determined with certainty. Maxwellian electrodynamics, Newtonian particle

mechanics, and relativistic Klein-Gordon theory (among other physical theories) all

can be formulated in such a manner. Giving GTR an initial-value formulation is

complicated somewhat by the lack of a background spacetime; one must determine

what appropriate initial data are in such a theory.28 If one however elects to split

relativistic spacetimes into spatial hypersurfaces Σt that evolve in accord with a global

time function t, then the EFE can be decomposed into evolution and constraint

equations (as in Maxwellian electrodynamics, for example).

The initial value formulation of GTR makes use of the spatial metric h and

extrinsic curvature tensor π of a spatial hypersurface Σ as initial data. Recall that

the spatial metric is given by projecting the spacetime metric g onto the spatial

hypersurface Σ, given some unit timelike vector field ξ:

hab = gab − ξaξb. (1.24)

28One must also assume that the spacetime is globally hyperbolic, or, equivalently, possesses a
Cauchy surface (Dieckmann 1988).
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The spatial metric can be thought of as “position” initial data in the context of a

dynamical spacetime theory like GTR. It describes how space, represented by Σt,

is curved. In other typical initial value formulations one also has the derivative of

position data as initial data. This is so for GTR as well. In GTR the derivative of the

spatial metric is proportional to the extrinsic curvature πab.
29 The extrinsic curvature

is given by

πab = hma h
n
b∇m ξn. (1.25)

It can be easily demonstrated that 2πab = £ξ(hab) (Malament 2012, 110), so it is

appropriate to interpret the extrinsic curvature as “momentum” initial data. It shows

how the position data h changes along the timelike field specified by ξ. Thus if Σ is a

spacelike Cauchy surface in relativistic spacetimeM, then an appropriate data set for

this spacetime is (Σ, h, π).

The EFE are recast into two sets of distinct equations in the initial value

formulation, the evolution and constraint equations (Malament 2012, 182). The

constraint equations can be written as

R− (π a
a )2 + πabπ

ab = −16πTabξ
aξb (1.26)

and

Dcπ
c
a −Daπ

c
c = 8πTmrh

m
aξ
r, (1.27)

where R is the intrinsic curvature of Σ, T is the stress energy tensor, and D is the

derivative operator induced on Σ. The evolution equations can be written (for the sake

29One can compute from the spatial metric h the intrinsic spatial curvature in complete analogy
with the computation of the Riemann curvature tensor from the spacetime metric g (in FRW
spacetimes the spatial curvature is a constant K).
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of simplicity ignoring “shift” and “lapse” since it will not matter for FRW spacetimes)

£ξ(hab) = 2πab (1.28)

and

£ξ(πab) = 2π c
a πcb − πccπab +Rab − 8πh m

a hnb(Tmn −
1

2
Thmn). (1.29)

Let us now specialize to the case of FRW spacetimes. Take (M, gab) to be such

a spacetime, where M = Σt × t is a foliation of M into homogeneous and isotropic

spacelike hypersurfaces Σt parameterized by t, a global time function.30 The spatial

metric ht of a spatial hypersurface Σt must of course be homogeneous and isotropic.

The intrinsic and extrinsic curvature of spatial hypersurfaces Σt varies in time in

general.31 In FRW spacetimes the extrinsic curvature of Σt is given by

πab = H(t)hab, (1.30)

where recall that H, the Hubble parameter, is a scalar field that is constant on the

isotropic and homogeneous spacelike hypersurfaces, and is related to the expansion

of space. Therefore initial data of an FRW spacetime is given by (Σ, h,Hh). The

first constraint equation (1.26) is simply the Friedman equation (1.3), and the second

evolution equation (1.29) is the Friedman acceleration equation (1.4). So one correctly

recovers the characteristic equations of FRW spacetimes in the initial value formulation.

30Note that global time functions of FRW spacetimes are equivalent up to a scaling factor so there
is no loss in generality in considering some specific time function t.

31Although recall that one can scale the scale factor a so that spatial curvature is a constant
k = −1, 0, or +1, as one does standardly.
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1.3.4 Perturbed Friedman-Robertson-Walker Spacetimes

FRW spacetimes have underlain the success of the HBB model. However, while

the universe may or may not satisfy CP+ at a large enough averaging scale, it plainly

is not satisfied at smaller averaging scales, due to the existence of galaxies, stellar

systems, planets, etc.—just as a fluid description breaks down when one approaches

molecular scales. The FRW models therefore have a clear lower limit of applicability.

Naturally, cosmologists want to explain the existence and evolution of large-scale

cosmological structures such as galaxies, but this is simply not possible with the

highly symmetric FRW models. There are evidently small departures from isotropy

(and homogeneity) in a more accurate model of the universe than that given by FRW

spacetimes.

An appealing way to address observed anisotropies and potential inhomo-

geneities is to modify the empirically successful FRW spacetimes by perturbing these

models. It turns out that the predictions of linearly perturbed FRW models accord

with high accuracy to cosmological observations.32 As perturbed FRW spacetimes

play a significant role in work on cosmological likelihood measures (ch. 3), I record

some of the relevant details here.

The notion of a perturbation is complicated in GTR by the absence of a

background on which to perturb–GTR is (in some sense) a background-free theory

(Giulini 2007; Rickles 2008; Belot 2011). This difficulty can be remedied by stipulation,

but it remains unclear precisely how to deal with (and understand) the gauge freedom

32Useful reviews on the large subject of cosmological perturbation theory include (Mukhanov et al.
1992), (Kodama and Sasaki 1984), and (Malik and Wands 2009). The contemporary approach to
cosmological perturbation theory is based in large part on the seminal paper by Bardeen (1980).
(Stewart 1990) is a nice clarificaiton of Bardeen’s approach. Early work on the subject includes,
among others, (Lifshitz and Khalatnikov 1963; Hawking 1966; Olson 1976).
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of GTR.33 Here is the approach that cosmologists have taken.

In cosmological perturbation theory we are interested in finding spacetimes that

are “close” to some unperturbed (typically FRW) spacetimeM0. We therefore consider

a one-parameter family of spacetimes Mε parameterized by ε in a 5-dimensional

manifold N . How does one compare, say, M0 and M1, in particular the tensor fields,

e.g. the metric tensor field, defined on these manifolds? It is only possible in general

if one stipulates which points correspond to one another in each manifold, since the

tangent spaces of these submanifolds are not intrinsically related in any way. Making

such an identification, however, is equivalent to choosing a gauge for most quantities.

Most perturbations are, in other words, gauge dependent.34

To make the issue somewhat more vivid, let us focus attention on the notion of

a density perturbation. Consider the FRW spacetime M0 with stress energy given by

a perfect fluid (1.2). The energy density field ρ is constant on spatial hypersurfaces

orthogonal to the timelike four-velocity field ξa, but it is not constant over all of

spacetime. Intuitively, a more realistic model of the universe than that given by an

FRW spacetime would include small spatial variations in the density field to account for

departures from spatial homogeneity, the kind of variations that give rise to structure

in the universe. For small perturbations, i.e. for small ε, one expects that only the

linear terms matter, so higher-order perturbations can be neglected. The base or

unperturbed spacetime M0 differs from the linearly perturbed spacetime M when

there exists a diffeomorphism ϕ : M̄ →M such that the metric perturbation is given

33More extensive discussions of the “gauge problem” can be found in (Stewart and Walker 1974),
(Bardeen 1980), (Ellis and Bruni 1989), and (Malik and Wands 2009).

34As Stewart and Walker (1974) show, only constant scalar fields, fields that vanish, and fields
made up of combinations of Kronecker deltas will be invariant under perturbations.
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by

δg = g − ḡ = ε (£ϕg)0. (1.31)

Strictly speaking the expression after the first equals sign makes no sense; the intuitive

idea of a difference between the two metrics is given by the final expression using the

Lie derivative of the metric evaluated at the unperturbed spacetime. Analogously, the

linear density perturbation is

δρ = ε (£ϕρ)0. (1.32)

But the problem is that ϕ is arbitrary, from which it follows (in general) that δρ is

arbitrary. In short, density perturbations are generally gauge-dependent quantities.

The issue is typically explained in the literature using coordinates. The basic

point is essentially the same, but with coordinates one sees that linear perturbations

are indistinguishable from the particular choice of coordinates. One can make the

FRW model “look” inhomogeneous by choosing coordinates in which it appears to be

so.35 Ellis and Bruni put the issue in this way:

The resulting problem is that the quantity [δρ] (the variation in density
along a single world line) often calculated in perturbation calculations is
completely dependent on the gauge chosen, and unless this gauge is fully
specified the modes discovered for this quantity are spurious modes (due
to residual gauge freedom); while if it is fully specified, its relation to what
we really want to know (the spatial variation of density in the Universe) is
convoluted and difficult to interpret. (Ellis and Bruni 1989, 1804)

Ellis, Bruni, and collaborators have advocated a covariant approach to cosmological

perturbation theory that relies on gauge-invariant quantities, e.g. spatial gradients of

density, pressure, and the expansion field (Ellis and Bruni 1989; Ellis et al. 1989; Bruni

35Of course a change in coordinates that make the FRW model look homogeneous will have effects
in the coordinate expressions of other quantities, for example spatial variations in the proper times
of fluid elements.
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et al. 1992), with relatively clear physical interpretations. Alternatively, however, one

can fix coordinates and either carefully keep track of the gauge freedom associated

with ϕ, or take Bardeen’s metric-based approach which expresses the metric as a

combination of gauge-invariant quantities from which one can make convenient gauge

choices. The last approach is probably the most common in the literature.

The gauge issue bears further investigation, but as it exceeds the scope of this

dissertation, I will merely note a few important results concerning perturbed FRW

spacetimes which will be relevant in subsequent chapters. The subject of cosmological

perturbations quickly becomes technically complicated in any case, so in order to avoid

unnecessarily introducing a great deal of formalism I avoid giving many formulas.

The first essential fact concerns the exterior curvature of spacelike hypersurfaces,

given by

πab = Hhab + σab, (1.33)

where σab is the (trace-free, antisymmetric) shear(Malik and Wands 2009). Clearly

the trace of the exterior curvature of a perturbed FRW spacetime is the same as in

the unperturbed case.

Density perturbations play a central role in cosmological perturbation theory,

for they give rise to the perturbation spectrum that is observable in the CMB. They

evolve according to the equation

a−4hac(a
4hba∇bρ)′ = 3(ρ+ p)hba∇bH, (1.34)

where ′ denotes the directional derivative along the flow lines of the fluid. One

immediately notices that in the cosmological constant dominated universe (where
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ρ = −p) the derivative of the spatial density gradient is constant. It follows that

ρ ∝ a−4—density perturbations die away quickly (“gravitational smoothing”) in such

a universe. This is an important result (sometimes referred to as a cosmological no

hair result), since an inflationary phase behaves in just such a way.

Cosmologists typically write density perturbations as the dimensionless (gauge-

dependent) quantity δρ/ρ. One can define a gauge-independent quantity that has the

intended interpretation by

δρ = (P aPa)
1/2; Pa =

ahba∇bρ

ρ
, (1.35)

which is the magnitude of the vector defined to be the spatial density gradient divided

by the density (Ellis and Bruni 1989). Then it can be shown that in dust universes

the density perturbation evolves as

δ̈ρ+ 2Hδ̇ρ− 4πρδρ. (1.36)

One can easily see that in a non-expanding universe (H constant) density perturbations

would grow exponentially (“gravitational collapse” or “aggregation”). The expansion

of the universe works to counteract gravitational collapse, as one would expect

(Padmanabhan 1993).36

It is also important to remark that if one decomposes these (scalar) density

perturbations into Fourier modes, the modes evolve independently in linear perturba-

tion theory. One can also investigate vector and tensor perturbations (see (Stewart

1990) or any standard review for the meaning of this decomposition of perturbations);

36Using these gauge-invariant variables, the radiation and “mixed” cases are discussed in (Ellis
et al. 1989).
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scalar, vector, and tensor perturbations evolve independently of one another as well.

Vector perturbations decay in expanding spacetimes; tensor perturbations source

gravitational waves (Dunsby et al. 1997).

1.4 Singularities and Horizons

As the name suggests, the horizon problem depends on the existence of horizons

in FRW cosmologies. Horizons in cosmology are a certain kind of causal structure

of spacetime. Since the uniformity and flatness problems depend on there being a

horizon problem (ch. 2), the HBB model’s fine-tuning problems which I discuss in

this dissertation all depend on the existence of a particular causal structure in our

universe.

The particular kind of horizon that is relevant to the horizon problem is the

particle horizon. Particle horizons are defined relative to “fundamental observers,”

who are observers at rest with respect to the universe’s expansion (one says that they

move with the “Hubble flow”). The particle horizon at a time is the spatial distance

that light could have traveled since the beginning of the universe from the initial

point of the given fundamental observer’s worldline. Thus the particle horizon at a

time separates objects into two sets: roughly speaking, those that could have been

influenced by the fundamental observer and those that could not. Universes with a

finite age will intuitively have particle horizons, since light could only travel so far

in that time. Cosmologies based on singular spacetimes where the singular behavior

occurs toward the past will have a finite age, and therefore intuitively have particle

horizons. It turns out that the HBB models are singular in this way, and do in fact

have particle horizons.
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This section is devoted to a brief discussion of spacetime singularities and

cosmological horizons, both in general and in the specific spacetime models of interest

in cosmology. The discussion of spacetime singularities in GTR is a familiar topic

in the philosophy of physics literature (particularly due to (Earman 1995)) and

long discussed in the physics literature; an appreciation of the nature of singular

spacetimes is important for understanding modern cosmological models, so some of

this material is reviewed here. Cosmological horizons are frequently discussed in

modern cosmological texts and articles, but frequently with some degree of confusion.

To avoid these confusions, I explain the nature of horizons in cosmology, especially to

avoid misconceptions in the presentation of the horizon problem in the next chapter.37

1.4.1 Singularities in Cosmology

It is now widely held that singularities are a pervasive feature of GTR, al-

though a precise and comprehensive definition of a spacetime singularity remains

elusive.38 Certain spacetimes demonstrably exhibit singular behavior, most familiarly

the Schwarzschild spacetime and some FRW spacetimes. Moreover these spacetimes

in particular find important application in astrophysics and cosmology by modeling

black holes and the expanding universe, respectively. Whether singularities “truly

exist in nature” (whatever that means) is debatable, with many believing that the

appearance of singularities in GTR is a sign that there is something wrong with the

theory, while the empirical success of the HBB model suggests we should take the

existence of singularities in FRW spacetimes seriously.

37(Ellis and Rothman 1993; Davis and Lineweaver 2004) highlight and correct common misrepre-
sentations that appear in the physics literature.

38Some, e.g. (Earman 1995), argue that such a precise definition is necessary; others, e.g. (Curiel
1998) demur.
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Various singularity theorems have been proved in the past several decades

whose conditions are indeed met by some FRW models, such that these cosmologies

can be said to have “initial singularities.” Although this language is somewhat

misleading, since singularities cannot be localized to a particular region of spacetime

(Curiel and Bokulich 2012), the term “initial singularity” is meant to indicate that

timelike geodesics are past-incomplete in the spacetime. Because of the non-locality

of spacetime singularities, some prefer to talk of “singular spacetimes” as opposed to

“singularities in spacetime.” So long as one understands this, there is no real harm in

using the term “singularity.”

Confusion over the nature of singularities is however rampant in the history of

investigations into singular spacetimes. Early confusions about apparent singularities

in the Schwarzschild metric can be blamed on the coordinate-reliant approach then

used (Earman 1995). That some quantity “blows up” along a curve in some set of

coordinates is no sure indication that there is singular behavior in that spacetime. It

may simply be that the coordinate description breaks down there; such a spacetime

possesses merely a “coordinate singularity” which can be avoided by a different choice

of coordinates. To identify “true singularities” one should identify them using the

geometrical structure of spacetime. Since singularities are, again, not localized one

must rely on global features of the spacetime to prove their existence.

Proving the existence of singularities in a spacetime requires sophisticated

arguments, but these arguments tend to have a similar form. The main elements of

typical singularity theorems (Wald 1984; Hawking and Ellis 1973) are the assumption

of some energy condition, a condition on the global structure of spacetime, and the

requirement that gravity is strong enough to trap some surface (Hawking and Penrose
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2010, 15). Since these requirements are relatively weak, one expects them to be

satisfied in a variety of spacetimes. Thus a historical consequence of the singularity

theorems proved in the late 60s was the acceptance that singularities are pervasive

in GTR. Before then it was thought that singular spacetimes were oddities in an

otherwise well-behaved theory. It was an often-raised complaint against the HBB

model in particular that it began from an initial singularity. The pervasiveness of

singularities in the theory makes the complaint lose some of its force.39

FRW spacetimes can satisfy the conditions of the general Hawking-Penrose

singularity theorem (Hawking and Penrose 1970). Not all FRW spacetimes do, because

among the spacetimes that have a metric of the FRW form are all spacetimes that have

the same symmetries. Among these is Minkowski spacetime, which, if any spacetime

is free of singularities, is surely singularity free. I will skip over the details of the

various singularity theorems since these are adequately covered in many places, but

for an example of one, consider this one from (Wald 1984, 237)):

Theorem 1. Let (M, g) be a globally hyperbolic spacetime with Rabξ
aξb ≥ 0 for all

timelike ξ, which will be the case if Einstein’s equation is satisfied with the strong

energy condition holding for matter. Suppose there exists a spacelike Cauchy surface

Σ for which the trace of the extrinsic curvature (for the past directed normal geodesic

congruence) satisfies πaa ≤ C < 0 everywhere, where C is a constant. Then no past

directed timelike curve from Σ can have length greater than 3/|C|. In particular, all

past directed timelike geodesies are incomplete.

Given the statement of this singularity theorem, it is easy to see that FRW

39At least it does against the HBB—the complaint can also be magnified to a general complaint
against GTR. Although singularities were not at all well understood in the early history of expanding
spacetime models, it was clear enough that something odd was happening in the models as one
“approached the initial singularity.”
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models (which are globally hyperbolic) with the following conditions satisfy the

conditions of the theorem: (satisfies SEC (1.14)) (ρ + p) ≥ 0 and (ρ + 3p) ≥ 0;

(expanding) H > 0. It then follows that the trace of the (past-directed) extrinsic

curvature (1.23) of spacelike Cauchy surfaces is −3H < 0, and no past directed

timelike curve from this surface can have length greater than |H|−1. It is also easy

to see the perturbed FRW models satisfy the conditions of the theorem when they

satisfy the strong energy condition and are expanding. The trace of the extrinsic

curvature is identical to unperturbed FRW models (1.33), so perturbed models have

the same “age” as unperturbed models. As mentioned previously, dust, radiation, and

forms of matter in between these extremes satisfy the strong energy condition. Also,

there is good evidence that the universe is expanding, which evidence comes from the

variety of evidence in support of the HBB model (galaxy redshifts for example). Thus

the FRW spacetime or perturbed FRW spacetime which models our HBB universe is

certainly singular (depending on its range of applicability).

Modern extensions of the HBB model do not undermine this conclusion. While

the inclusion of dark matter and dark energy in the concordance model represents

a significant departure from the HBB model in many ways, the fact that the FRW

spacetime is singular towards the past remains. Dark matter is apparently “normal”

matter, in the sense that it obeys the energy conditions (not in the sense of its

interactions with other forms of energy however). Dark energy however does not

satisfy the strong energy condition. It is posited to account for the accelerated

expansion of the universe, and, as I mentioned previously, accelerated expansion

requires a violation of the strong energy condition. Therefore it might seem that a

universe with dark energy could avoid the singularity theorem. For simplicity, suppose



55

that dark energy is represented by a cosmological constant in the EFE. Recall that

what makes the cosmological constant a “constant” is that its energy density remains

constant over time. Although we have presently entered into a dark energy dominated

phase of the universe, the universe was previously matter dominated and even earlier

radiation dominated. The cosmological constant contributes little to the energy density

of the universe at early times since the energy density of matter and radiation scale

at a4 and a3 respectively. Dark energy only tells us that the universe, insofar as the

FRW model is accurate to it, will not end in a singularity (a “big crunch”). Thus the

best-fit ΛCDM model, the so-called concordance model, also satisfies the conditions

of the singularity theorems, and therefore has an initial “big bang” singularity.

1.4.2 Particle and Event Horizons

There are many things that have been referred to as horizons in cosmology,

but there are two kinds of horizons that cosmologists discuss most often as a way

of conveying the causal structure of a cosmological model: particle horizons and

event horizons.40 The intent of identifying horizons is to identify limits on which

particles can have “causally affected” (particle horizon) or will be able to “causally

affect” (event horizon) other particles. From a relativistic point of view, it would seem

that the appropriate way to express these ideas is by the past and future light cone,

however this is not the usual approach in cosmology.

In the first place, the use of the term “particle” is somewhat misleading. The

40Some of the material on horizons is covered in (Earman 1995). (Davis and Lineweaver 2004)
addresses these issues with remarkable clarity. (Ellis and Rothman 1993) covers similar ground, but
is targeted to an audience less familiar with relativity theory. The first significant discussion of
horizons was (Rindler 1956), and the topic was soon after taken up in the philosophical literature in
(Swinburne 1966).
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existence of horizons has to do with the causal structure of spacetime, not necessarily

the existence of any particular particles. In particular, it is important to recognize

that the particles relevant to the specification of a horizon must be co-moving, else

the definitions used in cosmology make no sense. In any case, since cosmology is

concerned with the universe on large scales, the “particles” are typically whole galaxies

(which on the relevant scales are approximately co-moving). If our galaxy, for example,

were to have moved significantly in space (was not approximately co-moving) since its

creation, the notion of a particle horizon as defined would be unhelpful at best, as we

shall now see.

In FRW spacetimes there is a privileged foliation of spacetime into spacelike

hypersurfaces, namely those spatial hypersurfaces that have constant spatial curvature.

The particle horizon at a given time is usually defined as the spatial distance that

light could have reached by that time from a given spatial location (spatial location of

a given fundamental observer). Since FRW spacetimes are singular toward the past,

there is a “beginning to time” such that there are limits to how far light could have

traveled since this time. For this reason FRW spacetimes have particle horizons.41

Consider the worldline of some fundamental observer (our galaxy, for example,

that is approximately co-moving with the Hubble flow). Say we wish to know the

particle horizon at the present time, t = t0. In co-moving coordinates the distance

that light emitted from our co-moving location at t = ti could have traveled is given

by

χp(t0) = lim
t→ti

∫ t0

t

dt′

a(t′)
, (1.37)

41By contrast, consider the Einstein static universe, which is an FRW cosmology that is defined
in such a way that it neither expands nor contracts. The Einstein static universe has no particle
horizons because light could have reached any given point at any given time. Unlike the expanding
FRW spacetimes, the Einstein static universe does not have a “beginning to time.”
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where we are integrating along the path of a light ray emitted from the given location

at t = ti. If ti is finite, then the model has a particle horizon; if t is past infinite,

then whether the spacetime has a particle horizon depends on whether the integral

converges. An alternate way to write the expression for the particle horizon is in terms

of the scale factor a:

χp = lim
a→0

∫ 1

a

da′

a′2H
. (1.38)

For a cosmological constant dominated universe the integral diverges, so there are no

horizons in such a universe. The integral converges for matter and radiation dominated

universes, and one can therefore compute the co-moving distance to the horizon. It

is straightforward to see that matter and radiation dominated universes will have

particle horizons. Assuming for simplicity that the cosmic fluid has an equation of

state w and the spatial geometry is flat (k = 0), equation (1.18) indicates that

ρ ∝ a−3(1+w). (1.39)

Using this expression in the Friedman equation (1.6) gives H in terms of a:

H ∝ a−
3
2

(1+w). (1.40)

So a universe has particle horizons if and only if

χp(t) ∝ lim
a→0

∫ 1

a

da′

a′
1
2

(1−w)
(1.41)

converges. The integral converges so long as w > −1/3, i.e. so long as the expansion is

not accelerating. Thus we see that the expanding FRW models with matter obeying
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the strong energy condition are not only singular (§1.4.1), but also have particle

horizons.

The interpretation of particle horizons which cosmologists intend is roughly

that all objects within the particle horizon have been or could have been observed

by now, and all objects outside of the particle horizon could not have been observed

by now. Clearly if the given particle had departed significantly from the co-moving

trajectory, this interpretation would fail (maximally if the worldline in question was of

one of the light rays). Of course we cannot see the objects referred to by this division

as they are now, since at the present time they are spacelike separated from us. If we

see them now, we see them as they were in the past. But insofar as the objects are

co-moving, we can trace their trajectories back in time. Those objects that are within

some observer’s particle horizon at some time have trajectories that intersect the past

light cone of the observer; those that are outside of the particle horizon do not.

Event horizons will not play a role in the issues I discuss, but I mention them

because they are natural to introduce with particle horizons. An event horizon is

essentially the time-reversed notion of a particle horizon. It is defined as the farthest

spatial distance from which light could reach a given spatial location (location of a

fundamental observer) before the “end of the universe.” Objects outside of the event

horizon will never be observed or causally affected by the fundamental observer in

the future, whereas objects inside the event horizon will be observable or potentially

affected by the fundamental observer in the future.

The event horizon is typically expressed in co-moving coordinates as the integral

χe(t0) = lim
t→tf

∫ t

t0

dt′

a(t′)
, (1.42)
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where tf is the time coordinate corresponding to the “end of the universe.” A

cosmological constant dominated universe has event horizons, since in such a universe

objects are continually swept beyond the event horizon by the exponential expansion

of space. These objects will never be seen again by the given observer; light emitted

from them would have to move faster than the speed of light to reach the observer.

There are two additional horizon-like notions prevalent in cosmology, the

observable universe and the Hubble sphere. Neither of these are true horizons, in

the sense that they represent a boundary of causal connectability. They are also

occasionally mistaken for the properly cosmological horizons just discussed, so it is

worth explaining them briefly here.

As the name suggests, the observable universe is that part of the universe

that is in principle observable. It might seem that in principle anything in our past

lightcone is observable, but the sense of “observable” in cosmology is typically more

restricted (Butterfield 2014, 58). It is not possible, according to the HBB model, to

observe anything that happened before recombination, which is the time when the

CMB photons were first allowed to free-stream through the universe (§2.2.1). Before

that time radiation was in equilibrium with matter and had a short mean free path,

so photons were frequently scattered by atoms. Not until the universe’s temperature

cooled sufficiently that electrons combined with nuclei to form neutral hydrogen could

radiation travel without interacting through the universe. So when we see CMB

photons today, we are seeing a snapshot of what the universe looked like billions of

years ago, and that is the earliest possible snapshot of the universe we could have

by direct observations.42 Thus the extent of the observable universe depends on the

42Recombination does not represent the in principle limit of observability exactly. It may be
possible to observe particles directly that decoupled from other particles before recombination. In
particular it may be possible to observe primordial neutrinos. It may also be possible to detect
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physical processes occurring in the universe.

The Hubble sphere is also often mistakenly identified as a horizon, and some-

times confused with the particle horizon. The Hubble sphere is defined as the surface

beyond which the recession velocity of an event is greater than the speed of light.

A Hubble sphere, like a horizon, is relative to an event along the worldline of a

fundamental observer. It comes from taking the simple Hubble relation, v = d ·H,

setting v = c, and using that to define a distance dH , the Hubble distance. In a

simple FRW model where one only has normal matter and radiation the Hubble

sphere coincides with the particle horizon, but it need not in general. The existence

of dark energy can change the expansion dynamics in such a way that events within

the particle horizon are outside of the Hubble sphere.43 This means that there are

observable events that are moving away from us faster than the speed of light.44 The

Hubble sphere thus has nothing to do with causal connectability (although this is

not to say it has no physical significance). The Hubble sphere merely sets a useful

distance scale for gravitational interactions. Nonlinear gravitational collapse occurs

on scales below the Hubble distance—within the Hubble distance we expect to see

structure formation due to Jeans instability.

primordial gravitational waves. There is also some hope that we may be able to detect gravitational
waves indirectly by their effect on the CMB’s polarization. Results pertinent to this from the Planck
satellite should be forthcoming within the next year. This detection would not, however, change the
extent of the observable universe because the gravitational waves are being detected indirectly in the
CMB.

43This situation also points out how the Hubble Law can fail at large distances when the expansion
of the universe is accelerating.

44This is, of course, no violation of relativity. (Davis and Lineweaver 2004) is dedicated in part to
clearing up this confusion that one occasionally finds in the literature.
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1.5 Cosmological Observations

The main observational facts about our universe that are important to describe

here are those on which the HBB model’s fine-tuning problems are based. These are

that at a sufficiently early time observations suggest that the universe is extremely

uniform (homogeneous), and that observations indicate that the spatial geometry of

the universe is extremely close to flat, i.e. k ≈ 0.

First, however, it is worth making a few remarks about observational limitations

in cosmology. As I mentioned at the end of §1.2.1, one of the greatest challenges to

modeling the universe is the stringent spatiotemporal localization of our observations

(Ellis 2007; Smeenk 2013). We are confined to an exceedingly small spatial region

of the observable universe, and the better part of the observational data collected

by astronomers has been collected only over a time exceedingly small compared to

the age of the universe. Although we can collect some data from (massive) particles

reaching us from elsewhere in the universe and also infer something about the universe

based on our solar system’s own (“geologic”) history (Ellis 1999), nearly all of our

observations are of light, i.e. almost all of our cosmological observations are along the

past light cone of our cosmological neighborhood (Kristian and Sachs 1966).

Such observational limitations significantly underdetermine a correct model

of the universe; theoretical considerations make this underdetermination even worse

than what seems evident due to the existence of observationally indistinguishable

spacetimes that may differ in global properties from any given spacetime (Glymour

1977; Malament 1977; Manchak 2009, 2011; Butterfield 2012). In short, for all we

know—for all we can know in fact—the unobservable universe could be significantly

different than the observable universe. This could hold because our cosmological models
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are based on the wrong physics, e.g. GTR is simply incorrect in its cosmological import.

However it also holds simply because what we can observe does not place significant

enough restrictions on the unobservable regions of spacetime (Ellis et al. 1985). More

specifically, observations along our past light cone alone cannot fully fix the spacetime

metric or matter distribution so that one cannot fix a model of GTR. Thus the project

of observational cosmology cannot be complete, in the sense of a cosmography—a

“mapping of the universe” (Kristian and Sachs 1966; Dautcourt 1983a,b; Ellis et al.

1985).

As a particular case of this observational indeterminacy, we find that we
cannot prove on the basis of observations alone whether or not space-time
is spherically symmetric about our position—even if all these observations
are isotropic around us. Even if we go farther and make the important
assumption that the universe has a Friedmann-Robertson-Walker geometry,
we cannot determine observationally whether the spatial sections have
positive, zero or negative curvature. Nor do isotropic observations, together
with the assumption of spherical symmetry, prove FRW geometry. (Ellis
et al. 1985, 319)

The observations that we can make of course do restrict the possible cos-

mological models that are candidates for modeling the universe. With additional

assumptions (including, for example, the CP discussed in §1.3.1) these observations

may fix a unique cosmological model up to parameter fitting by empirical observation.

Fixing a model and the refinement of its parameters would amount to the successful

attainment of the goal of physical modeling. So, although philosophically or physically

motivated assumptions are a necessary component of cosmology (Ellis 1975), it is

nevertheless possible to scientifically study the universe. The justification of the model,

however, depends crucially on the strength of these assumptions. The CP+ is an

especially strong assumption to make, as noted above, because it picks out a small

and very special class of highly symmetric relativistic spacetimes. It is appealing to
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see how much one can weaken that assumption (Ellis et al. 1978; Ellis 1980) since the

large-scale spatial homogeneity and isotropy of the universe (or at least near spatial

homogeneity and isotropy) are two key conditions that give rise to the horizon and

flatness problems.

There are two primary observational means we have presently available for

evaluating cosmological assumptions (Ellis et al. 1985, 334): galactic surveys and

maps of the CMB.45 Both types of observations have become increasingly precise in

recent years. Rather than survey these efforts in detail, I will merely indicate the

extent to which they support the assumption of the CP+.

Major recent galactic surveys include the Sloan Digital Sky Survey (SDSS)

and the Two Degree Field (2DF) survey. These projects have surveyed redshifts of

hundreds of thousands of galaxies. The redshifts are then used to provide a spatial

“map” of the universe. It should be emphasized that the redshift data cannot determine

spatial homogeneity due to observational limitations.46 At best one can detect local

isotropy on a series of 2-spheres of constant redshift with these results. Even if all of

the spheres of constant redshift were isotropic, the universe could be inhomogeneous

(although admittedly one might find these circumstances rather suspicious). The data

from redshift surveys can be used to determine the degree of statistical homogeneity of

the galaxies, but this requires the assumption that the background cosmological model

45There are, however, many other possible cosmological observations, e.g. surveys of radio sources,
cosmic neutrinos, gravitational waves, etc. I focus on these two because major efforts have been
undertaken to obtain detailed data of these kinds, so the data are quite good.

46Because of observational limitations we have almost no means to determine whether the universe
is spatially homogeneous at large scales. We certainly have no direct means to do so. Note that spatial
homogeneity does not imply spatial isotropy, just as spatial isotropy (at a point) does not imply
spatial homogeneity. A spherically symmetric spacetime, for example, is isotropic from the center,
but it may not be homogeneous if the spacetime changes with radial distance like the Schwarzschild
model does. Likewise, imagine a spacetime that is filled with a homogeneous fluid; the model could
nonetheless be isotropic because of a uniform spatial flow in the fluid. Isotropy about every point,
however, does guarantee homogeneity.
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is already spatially homogeneous geometrically. Thus projects of this kind can at best

provide a consistency check on the assumption of homogeneity. Observations of galaxy

distributions can however imply isotropy, which they appear to do (Maartens 2011).47

The second means is observation of the CMB. A wealth of cosmological data

has been obtained through detailed observation of the CMB in recent years. The CMB

is strikingly isotropic, but eventually, as observations improved, small anisotropies

were discovered (Smoot et al. 1977). Recent observations by the COBE satellite,

the Wilkinson Microwave Anisotropy Probe (WMAP), and the Planck observer have

mapped the CMB to a very high degree of precision, showing a precise spectrum

of anisotropies. These anisotropies are a close match to the putative predictions of

inflationary theory, which has been taken as strong confirmatory support of the theory.

Since the decoupling of radiation from matter occurred at a single time (a

redshift of approximately 1100 according to the HBB model) we observe it on a

2-sphere of constant redshift. By itself isotropy of the CMB from our observations can

enforce neither homogeneity nor isotropy of the spacetime geometry. Homogeneity

and isotropy do indeed follow from the perfect isotropy of CMB observations with

the additional assumption that all observers see perfect isotropy of the CMB. Since

the CMB is not perfectly isotropic, one requires a stronger result. If all observers

see the CMB to have a sufficiently small dipole, quadrupole, and octupole, then it

follows that the spacetime geometry is approximately homogeneous and isotropic in

that region (Clarkson and Maartens 2010; Maartens 2011).

Because of observational limitations we cannot possibly observe that the

universe is everywhere spatially isotropic, so it is doubtful that we could ever empirically

47According to Maartens in the cited paper, it is not, however, clear whether almost isotropic data
implies almost isotropy in the spacetime geometry, which would be the more realistic case.
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justify the CP adequately (Mustapha et al. 1997). One may at best determine spatial

isotropy relative to our particular worldline; the evidence for (almost) local isotropy

from the CMB and galactic surveys is however quite strong.

On the assumption that the universe is homogeneous (CP), one may try to

make a consistency check by evaluating the degree of statistical homogeneity. At

around 100 Mpc it appears that statistical isotropy does in fact hold however (Wu

et al. 1999).48 Note again that this statistical isotropy at the cosmological present is

typically inferred by assuming how the observed objects evolve from the time they

emitted the light that we observe to the present. This requires a cosmological model,

and naturally the model that is used is one that assumes spatial homogeneity and

isotropy.

The basis for the claim that the spatial curvature is approximately zero rests

on a couple different kinds of evidence. Recall that a spatial curvature of zero requires

the density ρ to be near the critical density ρcr. One way to determine the density

is to count up the contributions to the “energy budget” of the universe from the

“cosmic inventory” of its constituents (matter, radiation, cosmological constant, etc.)

(Dodelson 2003, 40ff.). There are numerous ways to go about this accounting exercise,

for example by looking at the spectra of galaxies and quasars, the distributions of

galaxies, etc. All such methods are in rough agreement, pointing to a present density

very near the critical density.

The most stringent constraint, however, comes from analyzing the spectrum

of anisotropies in the CMB data. It turns out that the first peak in the CMB power

48This claim is disputed by Pietronero and collaborators (Pietronero 1987; Coleman and Pietronero
1992; Pietronero and Sylos Labini 2000), who argue that the structure of the universe is fractal
and continues beyond the scale of galactic clusters. See Dickau 2009 for a short introduction to the
literature on fractal universes and (de Vaucoueurs 1970) for earlier arguments along the same lines.
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spectrum is highly sensitive to the value of k (Dodelson 2003, 249). Combining the

results from the CMB with those obtained through other means constrains the best

fit model tightly (within a couple percent). This model, called the concordance model,

gives a total energy density Ω ≈ 1, with the density of ordinary matter Ωb ≈ 0.05, the

density of dark matter Ωdm ≈ 0.23, and the density of dark energy ΩΛ ≈ 0.73.



Chapter 2

Fine-Tuning Problems in

Cosmology

2.1 Introduction

Various fine-tuning problems are thought to beset the great triumph of 20th

century cosmology, the hot big bang model.1 Chief among them are the so-called

horizon and flatness problems. These problems were essential to the motivation of

the idea of inflation in its original proposal (Guth 1981), and their significance as

fine-tuning problems was promoted immediately by subsequent proponents of inflation

(Linde 1982; Albrecht and Steinhardt 1982), along with most of the discipline of

cosmology soon thereafter.2 These problems are still typically presented in modern

1Often the terms “fine-tuning” and “special initial conditions” are used in intuitive and roughly
overlapping ways, but there is some conceptual space between them should one like to look for
it. Nevertheless the distinctions are unimportant to my account and I will use them essentially
interchangeably.

2The history of these problems is interesting and worthy of study, but I will not engage directly
with it for the most part. The interested reader is directed to the following sources: (Longair 2006),
a general history of astrophysics and cosmology in the 20th century; (Smeenk 2005), a short history
of the development of inflation; (Guth 1997), a popular first-hand account by the father of inflation.

67
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treatments of cosmology to motivate the introduction of cosmological inflation as a

solution thereto (Dodelson 2003; Mukhanov 2005; Weinberg 2008; Baumann 2009).

Standard presentations in the cosmological literature of the fine-tuning problems

and their putative solutions through inflationary theory briefly relate the relevant

physics, and then conclude with some vague statement, the content of which is

essentially that the HBB explanation of a certain cosmological feature depends on

fine-tuning and is therefore inadequate; inflationary theory is then claimed to address

this fine-tuning by introducing new physics which obviates the problem. Precisely

how the HBB model is fine-tuned and what makes the alleged fine-tuning problematic

is invariably left unclear in such treatments. Without sufficiently clear answers to

these questions, however, no rationally compelling case can be made that inflation

truly addresses the HBB model’s fine-tuning. Although it is widely thought that

inflation indeed does so, these claims are based too much on imprecise intuitions. One

would prefer that these claims to be based on a sufficiently rigorous analysis of the

fine-tuning problems, and on a clear demonstration that inflation solves these problems

(so understood). Based on my own such analysis of the possible interpretations of

the horizon and flatness problems, I ultimately argue that there is no unproblematic

interpretation of either problem available for which it can be said that inflation solves

the problem.

Philosophical analyses of the horizon and flatness problems with a similar

motivation do exist (Earman 1995; Earman and Mosteŕın 1999; Smeenk 2003; Maudlin

2007a). Yet the available analyses are either very limited in scope or are generally

motivated by peculiar philosophical concerns distant from the kinds of concerns

relevant to the practice of cosmology.3 The present chapter is an attempt to take a

3Earman (1995) makes a number of important points, but only considers that the problem might
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more physically motivated point of view, and therefore takes the concerns voiced by

cosmologists as a starting point.

I focus on giving a thorough and philosophically rigorous analysis of the

nature of fine-tuning in the HBB model, and determining whether inflationary theory

addresses it in a satisfactory manner. It is however not my brief to argue for or against

inflationary theory; nor do I mean to argue at all that cosmologists are praise- or

blameworthy for adopting the idea. My aim is only to investigate whether at the

present time inflationary theory is justifiably motivated by its putative solutions to the

HBB model’s fine-tuning problems. I argue that it is not. There is no good reason, I

claim, to think that inflationary theory in fact solves these problems. But I emphasize

that (some of) the interpretive problems which I point out plausibly can be solved;

indeed I believe there are some philosophically interesting possibilities to investigate

further—particularly in connection to the idea of dynamical stability and high degrees

of symmetry.

The aim of the first half of this chapter (§§2.2-2.3) is to formulate the HBB

model’s fine-tuning problems as clearly as possible in order to clarify their nature as

scientific problems. Intuitions about the significance of the fine-tuning problems do

vary somewhat among cosmologists (and the few philosophical commentators), so I

will endeavor to “cast the net” somewhat widely by incorporating the comments of

numerous expositors of the horizon and flatness problems. I find that cosmologists are

best understood as holding that the initial physical conditions that give rise to the

be a lack of a common cause, a failure of Machian intuitions, or that horizons make uniformity
unlikely, none of which appear to be behind physicists’ concerns. Smeenk (2003) also concentrates on
common causes and probability concerns. Earman and Mosteŕın (1999) eschew any analysis of the
nature of the problem, resting their further argumentation on empirical claims that are now known
to be false. Maudlin (2007a) argues that the lack of a dynamical explanation is what gives rise to
the problem, but there is no qualitative difference in the kind of explanations given by inflationary
theory and the hot big bang model, so his diagnosis cannot be correct.
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horizon and flatness problems are in some sense “unlikely” and that this improbability

is problematic because the explanation of present conditions given by these unverifiable

initial conditions is not robust—for all we know they could have been otherwise, in

which case the HBB explanation would fail. The essential point made in these sections,

however, is that none of the intuitive interpretations of the fine-tuning problems I

survey are free of serious technical or conceptual difficulties.

The second half of the chapter (§§2.4-2.5) then turns to the putative solution of

the fine-tuning problems by inflation, supposing that the issues raised previously are

soluble. Since inflation introduces fine-tuning problems of its own, it is important to

understand what a solution to a fine-tuning problem actually accomplishes. I therefore

argue for some reasonable success conditions on solving such fine-tuning problems.

Based on these I evaluate the inflationary program’s success at solving the fine-tuning

problems understood according to the various interpretations investigated in the first

half of the chapter. Under some interpretations inflation would indeed solve them, but

since no interpretation is problem free, I suggest that there remains some important

philosophical work in understanding the empirical successes of inflationary theory.

The most salient point I wish to urge however is that either some interpretation must

be justified which shows how inflation solves the HBB model’s fine-tuning problems,

or else an alternate rationalization of inflationary theory’s widespread adoption in

advance of its later empirical successes, one not relying on problem solving, is needed.

2.2 Problems in Big Bang Cosmology

There are perhaps any number of aspects of big bang cosmology that one could

find puzzling (Dicke and Peebles 1979), but the two that (Guth 1981) emphasizes as
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major motivations for introducing inflation are the high degree of uniformity of the

CMB and the near spatial flatness of the universe (§1.5), these being the features that

lead respectively to the horizon problem and the flatness problem.4 Besides being an

important motivation for inflation, these problems remain the means of introduction

to inflation in modern texts, lecture notes, and popular books on cosmology.5

In this section I give my own brief presentation of the two problems in order to

introduce the relevant physics and highlight a few points that are regularly muddled or

glossed over in standard presentations. It is worthwhile to go into the details in order

to understand the conceptual significance of the problems, but the argument they are

meant to support is simple. We assume the HBB model is correct and observe certain

cosmological conditions (flatness and isotropy) consistent with the model. It is either

the case that the HBB model explains these observed conditions by fixing certain

initial conditions or that it is necessary to introduce some novel dynamical mechanism

to the HBB model in order to explain the observed conditions. But the HBB model

has particle horizons that preclude introducing some physically realistic dynamical

mechanism which could explain the observed conditions. Therefore the HBB model

can only explain the observed conditions by fixing initial conditions. These initial

4Guth also emphasizes the “monopole problem” as a motivation for inflation, yet I agree with
Penrose (1989a) that problems like these are external problems (intuitively, and also in keeping
with Laudan’s sense of the term) to cosmology. The monopole problem arises because certain grand
unified theories (GUTs) of particle physics predict the creation of magnetic monopoles in the early
universe in such a quantity that they should have been observed by now. No monopoles have been
observed. Either one takes this fact as suggesting a problem with cosmology or a problem with
the GUT. GUTs remain speculative, so it is hard to see how a prediction of such a theory should
constitute a significant problem for a highly confirmed model like the HBB model. (Linde 1990)
and (Linde 1984) outline several other potential problems with HBB cosmology, many of which are
external problems like the magnetic monopole problem or are equivalent to the horizon or flatness
problems.

5In almost any text, set of lecture notes, etc. that treats inflation one will find a presentation
of the horizon problem and the flatness problem. I recommend in particular the detailed lecture
notes by Lesgourges (2006) for their treatment of these problems. Standard modern texts, to which
the reader is invited to refer, include Liddle and Lyth (2000); Dodelson (2003); Mukhanov (2005);
Weinberg (2008); Peter and Uzan (2009); Ellis et al. (2012).
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conditions are thought to be problematic, for which reason the HBB explanation is

rejected.

This section explains the cosmological scenario that gives rise to the horizon

problem (§2.2.1) and the flatness problem (§2.2.2). The next section (§2.3) then

investigates what about this scenario could be seen as problematic.

2.2.1 What Is The Horizon Problem?

The basic empirical fact that suggests the horizon problem is the existence of

background radiation with a high degree of isotropy (uniformity in all directions): the

CMB.6 In every direction we observe the CMB to have the spectrum of a thermal

blackbody with a temperature T0 of 2.725 Kelvin (2× 10−4eV), and departing from

perfect isotropy only to one part in 100,000.

A fundamental assumption of the HBB model is the CP+ (§1.3.1): the universe

as a whole is (approximately) spatially homogeneous and isotropic. Assuming the

cosmological principle, the high degree of isotropy in the CMB is not just a fact about

our particular observational situation; the CMB is isotropic for every fundamental

observer in the universe (§1.4);7 in other words the present temperature of the CMB is

inferred to be everywhere 2.725 Kelvin.The explanation for the observed background

radiation according to the HBB model is that the observable universe was highly

“uniform” at and before the time of recombination. Assuming the CP+, the high

degree of isotropy in the CMB is not just a fact about our particular observational

6The CMB is called “background radiation” because it originates from the cosmos and not from
discrete sources (such as stars, quasars, etc.).

7Recall that fundamental observers are those (not necessarily animate) cosmological objects which
are at rest with respect to the universe’s expansion, i.e. they follow (timelike) spacetime geodesics.
For any geodesic there could have been an observer that followed it, so one permits oneself the use of
the “fundamental observer” terminology for any such case.
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situation; the CMB is isotropic for every fundamental observer in the universe. So

there is a pervasive, uniform background radiation in the universe with the current

low temperature of T0 ∼ 2× 10−4eV.

The HBB model in fact predicts the existence of this radiation, since it is

released as a consequence of the universe’s expansion and simultaneous cooling past

the temperature where neutral hydrogen can form (an event known as recombina-

tion), which prompts radiation (photons) to decouple from matter and “free stream”

throughout the universe. This radiation then cools with the expansion down to the

presently observed temperature T0. Thus, according to the empirically well-confirmed

aspects of the HBB model, what essentially gives rise to this uniform background

radiation is that the observable universe was highly uniform as a whole in its matter

distribution at (and presumably well before) the time of recombination, and it then

remained so afterwards.

That is the basic HBB story, but some further details are needed to understand

the horizon problem. Since observations indicate that the universe is expanding, one

can parameterize this expansion by the scale factor a. The energy density of the CMB

photons decreases with time (§1.3.2): ργ ∝ a−4. It follows, with some simplifying

assumptions (Dodelson 2003, 40-41), that

a(t) =
T0

T
, (2.1)

where T0 = 2.725K is the present temperature of the radiation background. Thus one

sees that not only are early times characterized by higher energy densities, but high

temperatures too.

Higher densities give rise to high reaction rates for the various particular
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constituents of the universe, and through these constant interactions the universe

usually finds itself in a state of equilibrium.8 When the expansion rate exceeds the

reaction rate of some interaction, however, the particles participating in that reaction

temporarily fall out of equilibrium. The reaction subsequently becomes “frozen out”,

i.e. essentially stops occurring, as temperature further decreases and a new equilibrium

state is established.

Recombination is one such out-of-equilibrium event. It occurs when the temper-

ature drops low enough (T∗ ∼ .25eV or at a∗ ∼ 9× 10−4) such that neutral hydrogen

can form from protons and electrons. The drop in free electrons during recombination

leads to the rate of photon-electron (Compton) scattering to drop below the expan-

sion rate, so that the photons decouple from matter. As the universe continues to

expand, the rate of photon scattering only lessens. Thus the CMB photons have been

traveling throughout the universe since decoupling essentially without interactions, i.e.

they have been “free-streaming.” Since the photons have been free-streaming since

decoupling, the CMB provides a snapshot of “what the universe looked like” at the

time of recombination—of an extremely uniform universe.

How did this uniform state of the universe at recombination come about?

Assuming the HBB model is correct, either one extrapolates the uniform state of the

universe back in time to some initial state of uniformity—back to the big bang itself

(arbitrarily close to “a = 0”) or as far back as one is willing to assume that the model

remains accurate; else one supposes that some novel dynamical mechanism brings

the universe to a state of spatial uniformity some time before recombination. In the

first case, a uniform initial state plus the dynamical laws of GTR explain the uniform

8Expansion is important to maintain states of equilibrium in cosmology, since insufficient expansion
would lead to gravitational collapse of the constituents of the universe (Carroll forthcoming).
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state of the universe during recombination, which explains the observed isotropy of

the CMB. In the second case, the initial state of the universe is supposed to be other

than uniform, yet some dynamical mechanism drove the universe to a uniform state

before recombination, which state can then explain the observed isotropy of the CMB.

The second explanation, however, is precluded in the HBB cosmology (at least

insofar as dynamical mechanisms are thought to operate “locally” or “causally”),

because the HBB model has particle horizons (§1.4.2). Recall that a particular

fundamental observer’s particle horizon represents limits (given in distance at a time)

on physically possible causal interactions that could have occurred between the observer

and other co-moving objects in the universe. A co-moving object beyond the observer’s

particle horizon (at a given time) could never have been influenced causally by the

observer, just as the observer could not have been causally influenced by that object.

When one investigates the horizon structure of our universe (assuming it is modeled

by the HBB cosmology), one sees that no such local and causal dynamical mechanism

could be responsible for the observed isotropy of the CMB, since the horizon of any

given fundamental observer at the time of recombination is smaller than the distance

over which the universe is assumed to be homogeneous (I explain this further shortly).

These horizons are for this reason the namesake of the “horizon” in “horizon problem”,

since their presence represents one essential challenge to explaining the particular,

uniform state of the CMB dynamically.

To illustrate the claim that dynamical explanations of the uniformity of the

CMB are precluded by particle horizons, consider the following typical example from

the literature. Suppose an observer points his telescope to the celestial north pole and

detects a sample N of photons reaching the Earth, and another observer points her
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telescope to the celestial south pole and detects a sample S of photons reaching the

Earth. If we trace N ’s and S’s worldlines back to some fundamental observers n and s

that emitted them, respectively, at recombination, then one would find that n’s particle

horizon at the time of recombination does not overlap at all with s’s particle horizon.

In short, n and s are causally disconnected. They could never have interacted—yet

they have the identical blackbody spectrum at the identical temperature.

Indeed, the situation is considerably more “conspiratorial” than this. The CMB

can be decomposed into an astronomical number of causally disconnected patches due

to the existence of horizons in the HBB model.9 Here is an explicit calculation that

illustrates the magnitude of the causal disconnectedness of the HBB universe with

presently observed conditions. The particle horizon of the observable universe at the

present time (physical distance light could have traveled since the big bang) χobs,0 is

approximately 1028cm (1010 light years). Since the universe has been expanding, the

size of this observed homogeneous, isotropic domain at early times was smaller. At

recombination the size χobs,∗ of the homogeneous, isotropic region that grew into the

present one is equal to the size of the present horizon χobs,0 times the ratio of scale

factors:

χobs,∗ =
a∗
a0

χobs,0 ∼ 10−3 × 1028cm = 1025cm (2.2)

Now we compare this to the size of the particle horizon at the time of recombination,

χcmb,∗ ∼ 1023cm. The ratio χobs,∗/χcmb,∗ is

χobs,∗
χcmb,∗

∼ 1025cm

1023cm
∼ 102 (2.3)

9Decomposing the CMB into causal patches involves partitioning the observable last scattering
surface (space at the time of decoupling) into regions of space, each of which has all the other patches
falling outside of its particle horizon at that time.
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Thus the observed CMB can be divided into around 105 circular patches that were

causally disconnected at the time of recombination. Since then a tiny number of the

photons in adjacent patches have had time to interact with one another or with other

matter, but for the most part they have not due to the low reaction rate at later

times. It should be clear from the calculation that as one pushes the assumption of

homogeneity farther back in time (to times much before recombination), the number

of causally disconnected patches only increases.10

The local, causal dynamical explanation of a case of observed homogeneity and

isotropy that one usually envisions in physics is a process of thermal equilibration.

The CMB radiation has the spectrum of a near perfect black body (the spectrum one

observes from a system in thermal equilibrium), so a seemingly natural explanation

of this spectrum would be that the universe came to equilibrium at some early time.

Statistical mechanical arguments are usually taken to show that interacting systems

(like the universe) are expected to be found in a thermodynamic equilibrium given

enough time. If the universe did not have particle horizons, then an explanation like

this might well be expected to hold (since the universe is quite old, ∼ 14 Gyr). The

presence of particle horizons makes it impossible for the observable universe as a

whole to have equilibrated, since there has not even been enough time for the causally

disconnected regions in the universe to interact at all by the time of recombination,

much less come to an equilibrium.11

The upshot is that no realistic dynamical process could have coordinated the

uniformity of the entire observable HBB universe, since it is usually assumed that

any such realistic dynamical mechanism must act causally (the thought being that

10See, for example, Mukhanov (2005, 227) for similar calculations.
11Characterizing the horizon problem in terms of the failure of an equilibrium argument is somewhat

misleading in any case—see (Carroll forthcoming, §§3.2-3).
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influences and signaling occur “locally” in GTR and quantum field theory—in an

appropriate sense of “locally” (Maudlin 2011)).12. Any given photon, and anything

else for that matter, could only have interacted with a tiny fraction of the contents

of the observable universe by the time of recombination, so the extent to which a

dynamical process could drive the universe to uniformity is extremely limited. Thus

it seems that this uniformity must depend on a “conspiracy of initial conditions;”

in other words, each of the large number of causally disconnected patches had to

have begun with similar initial conditions for the universe to be as uniform as it

was by recombination. The only viable explanation of uniformity in the CMB in the

HBB model, then, appears to be that the initial conditions of the universe, at some

sufficiently early time, had to be quite nearly homogeneous and isotropic.

This discussion should make clear that the horizon problem (in this context) is

really more of a “uniformity problem” (Earman and Mosteŕın 1999, 18), since it is the

empirical fact of CMB isotropy, and by extension homogeneity via the cosmological

principle, that is “puzzling” or felt to be in need of explanation. If one considers the

horizon problem as the problem that horizons simply exist in the universe, then likely

the worry is not over horizons but the existence of a singularity in the past.13 While

singularity avoidance remains a motivation in present theoretical research, it is not

necessarily a motivation for inflation (since inflation is certainly possible in singular

spacetimes).14

The existence of particle horizons does play an important role in the generation

12But see (Wald 1992) for a contrary view which discusses the possibility that quantum correlations
beyond the horizon may play an important role in the early universe.

13My discussion of singularities and horizons in the previous chapter (§1.4) shows how these are
connected in the HBB model. The past singularity of the HBB model is responsible for the existence
of horizons in the model.

14Soviet precursors working on similar ideas to Guth’s were in fact motivated by avoiding an initial
singularity (Smeenk 2005). See, e.g. (Starobinsky 1980).
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of the problem discussed in this section, namely as a constraint on possible explanations

of uniformity, so the terminology “horizon problem” is apt. In the following I will

prefer referring to the general problem of explaining the uniformity of the universe

as the uniformity problem (for the sake of conceptual clarity), but I will nevertheless

occasionally use “horizon problem” ambiguously to refer to the horizon constraint and

the uniformity problem (in keeping with general usage); I expect context makes clear

which usage is operative.

2.2.2 What is the Flatness Problem?

The basic fact inferred from observations which suggests the flatness problem

is that the universe has a flat spatial geometry. The CP+ selects a set of highly

symmetric spacetimes from the models of GTR, the Friedman-Robertson-Walker

models (§1.3.2). These models have uniform spatial curvature k of three different

kinds: positive like a sphere (k = 1), negative like a hyperboloid (k = −1), or flat like

a plane (k = 0). Since there is a sense in general relativity in which “matter causes

spacetime to curve,” one can equivalently place a condition on the matter content of

FRW models which determines the model’s spatial geometry. If the energy density

ρ is equal to the critical density ρcrit, then the universe’s spatial geometry is flat; if

it is less than the critical density, then the spatial geometry is negatively-curved; if

it is greater than the critical density, then the spatial geometry is positively-curved.

Although we cannot directly observe the flatness of space, there is a variety of evidence,

when interpreted in the context of the HBB model, that supports this conclusion

(§1.5). In particular, the spectrum of small anisotropies in the CMB strongly constrain

the density parameter Ω = ρ/ρcrit to very close to one: Ω = 1.000 ± 0.005 (Planck
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Collaboration 2015, 38).

Cosmologists often demonstrate the flatness problem by showing how flatness

is an unstable condition in FRW dynamics. The Einstein field equations reduce to

two equations in the highly symmetric FRW universes: the Friedman equations are

two typical expressions of these two equations (§1.3.2). The Friedman equation (1.3)

can be written in terms of Ω ((1.13)):

1− Ω(a) =
−k

(aH)2
, (2.4)

where H = ȧ/a is called the Hubble parameter. Since we are interested in departures

from the critical density when considering instability, let us ignore the k = 0 case and

whether the departures are positive or negative. Then one can rewrite the previous

equation as

|1− Ω(a)| =
(

1

aH

)2

. (2.5)

From this equation one can infer that in the HBB universe the right hand side is

always increasing (normal matter decelerates expansion), and therefore the energy

density of the universe had to have been even closer to the critical density in the

past—the earlier the time, the closer to the critical density. One may do various

calculations to show that, given the accuracy to which the density is known today, the

critical density at early times had to be constrained to an extraordinarily accurate

value; some calculations indicate, for example, fine-tuning to one part in 1055 at the

GUT scale (Baumann 2009, 25).

For further illustration, let us assume that matter obeys a simple equation of

state during the various epochs of the universe, namely the pressure p = wρ for some
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number w. Differentiating the Friedman equation with which we started and using

the Friedman acceleration equation, one can derive that

dΩ

d lna
= Ω(Ω− 1)(1 + 3w). (2.6)

We wish to see how Ω behaves under slight perturbations from the critical density, so

assume that Ω = 1± ε at the present time, with ε small. At other times we assume

Ω = 1± δ(a). We can integrate the previous equation easily, yielding

δ(a) = εa(1+3w). (2.7)

Thus flatness is unstable under small perturbations so long as (1 + 3w) is positive,

i.e. the strong energy condition is satisfied. Since the strong energy condition is

indeed assumed to hold in the HBB model at early times, we conclude that flatness

is dynamically unstable. This suggests that the initial conditions of the universe

had to be very special—only a narrow range of initial densities of matter could have

resulted in the universe we observe.15 If the initial density had been much different,

the universe would have collapsed by now (for Ω > 1) or would have already cooled

rapidly (for Ω < 1). The current density parameter is bounded between Ω+ = 1.005

and Ω− = 0.995. So, according to the previous equation, at recombination (w = 0

and a∗ = 9× 10−4) the density parameter Ω must have been ∼1± 1× 10−6; at the

GUT scale the flatness was even more extreme: Ω = 1± 1× 10−40.

Why is the universe so close to the critical density? I can afford to be brief, as

the argument is parallel to the explanation of uniformity above. One explanation is

15Because of these facts, the flatness problem is occasionally called the “age problem.” The question
behind the problem is, “How did the universe get to be as old as it is?”
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just that the universe is in fact that flat and indeed was even flatter at early times.

One might even assume that k is exactly zero, which is certainly attractive due to its

simplicity (Dicke and Peebles 1979, 507). It is also conceivable that some dynamical

mechanism drove the universe to a flat geometry at some early time. However, just

as in the case of the uniformity problem, horizons represent an obstacle to any such

dynamical explanation, so one must conclude that very particular initial conditions

(extremely close to flatness) are necessary in order for the HBB model to explain the

presently observed flatness of the universe. Thus (although it is not usually pointed

out or recognized) the horizon problem represents a constraint on both the uniformity

problem and the flatness problem.

2.3 Scientific Problems

The previous section exhibited two cases where an explanation is sought for

observed cosmological conditions. In the first case the explanandum is the remarkable

uniformity of the CMB; in the second it is the remarkable flatness of the universe’s

spatial curvature. The existence of horizons in the HBB model precludes the possibility

of some dynamical mechanism bringing these conditions about. Instead one is forced

(in the context of the HBB model) to assume particular initial conditions which give

rise to the presently observed conditions.

Thus, although one sometimes encounters comments to the contrary, the HBB

model certainly has the resources to provide explanations of these features. That is, it

is not at all the case that the HBB model is somehow empirically (or descriptively)

inadequate (Earman and Mosteŕın 1999, 19). The model simply requires that the

universe has always been remarkably uniform and flat (up to the limits of its range
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of applicability). This is completely in accord with familiar theories of explanation.

According to Hempel’s deductive-nomological theory of explanation, for example,

uniform and flat initial conditions plus the dynamical laws of the general theory

of relativity provide a sufficient explanans to account for the observed uniformity

and flatness (Earman 1995, 139). More sophisticated theories naturally acknowledge

such explanations (initial conditions plus dynamical laws) as well, since they are

paradigmatic of most familiar and accepted physical explanations.

Cosmologists find the HBB model’s explanation of uniformity and flatness

unsatisfying. This dissatisfaction is exemplified through the identification of the

uniformity problem and the flatness problem as problems, and is primarily directed

toward the initial conditions that must be assumed. But what makes the HBB

explanation problematic, such that an alternate explanation is desirable or even

demanded? That is the question to be addressed in this section.

To try to get a handle on what the nature of the problems is, let us first

see what cosmologists explicitly say about the initial conditions that figure into the

uniformity and flatness problems. Usually one finds a presentation, similar to the one

I have given in the previous section, in cosmological texts, but, as I mentioned already,

little discussion of what makes the stated facts precisely problematic. One only finds

appended to the statement of the relevant facts, e.g. that the density parameter Ω

must have been ∼1± 10−6 at recombination, a comment suggesting that such facts

are “puzzling” and yield “impressive numbers” (Guth 1981), are “fantastic” and yield

“large numbers” (Linde 1990), are “profound” and “disturbing” (Dodelson 2003), and

even are “contradictory” (Weinberg 2008); the HBB explanations by way of initial

conditions are said to be “unpalatable” (Rees 1972)“unnatural” (Wald 1984; Olive
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1990; Goldwirth and Piran 1992; Mukhanov 2005), “unlikely” (Liddle and Lyth 2000),

“special” (Riotto 2002), or improbable (Linde 1990). Although examples could be easily

multiplied further, these remarks essentially cover what one finds in the literature.16

Few authors note that the HBB model is empirically adequate with respect

to the observed uniformity, but some do. Among the remarks of those who do, one

can find some suggestions of what problem might be behind the horizon problem.

For example Baumann (2009) remarks that the HBB model has “shortcomings in

predictive power” and Misner (1969) states that such models “give no insight” into

the uniformity of the CMB.17

The trend in these comments suggests that the initial conditions of the HBB

model are thought to be special in some respect, from which one infers that this

specialness is somehow the cause of concern. Certainly philosophers have made claims

that fit this general pattern (Munitz 1986; Earman 1995; Earman and Mosteŕın

1999; Maudlin 2007a).18 But in most cases these available analyses misdiagnose

16Also one finds a complaint about the initial condition’s lack of explanation itself. As Hawking
points out in the introduction to the proceedings of the first workshop primarily focused on inflationary
theory, “the [HBB] model does not explain why the universe was as it was at one second. It is
simply assumed as an initial condition” (Gibbons et al. 1983, 2). Guth also remarks that “in the
standard model this incredibly precise initial relationship [to insure flatness] must be assumed without
explanation” (Guth 1981, 347). Since the HBB explanations appear to be of the sort found in
classical, relativistic, and quantum mechanics, where there is usually no further need to explain these
initial conditions in practice, the observation that the initial conditions are not explained by the
model does not seem to be especially significant. Is cosmology somehow different? Indeed, there
are some distinct explanatory considerations in cosmology, which will are discussed at the end of
this section. Some cosmologists also have expect initial conditions to be eventually eliminated from
physics.

17Misner is often acknowledged to have been instrumental in promoting the horizon problem
(although not under that name) as a problem for cosmology. He adopted an uncharacteristic attitude
(for the time) towards cosmology: “Rather than taking the unique problem of relativistic cosmology
to be the collection and correlation of observational data sufficient to distinguish among a small
number of simple cosmological solutions of Einstein’s equations, I suggest that some theoretical effort
be devoted to calculations which try to ‘predict’ the presently observable universe” (Misner 1968,
432). See (Smeenk 2003) for historical comments on Misner’s approach and its influence.

18For example, Smeenk identifies cosmologists’ complaint as being that “[the HBB model] is
explanatorily deficient, because it requires an ‘improbable’ initial state” (Smeenk 2013, 632). My
analysis is in agreement with Smeenk’s statement, but fills in the details for why explanatory
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cosmologists’ concerns, replacing them with the kinds of concerns that would occur

only to philosophers, e.g. a failure of the principle of the common cause or of sufficient

reason. Little attention is paid to what cosmologists actually say about these problems

(to be fair, they do say little!) or what physical or methodological grounds there

might be to cause them concern. The goal of my subsequent analysis, then, is to be

somewhat more systematic in surveying various ways that these initial conditions are

physically special, and why special initial conditions of these kinds are problematic,

based on the complaints that cosmologists actually make.

The arguments I presented in the previous sections, which underlie the unifor-

mity and flatness problems, are as follows:

1. The present universe is observed to be spatially flat and uniform.

2. Either the HBB model explains these conditions by fixing an initial condition or

by a novel dynamical mechanism that brings them about.

3. The HBB model’s particle horizons preclude such a dynamical mechanism.

4. Therefore spatially flat and uniform initial conditions are required to explain

the presently observed flatness and uniformity.

Cosmologists reject the conclusion of this argument as an adequate explanation roughly

according to the following argument sketch:

1. Uniformity and flatness are special initial conditions.

2. Special initial conditions are problematic.

deficiencies are problematic in the context of cosmology, details missing in his analysis.
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3. Therefore, uniformity and flatness are problematic initial conditions (give inade-

quate explanations).

For the sketch to be a full and rationally compelling argument, one requires grounds

for the two premisses, i.e. one requires answers to the following questions: “Why

are uniformity and flatness special?” and “Why are these special initial conditions

problematic?”

Both Guth and Linde draw attention (in the remarks quoted above) to the size

and accuracy of the numbers that fall out of the calculations involved in the horizon

and flatness problems. There is certainly nothing special, mathematically-speaking,

about large numbers in themselves; such numbers in fact appear ubiquitously in

physics. Nor is there anything particularly problematic about them on the face of it.

They are, after all, just numbers. Incredible accuracies also do not seem intrinsically

suspicious. When explicitly represented by numbers, initial conditions and parameters

have to take some such (more or less precise) value presumably. Why not one with a

large exponent? It is thus hard to take seriously the idea that such calculated numbers

are by themselves indicative of a problem.

If the concern of cosmologists is simply the numbers involved in their calcula-

tions, it would therefore appear to be easy to adopt a skeptical position and reject

that the horizon and flatness problems are truly problems. This appears, in any case,

to be the attitude adopted in (Earman 1995; Earman and Mosteŕın 1999). Regarding

such large numbers, for example, Earman and Mosteŕın draw attention to a quotation

by Guth in (Lightman and Brawer 1990, 475):

In an interview Guth said that initially he was less impressed by the horizon
problem than by the flatness problem because the latter but not the former
involves a ‘colossal number’ that must be explained. (This fascination



87

with colossal numbers is something that seems to infect many inflationary
theorists.) Is there really a substantive difference here? (Earman and
Mosteŕın 1999, 23, fn. 17)

Clearly, the tone of this footnote leaves little doubt that the authors believe there is

no such substantive difference. If one takes Guth’s comments merely at face value,

then it is indeed hard to take seriously that there is any substantive difference. But a

thorough analysis should obviously go beyond comments taken at face value. Indeed

there are plainly at least some substantial differences between the two problems. For

example, uniformity may be dynamically unstable in (some) expanding FRW models

(when we consider small perturbations), but flatness is demonstrably unstable within

the context of FRW models that satisfy the strong energy condition (§2.2.2). So it is at

least plausible that the numbers to which Guth refers do arguably have a significance

beyond their mere size or accuracy when suitably interpreted. This difference may

not simply be in terms of “colossal” numbers, but in real features of the cosmology in

question.

Thus whether cosmologists have a “fascination” or any other psychological reac-

tion to such numbers is simply beside the point, insofar as one is after a philosophical

analysis of fine-tuning. Although cosmologists certainly do use subjective psycho-

logical language to describe their reactions to the problems—puzzling, impressive,

fantastic, profound, disturbing, unpalatable, etc.—what makes a problem a scientific

problem is not these reactions alone. Science does indeed aim to explain things that

are puzzling and profound, but it plainly does not aim to explain all such things.19

As Nickles observes, “scientists know that some problems are more interesting than

19Cf. Callender’s discussion of the flatness problem and the example of a surprising hand of cards
in a card game (Callender 2004a, 202). “Surprisingness is of course a psychological notion, and we
do not ordinarily demand that science explain away surprising events.”
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others” (Nickles 1981, 87)—certain problems attract attention, others do not. The

interesting question is why the former do and the latter do not.

That a large or accurate number is suggestive of a problem therefore reason-

ably depends on more than just the number itself—but on what? The underlying

mathematics of a theory cares little for particular numbers (apart from identities, etc.).

For a number to be suggestive of a problem, it must be substantially linked to some

theoretical expectation, otherwise it at best amounts to an uninteresting “oddity.”20,21

Theoretical expectations of a future theory are no sure guide to a correct future theory,

but they do often derive from “positive heuristics” (Lakatos 1970) rather than being

mere guesses. To understand how large numbers may be suggestive of a scientific

problem, one should therefore understand the operative heuristics.22

One of course does not have to look far to find such heuristics guiding problem

20Before the advent of inflation many prominent cosmologists felt that the horizon and flatness
problems were puzzling, but did not represent real problems (see the interviews by Lightman and
Brawer (1990) and (Brawer 1995)). Once Guth clearly articulated the problems and a potential
solution (which depended on relaxing the horizon constraint on dynamical solution), the community
took them much more seriously. Laudan (1978) in particular comments on this frequent phenomenon,
namely that problems often appear only after their solution. This is in keeping with the view of
scientific problems defended in, e.g. (Nickles 1981), that “a problem consists of all the conditions or
constraints on the solution plus the demand that the solution (an object satisfying the constraints)
be found.” In a slogan: “Knowing what counts as an answer is equivalent to knowing the question”
(Hamblin 1958).

21Fine-tuning problems are often described by physicists as “aesthetic” problems, by which they
mean that these problems are problematic only because of certain theoretical expectations that may
not be satisfied: “There does not have to be a resolution to the aesthetic questions if there is no
dynamical solution to the fine-tuning of the electroweak scale, it would puzzle us, but would not
upset anything within the fundamental theory. We would just have to live with the existence of
fine-tuning” (Donoghue 2007, 232).

22Laudan remarks that “anything about the natural world which strikes us as odd, or otherwise in
need of explanation, constitutes an empirical problem” (Laudan 1978, 15). A statement like this
may make it seem, at least for Laudan, that our proclivities to find something odd or in need of
explanation are indeed grounds for raising scientific problems of the kind explored in this paper. Yet
these proclivities are based on something more objective—as Nickles proclaims, “problems are entities
which have ’objective’ existence” (Nickles 1981, 111)—than mere subjective prejudice. Laudan agrees:
“Our theoretical presuppositions about the natural order tell us what to expect and what seems
peculiar, problematic or questionable” (Laudan 1978, 15). The operative heuristics or theoretical
presuppositions thus are precisely the appropriate objects of philosophical investigation—at least
from this point of view in the philosophy of science.
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statements and solutions in theoretical physics. Behind expectations in fine-tuning

cases in particle physics, for example, is the concept of naturalness. The notion

of naturalness applied in particle physics has a precise sense (which I will not be

discussing), but one might be inclined to think of it as a certain simplicity in parameters

and initial conditions.23 However, uniformity and flatness are clearly simple conditions

(spatial homogeneity and isotropy, and Ω = 1, respectively) so a lack of simplicity, at

least, does not at least appear to be at work in problematizing the HBB model.

Perhaps instead it is precisely the simplicity of the initial conditions that is

cause for concern. Spatial uniformity is certainly a special condition on models in

GTR in a precise sense—indeed, spatial uniformity is the greatest amount of spatial

symmetry a spacetime can have. Flatness is special as well insofar as it is precisely a

point of dynamical metastability in FRW models. In ways that can be made precise,

then, almost all other models of GTR do not have so many symmetries as the spatially

uniform FRW models, and there are no other metastable FRW models besides the

one with flat geometry.

It is therefore possible to identify the HBB model’s initial conditions as special

in a clear sense, i.e. to ground the first premiss in the argument sketch. This in part

supports a heuristic such that a maximal degree of symmetry is deemed unphysical, or

one which holds that cosmological models should not exhibit dynamical instabilities.

But one should be able to explain why high degrees of symmetry and dynamical

instability are problematic as well (at least in cosmology), i.e. to ground the second

premiss. There are, on the face of it, some reasons to doubt that this can be done.

In the first place, symmetry considerations play a central role in contemporary

23See (Williams 2015) for this precise sense, and a clear, philosophical analysis of its physical
significance.
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theoretical research, so it cannot be that there is something problematic about a

physical model simply possessing symmetries. There are certainly questions one can

raise over their ontological and epistemological significance (Brading and Castellani

2003), but it does not seem to be the case that models with high degrees of symmetry

necessarily lack, e.g., predictive or explanatory power. Is there something problematic

specifically about cosmologies with high degrees of symmetry? There is some evidence

(Isenberg and Marsden 1982) that symmetric spacetimes are exceedingly rare in the

space of solutions of GTR. To turn this into argument that disfavors the possibility

of symmetric spacetimes, however, requires additional considerations beyond the

observation that symmetric spacetimes are special (in this sense). These considerations

are usually advanced in the guise of probability theory (although measures and

topologies can be used to this purpose as well)—so in this case it is improbability (or

unlikelihood) that is essentially problematic, not symmetries in and of themselves.

There is a suggestion of another potential explanation of why symmetries are

problematic in cosmology when one recognizes that cosmological models are highly

idealized, coarse-grained representations of the actual universe. The actual universe

is clearly not perfectly spatially homogeneous and isotropic, nor is it even a linearly

perturbed version of such FRW models (gravitational collapse is much evident in the

universe and is a non-linear process). Such cosmologies may be good “high-level”,

coarse-grained approximations of the actual universe, but if the dynamics of the

“low-level”, finer-grained model does not keep it in the neighborhood of the idealized,

symmetric, high-level model, then one has the start of an argument to disfavor it as a

reliable model.24 This line of thought, however, again leads us away from the idea

24See (Wainwright and Ellis 1997) for an introduction, relevant to this line of thought, to the
application of dynamical systems theory to cosmology.
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that symmetries are problematic to other considerations, in this case to considerations

of dynamical instability.

With respect to dynamical instability, one might first observe that the very

notion, standardly used in investigating dynamical stability, of a perturbation is

absurdly unphysical in the context of cosmology, as there is no external perturbing

agent to be found “outside of the universe.” Since perturbations evidently require

some perturbing agent, it may seem that dynamical instability is not problematic in

cosmology in the same way that it is in physical systems which are in environments

where small perturbing agents are ubiquitous, in which case it is to be expected that

one never finds a dynamically unstable system in a metastable state.

The famous case of Einstein’s static universe being unstable under various

perturbations (Earman 2001, 195), as shown by Eddington, is however an example

where instability was and is widely thought to be problematic.25 Eddington claimed

that “the initial disturbance can happen without supernatural interference” (Eddington

1930, 670), i.e. the perturbation could come from within the universe rather than

without. Although he gave suggestions, he did not give an explicit account. Subsequent

work (Harrison 1967; Gibbons 1987; Barrow et al. 2003) has clarified under what

conditions the Einstein universe is stable (and similarly for other cosmologies as well).

But the necessity or even preference for stability in cosmology should not be assumed

without argument. This is especially so since there are arguments from dynamical

systems theory that might be taken to suggest that cosmological dynamics should in

fact be expected to exhibit instabilities (Tavakol and Ellis 1988; Tavakol 1991; Coley

and Tavakol 1992).

25The argument convinced Einstein himself that his model was unphysical (Nussbaumer 2014).
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Although these cursory comments above cannot be said to decide the issue

definitively, I believe the considerations raised should be enough to cast doubt on

there being a strong and obvious case to be made for simplicity being problematic

in cosmology. In particular the case has not been explicitly made by inflationary

cosmologists when explicating the horizon and flatness problems. Without such an

explication, it simply cannot then be said that simplicity is at the heart of the HBB

model’s fine-tuning problems.26

In any case, the kinds of arguments centered on simplicity appeared to lead

directly to likelihood considerations, and indeed cosmologists do say frequently that

uniformity and flatness are “unlikely” or “improbable.”27 Furthermore, the other

complaints mentioned previously (simplicity, large numbers and accuracies) can be

made to fit under the broad umbrella of “probabilistic” reasoning. For example,

the high degree of symmetry exhibited by uniformity can be intuitively described as

improbable (since there are so many ways that it could have lacked those symmetries),

and that our universe is close to a metastable spacetime can be said to be unlikely

(since it could have been curved in so many ways). It is therefore tempting to interpret

the uniformity and flatness problems as problems based on the improbability of the

observed conditions in the context of HBB theory. It captures most of cosmologists’

complaints in a common framework. Perhaps for these reasons one finds philosophers

generally concluding that special initial conditions are special because improbable

(Earman 1995; Earman and Mosteŕın 1999; Price 2002, 1996; Smeenk 2003, 2013).

26Nevertheless I do think the issue is of some importance and interest, and deserves an independent
philosophical investigation that goes beyond my treatment here. There is a rich physics literature on
stability and symmetries in GTR and cosmology, but as yet very little philosophical attention has
been paid to it.

27“The [FRW] models are clearly very special within the class of all cosmological models, and so a
priori are highly unlikely” (Wainwright and Ellis 1997, 3).
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There are, however, significant challenges to adopting improbability as the

explication of specialness in this context which have not yet been adequately addressed.

These challenges are the focus of chapter 4. Whether such descriptions can be

substantiated objectively remains an open question, despite many earnest attempts to

do so (Gibbons et al. 1987; Coule 1995; Gibbons and Turok 2008; Carroll and Tam

2010). The technical problems with defining a natural probability measure on the

space of possible cosmologies are well-detailed in Schiffrin and Wald (2012); Curiel

(2015). Curiel relates the difficulties of constructing suitable likelihood measures on

the infinite-dimensional space of relativistic spacetimes; even restricting attention to

minisuperspace, the finite-dimensional space of FRW models with a scalar field to

drive inflation, Schiffrin and Wald show that a probability measure cannot be defined

without some arbitrary choice of regularization of divergent integrals, since the natural

Lebesgue measure gives the total space infinite measure. Although arguments for

particular regularizations have been made (Carroll and Tam 2010; Gibbons and Turok

2008), Schiffrin and Wald (2012) and Curiel (2015) give compelling reasons to doubt

whether such choices have any physical significance.

One may also raise various conceptual problems with making sense of probability

in cosmology that cast doubt on interpreting specialness as improbability in the context

of these problems (Ellis 2007; Smeenk 2013). Briefly, here are two simply stated issues,

which will be discussed further in chapter 4. First, it is unclear what the appropriate

reference class for cosmological probabilities is. How can we know what the space of

possible cosmologies is when there is just one universe? Is it all relativistic spacetimes?

Just FRW models? Second, it is not apparent what the empirical significance of such

probabilities is, since we observe a single universe evolving deterministically. The
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probabilities of statistical physics, for example, can be empirically confirmed since

one generally has a multiplicity of identically-prepared systems for which one can

obtain statistics and verify the theory’s probabilistic assumptions (ch. 3). The usual

interpretation of cosmological probabilities then is that they are just probabilities of

initial conditions. But if they are, then how can such probabilities be justified? Is one

to imagine some creator picking one of the possible universes as Penrose (1979) vividly

illustrates? It is important to recognize that the success of problematizing uniformity

and flatness in terms of likelihood depends crucially on successfully meeting these

difficult conceptual challenges. Although I give a fuller exposition of the challenges

facing cosmological probabilities and other measures of likelihood in chapter 4 to drive

the point in more definitively, an honest assessment of the prospects of meeting these

challenges, even just on the basis of the papers mentioned here, appears to be rather

dim.

Nevertheless, if these problems are surmountable such that one can say that

uniformity and flatness are indeed improbable in a sufficiently rigorous sense, then

it is, I claim, at least possible to explain why they are problematic—intuitively it is

because improbable initial conditions lack explanatory power (and predictive power).

Improbable initial conditions might be seen as problematic because the probabilities

tell us that those conditions probably do not obtain. But confidence in our observations

and models transfers to the initial conditions, i.e. our present observations are relevant

to our credences. Nevertheless, in the cosmological case there is little hope of verifying

the conditions of the universe before recombination since radiation cannot travel

freely to our telescopes from those times. The real worry then is that the initial

conditions of the universe might easily have been otherwise (for all we can ascertain
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from observational evidence) than what the HBB model tells us; if they were indeed

different, even slightly, then our HBB explanation of the present conditions fails

(catastrophically—the universe collapses before we’re around or stars never form). The

problem is not that the HBB model cannot explain and predict phenomena, it is that

the explanations and predictions it provides are not robust. A theory which provides

a robust explanation of some phenomenon is better—has a stronger explanation I

would say—than one which depends on improbable initial conditions to explain the

same phenomenon.28

Some, in agreement with Earman (1995, 146) and Smeenk (2003, 239), may

not be convinced that lacking explanatory power is all that problematic for a theory

(exhibiting as evidence various examples from elsewhere in physics). Surely, at least

when all other things are equal, a theory is preferable to another when the former

explains more or better or more robustly than the latter. But when they are not, it

is not so clear that the more powerful explanatory theory is always the better. For

example, a cheap way to increase the explanatory power of a theory is to limit the space

of possible models of the theory, say by assuming an additional constraint (Maudlin

2007a, 44). If one assumes the strong energy condition, then the only permissible

expanding FRW models are decelerating. Hypothetical observations that suggest that

the universe’s expansion is decelerating would in this case be explained by the nature

of matter in such a model, namely by the strong energy condition holding.29 But

adding additional constraints on a theory limits the descriptive possibilities of that

28There are surely many dimensions of explanatory power; I only claim that robustness of explana-
tion is one of them.

29It may be objected that assuming a constraint does not make a theory more explanatory. Why,
after all, is the strong energy condition true? Indeed there is always room for more explanation. But
here one can make the connection to another area of physics, say a microphysical theory of matter,
to ground the assumption.
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theory, so increasing explanatory power in this way is usually not desirable. When

those descriptive possibilities are not thought to obtain, however, there appears to be

no loss by excluding them. Still, even in this case, it should be recognized that there

are general costs to excluding descriptive possibilities (less unification of phenomena,

lack of simplicity, etc.) which presumably must be balanced them against the benefit

of increasing the theory’s explanatory power.

In cosmology the uniqueness of the universe changes the calculus of balancing

explanatory and descriptive power. There are no other observable universes, and

therefore no empirical motivations to preserve descriptive power in cosmological models.

It thus appears always favorable to pursue cosmologies with greater explanatory

power.30 Indeed one occasionally hears expressed the idea that the perfect cosmology

would include no free parameters, would leave no cosmological feature accidental,

etc.31 A cosmological theory that severely lacks explanatory power by depending on

special initial conditions for crucial explanations, especially one that is thought to be

correct only at certain averaging scales and in certain energy regimes, can therefore

legitimately be seen as problematic, in the sense that it is plausible to think that more

powerful theories exist which maintain the empirical adequacy of the prior theory.

To conclude this section, it may worth recapping the foregoing argument in

30There are certainly theoretical motivations to preserve some degree of descriptive power in
cosmology. Insofar as one thinks that relativistic spacetimes are the appropriate models of the
universe (because, for example, one holds that gravity is the relevant “force” on cosmological scales),
there is a strong presumption that GTR tells us precisely what the permissible cosmologies are. Yet
insofar as one believes that GTR has limited ranges of applicability or unphysical models, intuitions
on which cosmologies are realistic diverge from this presumption.

31“My guess is that there really is only one consistent theory of nature that has no free parameters
at all” (Guth 1987). Einstein also famously conjectured as much: “I would like to state a theorem
which at present can not be based upon anything more than upon a faith in the simplicity, i.e.
intelligibility, of nature: there are no arbitrary constants...that is to say, nature is so constituted
that it is possible logically to lay down such strongly determined laws that within these laws only
rationally completely determined constants occur (not constants, therefore, whose numerical value
could be changed without destroying the theory)” (Einstein 1959, 63).
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brief. I claimed that the most intuitive analysis of the uniformity and flatness problems

(as understood by cosmologists who have commented on them) depends on the initial

conditions being special because they are improbable or unlikely; I argued furthermore

that improbable and unlikely initial conditions are problematic because models with

such conditions lack explanatory power. While this may not seem much about which to

make ado—it could be said of nearly any theory that requires initial conditions—I have

argued that there is a strong inclination in cosmology towards theories with greater

explanatory power, more so than elsewhere in physics. Empirical considerations do not

pull so strongly against explanatory power and towards the preservation of descriptive

power in cosmological theory due to the uniqueness of the universe.

Now, the fact that these improbable initial conditions are also observationally

unverifiable represents a significant theoretical risk to the HBB model, making the

aforementioned inclination considerably stronger. As a matter of risk reduction in

theory construction, theorists would much prefer to hedge their bets on a theory with

greater explanatory resources (by introducing, say, some dynamical mechanism that

drives the universe towards the observed conditions) and to reject the HBB explanation

of uniformity and flatness. Yet, as shown in §2.2, particle horizons represent an obstacle

to devising a cosmology with greater explanatory power, since the HBB’s particle

horizons preclude the dynamical explanations that would come with it. Thus one

has the horizon problem, and its two manifestations: the uniformity problem and the

flatness problem.

This particular argument hinges on the success of substantiating the attributions

of probability in cosmology, a task that faces many seemingly insuperable challenges

as noted in this section. Other explications of specialness in cosmological fine-tuning
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problems, such as a high degree of symmetry or dynamical instability, could perhaps

be substituted, but they do not clearly problematize the HBB model’s explanations

of these problems alone. Thus I conclude that there is at present no problem free

interpretation of the HBB model’s fine-tuning.

2.4 Inflation

Inflationary theory, in its basic version which I explain briefly in §2.4.1, suggests

that the universe underwent a phase of accelerated expansion in its very early in its

history. The crucial realization, made originally by Guth, is that this one simple

assumption, a phase of accelerating expansion where the strong-energy condition

is violated, relaxes the horizon constraint, reverses the instability of flatness, and

gives rise to the possibility (at least) of a dynamical explanation of uniformity. In

this section I show how inflation is generally understood to solve the uniformity and

flatness problems, i.e. by explicitly relaxing the horizon constraint of the HBB model

(§2.4.2). I first give a preliminary explanation here before turning to details.

The essence of the horizon problem, as commonly understood, is that the

existence of horizons precludes any local dynamical explanation of uniformity (and

flatness). If the horizon constraint were relaxed, then one might expect that a

dynamical explanation of some kind would become possible, especially if the entire

observable universe were within a single horizon volume at a sufficiently early time

(at least by recombination). So long as the strong energy condition is maintained, this

is not possible—there is a past singularity in the HBB model limiting the age of the

universe and therefore the distance radiation could travel before recombination. The

inflationary approach is to propose a phase of the universe where the strong energy
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condition is violated which is smoothly “spliced into” the big bang story. A period of

sufficient inflationary expansion (and, crucially, finding a way for it to end) then leads

to a universe where the entire observable universe shares a common past.32

It is often remarked in expositions of inflation that a sufficient amount of

inflation puts the constituents of the observable universe in causal contact such that

a thermal equilibration process can lead to uniformity. But this cannot be how the

CMB photons came to have the same temperature—the huge amount of expansion

during inflation thins all particles out such that the post-inflation universe is essentially

empty.33 The inflationary solution to the uniformity problem actually depends crucially

on a post-inflation phase of the universe known as reheating, where the supposed decay

of the scalar field responsible for inflation repopulates the universe uniformly with

particles (except for a spectrum of inhomogeneities due to “quantum fluctuations”).

Reheating depends on quantum field theoretic considerations beyond the scope of this

paper, but for present concerns it is worth remarking that by no means is there a

completely adequate model of reheating at this time (Amin et al. 2015). Such a model

is obviously crucial for the empirical adequacy of the inflationary proposal, even apart

from it being required to solve the uniformity problem.

Inflation addresses the flatness problem, understood as a stability problem,

more directly. Recall that one can rewrite the Friedman equation as

1− Ω(a) =
−k

(aH)2
. (2.8)

32Cosmologists often quote amounts of expansion in terms of “e-foldings”; an e-folding is a measure
of expansion in base e given by the natural log of the ratio of scale factors, a later scale factor to an
earlier one.

33This is, however, how inflationary theory solves the monopole problem. If magnetic monopoles
are produced through a GUT phase transition, a sufficient amount of inflation will sweep them far
enough away from one another that it becomes astronomically unlikely that one could have been
observed.
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With 1/(aH)−1 being driven towards zero by inflation (during inflation a increases

greatly while H remains approximately constant), Ω(a) is driven to one, i.e. the critical

density. For this reason it is often said that spatial flatness is an attractor solution in

inflationary universes or that Ω ≈ 1 is a generic prediction of inflation (Mukhanov

2005, 233). The dynamical instability of flatness in the standard big bang universe is

in any case reversed (flatness becomes a point of stability instead of metastability),

for which reason it is claimed that inflation makes it “more likely” that the present

universe should appear flat.

2.4.1 Classical Dynamics of Inflation

The standard way to define inflation is as a stage in the early universe where

the Hubble radius is decreasing:34

d

dt

(
1

aH

)
< 0. (2.9)

It is often described as a stage of accelerated expansion, and as a stage where “gravity

acts repulsively” (Mukhanov 2005, 230).35 Both of these follow directly from the

above condition. It may be illuminating to demonstrate these facts. First, take the

temporal derivative of the Hubble radius:

d

dt

(
1

aH

)
= − 1

(aH)2
ä < 0. (2.10)

34The Hubble radius defines the Hubble sphere discussed in §1.4.2. There it was defined as the
(physical) distance at which space is receding at the speed of light: dH = H−1. In co-moving
coordinates this distance is χH = (aH)−1.

35It is somewhat misleading to describe accelerated expansion as gravity acting repulsively, insofar
as normal matter still gravitates attractively. The sense in which gravity acts repulsively is how
accelerated expansion affects the structure of spacetime.
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It follows that ä > 0. Thus the given condition, decreasing Hubble radius, implies

accelerated expansion.

Next consider the Friedman acceleration equation (1.4) and impose the condi-

tion ä > 0:

ä

a
= −4

3
π(ρ+ 3p) > 0. (2.11)

It follows immediately from this equation that

p < −1

3
ρ, (2.12)

and, assuming the weak energy condition holds, that the stress-energy responsible

for inflation has negative pressure. The negative pressure during inflation represents

a violation of the strong energy condition, p > −1
3
ρ. The strong energy condition

captures, in a sense, that gravity is attractive in GTR (Malament 2012, 166). Normal

matter obeys the condition and gravitates (attractively). So during an inflationary

stage gravity acts repulsively.

Finally, it is sometimes remarked that inflation is a stage of exponential

expansion. What is usually meant by exponential expansion is the amount of expansion,

not necessarily how the expansion occurs. The standard measure of expansion is given

in terms of e-foldings, which is the amount of time for the scale factor to grow by a

factor of e. Depending on when inflation takes place different numbers of e-foldings

are required to solve the horizon problem. If H is exactly constant, i.e. has the form

of a cosmological constant, then the scale factor does indeed increase exponentially

with time.

Inflation is generally supposed to occur in the very early universe, but the
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details depend on the particular inflationary model. The only constraint is that

sometime after inflation ends the standard hot big bang picture, the part that relies

on well-confirmed theory and observations, must begin.

2.4.2 Inflation as a Solution to the Horizon Problem

It may be of interest to see slightly more detail on how inflation specifically

solves the horizon problem through accelerated expansion of the universe.36 First, let

us see how the horizon changes during different phases of the HBB universe (radiation

domination and matter domination) in order to make a comparison to the inflationary

universe. Matter-radiation equality occurs when the energy density of matter Ωm

equals the energy density of radiation Ωr. This occurs at a scale factor of

aeq =
Ωr

Ωm

≈ 3× 10−4, (2.13)

which is somewhat before recombination (a∗ ≈ 9× 10−4).37

The increase in (co-moving) size of the particle horizon radius over a change in

scale factor δa = a2 − a1 is given by the following expression

χδa =

∫ a2

a1

da

a2H
. (2.14)

During matter domination the Hubble parameter H is inversely proportional to a3/2.

36(Earman 1995, 150-2) gives a similar calculation to the one I give below with which some readers
may be familiar, but as far as I can tell there appear to be some significant mistakes. Although
correct such calculations can be easily found in the cosmological literature, e.g. (Lesgourges 2006),
for the reader’s convenience I provide my own version here.

37Matter-dark energy equality occurred much more recently, at a scale factor of about aeq2 ≈ 0.6.
Therefore the universe has only expanded slightly since then (only about half an e-folding), so dark
energy domination will be neglected in these calculations.
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Thus we can set H(a) = H0a
−3/2 for any a during matter domination, where H0

is the present Hubble parameter. Let us evaluate the contribution to the present

particle horizon since recombination, by integrating from a1 = a∗, the scale factor at

recombination, to the present, where by definition the scale factor is a2 = 1:

χ(∗,1) =
1

H0

∫ 1

a∗

da

a1/2
=

2

H0

(1− a1/2
∗ ). (2.15)

The universe was matter-dominated before recombination, and radiation-

dominated before matter-radiation equality. Data indicate that the redshift of recom-

bination is approximately 1090, and the redshift of matter-radiation equality is 3250.

These correspond to scale factors of 0.0009 and 0.0003 respectively. Thus only a small

amount of expansion occurred during matter domination before recombination (the

universe expanded three-fold), so it is a reasonable approximation to take matter-

radiation equality to occur at recombination. Setting H = a
1/2
∗ H0/a

2, we evaluate the

integral from some initial time where the HBB model is assumed valid, a1 = ai, to

recombination, a2 = a∗:

χ(0,∗) =
1

a
1/2
∗ H0

∫ a∗

ai

da =
1

H0

a∗ − ai
a

1/2
∗

. (2.16)

Therefore the present particle horizon is given by χ(0,1) = (2− a1/2
∗ )/H0. The ratio of

the particle horizon at recombination to the present particle horizon is

χ(0,∗)

χ(0,1)

=
a

1/2
∗

2− a1/2
∗
≈ 0.015, (2.17)

where the term proportional to ai has been dropped because it is negligible. In the



104

HBB universe almost all of the distance light could have traveled has been since

recombination (not surprisingly, given what has been said about the horizon problem).

Let us formulate a condition for “causal contact.” Imagine that “at the big

bang” two massless, non-interacting particles with the same temperature are released

in opposite directions. When recombination occurs they will each have traveled a

co-moving distance of χ(0,∗). Imagine now that they are reflected so that they travel

back towards one another. If they meet exactly at the present time or any time after,

then they each must have traveled a distance at least equal to the present co-moving

horizon radius, χ(∗,1). So the minimum condition for causal contact is

χ(0,∗) ≥ χ(∗,1). (2.18)

In an FRW universe that undergoes a radiation- to matter-dominated transition

the condition is equivalent to the condition that a∗ ≥ 4/9. The scale factor at

recombination (and matter-radiation equality) is clearly much, much smaller than this

value (a∗ = 9× 10−4). So we see that it is not possible that CMB photons all have a

shared causal past; thus we have another presentation of the horizon problem.

Now we let us see how an inflationary stage can solve the problem. An

inflationary stage’s dynamics depend on the details of the inflationary model, but

the Hubble parameter in simple models remains approximately constant (we choose

an equation of state w = −1, the equation of state for a cosmological constant, for

simplicity). The particle horizon grows as before, but radiation domination only begins
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after the end of inflation, at af :

χ(∗,1) =
2

a
1/2
∗ H0

(a1/2
∗ − a∗) χ(f,∗) =

1

a
1/2
∗ H0

(a∗ − af ). (2.19)

The particle horizon grows during inflation according to

χ(i,f) =
1

Hf

∫ af

ai

da

a2
=

1

Hf

af − ai
aiaf

, (2.20)

where Hf = a
1/2
∗ H0/a

2
f . So

χ(i,f) =
1

a
1/2
∗ H0

af
ai

(af − ai). (2.21)

The factor af/ai gives the expansion during inflation, and, since it appears in the

expression for the growth of the particle horizon, is ultimately responsible for solving

the horizon problem. Combining the particle horizon during inflation and radiation

domination gives

χ(i,∗) =
1

a
1/2
∗ H0

[
af

(
af
ai
− 1

)
+ a∗

]
, (2.22)

where the term proportional to ai has been dropped because it is negligible. Applying

the causal contact condition defined above, the following inequality is easily derived

(neglecting additional small terms):

af
ai
≥ 2

a
1/2
∗

af
. (2.23)

This inequality demonstrates that the amount of inflationary expansion required to

solve the horizon problem depends on the energy scale where inflation takes place.
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Taking af as agut, one finds that around 63 e-foldings of inflation are required. If af

is instead taken to be approximately 1 TeV, only around 33 e-foldings are required

(since less expansion occurs during the shorter radiation-dominated stage).

2.4.3 Inflation Implemented as a Scalar Field

Difficulties with connecting inflationary theory with particle physics (Hawking

et al. 1982; Guth and Weinberg 1983) led cosmologists to generalize inflation’s imple-

mentation to an unknown scalar field, generically called the inflaton (Linde 1983).38

Although an early attraction of inflationary theory was a supposed connection with

the standard model of particle physics or extensions thereof, it was quickly determined

that no known field could serve the role of the scalar field driving inflation and solve

the horizon problem. Nevertheless, many cosmologists thought that inflation was

too good to be wrong, so they took to positing the existence of the inflaton and left

its firmer connection to more fundamental physics to the future.39 I introduce the

implementation of inflation as a scalar field to clarify the model building associated

with inflationary theory, and also because some of the features will arise in ch. 4.

Consider first the action of a homogeneous scalar field φ minimally coupled to

gravity and the Einstein-Hilbert action for gravity:

S =

∫
d4x
√
−g
[

1

16π
R +

1

2
φ̇− V (φ)

]
. (2.24)

38There is, however, a proliferation of models of inflation, including inflationary models with
multiple fields. See, for example, (Bassett et al. 2006).

39These connections are explored, for example, through various extensions to the standard model
of particle physics (Lyth and Riotto 1999), quantum gravity (Tsujikawa et al. 2004), and string
theory (Linde 2005).
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From this action one derives the energy-momentum tensor T for φ:

Tab = φ̇2ξaξb −
(

1

2
φ̇2 + V (φ)

)
gab. (2.25)

Recall the energy-momentum tensor of the FRW model (1.2):

Tab = (ρ+ p)ξaξb − pgab. (2.26)

One can easily verify, by equating these two expressions for the energy-momentum

tensors, that a homogeneous scalar field can be represented as a perfect fluid with

ρ =
1

2
φ̇2 + V (φ), (2.27)

and

p =
1

2
φ̇2 − V (φ) (2.28)

Recalling (2.12), we see that inflation occurs when the scalar field is in the following

state:

φ̇2 < V (φ). (2.29)

On the original version of inflation (“old inflation”) proposed by Guth, one

supposed that this condition was satisfied because the potential had a “false vacuum”

where the field was trapped. Thus V (φ) was positive and φ̇ = 0. To escape from the

false vacuum the field had to quantum mechanically tunnel through the potential

barrier that trapped it to a new vacuum (the “true vacuum”) where the big bang

story could take over. It was quickly shown however that this scenario could not work
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because for realistic fields the tunneling events would never cause the entire universe

to coalesce into one “bubble”—the space between bubbles would continue to inflate

rapidly.

The solution (“new inflation”) hit upon by Linde (and also proposed by Albrecht

and Steinhardt) was to let the field “slow roll” down an appropriate potential, such

that the inflation condition was satisfied during the slow rolling phase. This allowed

for a “graceful exit” to inflation, since there was no abrupt transition between the

inflationary phase and the big bang phase. The inflaton rolls down the potential

gradient causing the universe to inflate until it reaches the true vacuum at the bottom

of the potential hill.

Single-field inflation models are determined by the shape of the scalar field’s

potential. Two parameters are typically used to describe the dynamical behavior of

the universe in such models. These will be important in the following section, for

they give rise to new fine-tuning problems in inflationary models. From the Friedman

equations, (1.3) and (1.4), we can derive (assuming for simplicity that k = 0)

ä

a
= −4π

3
(ρ+ 3p) = H2

(
1− 3φ̇2

2ρ

)
. (2.30)

Define a new parameter, ε, as

ε =
3φ̇2

2ρ
. (2.31)

It follows that

ε =
4πφ̇2

H2
= − Ḣ

H2
. (2.32)

Recall that the condition p < ρ/3 discussed so far in this section is equivalent to the

condition ä/a > 0; it is also equivalent to ε < 1 by these definitions and calculations.
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One also requires inflation to last long enough to solve the horizon problem, so there

is a second parameter, η, that quantifies how slowly the field is rolling:

η = − φ̈

Hφ̇
. (2.33)

One can recast these parameters as conditions on the potential directly (Liddle

and Lyth 2000, 42). Define

εν(φ) =
1

6 · 8π

(
V ′

V

)2

, (2.34)

and

ην(φ) =
V ′′

V
. (2.35)

The conditions on the “potential” slow roll parameters is εν < 1 and |ην | < 1. These

conditions are necessary conditions, but not sufficient conditions for inflation, since φ̇

could be such to prevent inflation (according to the previous slow roll conditions). To

see how the potential slow roll parameters are necessary, we need the equations of

motion of the inflaton. One equation of motion for a homogeneous scalar field in an

expanding universe can be derived from the conservation equation ∇aT
ab = 0, giving

φ̈+ 3Hφ̇+ V ′ = 0, (2.36)

where V ′ = ∇aφ∇aV . The Friedman equation (k = 0) becomes

H2 =
8π

3

(
1

2
φ̇2 + V

)
. (2.37)
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In the slow roll approximation, the first term on the right hand side is negligible, so

H2 ≈ 8π

3
V. (2.38)

In the slow roll approximation, the acceleration of the scalar field is negligible so we

also have

3Hφ̇ ≈ V ′. (2.39)

Subsituting these expressions into the expression for εν , we see that

εν =
1

6π

(
8π · 3Hφ̇

3H2

)2

=
4π

3

φ̇2

H2
< 1. (2.40)

Similarly

|ην | =
∣∣∣∣V ′′V

∣∣∣∣ =

∣∣∣∣8πḢH2

∣∣∣∣ = 8π|ε| < 1. (2.41)

2.5 Fine-Tuning: From the Hot Big Bang to Infla-

tion

Having presented how inflation allegedly solves the HBB model’s fine-tuning

problems, I conclude this chapter by evaluating that claim. To review, the fine-tuning

problems, e.g. the uniformity problem and the flatness problem, of the HBB model arise

because it requires special initial conditions in order to explain present observations.

So it is an explanatory problem. These special initial conditions suggest to physicists

that a deeper explanation of features of the HBB model may be possible. In particular,

the special initial conditions themselves may be explained, whereas in the HBB model
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they must simply be assumed. Standing in the way of some such further explanation

is the horizon problem, which precludes a local dynamical explanation of uniformity

and flatness.

Inflationary theory attempts to solve the fine-tuning problems by modifying the

HBB model so as to avoid the horizon problem. By positing a period of accelerated

expansion preceding the hot big bang universe, inflationary theory increases the

size of the present particle horizon so that all of the physics of the HBB model, in

particular recombination, occurs within a single causal patch. Interestingly, addressing

the horizon problem in this way solves the flatness problem, insofar as accelerated

expansion makes spatial flatness a dynamical attractor instead of dynamically unstable.

Inflation also gives rise to the possibility of a causal explanation of uniformity through

post-inflation reheating.

Has inflationary theory solved the HBB model’s fine-tuning problems? The

answer of course depends on what counts as a solution to a scientific problem, and

a solution to fine-tuning problems in particular. In this section I survey different

conditions one might place on a proposed solution to a fine-tuning problem such that

it may be considered solved. Inflationary theory satisfies some of these but not all. A

particular intuition that many seem to share is that a proposed solution to a fine-tuning

problem fails when it suffers from fine-tuning problems of an equal magnitude to and

worse than the original one. It is indeed widely recognized that inflationary theory

suffers from fine-tuning problems of its own (Penrose 1989a; Brandenberger 2007). I

argue that this is an unreasonable condition to place on a proposed solution, as is

simply requiring that a solution address the fine-tuning problem directly, i.e. in an ad

hoc way. A proposed solution need not solve all fine-tuning problems, but I maintain
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that it must accomplish something beyond merely solving the problem. For example,

a reasonable expectation is that it suggests new empirical predictions which can be

verified observationally; a more modest expectation is that the theory should merely

“pull its own weight,” by, say, offering a more fruitful framework for investigations.

2.5.1 Problems and Solutions

Although it can be made reasonably clear what the uniformity and flatness

problems are, such that a proposal like inflation is taken as a solution to them, the

difficulty in answering the philosophical question about what precisely is problematic

about the conditions at the root of the problems suggests that it is difficult to say

what would count as a solution to those problems. Without knowing well enough what

the problem is, one cannot know begin to know what the solution to that problem is.

What exactly is a scientific problem? According to Nickles, “a problem consists

of all the conditions or constraints on the solution plus the demand that the solution

(an object satisfying the constraints) be found” (Nickles 1981, 109). The constraints

on the solution, however, “characterize— in a sense ‘describe’ —the sought-for solu-

tion”(Nickles 1981, 109). This might seem to “put the cart before the horse,” since

to know the problem one must (partly) know the solution. Yet something like this

must be correct if one is to solve the “learner’s paradox,” famously posed in Plato’s

Meno. So I will accept Nickles’ intuitive definition of scientific problems at face value,

since it does at least satisfy quite a number of desiderata one might have for such an

account (Nickles 1981).

With this viewpoint on scientific problems, it is premature to think of inflation

as a solution to the HBB model’s fine-tuning problems until we understand just what
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the problems are, i.e. we understand how it solves them. This amounts to knowing

what the relevant constraints on a solution are for the uniformity and flatness problems.

I have identified various constraints, including perhaps the most important one: the

horizon problem.40

The typical understanding of the uniformity and flatness problems as fine-

tuning problems suggests further constraints on their solutions. The initial conditions

that give rise to uniformity and flatness are in some sense special; intuitively, a solution

to such a fine-tuning problem would make such conditions no longer special. If the

problem is one of “large numbers,” then the solution would be to make those numbers

small (or “natural”). If the problem is that such conditions are improbable or unlikely,

then the solution ought to make such conditions probable or likely. If the problem is

one of idealization, then the solution should avoid those idealities as appropriate, e.g.

making unstable dynamical behavior stable.

Problems are not identical with their solutions, by which I mean only that the

constraints on a problem do not select a unique solution.41 This is, of course, as it

should be. There may be multiple solutions to a single problem. Inflation, for example

is not the only possible solution to the HBB model’s fine-tuning problems (if it is

indeed a solution); few other solutions, if any, have gathered much attention so far

however.

40On Nickles’ view of scientific problems, the horizon problem is not a problem per se, but a
constraint on a problem solution. As discussed previously, the existence of horizons may be considered
a problem, but then the problem really amounts to the existence of singularities being problematic.
See (Earman 1995) for a nice discussion of the “singularity problem.”

41Whether a problem is identical to its solution set is another matter. On the “erotetic” approach to
explanation (van Fraassen 1980; Bromberger 1992), the approach where explanations are understood
as answers to “why” questions, a particular request for explanation—a why-question—is defined by
its set of admissible answers (Hamblin 1958), for example. While it may also be argued that defining
a problem by its constraints is in effect defining it by its solutions, since solutions must satisfy the
constraints, it is not particularly important since in practice one never knows the complete space of
possible solutions.
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2.5.2 The Special Low Entropy State of the Universe

To clarify the problem situation further, it will be helpful to compare to

the alleged fine-tuning problem mentioned previously, since it is more familiar to

philosophers: the low entropy state of the universe seemingly “required” by the

statistical mechanical explanation of thermodynamic behavior. Whether it is sensible

to connect this foundational issue in thermodynamics to cosmology is an issue that

requires some consideration (Earman 2006; Wallace forthcoming). At the very least,

one must make sense of the role of gravity in calculating entropy (Wald 2006; Wallace

2010; Callender 2010, 2011a).

In any case, Price argues that there is a call to explain the low entropy “past

state” in order to ground the Boltzmannian explanation of thermodynamic phenomena:

I am not claiming that boundary conditions always call for explanation,
but only that at boundaries, as elsewhere, our explanatory appetites
are properly guided by the principles we already accept. On this basis,
boundary conditions which appear abnormal in the light of what we take
to be the laws do call for further explanationand this principle should
be applied in a temporally unbiased way. Initial smoothness calls for
explanation becausejust as much as would final smoothnessit conflicts so
radically with our ordinary expectations as to how gravitating matter
should behave. (Price 2002, 115)

Callender (2004b) argues on the contrary that “when one sees what an explanation of

this state involves, it is not at all clear that it can or should be explained.” There

are several points worth commenting on in these excerpts for their relevance to the

situation in cosmology. First of all, one can be led astray by characterizing the debate

as over whether something should be explained. We do not categorically know in

advance what can be humanly explained and what cannot. Popper famously claimed

that “if there is such a thing as growing human knowledge, then we cannot anticipate
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today what we shall know only tomorrow” (Popper 2013). Popper’s claim is too strong,

since we can and do have some idea in advance what we shall know tomorrow—indeed

by the learner’s paradox we must have some idea. Yet a demand for explanation

amounts to a claim that one categorically knows in advance what can or cannot be

explained.

To be sure, Price does not characterize his view as a demand, only as a “call”

for explanation.42 So a fair interpretation of his claim is that we have a reasonable

theoretical expectation of explaining the past state. Physicists do however occasionally

speak in terms of explanatory demands (pertaining to some problem or another);43

typically these calls for explanations derive from their expectations on future theory

too or are in the interest of promoting a particular theory. Such demands are

rhetorical, or even polemic in nature, and are part of the complicated, thoroughly

social, process of scientific discovery. Price appears to take his view as contributing to

this process of scientific discovery—“I think that most physicists intuitions, like mine,

will be that there is an important explanatory project here, that there is likely to be

something interesting to find” (Price 2004)—which may be somewhat immodest given

the influence of philosophical problems on contemporary physics (and a quick glance

at citations of his papers on the subject).

What one can extract from Price’s view is some intuitions that drive problema-

tizing the past state. From the excerpt above, they are that the initial conditions are

“abnormal” and that such conditions conflict with expectations about how gravitating

matter “should” behave. The first intuition is not unlike those expressed by cosmolo-

42“As to whether we’re right, of course, only time itself will tellbut only if we try!” (Price 2004)
43As a random, recent example: “One of the things such a theory [a dual formulation of QFT]

should clarify is an a priori understanding of what the analytic structure of scattering amplitudes
should be” (Arkani-Hamed et al. 2010, 71).
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gists about the unlikelihood of flat, uniform initial conditions.44 If unlikelihood were

enough to make initial conditions special, then the past state would appear to be just

as much a target for explanation as the special initial conditions at the heart of the

flatness and uniformity problems.

There is a significant mistake in thinking that unlikelihood of the past state

is emblematic of a new problem in the foundations of thermodynamics however

(Callender 2004a, 210). If a constraint on the solution is that the past state should be

probable, or at least more probable, then any solution that satisfies this constraint will

contradict the statistical mechanical explanation for which it is meant to provide a

foundation. The Boltzmannian measure assigns low entropy states like the past state

a small probability in order to explain the time-directed approach to large measure

equilibrium states. If low entropy states are accorded a high probability, “then we

are not using the Boltzmann explanation anymore” (Callender 2004a, 210). If the

original problem is explaining the time-directedness of thermodynamics phenomena,

then accepting a low entropy initial condition solves this problem, and that is all there

is to say about that from the perspective of statistical mechanics.

Viewed as an explanatory problem for cosmology, on the other hand, the

44The second, however, is rather suspect. If one’s intuitions are only shaped by everyday experience
with gravity and by Newtonian gravitation theory, then indeed one would find the past state quite
abnormal (if not “contradictory”—cf. (Norton 1992; Malament 1995)). There has, however, been
quite a lot of physics developed beyond Newtonian gravitation theory: observations and theory
(GTR) suggest, for example, the existence of a cosmological constant that drives spacetime to expand
at an accelerated rate (quite contrary to our mundane intuitions about gravity). With intuitions
tutored by GTR, the past state is plausibly abnormal as well, much in the way that the initial
state’s flatness and uniformity seem abnormal. But most theoretical physicists are wary about how
far one can trust GTR: “one might think that we already have an approximately local description
of gravitational physics the long-distance effective theory of GR coupled to matter! However we
know that this description can be drastically misleading” (Arkani-Hamed et al. 2010, 71). If there
is an “important explanatory project” here, then it is already being pursued by many physicists
investigating theories of quantum gravity and the relevant intuitions ought to be tutored through
exposure to GTR, QFT, string theory, etc. Cf. (Callender 2004b, 246).
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improbability of the low entropy past state may yet be an appropriate target for

explanation. Some physicists indeed take this problem seriously (Penrose 1979; Carroll

2010). To make good on the claim that the low entropy state is improbable, however,

one ought to be able to make sense of entropy and probability in this context well

enough to formulate some criteria for success, i.e. constraints on possible solutions.

Callender (2004a) offers surveys four possible approaches to solving “special initial

conditions” problems: (a) providing a dynamical explanation, (b) providing a non-

dynamical explanation, (c) eliminating the initial probability distribution, and (d)

providing some manner of anthropic explanation. By (a), (b), and (d) special initial

conditions would be “explained,” while by (c) they would be “explained away.”

Physicists generally seek dynamical explanations, and especially so in cosmology.

What one means by “dynamical explanation” probably demands some elaboration,

but some deterministic law-based explanation as in the Hempel model suffices for my

purposes. Non-dynamical explanations are considerably less familiar from a physics

point of view, yet have attracted some attention in cosmology, particularly in the

context of quantum cosmology. The idea is to provide some physically motivated

constraint on initial conditions that makes what seemed to be a special initial condition

more natural. Sometimes such a theory goes under the name “theory of initial

conditions” (TIC). Examples include Penrose’s Weyl curvature hypothesis (Penrose

1979) and the Hawking-Hartle “no boundary condition” (Hawking and Hartle 1983).45

The idea behind “eliminating the initial probability distribution” is really a

special case of (a) and only applies when fine-tuning problems are considered to

be “improbability” or “likelihood” problems. I have argued already that this is not

45Callender describes his view, taking the past state as a law of nature, as of this kind, although
he notes that “this move does not so much explain the past hypothesis as state that it does not need
explanation because it is nomic” (Callender 2004a, 211).
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necessarily the best way to understand fine-tuning problems, and make good on this

claim more fully in the ch. 4. The notion of eliminating dependence on initial conditions

has however been a strong motivation for many physicists. For example, Sciama urged

that we must “find some way of eliminating the need for an initial condition to be

specified. Only then will the universe be subject to the rule of theory...This provides

us with a criterion so compelling that the theory of the universe which best conforms

to it is almost certain to be right” (Sciama 2009, 2). Sciama was making this claim

in the context of the major debate in cosmology of last century, that between the

steady state model and the HBB model (Kragh 1996), but it is a powerful motivation

to many proponents of inflation. In garden-variety theories of inflation there are still

initial conditions and moreover new fine-tuning problems, as discussed below.46

Finally there is the idea that anthropic arguments could explain fine-tuning.

There is a large and ever growing literature on anthropic reasoning in both physics and

philosophy, with reactions among commentators ranging from disgust to unbridled

enthusiasm. A modest view is Earman’s: “On one hand, anthropic reasoning does not

deliver on the promise of a new methodology of scientific explanation; but neither,

on the other hand, is the AP an unscientific idea which has no place in physics or

cosmology” (Earman 1987). Explaining fine-tuning by an anthropic argument is

acknowledged to require a multiverse; since I confine myself to discussing a single

universe, I will not discuss anthropics further.

46Eternal inflation might have been thought to signal a return to the steady state universe-like
idea of an absence of initial conditions, but the singularity theorem of (Borde et al. 2003) suggests
otherwise. Nevertheless theorists have advocated eternal inflation for presenting the attractive
possibility of providing simple, natural initial conditions (Aguirre and Gratton 2002, 2003; Carroll
and Chen 2004, 2005).
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2.5.3 Fine-Tuning Problems in Inflationary Cosmology

I now turn to evaluating inflation as a solution to the HBB model’s fine-tuning

problems, in the narrow sense of evaluating whether inflation solves these problems.

As I have been emphasizing, how one understands the fine-tuning problems (in terms

of constraints) will determine the relevant success criteria of proposed solutions to the

problems. Since problems in science are never fully and explicitly characterized, one

should expect that the evaluation of solutions to vague problems is subject to some

variability. Nevertheless, I claim that the best interpretation of the HBB fine-tuning

problems suggest that classical inflation does indeed solve the flatness problem, but

only provides the possibility of solving the uniformity problem.47

The horizon problem is not so much a problem in and of itself, but a constraint

on solutions to the uniformity and flatness problems. Conceiving inflation as merely

a stage of accelerated expansion in the early universe, as is common, one sees that

the inflationary approach attacks the fine-tuning problems by directly addressing a

common constraint. Accelerated expansion in the early universe (pre-HBB universe)

increases the size of the particle horizon by the ratio of scale factors post-inflation to

pre-inflation (2.21)-(2.23).

Suppose, for the moment, that the horizon problem was not merely a constraint

on solving the HBB model’s fine-tuning problems, but was a problem in its own right.

Does inflation solve the horizon problem? Obviously it does, in essentially an ad hoc

way, which may strike one as somehow unsatisfying. Lakatos (1970) famously argues

47By classical inflation I mean its representation in GTR as defined above: an stage of accelerating
expansion in the universe (pre-Big Bang). Quantum mechanical considerations must be invoked
to understand the transition from inflation to the hot big bang via reheating. The HBB universe
must be the exit state of inflation in order for inflation to solve the uniformity problem. Simply
diluting the contents of the universe through exponential expansion is obviously not a solution to the
uniformity problem, although the universe would indeed be uniform afterwards.
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against ad hoc solutions to scientific problems, arguing that ad hoc maneuvers are a

sign of a degenerating research program. Laudan claims, however, that “an ad hoc

theory is preferable to its non-ad hoc predecessor” (Laudan 1978, 116), by way of

solving more problems than its predecessor. In the case at hand, if the addition of

an inflationary stage pre-big bang in order to solve the horizon problem only were

to achieve the relaxation of the horizon constraint sufficiently and affected nothing

else, it would be quite difficult to see how the maneuver accomplished anything of

scientific value. But we need not consider such a possibility, since the sort of theory

modifications made in science usually have effects that range far beyond their intended

consequences. This is clearly the case with inflation, since the inflationary epoch

not only increases the particle horizon an exponential amount but, for example, by

doing so greatly dilutes the density of energy in space (the cosmological no hair

result mentioned in §1.3.4)—an ad hoc maneuver leads to non-ad hoc theoretical

consequences.

Consider now the uniformity problem, recognizing that the horizon problem is

a constraint on the former problem’s solution. Uniformity in the CMB’s temperature

suggests some sort of a equilibrium explanation, but the existence of particle horizons

in the early universe precludes its possibility. By the inflationary maneuver the

constraint of horizons is avoided, but at the cost of this possibility of an equilibrium

explanation. Inflation essentially empties the universe of particles—which sounds a

lot like a failed solution to the uniformity problem. But one cannot overlook the key

contribution of inflation, which is that it showed a way to make the origins of the

big bang an object of scientific study.48 Although there may be perhaps a theoretical

48“That’s what is so impressive—when you can actually push back your ignorance to a point where
you can address a question that you didn’t think was in the bounds of science at all.” (Lightman
and Brawer 1990, 352).
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expectation that uniformity is achieved through a process of equilibration of the

universe, there is no need to think of such a process as a constraint on the solution of

the uniformity problem. So, classical inflation indeed does not solve the uniformity

problem alone, but it is clearly a step in that direction since it affords the possibility

of giving a dynamical explanation of the universe’s uniformity.

Let us turn to the flatness problem. If the flatness problem is assumed to

concern the dynamical instability of flatness in FRW spacetimes (by assuming a

stability constraint on cosmological models), then inflation solves the problem by

reversing the instability of flatness. It is rather surprising that classical inflation

addresses, merely by positing a stage of accelerated expansion, the horizon constraint

and the “stability constraint” simultaneously. While the horizon constraint is addressed

in an essentially ad hoc way, the stability constraint appears to be solved by serendipity.

There is surely something of a “common cause” here: Horizons exist in part because

matter in the HBB universe obeys the strong energy condition, but matter obeying the

strong condition also causes flatness to be dynamically unstable in FRW spacetimes.

Defined as a stage of accelerating expansion, inflation implies that the strong energy

condition is violated, from which it follows that an inflationary stage increases the

particle horizon, and also that flatness is a point of dynamical stability during inflation.

Does this unexpected explanatory coherence have any philosophical significance

in theory development? This fact about GTR and FRW models was there all along,

but was overlooked (perhaps because nothing that failed to satisfy the strong energy

condition was supposed to exist) until Guth stumbled upon it. Without having

investigated the issue in advance, the discovery that both problems are connected

together is a strong suggestion to pursue the solution that solves both. Such a
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discovery mirrors in a way the unexpected empirical confirmation of novel predictions

of a theory, the latter an often acknowledged virtue of a theory. Dawid (2013) has

recently argued that unexpected explanatory coherence can be an important facet of

assessing a theory’s viability and confirmation, particularly in the case of theories like

string theory or in the case of cosmology where empirical confirmation often remains

out of current, foreseeable, or even potential reach—“it gives the impression that

physicists are on the right track” (Dawid 2013, 45). But an argument from unexpected

explanatory coherence alone can hardly be conclusive—there may be, for example,

“so far insufficiently understood theoretical interconnections at a more fundamental

level, of which the theory in question is just one exemplification among many others”

(Dawid 2013, 46), or the correct theory may solve the problems in independent ways,

such that the coherence previously found was ultimately irrelevant and misleading.

Differently interpreted, however, the uniformity and flatness problems are not

so clearly solved by inflation (even assuming that reheating is successful). In particular,

when one views fine-tuning problems as “likelihood” problems, there is no convincing

proof that inflation has solved them at all. Not only is it doubtful whether any precise

sense of probability can be applied to the space of cosmologies (Schiffrin and Wald

2012; Curiel 2015), it is also not clear that inflation would itself be in any sense “likely”

on such a measure.49 For anyone interested in the justification of inflation as part

of the standard model of cosmology, these probability issues are among the most

pressing—at least if one understands HBB fine-tuning as a probability problem and

49(Ijjas et al. 2013, §3), for example, use the sort of naive “indifference measure” found in many
inflation papers to argue that the Planck satellite’s results disfavor inflation. Such claims should of
course be taken with a grain of salt, given that such “measures” are ill-defined and poorly justified.
Also, I have confined my discussion to single universe cosmology, but it is worth noting that measure
problems continue to trouble inflation in multiverse scenarios as well. See (Smeenk 2014) for a
detailed analysis of measure problems in the multiverse.
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inflation a solution thereof.

Moreover Penrose criticizes inflation (Penrose 1989a) (in part) for failing to

solve the problem discussed above: the special initial condition embodied by the low

entropy initial state. “I think it’s all coupled to the second law of thermodynamics

problem. The horizon problem is a minor part of that problem. It’s not the big

problem and, in a sense, that’s what I always thought” (Lightman and Brawer 1990,

427). He argues that if the second law of thermodynamics is true, then the states of

the universe making up inflation all must have lower entropy than the initial HBB

state one is trying to explain, and therefore must be less likely by statistical mechanical

arguments. Addressing Penrose’s argument deserves more attention than I can give

here, but for the purposes of this section there are two points to make. The first is that

requiring inflation to solve the low entropy problem is an unfair demand. Inflation can

certainly be a successful without solving all the problems that an envisaged theory of

quantum gravity should solve. Secondly, if Penrose’s argument is sound, it is a strong

challenge to the prospects of inflation solving the HBB model’s fine-tuning problems

understood as likelihood problems.50

In the task of evaluating a theory’s success at solving a problem, one should

specify reasonable success conditions. So let us suppose for the sake of argument that

the project of addressing the probability problems of inflationary cosmology remains

tenable despite the serious challenges it faces, and consider briefly what it would

take to solve the fine-tuning problems interpreted as likelihood problems. There are

various ways one might approach the likelihood problem, and therefore what counts

50Another criticism along these lines is the failure of inflation to explain the cosmological constant.
According to this argument, the true vacuum in inflationary models must be fine-tuned to account
for the observed value of the cosmological constant, due to the many orders of magnitude larger
vacuum energy obtained through quantum corrections.
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as a solution to the problem. One possibility is that special initial conditions must be

“explained away,” in the sense that fine-tuning must be completely eliminated. Another

is that fine-tuning is not a bump to push under the rug: to explain fine-tuning one must

remove or lessen the fine-tuning in question without introducing further fine-tuning

of an equal or greater magnitude. Finally, one might hold that solving fine-tuning

only requires making the fine-tuned values more likely, without consideration of other

possible fine-tunings. Although inflation has been criticized for not meeting any of

these conditions, I claim that we should only demand that the last condition by met

by any putative solution to a fine-tuning problem understood as a likelihood problem.

Evidently many physicists view the elimination of initial conditions as something

of an ultimate goal of physics. Be that as it may, inflation certainly does not succeed

at realizing this implausible goal. In whichever guise inflation takes, initial conditions

of some kind or another are required (Vachaspati and Trodden 1999; Brandenberger

2007; Carroll forthcoming).As I discussed in §2.4.3, single-field inflation models possess

potentials that can be characterized by two numbers: εν , which for inflation to occur,

must satisfy the condition εν < 1 (the potential must have a region which causes

accelerated expansion of the universe); ην , which for inflation to last long enough to

solve the horizon problem must satisfy a further condition |ην | < 1 (Liddle and Lyth

2000). In a rough way one can think of ε being a condition on “how high” the field

starts on the potential and η being a condition on “how far away” from the minimum

of the potential (the “true vacuum”) the field starts on the potential. Only potentials

of certain shapes satisfy these conditions; even with a valid potential, however, the

field must have special initial conditions in order for inflation to occur, and occur

sufficiently long to solve the fine-tuning problems (Turok 2002, 3457). Although other
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inflationary models differ from the single-field case, they too invariably have initial

conditions that require varying amounts of fine-tuning.

If a solution to the fine-tuning problems must not introduce further fine-tuning

of the order of the original fine-tuning, then inflation appears to fail here as well, since,

as just pointed out, inflationary models have significant fine-tunings of their own. Yet

this standard is an unreasonable demand to place on a solution. One should expect

that solving one problem can introduce others. If solving one problem does introduce

new ones, this does not mean that the original problem was not solved. It just means

that the solution comes at a price. In any case, it is not necessarily a mark against a

solution for introducing new fine-tuning problems, since these other problems may be

more tractable and have natural solutions of their own.51 More importantly, solving a

fine-tuning problem, even if it introduces new fine-tuned parameters of its own, may

contribute to a progressive research program by offering new predictions for empirical

test, or by exhibiting unexpected explanatory connections and other non-empirical

signs of progress.

I claim that the only reasonable standard of success is the weakest one men-

tioned: that solutions must make the fine-tuned conditions (sufficiently) more likely.

In a transparent sense this is just what it means to solve a fine-tuning problem,

understood as a likelihood problem. If the problem is that something is unlikely, the

solution to that problem makes that thing more likely. It must be stressed, however,

that showing that inflation does indeed make uniformity and flatness more likely faces

the many challenges of incorporating probability into cosmology as discussed in §3.

51For example, Smeenk observes that “ inflation exchanges the degrees of freedom associated
with the spacetime geometry of the initial state for the properties of a field (or fields) driving an
inflationary stage. This exchange has obvious advantages if physics can place tighter constraints on
the relevant fields than on the initial state of the universe” (Smeenk 2013, 634).
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The difficulties are both philosophical and technical, and of such a degree that, even

with a weak condition on success, it seems that cosmologists can only have slim hopes

of successfully solving the fine-tuning problems so understood. Thus, insofar as the

HBB model’s fine-tuning problems are probability problems, the likely verdict, for not

only now but the foreseeable future, is that inflationary theory fails to solve them,

even on the weakest reasonable standard of success.

To sum up this section, we have seen that inflation solves the horizon problem

directly by relaxing the horizon constraint, but essentially in an ad hoc way. Whether

this counts in the favor of inflationary theory depends on how one views ad hoc

solutions to conceptual problems. The flatness problem is indeed solved by inflation

when considered as a dynamical instability problem as well. Although it is often said

that inflation solves the uniformity problem too, it plainly does not without some way

to transition from the post-inflation vacuum to the empirically verified epochs of the

hot big bang universe. Since the details of reheating remain unclear, it can hardly

be said that inflation has definitively solved the uniformity problem, although it can

certainly be claimed that inflation has afforded cosmologists with the possibility of

providing a physical solution. If one interprets fine-tuning problems as probability

problems, then at least one requirement, for which I have argued, is that inflation

should decrease the fine-tuning of the HBB model. But as yet there is not even a

justifiable way to assign cosmological probabilities, much less show that inflation is

probable and increases the probability of uniformity and flatness.Evidently many

physicists view the elimination of initial conditions as something of an ultimate goal

of physics. Be that as it may, inflation certainly does not succeed at realizing this goal.

In whichever guise it takes initial conditions of some kind or another are required.
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Recall the discussion of slow-roll parameters in the section. Single-field inflation

models possess potentials that can be characterized by two numbers: εν , which for

inflation to occur must satisfy the condition εν < 1, i.e. the potential must have a

region which causes accelerated expansion of the universe; ηnu, which for inflation

to last long enough to solve the horizon problem must satisfy a further condition

|ην | < 1. In a rough way one can think of ε being a condition on “how high” the field

starts on the potential and η being a condition on how far away from the minimum of

the potential (the “true vacuum”) the field starts on the potential. Only potentials

of certain shapes satisfy these conditions; even with a valid potential, however, the

field must have special initial conditions in order for inflation to occur, and occur

sufficiently long to solve the fine-tuning problems (Turok 2002, 3457). Although other

inflationary models differ from the single-field case, they too have initial conditions

that require varying amounts of fine-tuning.

Chapter 2 includes material that is published in McCoy, Casey. “Does infla-

tion solve the hot big bang model’s fine-tuning problems?” Studies in History and

Philosophy of Modern Physics 51: (2015) 23-36. The dissertation author was the sole

investigator and author of this paper.



Chapter 3

Likelihood in Physics

3.1 Introduction

In chapter 2 I argued that the best characterization of cosmologists’ complaints

against the HBB model’s special initial conditions is that these conditions are in some

sense unlikely, and, since unlikely conditions plausibly lack explanatory power, are

consequently objectionable. Insofar as one tries to understand the uniformity and

flatness problems as a matter of likelihoods, there are certain specific claims in the

corresponding fine-tuning arguments that demand support (Ellis 1988; Coule 1995).

First, it must be shown that the uniform and flat FRW spacetimes underlying the

HBB model are unlikely in some physically significant sense. Second, it must be shown

that inflating cosmologies are generically uniform and flat. Third, it must be shown

that inflating cosmologies themselves are generic, or at least are more likely than

the special HBB spacetimes. (I argued (2.5.3) that the latter condition is the most

reasonable standard to demand of inflationary theory—although it is the weakest

among those surveyed there—as a solution to fine-tuning problems.)

128
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All of these tasks presuppose that there is a justified way of assessing the

likelihoods of cosmological models (Gibbons et al. 1987; Hawking and Page 1988).

The present chapter therefore begins an investigation into whether some notion of

likelihood, in particular probability, can be made precise and justified in the context of

cosmology, such that it could be used to support the fine-tuning arguments discussed

in the previous chapter.

There are, on the face of it, various approaches one could take for supplying the

required support. Cosmologists have generally favored those that are similar to the

putatively successful application of likelihoods in statistical mechanics. Inferring from

the success of those arguments in statistical mechanics to similar ones in cosmology

presupposes however that the justification and interpretation of likelihoods in statistical

mechanics appropriately carries over to the cosmological context.

In chapter 4 I will argue that this presupposition is incorrect. My central claim

there is that the justification and interpretation of cosmological probabilities cannot

be secured by similar strategies used to justify and interpret the use of likelihoods in

statistical mechanics. Since the attempts to secure them ostensibly rely on precisely

these strategies, they ultimately fail to ground the probabilistic arguments used to

argue for an inflationary solution to the fine-tuning problems of the HBB model (a

claim I repeatedly made in the previous chapter). My argument depends on the correct

elucidation of the implementation, interpretation, and justification of likelihoods in

statistical mechanics; this chapter serves to supply this foundation. Although the

concept of likelihood may be formally implemented in various ways, I will concentrate

on likelihoods implemented in measure theoretic terms, especially as probabilities,

since most work on cosmological probabilities does so.
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The plan of this chapter is as follows. The next section (§3.2) attends to

how probability is implemented in classical physics by reviewing the application of

probability in statistical mechanics in my favored formal framework. I also intro-

duce classical field theory briefly in order to show how the statistical mechanical

approach to probabilities becomes complicated for systems with an infinity of degrees

of freedom (such as the spacetimes of GTR). The final section (§3.3) then covers the

interpretation and justification of probability measures in the two main approaches

to classical statistical mechanics in the foundations literature, the Gibbsian version

and the Boltzmannian version. In particular I propose and defend a particular way of

characterizing the interpretation of statistical mechanics that clearly separates these

two versions based on how one understands randomness in the theory.

3.2 The Implementation of Probability in Physics

As I noted in chapter 1, observational limitations and the uniqueness of the

universe represent significant obstacles to obtaining scientific knowledge of our universe

at large. The analysis of systems possessing a large number of degrees of freedom

face similarly significant epistemic challenges. Despite such challenges, the use of

measure theory and associated statistical methods has met with striking success

in describing and explaining the physical phenomena associated with such systems.

These statistical methods play a central role in cosmology as well, for example in big

bang nucleosynthesis and CMB anisotropy calculations, although such cases merely

represent a typical application to subsystems of the universe of non-equilibrium

statistical mechanics.

Many cosmologists would like to extend the use of such statistical techniques
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more broadly to the space of possible cosmologies:1

Cosmologists often want to make such statements as “almost all cosmo-
logical models of a certain type have sufficient inflation,” or “amongst all
models with sufficient baryon excess only a small proportion have sufficient
fluctuations to make galaxies.” Indeed one popular way of explaining
cosmological observations is to exhibit a wide class of models in which
that sort of observation is “generic.” Conversely, observations which are
not generic are felt to require some special explanation, a reason why the
required initial conditions were favoured over some other set of initial
conditions.” (Gibbons et al. 1987, 736)

It is of course natural to attempt to extend successful methods into new contexts,

even if the physical analogy between the state spaces of systems typically considered

in classical statistical mechanics and the space of possible cosmologies may appear

on the face of it somewhat loose. It is clear anyway that one cannot count on any

serious empirical confirmation of probability assignments to cosmologies due to the

uniqueness of the universe.2 The exercise might therefore appear futile:

The question of an appropriate measure, especially in cosmology, might
seem to be more philosophical or theological rather than mathematical
or physical, but one can ask whether there exists a ‘natural’ or privileged
measure on the set of solutions of the field equations. (Gibbons et al. 1987,
736)

1“The problem of constructing sensible measures on the space of solutions is of undeniable
importance to the evaluation of various cosmological scenarios” (Gibbons and Turok 2008); “...the
measure could play an important role in deciding what are the real cosmological problems which
can then be concentrated on. In other words, we assume that our Universe is typical, and only if
this was contradicted by the experimental data would we look for further explanations” (Coule 1995,
455-6); “Some of the most fundamental issues in cosmology concern the state of the universe at its
earliest moments, for which we have very little direct observational evidence. In this situation, it
is natural to attempt to make probabilistic arguments to assess the plausibility of various possible
scenarios (Schiffrin and Wald 2012, 1).

2Even in the case of the multiverse, such a measure would not be directly accessible by empirical
means. Thus its choice and justification must come on other, theoretical grounds. The choice of an
appropriate measure is rather more important in a multiverse theory like eternal inflation. The lack of
a well-motivated measure for eternal inflation is widely known as the “measure problem”. Although
I will not be considering eternal inflation since it depends on quantum mechanical considerations
beyond the scope of this thesis, the topics treated in this chapter are for the most part fully relevant
to eternal inflation’s measure problem. There has been only limited philosophical work on the topic
of eternal inflation. I note (Smeenk 2014), which addresses the measure problem in eternal inflation
directly, focusing primarily on the problematic use of anthropic reasoning to yield predictions in the
theory.
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Naturally enough, this is exactly what Gibbons, Hawking, and Stewart (GHS hence) do;

they argue that by adapting the canonical Liouville measure familiar from statistical

mechanics to the case of general relativity one does find precisely such a natural

likelihood measure.

Indeed, the classic way to introduce probability in physics is to make use of

the canonical Liouville measure on the hamiltonian phase space representation of

classical dynamical systems.3 This section of the chapter reviews the construction

of measure structures in classical statistical mechanics.4 The “naturalness” of the

various mathematical structures defined on phase space will be important for the

subsequent discussion of justifying likelihood measures, so in reviewing this material I

direct particular attention to how these structures are “picked out” by the geometry

of phase space.

Before diving into the mathematical details, it is worth making a few preliminary

and general remarks on the topic of classical systems, both of particles and of fields.

One specifies a classical physical theory or model of a physical system, minimally,

by its space of (dynamically) possible “histories” or “motions.”5 One usually thinks

of a classical physical system as having instantaneous states, where each state is

individuated by its (idealized) observable consequences, and of a continuous temporal

sequence of such states as constituting a history. In many cases of physical interest

3Probability also enters physics in the analysis of measurement errors and also in a distinct way
in quantum mechanics (Galavotti 2001). All of these ways of introducing probability find their way
into cosmology, but the kinds of measures relevant here are introduced in analogy to the introduction
of probability measures in classical statistical mechanics.

4The following presentation of hamiltonian dynamics makes abundant use of the formalism of
symplectic geometry (Abraham and Marsden 1978; Arnold 1989; Souriau 1997). A nice presentation
of classical dynamics in the symplectic approach can be found in the philosophical literature in
(Butterfield 2007). A less technical, but clear and accurate, discussion of the main elements can be
found in (Belot 2003).

5See also (Curiel 2014) for a discussion of such “abstract classical systems” in further detail.
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the possible states are independent of time and can be associated with the possible

histories such that there is a bijection between the space of states and the space of

histories. I will call the space of histories the “covariant phase space”. The “phase

space” familiar from hamiltonian particle mechanics is actually the space of possible

states, not the covariant phase space/space of histories. Nevertheless, in hamiltonian

mechanics one has precisely such a one-to-one map onto the set of possible histories, so

one may treat the phase space/space of states as the full covariant phase space/space

of histories.

To introduce probability into a classical physical theory one supplies the

(covariant) phase space with the structure of a probability space by specifying the

measurable sets (which must form a σ-algebra) and defining a probability measure

on them. One would of course like to have some justifiable way to do this. Classical

theories are often represented mathematically using differentiable manifolds; such

theories inherit measurable sets from the coordinate charts used to define their

manifolds.6 Classical theories can be usefully formulated on fiber bundles (which are,

of course, differentiable manifolds), the geometry of which can be used to determine a

natural measure in certain cases (for example when the phase space of the system is a

cotangent bundle). In some cases such a measure is naturally a probability measure.

Thus, in the best case the geometry of the classical theory furnishes one with all

the tools one needs to construct a probability space—without making any additional

choices.

There are however many steps where this natural construction of a probability

measure can break down. My approach in the remainder of this section is to exhibit the

6To wit, for an n-dimensional manifold, by pulling back the Lebesgue-measurable sets on Rn to
the n-dimensional manifold via the coordinate map of the charts.
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basic prototype for the construction of a natural probability measure, viz. the measures

of classical statistical mechanics, and then to show how this can be generalized to

classical field theories like GTR. As the relativistic spacetimes of GTR do not have

a finite number of degrees of freedom, their configuration spaces are therefore not

finite-dimensional manifolds. The appropriate analog to the cotangent bundle for

classical field theories is a different geometrical object, the dual jet bundle. I provide

some cursory details on the analogous “multisymplectic” approach to classical field

theories (which relies on dual jet bundles rather than cotangent bundles) to give a fuller

perspective on the appropriate notion of phase space in GTR. However cosmologists

generally focus attention on the simpler FRW spacetimes, which have a finite number

of degrees of freedom, in order to avoid the greater complications introduced by

systems with an infinity of degrees of freedom. Nevertheless it is important to mention

the geometry of field theories since the limitations of such approaches become clearer

in this more general theoretical setting (a setting which would be necessary to model

the full space of cosmologies permitted by GTR).

3.2.1 Measure in Classical Particle and Statistical Mechanics

I consider first the implementation of classical (deterministic) particle mechanics

in the hamiltonian framework. For a system (of particles) with n degrees of freedom

(n finite), let the configuration space Q of the system of particles be a connected

n-dimensional differentiable manifold, each point of which specifies the spatial location

(in Euclidean 3-space) of the collection of particles.7 In hamiltonian mechanics the

7An n-dimensional differentiable manifold M (with n ≥ 1) is a non-empty set M , and a maximal
set C of compatible n-charts which cover M and possess the Hausdorff property (Malament 2012,
2). I take having a topologically connected configuration space to be part of what it means to be a
physical system.
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2n-dimensional cotangent bundle T ∗Q of Q is called the phase space—it is, again,

the space of states.8 The hamiltonian phase space is a classical system’s state space

for a time-independent hamiltonian function. I will call points (covectors) in this

phase space “microstates” of the system (in contrast to “macrostates” which will be

introduced below).

The cotangent bundle T ∗Q, being a fiber bundle, has a (surjective) “canonical”

projection map π : T ∗Q→ Q. This map is defined such that, for any covector αq in

T ∗qQ, αq maps to q, where T ∗qQ is the cotangent space at point q in Q—in other words

π projects any covector αq in a point q’s cotangent space down to that point. One

also says that T ∗qQ is the fiber over point q in base manifold Q, since T ∗qQ = π−1(q),

where π−1(q) is the inverse image set of q.9

The map π gives rise to a well-defined pushforward map π∗ : T (T ∗Q)→ TQ

(sometimes called the differential dπ) onto the tangent bundle of Q.10 This map also

picks out a special one-form θ on phase space sometimes called the “tautological”

one-form. It is constructed as follows. Consider the maps θαq : Tαq(T
∗Q)→ R defined

by

θαq = αq ◦ π∗|Tαq (T ∗Q). (3.2)

Clearly these are linear maps on the tangent spaces Tαq(T
∗Q) (i.e. are covectors in

T ∗αq(T
∗Q)), since any element αq of the cotangent bundle T ∗Q is a covector, i.e. a

8For example, a classical system ofN particles moving without external constraints in 3-dimensional
Euclidean space would thus have 3N degrees of freedom and a 6N -dimensional phase space.

9The fibers are isomorphic to one another in a fiber bundle. Thus one usually sees a “typical fiber”
specified in the definition of a fiber bundle, to which all the fibers of points in the base manifold are
isomorphic.

10The push-forward of a tangent vector X in T (T ∗Q), i.e. (π∗X), is defined to be

π∗(X)(f) = X(π∗(f)) = X(f ◦ π), (3.1)

where f is a real-valued function on Q.
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linear map αq : TqQ→ R. Thus the maps θαq are elements of the cotangent bundle

of phase space T ∗(T ∗Q). The tautological one-form θ is then defined as a section

of T ∗(T ∗Q) over T ∗Q, namely the “canonical” map θ : T ∗Q → T ∗(T ∗Q) defined by

θ(αq) = θαq .

The cotangent bundle T ∗Q possesses a natural symplectic structure ω, i.e. a

closed, non-degenerate two-form, obtained from the tautological one-form θ, namely

by taking the exterior derivative of the tautological one-form on T ∗Q; in symbols

ω = −dθ. So merely by specifying the configuration space Q of a classical system

one straightforwardly obtains a natural symplectic manifold (T ∗Q,ω). The physical

significance of this symplectic manifold depends on the specification of an appropriate

function—the hamiltonian—on that manifold, which justifies considering the cotangent

bundle of configuration space as the system’s phase space.11

The constructions just presented are admittedly rather abstract, so it may please

the reader to see these objects represented in more familiar coordinate expressions.

Any covector αq in the cotangent space T ∗qQ of point q in Q (and therefore in T ∗Q)

may be labeled by the “canonically conjugate” local coordinates (qi, pi), i = 1 . . . n,

where the qi are the configuration space (base) coordinates of point q and the pi are

the fiber coordinates determined by expressing αq in the covector basis defined by

11The terminology used to track the “naturalness” of various structures defined along the way to
the symplectic manifold (T ∗Q,ω) is unfortunately multifarious and is used in inconsistent ways in
practice. There are reasons for the various conventional choices among “tautological”, “canonical”,
and “natural”, but the fact that the meaning of these terms varies by context makes it difficult
to evaluate whether some mathematical structure’s use in a physical application is justified on the
grounds of it being “picked out” as special without explicitly showing that this is the case. The intent
of presenting the construction explicitly is to demonstrate that each structure is indeed “picked out”
in a similar way and uniquely once a configuration space is chosen.
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exterior derivatives of the base coordinates:12

αq =
n∑
i=1

pidq
i. (3.3)

In these local coordinates, the tautological one-form θ at αq is also expressed as

θ(q,p) =
n∑
i=1

pidq
i. (3.4)

The symplectic structure ω is given in the canonical coordinates by taking the exterior

derivative of the tautological one-form:

ω(q,p) =
n∑
i=1

dqi ∧ dpi. (3.5)

With ω in hand, the sense in which coordinates qi and pi are canonically conjugate

may be made clear. Namely, canonical coordinates are those coordinates that satisfy

ω(∂qi , ∂pj) = δji ; ω(∂qi , ∂qj) = 0; ω(∂pi , ∂pj) = 0. (3.6)

These relations may be expressed in terms of the usual Poisson bracket algebra of

functions on phase space. Given two functions f, g on the cotangent bundle, their

12This is guaranteed by Darboux’s theorem. In case the abuse of notation is confusing, the following
hopefully should clarify matters. The ith coordinate map on open subset U of Q for coordinate
chart (ϕ,U) is denoted qi : U → R, i = 1 . . . n. This map is obtained by composing the coordinate
projection qi : Rn → R, given by qi(q1, . . . qi, . . . qn) = qi, on the coordinate chart ϕ : U → Rn, i.e.
qi(q) = (qi ◦ ϕ)(q), for q in U . The coordinate qi, a real number, is equal to qi(q). The exterior
derivatives of these maps, written dqi, provide a basis for the cotangent spaces T ∗

qQ of all points q in
U . Any one-form αq in T ∗

qQ can be expressed as a linear combination in this basis, with coefficients
pi. Thus, each element α of T ∗Q is uniquely specified by the coordinates pi and qi, where we define
another map qi : T ∗Q→ R by qi = qi(αq) = (qi ◦ π)(αq).
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Poisson bracket {f, g} is

{f, g} = ω(Xf , Xg), (3.7)

where Xf (and similarly Xg) is the unique vector fields determined by

ω(Xf , ·) = df. (3.8)

The familiar “canonical commutation relations” for the canonical coordinates can then

be written using Poisson brackets:

{qi, pj} = δji ; {qi, qj} = 0; {pi, pj} = 0. (3.9)

Having detailed the naturally symplectic geometry of the cotangent bundle,

I now turn to the derivation of the natural measure on phase space, the Liouville

measure. (I henceforth refer to the cotangent bundle T ∗Q as the phase space Γ for

brevity and in anticipation of the action of the hamiltonian dynamics justifying this

terminology.) One obtains the canonical (Liouville) volume form dΩ associated with Γ

by taking the top exterior product of ω (normalized so that the second equality holds

for canonical coordinates (qi, pi)):

dΩ =
(−1)n(n−1)/2

n!
∧n ω = dnq dnp. (3.10)

This volume form induces a measure µ, the Liouville measure, on measurable subsets
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U (in the Lebesgue sense) of Γ:13

U 7→
∫
U

dΩ. (3.11)

One thereby obtains the natural measure space (Γ,L, µ), where L is the set of

(Lebesgue) measurable subsets of Γ, given only a choice of the configuration space Q.

Since the Liouville measure is σ-finite, a probability measure may be defined

that is “equivalent” to it, where the sense of equivalence is absolute continuity: the

two measures assign measure zero to the same sets of L. Let ρ : Γ → R+ be a

non-vanishing map such that
∫

Γ
ρ dΩ = 1. Define probability measure µρ such that

for all U in L

U 7→
∫
U

ρ dΩ. (3.12)

Then one has the probability space (Γ,L, µρ), where all one has done is “weighted” the

Liouville measure in a way that makes the total measure one, viz. by the probability

distribution ρ. If the Liouville measure µ on Γ is finite, then there is a canonical

ρ, namely a constant function that normalizes the total measure of Γ to one, i.e.

ρ = 1/
∫

Γ
dΩ. If the measure µ is not finite however, then clearly there is no canonical

map ρ that makes µρ into a probability measure. One has to make some further choice

of a specific ρ.

Probability measures find one of their most important physical applications in

classical statistical mechanics. In the usual Gibbsian approach to statistical mechanics

one says that physical states (“statistical states”) of the system are probability

13One might also call this a “Lebesgue measure” on Γ. The measurable subsets U are “Lebesgue
measurable sets” in the following sense: for all charts ϕ : O → R2n on Γ, ϕ[U ∩ O] is a Lebesgue
measurable set in the usual sense. Since in general there is no canonical pull-back of the Lebesgue
measure to Γ, however, it is only in this sense that a measure on a manifold is a Lebesgue measure.
Note that when the phase space is R2n, the Liouville measure just is the Lebesgue measure.
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measures associated with the phase space Γ, rather than the points of phase space (as

in classical particle mechanics).14 (Standard classical mechanics can even be recovered

in this framework by generalizing it slightly, namely by allowing “Dirac measures”

as statistical states, i.e. Dirac delta functions centered on a classical microphysical

state.) Similarly, in the Boltzmannian picture of statistical mechanics one in effect

uses probability measures to represent macroscopic states of the system, which states

characterize the system in addition to the system’s possessed microstate. In either case

we can make a distinction between microstates (phase space points) and macrostates

(probability measures associated with phase space).

For both particle mechanics and statistical mechanics we need a means of

describing the time evolution of states, so the next topic is the hamiltonian dynamics

of classical systems. Classical dynamics on phase space is implemented by the

hamiltonian, a function on phase space H : Γ → R. Since ω gives an isomorphism

between the tangent space TαqΓ and cotangent space T ∗αqΓ at every point αq in phase

space (Butterfield 2007, 11), there is a correspondence between one-forms and vector

fields on Γ. Thus there is a correspondence between the differential form dH and

a unique vector field XH , which is called the time evolution or hamiltonian vector

field:15

dH = ω(·, XH). (3.13)

The hamiltonian vector field XH generates a local phase flow along the integral

curves of XH . This hamiltonian flow is a one-parameter group of symplectomorphisms

14This more geometrical point of view on statistical mechanics is presented lucidly in (Souriau
1997, ch. 4) and (Agricola and Friedrich 2002, ch. 8), among other places.

15This is the fundamental equation of motion (“Hamilton’s equation”) for a classical dynamical
system in geometrical terms. The non-degeneracy of ω insures that there is a unique vector field XH

associated with the hamiltonian H. The anti-symmetry of ω insures the “conservation of energy,”
since dH = ω(XH , XH) = 0. Since ω is closed, it too is preserved under time evolution.
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(symplectic structure-preserving maps) {φtH : U → φtH [U ]}t∈I , where U is an open

subset of Γ, I is an open interval of R containing 0, and φtH(αq) = φH(t, αq) = γ(t)

for integral curve γ : I → Γ of XH with initial value αq. A choice of H on a phase

space Γ thereby defines a (local) dynamical system (I, U, φH).16 That the hamiltonian

flow is a one-parameter group of symplectomorphisms and not just a one-parameter

group of diffeomorphisms of Γ may be seen by taking the Lie derivative along the

hamiltonian vector field generating the phase flow, written £XH . The Lie derivative

of the symplectic form ω is given by Cartan’s formula. Using the fact that ω and dH

are closed, we have

£XHω = dω(XH , ·) + d(ω(XH , ·)) = 0. (3.14)

Thus the symplectic form is preserved under local phase flows.17 It follows immediately

that the Liouville measure is invariant under local phase flows as well, a fact which is

known as Liouville’s theorem.18

In canonical coordinates the hamiltonian vector field is

XH =
n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
. (3.16)

Using this equation applied to the coordinate maps qi, pi along XH ’s integral curves

16When the hamiltonian vector field is complete, i.e. the domain of t is the complete real line, then
it generates a one-parameter group of symplectomorphisms of the entire phase space Γ.

17Note also that the hamiltonian itself is preserved under local phase flows:

£XH
H = dω(XH , XH) = 0. (3.15)

18Poincaré’s Recurrence Theorem is easily proved thence, insofar as Liouville’s theorem holds for
the entire phase space.
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γ, with γ parameterized by time t, yields

q̇i =
d

dt
(qi ◦ γ)(t) = XH(qi) =

n∑
i=1

(
∂H

∂pj

∂qi

∂qj
− ∂H

∂qj
∂qi

∂pj

)
=
∂H

∂pi
, (3.17)

and

ṗi =
d

dt
(pi ◦ γ)(t) = XH(pi) =

n∑
i=1

(
∂H

∂pj

∂pi
∂qj
− ∂H

∂qj
∂pi
∂pj

)
= −∂H

∂qi
, (3.18)

which are of course the familiar form of Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
(3.19)

In classical mechanics one is interested in the evolution of points in phase space,

i.e. microstates. The hamiltonian formalism above implements this evolution via the

hamiltonian function H’s phase flow as just described. In statistical mechanics one

is correspondingly interested in the evolution of probability distributions in phase

space, i.e. macrostates. The hamiltonian formalism can be applied straightforwardly

to this case as well, using the group action of the hamiltonian flow on the statistical

state. The statistical state is a probability measure µρ which is defined, again, on the

measurable sets U as follows:

U 7→
∫
U

ρ dΩ. (3.20)

This probability distribution is not necessarily invariant under the hamiltonian flow

φtH , since the probability distribution ρ is not necessarily so invariant. The time
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dependence of ρ is obtained by taking the Poisson bracket of ρ with H:

{ρ,H} = XH dρ = XH(ρ) =
d

dt
(ρ ◦ γ)(t), (3.21)

where γ is the integral curve of XH , parameterized by t, that contains the point at

which the Poisson bracket is being evaluated. Writing the right-hand side of (21) as ρ̇,

we have that the time dependence of the probability distribution is given by Liouville’s

equation:

ρ̇ = {ρ,H}. (3.22)

Clearly, if the Poisson bracket of H with ρ is zero, then the measure µρ is invariant,

i.e. ρ ◦ φ−tH = ρ; in this case µρ is said to be a state of statistical equilibrium.

3.2.2 Covariant and Canonical Classical Field Theory

The foregoing demonstrates how probability and measure can be introduced in

a fully natural way using the geometry of classical physical systems (when represented

as hamiltonian systems). This approach requires that the system have a finite number

of degrees of freedom, since the manifolds used have finite dimension. Many physical

systems are however described by an infinity of degrees of freedom, in particular

those described by classical field theories, among which GTR is one especially notable

example for my purposes.19 The geometry of classical field theories requires a somewhat

different and more complicated approach, which I survey briefly here for its relevance

to assessing the application of probability to cosmology.

A field theory describes physical fields and their evolution on the background

19The existence of constraints on phase space, as one finds in GTR, complicates matters further. I
defer discussion of GTR as a constrained hamiltonian system (as a gauge theory) until 4.4.
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of spacetime (Giachetta et al. 2009). The notion of a configuration space for a field

theory is naturally formulated in terms of fiber bundles, which in the special case of a

field theory are called field bundles. A field bundle is a map F → E → B, where F is

the typical fiber (the space of field values), E is the field bundle proper (a bundle of

fields over spacetime), and B is the base manifold (spacetime). The second map is

a projection π from the field bundle to the base manifold. What makes the bundle

F → E → B a fiber bundle is the existence of a local trivialization Z: a bundle with

projection map π is said to possess a local trivialization if, for each point p in B, there

exists a neighborhood U of p such that there exists a map ζ : π−1[U ]→ U × F , where

π−1[U ] is the set of elements of E which project to points in U and, for all p in U ,

ζ(π−1(p)) = (p, f). The collection of maps ζ is called a local trivialization (Isham

1999). It is in this sense that a fiber bundle is said to have the structure of a trivial

bundle, viz. F → B × F → B, locally, and that π projects from a field value at a

spacetime point to the spacetime point where that field value is realized.

A field configuration is a section B → E of the bundle, and therefore the

configuration space, which will be denoted E , is naturally construed to be the space of

sections of the field bundle. This space, i.e. E , is clearly infinite-dimensional. Taking

this space as the system’s configuration space and implementing the field dynamics on

it is the standard approach to field theories, called the “canonical” approach. Yet for

relativistic spacetimes covariance must be broken in this approach in order to describe

the field dynamics.20 An alternative approach, the “covariant” approach, takes E as

the system’s covariant configuration space, which in cases of physical interest will be

finite-dimensional.21

20The standard developments of the lagrangian and hamiltonian formulations of GTR follow this
canonical approach. See, for example, (Wald 1984, Appendix E).

21“There are two major approaches to the symplectic description of classical fields: the covariant
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Some simple cases may help clarify the idea of formulating field theories as

fiber bundles. Take, for example, a (real) scalar field theory on Minkowski spacetime,

i.e. the four-dimensional manifold R4 equipped with the Minkowski metric η. Since

the field takes a value at each spacetime point, and the value of the field is a (real)

number, the field bundle is the trivial fiber bundle R → R4 × R → R4, i.e. the

trivial bundle with projection map π(x, φ(x)) = x for x in R4 and φ(x) a real number.

Sections φ of this bundle are real-valued functions on R4, and C∞(R4 ×R) is the

(infinite-dimensional) configuration space. Similarly, the field bundle of a vector field

theory on spacetime R4 is the tangent bundle TR4, sections of which are vector fields

on R4.

I previously described the configuration space of a system of classical particles

with n degrees of freedom, n finite, somewhat differently, namely as an n-dimensional

manifold Q. Consider the special case where the system has no external constraints.

The degrees of freedom of each particle are then just spatial degrees of freedom—each

particle is located somewhere in Euclidean space. For a system of N particles, the

configuration space Q is simply the manifold R3N . It turns out that such a system

of classical particles can be represented as a field theory too. The base manifold is

not spacetime, as in the previous examples, but just R (which represents time).22

The “field” bundle for this “field” theory is the trivial bundle R × Q → R (with

(Hamilton-Poincaré-Cartan) formalism and the instantaneous (or 3+1) framework. In the latter
approach dynamics is described in terms of the infinite-dimensional space of fields at a given instant
of time, whereas in the former dynamics is phrased in the context of the finite-dimensional space of
fields at a given event in spacetime. Each formalism has its own advantages and goes hand-in-hand
with the other, but the covariant approach...is generally regarded as the more fundamental” (Gotay
1991, 205). (Gotay et al. 2004) is a good source on the covariant formalism and for further references.

22If spacetime were the base manifold, the “fiber” would essentially be the set {0, 1}, i.e. represent
whether the particle is there or not. But this set obviously cannot be made into a differentiable
manifold. Apparently Newton himself conceived of representing particle theory as something like a
field theory—see, for example, (Redhead 1982, 60) and (Stein 1970).
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projection onto the first term). The instantaneous “field” configurations are particle

configurations in Q, and sections of the field bundle are system histories (sets of

particle trajectories), yielding a field configuration space C∞(R×Q).

With the notion of a field bundle on the table, we can now ask if it is possible to

derive a natural measure given some field bundle E. One might immediately think to

take the cotangent bundle T ∗E of E, which will, as before, have a natural symplectic

structure ω. Indeed, in the case of classical particle mechanics (reformulated as a field

theory as in the previous paragraph), this is perfectly sensible—T ∗E = T ∗R× T ∗Q

for E = R × Q—since the dynamical equations of particle mechanics are ordinary

differential equations.23

The dynamical equations of general field theories are partial differential equa-

tions, however, and so the “natural symplectic structure” ω has no manifest physical

significance. One may however generalize the symplectic approach of classical particle

mechanics into a “multisymplectic” approach built on the technical apparatus of jet

bundles (Gotay et al. 2004; Giachetta et al. 2009) in order to gain geometric insight

into the physics of fields. In this approach the field theory analog of the tangent

bundle TE, on which one formulates lagrangian particle mechanics, is the (first) jet

bundle J1E; the field theory analog of the cotangent bundle T ∗E is the (first) dual

jet bundle J1E∗; the field theory analog of the symplectic 2-form ω is the canonical

(n+ 2)-form, where n+ 1 is the dimension of B for field bundle E → B.

Since the formalism of jet bundles and multisymplectic manifolds (which is the

pair composed of the dual jet bundle and the canonical (n + 2) form) is somewhat

technically intricate and unfamiliar in the philosophical literature, I will not discuss

23In this case dynamics is implemented on the “extended phase space” formulation of classical
mechanics (Arnold 1989, ch. 9), which may be reduced to the treatment given above for time-
independent hamiltonians.
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its details further; in any case, doing so would not add anything essential to the

present discussion. This formalism has in any case emerged in recent decades as the

appropriate mathematical grounding for lagrangian field theory and covariant field

theory in the hamiltonian formulation, with much of the interest stimulated by interest

in GTR. As it turns out, though, GTR is not the easiest classical theory to formulate

in multisymplectic terms. Many theories of interest can be so formulated, especially

when one only requires the first jet bundle.

A few important conclusions can now be drawn from the foregoing discussion.

The most salient is that the procedure for defining a natural measure from the previous

section does not work in general with field theories formulated as fiber bundles over

spacetime. If one follows the canonical approach, i.e. takes the configuration space

to be E , then the phase space T ∗E is infinite-dimensional and it is not so clear what

one could mean by the infinitary “top exterior product” of the symplectic structure

ω.24 Relatedly, and more significantly, it is a well-known theorem that there is no

analog to the Lebesgue measure on an infinite dimensional (Banach) space.25 This

alone scuppers any hope of using the Liouville measure approach for finite-dimensional

systems in the infinite-dimensional case.

If one instead follows the covariant approach, i.e. takes the configuration space

to be E, then the phase space JkE∗ at least is finite-dimensional and comes equipped

with a “natural” multi-symplectic form ω.26 But one cannot in general use the

24“In the finite-dimensional case, one can get the conserved canonical (Liouville) measure by taking
the top exterior product ∧nω of the conserved symplectic form ω. But in the infinite-dimensional
case this does not make sense” (Schiffrin and Wald 2012, 1).

25Thus, for example, the path measures written for Feynman path integrals are not Lebesgue
measures nor rigorously defined; rather they are short-hand for rigorously defined finite-dimensional
approximations (Cartier and DeWitt-Morette 2006).

26Authors take various approaches to defining multisymplectic spaces. See, for example, (Gotay
et al. 2004; Giachetta et al. 2009) and references therein. The differences do not matter for the basic
point being made here.



148

multi-symplectic form to define a volume form simply by taking exterior powers,

since the dimension of the phase space is not in general divisible by the degree of

the multisymplectic form.27 This is certainly not to say that some notion of volume

cannot be devised, but one requires additional structure beyond what one gets for

free by formulating the theory symplectically. In short, the upshot of this subsection

is that the well-worn strategy presented in the previous subsection is not so obviously

available for general field theories. Serious mathematical work is needed to extend it

to the infinite-dimensional case, if it is even possible.

3.3 The Justification and Interpretation of Statis-

tical Mechanical Probabilities

With the formal groundwork laid, I now discuss the justification and interpre-

tation of statistical mechanical probabilities. I will be using the term “interpretation”

in a way that differs somewhat from the usual notion of interpretation discussed

by philosophers of probability. I do so because a restricted sense of interpretation

will be sufficient for assessing the application of probability in cosmology. I distin-

guish this sense of interpretation from the usual one hence by referring to the latter

(non-prejudicially) as “so-called interpretation.” Since my appropriation of the term

“interpretation” will be somewhat unfamiliar to philosophers, I will explain and justify

it immediately below. After that, I use this notion of interpretation as a way to

cleanly distinguish three versions of statistical mechanics that differ with respect to

27Let E → B be a fiber bundle, with the dimension of B being n+ 1. Then the bundle’s canonical
multisymplectic form ω is an (n+ 2)-form. The dimension of E, and hence the dimension of JkE∗,
depends on the kind of field. Only when the dimension of JkE∗ is divisible by (n+ 2) would one be
able to take exterior products of the form to derive a volume form.
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the interpretation (in my sense) of probabilities in the theory, two of which I suggest

are related to the Gibbsian and Boltzmannian approaches to statistical mechanics

found in the philosophical literature. Finally I briefly discuss the justification of

probability measures in statistical mechanics and the notion of typicality.

3.3.1 Kinds of Interpretation

The so-called interpretation of statistical mechanical probabilities has received

considerable attention by philosophers, as evidenced by a number of recent lengthy book

treatments and featuring prominently in recent reviews (von Plato 1994; Guttmann

1999; Uffink 2007; Frigg 2008b; Myrvold 2016). Much of the recent work has involved

taking some so-called interpretation of probability “off the shelf,” so to speak, and

seeing how it fits with some approach to statistical mechanical (Clark 2001; Lavis

2001; van Lith 2001; Emch 2005; Winsberg 2008).28 On the whole, the conclusions

of these various studies have not been encouraging. Certainly some accounts of

probability receive more attention than others, yet the debate continues and there

remains a distinct lack of real consensus on the physical, metaphysical, and conceptual

significance of statistical mechanical probabilities.

One might therefore wonder whether probability in statistical mechanics needs

some such “interpretation” at all.29 Probability is of course a common target of inter-

pretive rumination, as is evident from the quantity of work on so-called interpretations

of probability. Indeed there seems to be a widespread concern that probability in

28These well-known off-the-shelf interpretations, e.g. the logical interpretation, the propensity
interpretation, the frequency interpretation, etc., are cataloged and described in numerous books, e.g.
(Gillies 2000; Galavotti 2005; Mellor 2005).

29I take the cue from Curiel (2009), who questions whether GTR needs an interpretation, as alleged
in, e.g. (Belot 1996).
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particular is a philosophically problematic concept, and a “philosophical interpreta-

tion” is necessary to solve its problems. For example, Guttmann, in his book about

interpreting probability in statistical mechanics, seems to appropriate this general

concern about probability and carry it over directly to statistical mechanics:

As long as we do not have a good interpretation of our probabilistic
concepts or at least a justification of the probabilistic arguments that
appear in statistical mechanics, we have no way of understanding why
certain types of events are considered improbable.(Guttmann 1999, 3)

So, clearly, Guttman is at least of the opinion that probability in statistical mechanics

does need an interpretation, and that the needed interpretation would be crucial for

understanding how probability figures in the theory. This is probably the consensus

position in the philosophy of statistical mechanics.

Yet it seems to me that such concerns do not wear their object so clearly

on their sleeves, especially when couched in terms of the rather subjective concept

of “understanding.” What understanding do we lack? What ill would a so-called

interpretation cure? And just what distinguishes probability from other theoretical

concepts in this regard anyway? Do Guttman’s worries apply to any other theoretical

concept? Do particles, for example, need an interpretation in classical particle

mechanics? It seems so, since (pace Guttman)

as long as we do not have a good interpretation of our particulate concepts
or at least a justification of the particulate arguments that appear in
particle mechanics, we have no way of understanding why certain types of
events are considered particle-like;

or (perhaps better)

as long as we do not have a good interpretation of our symplectic concepts
or at least a justification of the symplectic arguments that appear in
analytic mechanics, we have no way of understanding why certain types of
processes are considered symplectomorphisms.



151

No doubt a million philosophical projects may be launched by anxieties such as these!

Granting, however, that these worries do suggest explanatory projects of some

kind, one might wonder what the nature of these projects is meant to be. The term

“explanation” is surely multifarious in its meanings, so there are likely many plausible

ways of characterizing the nature of these projects. Curiel (2009) suggests a handful:

One way, he suggests, is establishing a new, more fundamental theoretical basis that

explains the appearance of the relevant concept in the “higher level” theory—what

Curiel calls a “metalinguistic” interpretation. Another, similar way, is to exhibit a

more fundamental metaphysical or conceptual basis for the employment of the concept

(which would also fall under Curiel’s metalinguistic category of interpretations).

This latter approach is, I think, probably the one Guttman and others who voice

such concerns have in mind, since they understand the project as one of giving an

“interpretation of probability,” where these interpretations are understood to be the

products of conceptual analysis.30

If interpreting probability in statistical mechanics (taken in the sense of con-

ceptual analysis or otherwise) is truly a worthy project, then it should at least be clear

enough what an interpretation entails. Von Plato suggests some reasonable desiderata:

An interpretation of probability should give meaning to [probabilities].
It should tell us what they can be used for. It should tell us what
the things, events or whatever, are, to which probability numbers are
attached. Most importantly, an interpretation should tell us how we arrive
at these probability numbers. What is the particular way of determining
probabilities in a given kind of application? (von Plato 1989, 427)

30As Hájek explains in the introduction to his encyclopedia article on the topic,

“Interpreting probability” is a commonly used but misleading characterization of a
worthy enterprise. The so-called ‘interpretations of probability” would be better called
“analyses of various concepts of probability,” and “interpreting probability” is the task
of providing such analyses.” (Hájek 2012)
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These desiderata (save the first one) are sufficiently accounted for, I claim, when one

does not attempt to characterize probability as such and in general, but from the

point of view of the theory where that concept is employed, in which case probability

is at some level just a “theoretical concept” (Sklar 1979; Sober 2010). This kind of

interpretation therefore does play an important role in physical theory by providing

the “concrete interpretation” of a theory (Curiel 2009, 46), i.e. the specification of the

conditions of use of theoretical concepts.31,32

As a simple example of giving a concrete interpretation, consider particle

mechanics, described in some detail above in §3.2. The description of a classical

system, when represented on phase space Γ, is specified completely by a trajectory

in phase space, γ : I ⊂ R → Γ. We assume all of the physical degrees of freedom

are included in the phase space description, so that any observable O is a real-valued

function on phase space: O : Γ → R. The trajectory γ is determined by the

hamiltonian H and an initial condition γ0 = γ(0) in Γ, i.e. a complete description of

a classical system is (Γ, H, γ0) (including structures implicit in the given structures,

such as the symplectic form ω and observables on Γ).33 Given the collection of objects

(Γ, H, γ0) one obtains a complete description of the classical system—a curve in phase

31As such, interpretive principles are of a piece with such things as coordinative definitions,
correspondence rules, bridge laws, etc. Curiel (2009, 46) explains that one can essentially learn the
details of such an interpretation from good textbooks on the subject. As a good example of making
such principles explicit, see the interpretive principles of general relativity given in (Malament 2012,
120-1).

32Curiel maintains that there are also other senses of interpretation which lend themselves to
potentially fruitful interpretive projects as well (Curiel 2009, 46). For example, one might wish to
extend the semantics of a theory to incorporate a concept which one suspects of having physical
significance in the theory (determinism, locality, etc.). One may also find that the essential use of a
concept, one whose interpretation is not sufficiently fixed in the interpretive principles of the theory,
to derive the empirical content of some theory suggests that the theory is incomplete in a way that
requires further interpretive work.’

33Cf. the definition of a relativistic spacetime as (M, g) in (Malament 2012, 119), where the
connection ∇ is implicit in the definition, since there is a unique connection compatible with a given
spacetime metric g on the manifold M .
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space, from which all relevant physical observables can be determined. There is

nothing in the collection that is not doing some “physical work” in producing curves in

phase space. Also, since all of the physics one wishes to describe as classical particles

is describable in terms of such curves in phase space, it follows that all of the physics

is describable in terms of the mathematics given by (Γ, H, γ0).34

Any interpretive principles for classical particle mechanics must therefore

include statements associating physical degrees of freedom with dimensions of phase

space (e.g. spatial positions and momenta), persisting physical objects (e.g. particles)

with curves in phase space, and measurable kinetic and potential energies with a

hamiltonian function. The justification of each of these interpretive principles can be

said to derive from the empirical success of assuming them as part of the hamiltonian

description of classical systems. But the foundation of this description is based on

assumptions such as that space and time are Euclidean, that physical objects are

approximately point-like particles which possess intrinsic masses, that due to the

symmetries of space and time these systems have certain conserved quantities, etc.

(Arnold 1989, Ch. 1). Note, however, that the justification of a particular system’s

possession of a certain hamiltonian and its initial conditions, however, is not something

that these assumptions can provide; instead one must rely on heuristics and empirical

investigation to determine them with any definiteness.

Are any of these principles or justifications inadequate, in a way that is

“problematic” for classical particle mechanics? Perhaps they are, in the sense of

“scientific problem” discussed in chapter 2, viz. “explanatory opportunities”, but then

34Thus this framework is an exemplar of interpretive practice in physics according to Geroch: “One
takes care at the beginning to be sure that ‘the mathematics is appropriate for the physics,’ that is,
that everything in the mathematics has physical meaning and that all of the physics one wishes to
talk about is describable in terms of the mathematics. In particular, one tries to avoid structural
features...which have no physical significance” (Geroch 1985, 86).
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they do not represent problems for classical particle mechanics. They rather represent

problems in relating classical particle mechanics to other theories, whether current or

future, or, in analogy to the so-called interpretations of probability, with finding a

way of establishing accord with use of broader linguistic usage. In the case of classical

mechanics the association of its theoretical concepts to familiar concepts is perhaps

more straightforward than in theories which describe phenomena more distant from

everyday experience, but even there one may find distinctly “philosophical” problems

to raise.35

I set aside such philosophical problems in the following, especially those concern-

ing the provision of a metaphysical or conceptual basis for some theoretical concept,

for my concern is focused more narrowly. By an interpretation of statistical mechanics

I mean a concrete interpretation of the formal framework of statistical mechanics.

This section has merely served notice of my diversion from standard usage of the term

“interpretation” in the philosophical literature, and provided some reasons why it is

not necessary to furnish a so-called interpretation in order to engage with important

interpretational issues in statistical mechanics and cosmology.

3.3.2 Interpretation of Statistical Mechanics

Although measures play a central role in statistical mechanics (3.2), the details

of their intended interpretation vary between various versions of statistical mechanics.

In the standard, “Gibbsian,” approach probability distributions ρ on phase space are

usually said to represent (in some sense) the statistical state of an ensemble of systems.

35As just one example, the notion that space is a continuum leads one to model it as a differential
manifold, charts of which map into the real line, which itself is a remarkably complicated mathematical
construction, whether constructed axiomatically, e.g. by Dedekind cuts, by Cauchy sequences, or by
what have you; clearly little of this is inherent in a folk concept of space.
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In the alternative “Boltzmannian” approaches probability distributions are intended

to represent (in some sense) the dynamical evolution of single, concrete systems. There

is however considerable room for interpretive maneuvering within each approach, so

this distinction is hardly definitional. What is common to the two approaches is that

one selects a system’s probability measure by choosing some probability distribution

to weight the Liouville measure; one of the most salient concrete differences between

the two approaches centers on how this is done, and what is considered stochastic

about the theory.

I make use of the discussion of the theory’s formal framework from above (3.2),

i.e. a statistical system is a dynamical probability space represented by its phase space

Γ, a hamiltonian function H on Γ, and a probability distribution ρ defined on Γ. The

associated probability space of the observables Oλ (indexed by λ in some indexing

set Λ) is generated by inheriting measurable sets and probabilities from the phase

space Γ, Lebesgue measurable sets L of Γ, and probability distribution ρ. Rather

than define a probability space for each observable, it is simpler (although equivalent)

to treat the observables directly as random variables on phase space (considered as

a probability space). So, for example, the Gibbs entropy OS ≡ S of the system is

the random variable defined by x 7→ − ln ρ(x) for x ∈ Γ; its expectation value is then

computed as follows:36

〈S〉ρ = −
∫

Γ

ρ ln ρ dΩ; (3.23)

similarly, the energy of the system is given by treating the hamiltonian H as a random

36Typical statistical mechanical observables are used to compute expectation values of thermo-
dynamic properties like temperature and pressure, and variances which give details of fluctuation
phenomena (Wallace 2015)
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variable on phase space, the expectation value of which is given by

〈H〉ρ =

∫
Γ

ρH dΩ. (3.24)

A natural interpretation of these expectation values is that statistical mechanical

observables are themselves stochastic. The state of the system, ρ, evolves deterministi-

cally, but the properties of the system (entropy, energy, etc. ) are not fully determined

by the state of the system. The state only determines the probabilities of certain

observable outcomes. I call this the “stochastic observables” interpretation.

Since phase space possesses canonical coordinate charts x = (qi, pi), one might

think that these can be treated as random variables on phase space as well, in effect

treating the microstate x as a random variable:

〈x〉ρ =

∫
Γ

ρ x dΩ. (3.25)

Clearly, if one assumes that the hamiltonian state evolution is deterministic (as I

have been doing), then one lands in a contradiction by thinking of the microstate

as a random variable—even if one accepts that the microstate of the system is not

empirically accessible. True, the statistics of observables are “as if” the microstate is

a random variable, so one may reject the underlying determinism of the microstates.

This “stochastic microstates” or “stochastic dynamics” interpretation is a well-known

approach to non-equilbrium statistical mechanics (Uffink 2007, 141ff.). If one were to

give up a fixed, for-all-time deterministic dynamics, then the microstate alone may be

treated stochastically, in which case the observables would be appropriately treated

as in classical mechanics, viz. as functions on phase space, rather than as random
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variables. Alternatively, one could capture the idea by defining a set of phase flows

and a probability measure over these, in which case one would describe this more

literally as a stochastic dynamics. Interestingly, the two viewpoints, i.e. stochastic

observables with deterministic dynamics and deterministic observables with stochastic

dynamics, are, it seems, complementary and empirically equivalent (this is easiest

to see in the equilibrium case), and in some ways analogous to the Schrödinger and

Heisenberg pictures in quantum mechanics.

There is a third view possible—really a variation on the last one. In the Boltz-

mannian approach, discussed further below, one does accept deterministic evolution

of microstates, but avoids the aforementioned contradiction by treating the initial

microstate as the outcome of a single probabilistic trial, which evolves subsequently

according to the hamiltonian dynamics (Loewer 2001). I call this the “stochastic

initial conditions” interpretation.

Thus I claim that there are three ways of interpreting probability which come

from locating the stochasticity of statistical mechanics in one of the elements of the

formal framework of statistical mechanics: the observables, the initial state, or the

dynamics (cf. (Maudlin 2007b)). In the next chapter I assess the prospects of applying

each of these interpretations in cosmology.

3.3.3 Gibbsian Statistical Mechanics

In the Gibbsian approach to statistical mechanics a state in statistical equilib-

rium is a probability distribution ρ whose Poisson bracket with the hamiltonian is zero.

Call such a ρ an equilibrium ensemble.37 According to the popular Gibbsian story,

37Among the standard equilibrium ensembles used in statistical mechanics are the microcanonical
ensemble, the canonical ensemble, and the grand canonical ensemble which were originally defined by
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one computes statistical data concerning the thermodynamic properties of an “infinite

ensemble of systems” using an appropriate equilibrium ensemble which evolves along

the hamiltonian flow on phase space. In other words, the probability distribution

ρ’s evolution along the flow is the dynamical evolution of an infinite ensemble of

identically prepared systems. This is, on the face of it, an odd story, one that is

strictly speaking false since statistical mechanics is not applied to such an infinite

ensemble of systems, but to single systems—or so goes a well known objection to this

“interpretation” of Gibbsian statistical mechanics (Sklar 1993, 159).

The historically motivated association of a microstate to each statistical me-

chanical system is, however, completely dispensable in a concrete interpretation of

statistical mechanics that locates the stochasticity of the theory in the observables

(McCoy 2016).38 The main reason why is that microstates play no indispensable role

in generating the empirical content of statistical mechanics, as is evident from the

formulas for expectation values, etc. In fact, it is sufficient in general to consider a

system to have a single state for all practical and theoretical purposes—in statistical

mechanics this state is a probability measure (macrostate); in classical mechanics is a

phase space point (microstate). The state of some system as described by one theory

may of course be relatable to the state of the same system as described in another

theory, but this is an inter-theoretical relationship, not an intra-theoretical relation.

Thus, insofar as the Gibbsian approach to statistical mechanics depends on

identifying the probability distribution ρ as the state of a statistical mechanical system,

Gibbs (1902). There is perhaps a question why these particular ensembles should be used (Davey
2009), but statistical mechanics alone does not furnish the resources to answer this question.

38This is a point with which Gibbs himself might have agreed. As Uffink (2007, 992) notes,
“Gibbs avoids specific hypotheses about the microscopic constitution of [general mechanical systems].”
Fine-grained details about the microphysics of any particular system require a physical theory that
describes these details.
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I claim the appropriate interpretation of the Gibbsian approach is the stochastic

observables one. The notion that a probability measure is the state of a statistical

mechanical system is in fact frequently stated, e.g. (Souriau 1997, 271). What the

interpretational significance of such statements is taken to be, however, varies widely

among those who state them, or else is often simply not considered. As physical

states (in the context of a particular theory) are complete representations of the

physical content of a system at a time, it is not a large conceptual leap to assume

that statistical mechanical systems are represented by a probability measure of some

kind—the empirical, macroscopic content of the theory is, after all, statistical in

nature.39 To demand that physical states be completely determined amounts to a

purely metaphysical demand that the unobservable features of statistical mechanical

systems be deterministic.

Surely there are further interpretational questions one can ask given the different

possible senses of interpretation; nevertheless, identifying the stochasticity of Gibbsian

statistical mechanics in this way does answer some important interpretational questions

we may have about the theory. For example, recalling von Plato’s desiderata, we

can easily answer the question as to what statistical mechanical probabilities are

probabilities of in this interpretation—they are probabilities of observable outcomes

(or at least represent relative frequencies of observable outcomes). The state provides

a complete accounting of all of these probabilities. As described in the formalism

above the probabilities of statistical mechanical observables “attach” to subsets of

39I note in passing that, since physical systems are usually represented by a state and a set of
observables, there are two kinds of “indeterminism” which can be manifested in physics: (1) dynamical
indeterminism, where the state evolution is not unique, and (2) observable indeterminateness, where
the values of observables are not uniquely determined by the state. Classical mechanics, normally
conceived, does not exhibit (1) or (2) (although if one conceives of classical mechanics broadly enough,
then there are examples of (1) (Earman 1986; Norton 2008a). Gibbsian statistical mechanics, in my
view, exhibits indeterminism of type (2), as does quantum mechanics.
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phase space, but there is an alternative characterization, already mentioned, which

may be more desirable: for each observable O : Γ→ R there is a probability space

with R as the space of outcomes, LO = O[L] are the Lebesgue measurable sets, and

µO = µρ ◦ O(L)−1 is the probability measure. As I previously noted however, rather

than go about defining a probability space for each observable, it is simpler to treat Γ

as a probability space and the observables as random variables on this space. However

one describes it, though, the interpretation is available in principle.40

To sum up, I have argued that the concrete interpretation of Gibbsian statistical

mechanics, as presented in this section and based on the framework of §3.2, holds that

a classical statistical system is specified (completely) by a set of statistical mechanical

observables (random variables on Γ) and the evolution history of a statistical state,

ρ : I ⊂ R→ P for some time interval I, where P is the set of probability measures on

Γ. In the case of equilibrium statistical mechanics this evolution history is determined

completely by the action of the hamiltonian H on P and an initial probability

distribution ρ0 = ρ(0) in P .41 Thus probability measures play a direct role in the

description of the physical system, namely by specifying the state of the system

(explicitly), which encodes all of the possible observational content of the system; like

the classical case, the specification of the system depends on the specification of an

40When interpreted this way statistical mechanical probabilities are appealingly similar to quantum
mechanical probabilities as well, i.e. they represent some inherent randomness in the empirical
behavior of systems that can be described as statistical mechanical systems. What is the origin of
this randomness? It seems that that is a question which statistical mechanics cannot answer on
its own, since it assumes it in the theoretical description of systems that fall under its scope. The
Boltzmannian presumes an answer by interpreting a (classical) microphysics into the theory and
requiring special initial conditions. I am inclined to argue that the fuller answer is that the origin
of the randomness is quantum mechanical in nature. The issue is not so important in the present
context, so I do not discuss it further.

41As said, in equilibrium statistical mechanics it is assumed that ρ is an equilibrium ensemble; in
non-equilibrium statistical mechanics ρ is time-dependent. Since in the latter case one is interested
in a system’s approach to equilibrium, hamiltonian dynamics is inapplicable (Liouville’s theorem
forbids it). This is sometimes thought to be an objection to the Gibbsian view (Sklar 1993, 55).
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initial condition, which in the statistical case is a statistical state. Everything in the

chosen framework has clear physical meaning (in terms of the empirical content of the

theory), and the kinds of physical phenomena one expects to describe with statistical

mechanics are describable in this framework. In other words, we have an adequate

concrete interpretation of (Gibbsian) statistical mechanics.

3.3.4 Boltzmannian Statistical Mechanics

Many philosophers (and some physicists) criticize the Gibbsian approach to

statistical mechanics for being conceptually misguided, lacking explanatory power,

and not being an adequate reduction base for thermodynamics, among many other

complaints.42 These complaints do not necessarily concern the interpretation of the

theory in the sense of interpretation I outlined above, as nearly everyone concedes that

the Gibbsian approach is effective in practice and free of confusion in application.43

Boltzmannians instead apparently suggest the possibility of further fruitful work

developing the statistical mechanical theoretical framework in ways that improve

(conceptually or metaphysically anyway) upon the Gibbsian approach. My aim here is

to outline the justification and the concrete interpretation of Boltzmannian statistical

mechanics, which differs in some respects from Gibbsian statistical mechanics.

In the alternative approaches to statistical mechanics, those which fall under

the Boltzmannian banner, probability is ostensibly implemented in distinct ways, with

various apparent “interpretations” associated to these implementations. The stated

42“In fact, the Gibbs entropy is not even an entity of the right sort: It is a function of a probability
distribution, i.e., of an ensemble of systems, and not a function on phase space, a function of the
actual state of an individual system, the behavior of which the Second Law—and macrophysics in
general—is supposed to describe” (Goldstein 2001, 47). See also (Sklar 1993; Callender 1999, 2001;
Albert 2000; Frigg 2008b).

43Boltzmannians included: “Let me happily concede that for the practice of science, Gibbsian SM
is usually to be preferred” (Callender 1999).
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goal of many of the proponents of these approaches is to give a microphysical basis for

thermodynamics, including the second law of thermodynamics.44 Thermodynamics is

understood to deliver the dynamics of macroscopic thermodynamic states Mi (i in

some index set I of the macrostates), where these macrostates are elements of the

macroscopic thermodynamic state space—each macrostate has a unique set of values

for thermodynamic observables, such as temperature, pressure, entropy, etc., these

observables understood as maps of the form O : {Mi} → R.

The Boltzmannian version of statistical mechanics assumes that systems not

only possess thermodynamic macrostates, but that they also possess classical mechan-

ical microstates. In order to forge a connection between micro- and macrostates, one

“super-imposes” the set of macro-states on the relevant statistical mechanical phase

space, since it is assumed that microstates in phase space are in a many-one relation

to macrostates. More precisely, there exists a surjective map M : Γ→ {Mi}) which

partitions phase space into macroregions (i.e. macrostates in the terminology of §3.2)

corresponding to the thermodynamic macrostates,45 i.e. ∪iMi = Γ, and Mi ∩Mj = ∅

for all i, j. Thus, metaphysically speaking, statistical mechanical systems possess a

macrostate in virtue of having a microstate.

It is acknowledged that statistical mechanics does not make determinate

predictions for single systems, so it is generally unjustified to assume that a system

exists in a particular known microstate.46 Treating statistical mechanical systems

44“The problem for foundations of statistical mechanics arises from the fact that not only do we
have a thermodynamic description of our (say) sample of gas and its behaviour, but we also have a
mechanical theory describing the behaviour of the entities that constitute the gas” (Callender 2001,
540).

45I denote macroregions and macrostates by the same symbol, since there exists an obvious bijection
between them.

46Although some textbooks do not explicitly mention the term “microstate”, those that do often
point out this fundamental epistemic assumption: “...even though the energy is fixed, the system
could exist in any one of a number of different microscopic states consistent with that energy. If we
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as if they possess an unknown microstate is however adequately justified in normal

applications of the theory, despite the microstate being empirically inaccessible, because

the statistical predictions of identically prepared systems, i.e. systems prepared in

identical macrostates, are in accord with the assumed random distribution of initial

microstates. In short, the Boltzmannian assumption of microstates is empirically

consistent—as of course it had better be.

It is seldom acknowledged by Boltzmannians that, since microstates evolve

deterministically and have determinate observable outcomes, the only possible ontic

interpretation of probability—an interpretation in which probabilities are taken “to

be part of the furniture of the world” (Frigg 2008b, 115)—is in determining the initial

microstate as the outcome of a single random trial (in other words as a random variable

on phase space) which subsequent to this trial evolves deterministically according to

the hamiltonian dynamics.47 Of course one cannot ever know in which microstate

the system actually is (since it is empirically inaccessible), so one must treat the

system’s observables as random variables on phase space with probabilities in accord

with what is empirically accessible, namely the macrostate of the system. Thus in the

Boltzmannian view statistical mechanical probabilities represent ontic randomness only

in the sense that for each system there is a random trial which determines a system’s

particular initial microstate; hence the statistics of all (macroscopic) observables must

be understood epistemically, viz. as concerning uncertainty over the system’s actual

only know the total energy, we have no way of distinguishing one microscopic state from another”
(Reichl 1998, 341); “A macroscopic physical object contains so many molecules that no one can hope
to find its dynamical state by observation” (Penrose 1970, 2); “The definition requires one to know
the initial positions and velocities of all n particles and to follow these motions for all time. Since n
is typically of the order of 1024, this is of course impossible” (Ellis 2006, 65).

47Loewer is clear about the point however: “While there are chances different from 0 and 1 for
possible initial conditions the chances of any event A after the initial time will either be 1 or 0 since
A’s occurrence or non-occurrence will be entailed by the initial state and the deterministic laws”
(Loewer 2001, 618). See also (Volchan 2007).
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microstate as it evolves deterministically in phase space. These latter, epistemic

probabilities are derivatively objective, of course, because they are inherited from the

objective probability of the system possessing a particular microstate.48

To discuss probability and its interpretation in Boltzmannian statistical mechan-

ics further, it is necessary to make a detour through its connection to thermodynamics

via the second law of thermodynamics (Callender 2011b), the central concept of

which is of course entropy. The Boltzmann entropy SB of a macrostate is a map

SB : {Mi} → R given by Mi 7→ log[µ(Mi)], where µ is the Liouville measure on phase

space. Since the Boltzmann entropy is defined for macrostates, one may also naturally

define the entropy of a microstate by using the map M , viz. by defining the map

SB : Γ→ R such that x 7→ SB ◦M(x). The time-dependent entropy of a system with

initial microstate x in Γ is then determined by the map (x, t) 7→ SB ◦M ◦φtH(x): evolve

the phase point x along the hamiltonian flow by time t, project the image point into

the space of macrostates, and calculate the entropy. Since we have defined all three

of these pieces of the time-dependent entropy, we can now examine Boltzmannian

versions of the second law which attempt to specify the behavior of these maps.

Boltzmann recognized that classical particle dynamics alone could not give rise

to the second law, and therefore demoted the law from a universal generalization (as

it is in thermodynamics) to a generalization that holds with high probability. One

might therefore intuit the second law in statistical mechanical form as Earman does:

Suppose that at t = 0 the Boltzmann entropy SB(0) of the system is low;
then for some appropriate t > 0, it is highly probable that SB(t) > SB(0).
(Earman 2006, 403)

48Frigg and Hoefer claim that “there is nothing chancy about a system’s initial condition” (Frigg
and Hoefer 2013). If they really believe this as Boltzmannians, then statistical mechanical probabilities
can only be epistemic without qualification, since the only way for probabilities to represent physical
randomness in the Boltzmannian view is as chancy initial conditions. Cf. also (Frigg 2008a).
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This statement of Boltzmann’s law is intolerably vague (and possibly without much

content), but qualitatively, at least, it represents the aim of a statistical mechanical

version of the second law. Still there is a significant difficulty in interpreting “highly

probable” in this statement, since what is probable obviously depends on the partic-

ular probability distribution chosen for the system and there are various ways that

have been proposed for doing this. Frigg (2010), in particular, describes two main

implementations of probability in Boltzmannian statistical mechanics, what he calls

the “proportionality postulate” and the “statistical postulate.”

The proportionality postulate, according to Frigg, states that the probability

of a macrostate Mi is proportional to the measure of that macrostate: Mi 7→
∫
Mi

dΩ;

clearly the postulate is equivalent to the specification of a probability distribution

µρ on phase space where ρ is the uniform probability distribution on Γi. Obviously

one must assume that the system’s phase space is such that a uniform probability

distribution exists and that the Liouville measure is finite, otherwise the proportionality

postulate makes no sense. It is also evident that the proportionality postulate privileges

the macrostates. It is hoped that the physics of statistical mechanics is relatively

insensitive to these precise choices, since the choice of macrostates is not given in any

natural way. Following Frigg, call these macroprobabilities. One is meant to interpret

these probabilities as probabilities of the system having a particular macrostate, i.e. a

particular set of macroproperties.

The statistical postulate takes what appears to be a slightly different approach.

It stipulates that the probability of a measurable subset Aj of Mi is equal to the ratio

of the measures of Aj to Mi:

pr(Aj) =
µ(Aj)

µ(Mi)
. (3.26)
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Following Frigg, call these probabilities microprobabilities. They are meant to be

understood as probabilities that the system’s microstate, given a macrostate, is within

the subset Aj ; in other words, they are just conditional probabilities.49 The statistical

postulate is equivalent to specifying a set of probability measures µMi
on phase space,

where measurable subsets U are mapped to
∫
U
ρ dΩ, with ρ = 1 if x ∈ Mi and

ρ = 0 otherwise. In other words, these probability measures are uniform probability

distributions on the various macrostates—in other words these are just certain choices

of statistical states.

Although these are two ways to introduce probability onto phase space which

are in some ways different from the Gibbsian approach, they do not, as stated, yet have

the resources to recover the second law, for they both are mere probabilities of states

whereas the second law requires transitions between states to be highly probable—the

second law is a dynamical condition, and these are non-dynamical probabilities.

For the proportionality postulate to ground the second law it must be the

case that the macroprobabilities defined by the postulate represent the dynamical

behavior of systems (in some sense). If particles randomly popped around phase space

at discrete time intervals, then it would be correct to say that the equilibrium state,

i.e. the macrostate Meq for which the Boltzmann entropy is largest and therefore the

macrostate whose corresponding phase space volume is largest, is the most probable

state, but it would not be correct to say that the second law of thermodynamics held

(although it would be possible to satisfy Earman’s statement of Boltzmann’s law in this

49These conditional probabilities are well-defined when µ is finite, but not in general. That they
are conditional probabilities is evident in this case that µ is finite, since

pr(Aj |Mi) = pr(Aj ∩Mi)/pr(Mi) = pr(Aj)/pr(Mi). (3.27)
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way). Since hamiltonian dynamics gives rise to continuous trajectories, there must be a

way to interpret the behavior of particles moving on these trajectories as being related

to phase space volume. A popular suggestion is to interpret the macroprobabilities as

time-averages of particle trajectories; if the dynamics governing the system is such

that particles spend an amount of time in macroregions proportional to the measure of

those macroregions, then the system is called ergodic and the interpretation is secured.

But in this case the macroprobabilities are serving merely as proxies for dynamical

facts. Statistical systems are however under no obligation to be ergodic (Sklar 1973;

Earman and Rédei 1996; van Lith 2001), so there could not be such an interpretive

principle linking phase space volumes and macroprobabilities for statistical mechanics

in general.

Consider next the subsets Ai of macrostates Mi which include just those

microstates that satisfy the second law (in some presumably more specific version).

For the statistical postulate to ground the second law it must be the case that the

Ais have high conditional probabilities pr(Ai|Mi), i.e. most microstates in macrostate

Mi satisfy the second law (“are thermodynamic”). That is, let Ai (at time t = 0)

be the measurable subset of Mi that evolves into a higher entropy macrostate after

some “appropriate” time t: Ai = {x ∈Mi|SB(x, t) ≥ SB(x, 0)}. Then the second law

holds in the statistical version if pr(Aj) is sufficiently high (for Earman’s “appropriate”

times t).

As is well known, the reversibility objection shows that this probability can-

not be sufficiently high to secure the second law, so the popular move, following

Boltzmann’s suggestion, is to conditionalize this probability on the supposed (nec-

essary?) fact that the system started (at time tp) in a low entropy initial state
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Mp, i.e. the relevant probability for assessing the satisfaction of the second law is

pr(Ai|Mi ∩ φtpH [Mp]).
50 This is the microprobability of the system to be in a mi-

crostate which will evolve into a state of equal or higher entropy in time t, but which

began at time 0 in a state of low entropy. It is then claimed that the probability

pr(Ai|Mi ∩ φtpH [Mp]) >> pr(Aci |Mi ∩ φtpH [Mp]), where Aci is the complement of Ai. In

short, the second law is claimed to be recovered from this proposal.

This approach to justifying the second law unfortunately suffers from a great

deal of vagueness, in particular in the specification of the appropriate times t and

the subsets Ai, this vagueness in turn infecting the final conclusion. It is lessened

somewhat by asserting that the claim is insensitive to choice of t, but to substantiate

the claim that the set Ai (conditionalized on the past state) is much larger than its

complement (conditionalized on the past state) one must show that the hamiltonian

dynamics makes it so. Thus to assert that the second law holds in general requires

showing that the hamiltonians of diverse physical systems that exhibit thermodynamic

behavior, perhaps even including the observable universe itself, insure the probable

increase of entropy.51

This detour through attempts to justify Boltzmann’s law has introduced the

low entropy initial condition assumption that is thought to ground it—it plays an

important role in chapter 4’s discussion of cosmological probabilities. It has also

50There is some pressure to assume that the universe as a whole started in such a low entropy
state, frequently called nowadays the “past state” (Albert 2000). The proposal that the universe
began in such a low entropy state is called the “past hypothesis.” In this scenario the statistical
mechanical probabilities are cosmological probabilities. I object to the universalizing of statistical
mechanics in this way in chapter 4. The past hypothesis is much discussed in the literature, including
the following critiques: (Leeds 2003; Winsberg 2004, 2008; Parker 2005; Earman 2006; Wallace
forthcoming; Weslake 2014).

51Werndl and Frigg (2015) usefully re-conceive this approach, and provide necessary and sufficient
conditions for when a specific statistical mechanical system (in the Boltzmann approach), as described
in the next paragraph, satisfies the second law.
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usefully introduced the elements of a Boltzmannian statistical mechanical system, i.e.

such a system is represented by its phase space Γ, a partition of phase space Z = {Mi},

a hamiltonian H, and an initial macrostate Mp ∈ Z. Macroscopic observables are

functions of the macrostates, although these can be represented as functions on

phase space via the map M : Γ → Z from phase space to the partition of phase

space, i.e. macroscopic observables are also functions on phase space like microscopic

observables (the latter of which are generally empirically inaccessible). Roughly

speaking, the observables can be computed by representing the initial macrostate as

a uniform probability distribution on that macrostate, evolving that distribution in

time, and computing the statistics of observables by taking averages of the observables,

determining variances, etc. as in the Gibbsian approach.52

The probability space formed by the phase space Γ, the Lebesgue measurable

sets L, and the uniform probability measure µM on the macroregion Mp is in part

justified and interpreted in the same way as in the Gibbsian approach. The salient

differences are that in the Boltzmannian case one has a seemingly principled way of

choosing probability measures by way of the choice of macrostates. Also, I believe it

is of some value to point out that in the Boltzmannian case probability pertains to

microstates directly (as a single random trial determining the initial microstate) and

to observables derivatively (epistemically), whereas in the Gibbsian case probability

pertains to observables directly (observable values of a system are given by random

trials) and to microstates derivatively (epistemically, if at all).

52Representing a statistical mechanical system in this way appears to avoid any direct reference
to the statistical postulate, but this is because it is incorporated in the assumption of a uniform
probability distribution on the initial macrostate.
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3.3.5 Justification of Measure

The most used probability distributions in the theory are uniform with respect

to the Liouville measure µ on some subset of phase space (e.g. a macrostate in the

Boltzmannian approach). Whether and why it is justified to apply a uniform probability

distribution on the Liouville measure of phase space in statistical mechanics is an

increasingly debated topic in the foundations of the theory. Some take the justification

of these measures to derive from a prioristic principles like the principle of indifference

or maximum entropy (Jaynes 1957), or the proportionality postulate or statistical

postulate (Albert 2000); others Davey (2008); North (2010); Hemmo and Shenker

(2012, 2015) criticize any a prioristic grounding of specific choices of probability

measure.

It appears to be an empirical fact, at least, that statistical mechanical systems

in equilibrium are well-described by uniform probability distributions, and so there is

at least an empirical justification to use such measures.53 To be sure, other probability

distributions that are similar to the uniform distribution will give approximately

identical predictions, since from empirical frequencies one cannot infer a probability

distribution. Indeed, an equilibrium state in the Gibbsian approach and a uniform

probability distribution on the equilibrium macrostate in the Boltzmannian approach

will give approximately identical predictions, even though they are slightly different

probability distributions (Callender 1999).

Insofar as one considers statistical mechanical states and macrostates as prob-

ability measures, these uniform probability distributions are quite special. Almost

all probability distributions on phase space are not uniform on some subset of phase

53“In our view the fit with the observed relative frequencies is the only compelling argument for
the choice of measure in statistical mechanics” (Hemmo and Shenker 2015, 580).
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space, and certainly there are systems that are appropriately described by these

other probability distributions, e.g. classical mechanical systems have probability

distributions that are “sharply peaked” around a microstate. The existence of such

systems so described is at least one serious argument for why empirical considerations

are necessary to determine which probability measure should be used to represent the

system’s state. Just as there is no a prioristic justification for the choice of a particular

hamiltonian or initial state in classical mechanics, it is likewise dubious that there

would be an a prioristic justification for the choice of a probability distribution in

statistical mechanics.

In any case, there is clearly some empirical element involved in constraining

the possible statistical mechanical probability measures. In the case of Gibbsian

statistical mechanics, this empirical input comes from the choice of ensemble. In the

case of Boltzmannian statistical mechanics, this empirical input (in part) comes in

the choice of Z, the set of macrostates. The a prioristic principles are then meant

to license the specific choice of the uniform probability measure with respect to the

empirical constraints, e.g. the macrostates (in the version of Boltzmannian statistical

mechanic based on a statistical postulate). However the assignment of probabilities

depends importantly on the mechanism or method of randomness (Norton 2010), and

it is not necessarily the case that some given sample space represents the effects of

this mechanism or method uniformly (as Bertrand’s paradox is meant to show for

example).54 Some do and some do not; statistical mechanics itself is not going to tell

54“Probabilistic arguments can be used reliably when one completely understands both the nature
of the underlying dynamics of the system and the source of its ‘randomness’. Thus, for example,
probabilistic arguments are very successful in predicting the (likely) outcomes of a series of coin
tosses. Conversely, probabilistic arguments are notoriously unreliable when one does not understand
the underlying nature of the system and/or the source of its randomness” (Hollands and Wald 2002b,
5).
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us which.55

While it may seem appealing to base a principle on the objective mathematical

naturalness of the uniform probability measure (when it exists), that move alone is

insufficient, since mathematical naturalness does not necessary guarantee physical

significance—not only because of the reason just given, but also because there are any

number of mathematical objects which are natural given some mathematical structure

and yet have no physical significance at all.56 Note that heuristic and pragmatic

considerations may favor choosing the uniform probability distribution rather than a

predictively similar non-uniform one, since in typical cases the observable statistics of a

statistical mechanical system are relatively insensitive to the exact choice of probability

distribution. This gives some freedom of choice, but this choice is motivated by

essentially subjective criteria (Albert 2000, 67) and limited to cases where there is

sufficient empirical justification to use the uniform distribution.

An alternative is to eschew the use of probabilities in statistical mechanics

and rely on something slightly more general to establish claims like the second law: a

typicality measure (Lebowitz 1993b,a; Dürr 2001; Goldstein 2001, 2012; Volchan 2007;

Werndl 2013; Schech 2013; Lazarovici and Reichert 2015). Although some enthusiastic

disciples of Boltzmann claim that typicality is the heart of all foundational matters in

statistical mechanics—as Dürr (2001, 122) remarks, “we have the impression that we

could get rid of randomness altogether if we wished to do so”—full reliance on typical-

ity arguments clearly represents a significant retreat from the quantative successes

of statistical mechanics (Wallace 2015), which depend on probability distributions

55Indeed, it seems quite likely that the probability measures of statistical mechanics could be given
a deeper explanation by representing, e.g. quantum states (Albert 1994, 2000; Hemmo and Shenker
2001; Wallace 2012, 2015; McCoy 2016).

56Further, more detailed arguments along these lines are given by Wilson (2000); Davey (2003).



173

to derive the empirical content of the theory (for example to predict fluctuation

phenomena). Thus, “the explanation though is a weak one, and in itself allows for no

specific predictions about the behavior of a system within a reasonably bounded time

interval” (Pitowsky 2012, 41).57

Nevertheless, “typicality” arguments will be of especial interest here because

cosmologists use similar such arguments as a way of establishing what does and does

not demand explanation in cosmology (recall the quotations at the beginning of §3.2).

The basic schema of a typicality argument (in statistical mechanics) is as follows: if

one can show, using the natural measure on phase space, the Liouville measure, that

some behavior or property is highly likely and its contrary is highly unlikely, then one

can infer that that behavior or property holds; “In other words, typical phase space

points yield the behavior that it was our (or Boltzmann’s) purpose to explain. Thus

we should expect such behavior to be prevail in our universe” (Goldstein 2001, 58).

We will examine several such arguments in the following chapter.

57For further criticisms of the typicality account in statistical mechanics, see (Frigg 2009, 2011;
Frigg and Werndl 2012).



Chapter 4

The Generic Universe

4.1 Introduction

Last chapter’s discussion of the implementation, interpretation, and justification

of likelihoods in statistical mechanics paves the way for the present chapter’s discussion

of the same in the context of cosmology. My main strategy here is to compare the

prospects for implementing, interpreting, and justifying cosmological likelihoods with

those in statistical mechanics. In general I find that the prospects are exceedingly

limited, supporting the claims I made in the conclusion of chapter 2 concerning the

interpretation of the HBB model’s fine-tuning problems as likelihood problems.

Before turning to this task, I think it is worth remarking on an issue that was

left to the side in the previous chapter. That issue is whether the likelihoods allegedly

invoked in cosmological fine-tuning arguments are subjective or objective.

On the one hand, one might expect that an objective way to assess cosmolog-

ical likelihoods is required, i.e. a physically grounded way of defining cosmological

likelihoods. The objective approach appears to be the favored approach of most

174



175

physicists (although they tend not to make a clear distinction between the two kinds

of likelihoods, complicating an assessment of their claims). The most well-known

proposal in this vein is the already-mentioned canonical measure of (Gibbons et al.

1987) (hence the GHS measure).1 One could alternatively use topological methods to

give an objective measure of likelihood as well.2 The basic strategy of these approaches

centers on attributing likelihoods to sets of cosmologies in some relevant space of

possible cosmologies. Then, for example, if spatially flat FRW spacetimes represent a

negligible set of cosmologies and inflating FRW spacetimes are generic cosmologies

(according to some justified measure of cosmological likelihoods), then inflationary

cosmologists would seem to have a basis for making an explanatory argument (a

typicality argument) in favor of inflation.

On the other hand, one might try to give an analysis of fine-tuning based on

some subjective measure of likelihood, i.e. one based on an attribution of rational

degrees of belief. Subjective notions of likelihood are perhaps behind many cosmologists’

intuitions about this case; there are, alas, few places in the literature where more

precise formal methods are used to substantiate these intuitions.3 A more thorough

review of approaches to defining cosmological likelihoods would engage with these

subjective approaches, but I will restrict myself to addressing the more prominent

objective approaches (apart from some comments on the principle of indifference

(4.2.2)). I do so mainly because these subjective measures of likelihood depend,

1The notable papers discussing this approach include (Henneuax 1983; Gibbons et al. 1987;
Hawking and Page 1988; Coule 1995; Gibbons and Turok 2008; Carroll and Tam 2010; Schiffrin and
Wald 2012).

2Hawking (1971) proposes the application of such methods in cosmology. (Isenberg and Marsden
1982) is another well-known example.

3Examples do however exist, such as (Evrard and Coles 1995) and (Kirchner and Ellis 2003).
Evrard (1996) and Evrard and Coles (1995) argue for a dissolution of the flatness problem using a
subjective approach to cosmological parameters. Their approach is criticized by Coule (1996), who
favors the canonical measure.
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plausibly, on an underlying objective measure of likelihood in order to be relevant to

physical problems.4

For reasons of simplicity, familiarity, and relevance to the discussions in the

literature, I will concentrate mostly on probabilistic measures of likelihood.5 Recall

that an application of probability theory standardly requires three things: a set X of

possible outcomes (the “sample space”), a σ-algebra F of these possible outcomes (a

collection of subsets that is closed under countable set-theoretic operations), and a

probability measure P that assigns probabilities to elements of F . The probability

spaces which are of interest are those whose sets of possible outcomes are sets of

possible cosmologies. I take as conditions for a cosmological probability space to have

physical significance that the choice of X and P must be justifiable and interpretable

(F can be chosen on pragmatic grounds). They cannot be arbitrarily chosen, and they

must have some demonstrable empirical significance. One would accomplish little, for

example, by stipulating that X is the one element set consisting of our universe, and

P the map which assigns our universe probability one.

The chapter is organized as follows. In §4.2 I address the interpretation and

justification of probability in cosmology, especially by reference to the justification and

interpretation of statistical mechanical probabilities. The main conclusion of this sec-

tion is that implementing cosmological probabilities by analogy to the implementation

of statistical mechanical probabilities, as is done in the most prominent attempts, is

unjustifiable and can only be understood as assigning probabilities of initial conditions.

4(Uffink 2011) is a recent review and defense of the relevance of subjective approaches to probability
in statistical mechanics. See (Albert 2000; Meacham 2010) for some typical criticisms.

5At times I will generalize my arguments to other objective approaches (especially topological
ones), but to maintain a reasonable scope my approach is not systematic. I only remark on other
approaches when the considerations raised for probability measures transparently apply to them as
well, or when they are importantly relevant to some argument I make.
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Although the space of possible cosmologies is by no means simply given to us, it is

reasonable to suppose that the models of GTR give us a reasonable space of physically

possible cosmologies. In §4.3 I investigate the potential for defining a measure for

this space. There is, however, a significant technical obstacle to providing any such

measure, since on any such infinite-dimensional space there is no known well-behaved

probability measure (Curiel 2015). Cosmologists have circumvented this issue by

truncating the degrees of freedom so that the probability space is finite-dimensional.

This is the approach taken to define the GHS measure, which is discussed in the final

section (§4.4) of the chapter. Although the GHS measure is taken to be physically

objective and natural by several authors, there remain several technical problems with

its application to cosmological questions, especially how to correctly account for inho-

mogeneous degrees of freedom and the divergence of the measure (Schiffrin and Wald

2012). I argue in particular that this divergence has been repeatedly misinterpreted

by commentators, and that it does not show that there is no flatness problem as some

authors claim.

4.2 General Problems of Objective Probability Mea-

sures

In the previous chapter I discussed (classical) particle, statistical, and field

theories from a geometrical point of view, in particular showing how measure and

probability measures may be canonically implemented, interpreted, and justified in

these theories. This presentation was far from comprehensive, leaving out, for example,

any discussion of statistical field theory. Nevertheless, the ground has been sufficiently
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laid to discuss general issues in establishing a probability distribution on the space

of possible cosmologies. These general issues concern the choice of an appropriate

reference class of cosmologies to serve as the sample space, and the justification and

interpretation of a specific measure associated with this sample space. This section

investigates these issues with reference to the analogous issues in statistical mechanics.

The basic point to make is obvious: the uniqueness of the universe makes the

application of probability theory to cosmology—insofar as probabilities are assigned

to entire cosmological histories—highly problematic. The uniqueness of the universe

(1.2.2) has long been recognized as a problem for cosmology as a science, however its

significance has often been overstated.6 Thus it is necessary to draw the argument

out in some detail in order to avoid an overly hasty conclusion. In any event, I do

conclude that the problem is indeed real: there is simply no reliable physical content

to be found in the addition of cosmological probabilities to classical, single-universe

cosmology.

4.2.1 The Reference Class Problem

The first issue to face in defining an objective probability (or likelihood) space

in cosmology is deciding on the appropriate reference class. A probability space is,

again, standardly specified by a set X of outcomes, a σ-algebra F of these possible

outcomes, and a probability measure P .7 The problem of deciding the appropriate

6There is a proliferation of papers discussing the topic of cosmology as a science written in the
middle of the 20th century: (Dingle 1955; Munitz 1962; Harré 1962; Davidson 1962). Many of thie
views expressed have been criticized more recently for being overly skeptical towards addressing
the scientific problems arising from the uniqueness of the universe (Kanitscheider 1990; Ellis 2007;
Smeenk 2008, 2013).

7A topological space is specified by a set X and a topology on X, i.e. a collection of subsets of X
(the “open” sets). With a topology on X one can define a suitable notion of “negligible set” in the
topology on X, for example a set whose closure has empty interior. The complements of negligible
sets, “generic sets,” are then sets with properties that are “almost always” possessed by the set X.



179

reference class is determining of which objects X consists.8 Plainly the appropriate

reference class in this case is the set of (physically) possible cosmologies. But what

are the possible cosmologies?

In the §1.2 I motivated the idea that a cosmology is a relativistic spacetime

and a physical model of cosmological phenomena in that spacetime. The reason for

that choice was that at large scales gravity appears to be the most important physical

force, and general relativity is the best, most highly-confirmed theory of gravity that

we have. Trust in our theories is usually thought to underwrite the belief that the

models of that theory are physically possible. For example, taking X as the collection

of models of GTR is justified by our justified belief in the laws and modal structure

of GTR, these together telling us what the nomologically possible models are, and

therefore (on “the most straightforward reading of physical possibility” (Earman 1995,

163)9) what the physically possible models are. Thus, by this argument, one is led to

the view that a cosmological model is a model of general relativity.10

The practice of cosmologists and relativists however does not appear to accord

with this line of thinking. By any measure general relativity is a permissive theory;

any number of seemingly undesirable or pathological spacetimes are possible in general

In this way topology can be used to define a rough notion of likelihood: “almost always” and “almost
never.” Clearly, in this case too one must justify an appropriate reference class X.

8In the end it perhaps does not matter too much precisely what one chooses for X—so long as it is
large enough—since one can always use the probability measure to assign zero probability density to
any subset of spacetimes, in effect counting them as impossible. It may be mathematically convenient
to include some “extra” spacetimes in X for mathematical convenience, simplicity, etc. Nevertheless,
the reference problem will remain, whether in the guise of choosing X or choosing elements of X to
which 0 probability is assigned.

9This straightforward reading of physical possibility is actually spelled out in two ways by Earman
and his collaborators (Earman et al. 2009, 95); for my purposes this reading is simply the identification
of nomological and physical possibility.

10At least on a non-fundamental view of cosmology. In quantum cosmology and quantum gravity one
may consider other spaces of possible cosmologies, but these theories remain empirically unconfirmed
so they are relevant only in those theoretical contexts. General relativity, on the other hand, does
appear to apply to our world.
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relativity. Many authors are for this reason inclined to disallow models from physical

consideration, for example models with closed timelike curves (CTCs).11 Should one

include these spacetimes in X? Should one exclude pathological examples because

they do not strike one as “physically possible?”

It is not my aim to take a stand on these questions here. The only salient

point I wish to make is that in practice cosmologists certainly do exclude certain

models from consideration, thereby presuming some alternative physical modality

to the “straightforward” nomological one.12 Without a doubt, the analytical nature

of this modality is unclear despite its seeming “intuitiveness.” Indeed, models are

often excluded merely because they are “thought” to be “physically impossible” or

“physically unreasonable.” The available justifications for these exclusions tend to

be rather dubious (if given at all), as they do not rely on well-motivated physical

principles or observational grounds (Earman 1987; Manchak 2011).

I note especially, among the assumptions used to exclude certain models from

consideration, the assumption that spatial sections of spacetime are topologically com-

pact (as found in, for example, (Fischer and Marsden 1979; Schiffrin and Wald 2012).).

11Among the more exotic models are the “causally bizarre” Gödel spacetime and Taub-NUT
spacetime which have CTCs. It must be acknowledged, however, that even the most familiar
examples of spacetimes permitted by GTR have fairly unintuitive features: expanding space (Friedman-
Robertson-Walker, de Sitter), spacetime singularities (Schwarzschild, Friedman-Robertson-Walker),
etc. Therefore some distinction between the “undesirable” and the merely “unintuitive” must be
made. Whereas some find CTCs objectionable—“those who think that time essentially involves an
asymmetric ordering of events...are free to reject the physical possibility of a spacetime with CTCs”
(Maudlin 2012, 161)—others encourage a certain degree of epistemic modesty. Manchak (2011), for
example, demonstrates that the existence of observationally indistinguishable spacetimes that may
exhibit many features which one may regard as undesirable. The inclination to disbar spacetimes
with CTCs is sometimes grandiosely characterized as the “cosmic censorship conjecture.” Wald
(1984, 304) states it simply (albeit imprecisely) as “all physically reasonable spacetimes are globally
hyperbolic.” Since globally hyperbolic spacetimes do not have CTCs, it follows that all physically
reasonable spacetimes do not have them either, at least if this version of the cosmic censorship
conjecture is true. (I set aside any discussion of a distinction between “physically reasonable” and
physically possible.” See (Earman 1995, 80) for some commentary.)

12That is, unless one is assuming that the laws are other than the ones we currently have available,
and that such laws preclude the pathological feature excluded in one’s favored physical modality.
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Although compact topologies are mathematically convenient (so that integration on

manifolds converges), there seems to be no obvious argument for the claim that they

alone recommend themselves for physical application. Moreover, proceeding as if they

did is hardly an innocent assumption. It therefore seems that any result that relies on

such a strong assumption must be accepted with considerable caution, especially if

some suggestion that the result appropriately generalizes to other spatial topologies is

absent.13

Nevertheless, some weight of consideration should be reasonably accorded to

practice, such that the possibility of justifying the exclusion of pathological spacetimes

should not be quickly dismissed merely because adequate justifications have not been

given. In short, the reference class problem should not be regarded as solved because

one can easily identify nomological and physical possibility by fiat (or by philosophical

artifice). Thus I am fully in agreement with (Earman et al. 2009, 93), who suggest

that “the status of such judgments is a more interesting issue than philosophers have

generally realized.”

Still, even permitting the kinds of assumptions that exclude pathological

spacetimes (such as global hyperbolicity which rules out CTCs) or mathematically

inconvenient spacetimes (such as those that lack compact spatial sections), one is

still left with a vast collection of cosmological models which will then be considered

physically possible (or reasonable, etc.). If one furthermore arbitrarily restricts

attention to spacetimes with some specific manifold M , as is common in the cosmology

and relativity literature, i.e. to the subcollection of physically possible cosmologies with

13It is of course not the case that compact spatial topologies are necessarily observationally
indistinguishable from non-compact spatial topologies, but for “large” cosmologies distinguishing the
spatial topology of our universe is practically impossible due to observational limitations (Geroch
and Horowitz 1979).
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underlying manifold M and a physically possible metric g on this manifold (Lerner

1973), one generically has an infinite-dimensional space (GTR is a field theory, after

all). Although such a collection will (perhaps) possess some mathematical structure,

the problems with defining a probability measure in particular on such a space are

manifold (see §4.3 for details).

Partly as a consequence of these problems attention has so far been mostly

directed at simple models which have a finite-dimensional state space, e.g. the GHS

measure. This maneuver raises another problem. By what right shall we consider

some probability measure contrived on such a reduced collection to have any physical

significance? Would this measure tell us anything about the likelihoods of the members

of that space? It would seem not. On the one hand, if the collection S of simple models

is taken to be the correct set of physically possible models, then it is difficult to see

how this can be justified on any well-motivated physical principle or on observational

grounds, for how could we know that the correct possibility space is not larger? This is

especially so when one considers the pressure to take seriously the physical import of

nomological possibility and the apparent fact that our universe in fact has a seeming

infinity of spatial degrees of freedom.

If, on the other hand, the collection S (equipped with probability measure µS)

is just some subset of a larger possibility space X with nonzero measure (according

to the larger space’s probability measure µX), then the likelihood of a set of models

Z ⊂ S in the subspace must be a conditional likelihood µS(Z) = µX(Z|S). In other

words, the probability space S must be a conditional probability space of X.14 The

probabilities of the large space X thus put a constraint on the probabilities of the

14Let X be the larger sample space with σ-algebra F and probability measure µX . Suppose S is a
measurable subset of X with non-zero measure according to µX . Then the conditional probability
space S has σ-algebra {S ∩ Z|Z ∈ F} and probability measure µS(S ∩ Z) = µX(Z|S).
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smaller space S, a constraint that a general probability measure associated with the

smaller space is not guaranteed to meet. Formally, the probability assigned to a

collection of models Z ⊂ S must be, on pain of inconsistency,

µS(Z) = µX(Z|S) =
µX(Z ∩ S)

µX(S)
=
µX(Z)

µX(S)
. (4.1)

As a specific and relevant example, consider the subset of models of GTR that

satisfy the strict cosmological principle (CP+). The CP+ constrains the set of models

from general relativity to those that are spatially homogeneous and isotropic, i.e. the

FRW models. First of all, is this assumption admissible as a way of narrowing the

scope of X? Although the FRW models certainly have been observationally successful,

there is certainly no good argument that justifies the CP+ as definitively delimiting

the space of physically possible spacetimes (Beisbart and Jung 2006; Beisbart 2009),

especially since the universe is not strictly speaking homogeneous and isotropic.15

Thus the probabilities that we obtain by making this assumption are plausibly not

unconditional probabilities—the space of physically possible cosmologies is surely

larger. How large? If the space of physically possible cosmologies is the space of

nomically possible spacetimes (according to GTR), then the set of FRW models is

almost certainly negligible.16 It is then hard to see the point of trying to figure out

what the restricted measure on the set of FRW spacetimes is, at least if the motivation

is to derive an objective probability measure.17

15The strict CP (strict homogeneity and isotropy) is obviously false, since our universe is not
homogeneous and isotropic—there are galaxies, planets, people, etc.

16Isenberg and Marsden (1982) show that models with symmetry (like FRW models) are negligible
in the topological sense in the space of vacuum solutions of GTR. It is generally taken that this
result shows that non-symmetric models are generic in GTR. Note that solutions to the Borel-
Kolmogorov paradox show that conditional probabilities are sensible even in the case that the
conditional probability space itself is a negligible set in the larger space.

17The measure µS could however be epistemically useful. Suppose we know our universe is FRW
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4.2.2 Interpretation of Cosmological Probabilities

The discussion of statistical mechanics in §3.3 introduced a few possible ways

to interpret the stochasticity of that theory. I review them briefly first before assessing

their applicability to cosmological probabilities.

Under the first (essentially Gibbsian) interpretation of statistical mechanics

one understands probability measures as system states, i.e. as complete physical de-

scriptions of the system. These states evolve according to some appropriate dynamics

and determine the statistics of observables, the latter of which are treated as random

variables on the state space. If the dynamics is hamiltonian, as it is for equilibrium

systems, then the state evolution is deterministic, but the observables are stochas-

tically indeterminate. A second (essentially Boltzmannian) possible interpretation

of statistical mechanics holds that probability measures represent macrostates, but

these macrostates encode the objective chances of the system beginning in a certain

microstate, which state evolves deterministically (for all systems, equilibrium or non-

equilibrium) according to the hamiltonian dynamics.18 The observables, as in classical

mechanics, are completely determined by the system’s microstate. However it is not

possible to know typical system’s microstates—the system’s macrostate represents

an objective limit on our ability to know in which microstate a statistical mechanical

system is. So the statistical outcomes of observables in this Boltzmannian picture

arise essentially from uncertainty over the system’s initial and actual microstate,

(or more plausibly almost-FRW); in advance of the relevant empirical data, we may want to know
how likely it is that our universe is spatially flat. The appropriate measure to use in this case would
be the restricted measure µX |S . Of course, since we do not know the full measure µX on the space
of physically possible cosmologies (§5), we would have to choose the measure µS on the subspace
carefully, as it is not guaranteed to be consistent with µX (whatever it is).

18“One way to visualise this proposal is to think of the dynamics of the theory as containing one
single stochastic event happening at the initial time, which sets the initial conditions” (Wallace 2014,
204).
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and hence its observable properties. The third possibility in interpreting statistical

mechanics is to understand probability measures as encoding a stochastic dynamics

of microstates (which dynamics may be implemented in various ways) that possess

determinate observable properties. So, in short, one may locate the stochasticity of

statistical mechanics in one of three places: the observables (Gibbsian), the initial

state (Boltzmannian), or the dynamics (stochastic dynamics).19

How do these interpretations apply to cosmological probabilities? Empirical

considerations strongly militate against the first and third versions. Cosmological

observables, e.g. spatial curvature, are apparently not stochastic, for which reason they

are treated as determinate in cosmology. The stochastic observables interpretation only

makes sense if one assumes that the appropriate probability measure is essentially the

trivial one: the probability of our universe is essentially one.20 It also does not seem

sensible to understand the probabilities as concerning stochasticity in the dynamics,

since the dynamics of our universe are quite well-described by the deterministic

dynamics of GTR. There is, in other words, very little reason to think that the

universe is “fluctuating” around the space of possible cosmologies dynamically, and

very little reason to think that its observable properties are either.

So, by elimination, we are left only with the possibility of treating the initial

condition of the universe as stochastic, i.e. as the outcome of a random trial. Probability

measures represent the objective chances of our universe to begin in a particular

(macro-)state. Indeed this is roughly the viewpoint that has suggested itself to many

cosmologists, who compare the situation (sometimes pejoratively) to a blind-folded

19Cf. (Maudlin 2007b; Wallace 2014).
20Since our cosmological data is statistical in nature, it is also possible to treat the probability

measure as something less trivial, but the support for this measure must be quite constrained given
that classical GTR gives highly accurate predictions of observations.
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creator selecting a universe by throwing a dart at the dartboard of possible universes.21

Should one adopt such a view in cosmology? It is on the face of it a coherent

possibility. Although it is arguably tenable in statistical mechanics (where it is

(tacitly) employed in typical Boltzmannian approaches), it is unclear why one would

ever favor this interpretation in cosmology however (Hemmo and Shenker 2012). As

Loewer observes, “one problem is that it does not make sense to talk of the actual

frequency with which various initial conditions of the universe are realised” (Loewer

2001, 615). Obviously, thinking of a single-sample probabilistic scenario in cosmology

is observationally indistinguishable from a deterministic scenario that involves no

probability at all, only an initial state.22 There is at present no theoretical or evidential

reason to suspect that there was a random trial of possible cosmologies at all. If we

were to possess a theory that did suggest such a random start to the universe (perhaps

a theory of quantum gravity would, for example), then we might indeed have sufficient

reason to introduce a probability measure and interpret it in this way.

Therefore, at the present, it seems none of these accounts recommend them-

selves as ways to interpret probability measures in cosmology. Indeed, this problem of

interpretation infects the treatment of the universe itself as a statistical mechanical

system similarly. The only possibility is that the initial conditions of the universe

are random, something we have relatively little reason to believe (except through the

artifice of inductively generalizing from familiar statistical mechanical systems to the

universe at large). Moreover, insofar as probability assignments are determined by the

proportionality postulate, i.e. probabilities are assigned to macrostates (macroproba-

bilities) and not just to microstates conditional on a given initial macrostate (as in the

21Cf. (Penrose 1989b, 444) and (Hollands and Wald 2002a, 2044).
22Werndl (2009, 2011, 2012, forthcoming) discusses the general observational equivalence of

deterministic and indeterministic descriptions of a system in detail.
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past hypothesis), the idea of stochastic initial conditions is even less compelling, since

it is even less clear that macrostates, like the past “low entropy” state of the universe,

are improbable—in other words it is even less plausible that there is a random element

involved in selecting the initial macrostate of the universe. Demands to explain this

improbability of an initial macrostate, as in (Penrose 1989a; Price 2002, 2004), are

based on a highly dubious application and interpretation of probability to cosmology.23

4.2.3 Justification of Cosmological Likelihoods

Finally, let us consider the justification of cosmological likelihoods, and specifi-

cally a probability distribution on some given sample space of cosmologies, assuming

that initial conditions are subject to randomness (since this seems to be the only

possible interpretation). To be sure there are significant technical problems with

supplying such a structure to these possible cosmologies, as I will discuss in §4.3 and

§4.4. Even if these technical problems could be overcome, however, I argue that it is

not possible to justify any particular cosmological probability measure without some

other theory (of quantum gravity or of initial conditions) providing it.24 At best one

has an a prioristic justification of a likelihood measure (such as the Liouville measure)

based on its naturalness.

The first (and admittedly obvious) point is that cosmological likelihoods cannot

23Responses to these demands have accepted their presupposition—that the initial macrostate
of the universe is improbable—and weighed whether and how some explanation could be provided
(2.5.2). It seems to me that one ought to simply reject the presupposition as ill-motivated and
inadequately justified.

24I am therefore in agreement with Schiffrin and Wald (2012, 9), who claim that “the only way to
justify the use of the Liouville measure in cosmology would be to postulate that the initial conditions
of the Universe were chosen at random from a probability distribution given by the Liouville measure.”
Now, what they seem to mean is that the only possible interpretation of the posit is the stochastic
initial conditions interpretation, and that the only “justification” of doing so is as a theoretical posit.
Whether that postulation is justified—they describe it as an “unsupported hypothesis”—is what I
examine in this section.



188

be empirically justified insofar as cosmology concerns a single, unique universe. If we

suppose that probability theory applies to cosmology, then it must be the case that

our universe is the outcome of a single random trial over possible initial conditions.

Cosmological probability measures are therefore vastly underdetermined (at least in

the absence of some trustworthy theory providing one) with no scientifically respectable

way to break the underdetermination. For example, if one tries to make GTR into a

probabilistic theory (Gibbons et al. 1987) by defining a probability distribution over

possible cosmologies, it is clearly the case that any choice of probability measure that

assigns some probability to the cosmological model best representing our universe

is empirically adequate. Note that the adequate probability measures include the

probability distribution that makes our universe “quasi-determined”—assigns the

cosmology representing our universe probability one. If a choice is to be made, it

seems that this is actually the most favorable measure by parsimony, but then one

may as well do away with the fiction of there even being a probability measure at all.

Thus the only possibility of justifying a likelihood measure in cosmology is

non-empirical. Unsurprisingly, then, several prominent cosmologists have reasoned

in accord with epistemic, a priori principles, like the principle of indifference (PI), to

uniform probability distributions (Kofman et al. 2002; Linde 2007). The PI holds

that if there is no salient reason to prefer any other probability distribution, given

some sample space, one should assign a uniform probability density to that space.

Indeed, in practice many authors help themselves to the principle of indifference

without justifying its applicability, both in statistical mechanics and in the context of

cosmological probabilities (3.3.5).

A similar principle is invoked in assigning a uniform probability distribution
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with respect to the Liouville measure. For example, although Gibbons, Hawking, and

Stewart note the problematic nature of the PI—“indeed...it is not at all clear that every

model should be given equal weight if one wishes the measure to provide an inductive

probability” (Gibbons et al. 1987)—they do assume that the probabilities should be

uniform with respect to the Liouville measure (which is not in general a probability

measure). Similarly, Carroll and Tam (2010) explicitly note that the Liouville measure

does not necessarily imply any particular probability measure: “Since the Liouville

measure is the only naturally-defined measure on phase space, we often assume that

it is proportional to the probability in the absence of further information; this is

essentially Laplace’s ‘Principle of Indifference’.” They too go for the uniform mapping,

and provide as precedent the practice of assuming a uniform probability distribution

on the Liouville measure of phase space from statistical mechanics.

In both cases which I mention there is an assumption that the assignment of a

uniform probability distribution is justified in statistical mechanics, and an inference

from the justification of a uniform probability measure in statistical mechanics to

the justification of a uniform probability distribution in cosmology. I suggested in

§3.3.5 that a prioristic principles like the PI are not generally applicable, mainly

because empirical frequencies depend importantly on the nature of a physical system’s

randomness and there is no reason to expect that the source of randomness acts

uniformly on some space of possibilities (here again I am in agreement with (Shackel

2007; Norton 2008b; North 2010)). If this is correct, then the presupposition of the

inference fails. There is also no independent, compelling support for the PI or its

cousins in the specific case of cosmology (here I am in agreement with (McMullin 1993;

Ellis 1999; Earman 2006; Norton 2010; Callender 2010)). In cosmology very little at all



190

is known about the mechanism that brings about the initial conditions of our models

of the universe, and so assigning equal weights to distinct cosmological possibilities

(especially if based merely on a lack of knowledge) is highly dubious, at least on the

face of it, again since it may well be the case that certain initial conditions are in fact

more likely according to the true (presumably quantum) mechanism responsible for

them.

These considerations alone cast considerable doubt on the veridicality of prob-

ability measures. Furthermore, in a reference class of cosmologies with infinite total

measure there is no mathematically natural choice of probability measure and no

uniform probability distribution. In special cases (for example when the total measure

of the space is finite) there may be a canonical choice of probability measure that

is uniform (3.2.1), but as I argued in §4.2.1 one then faces a dilemma: either this

space delimits the full space of possible cosmologies (which would be quite difficult

to justify) or its probabilities must be conditional probabilities in a larger space of

possible cosmologies (which, insofar as this larger space has infinite total measure and

therefore no uniform probability measure (4.3), cannot be then justified by the PI,

naturalness, etc.). Therefore even if a justification of uniformity, by way of mathemat-

ical naturalness, the PI, etc., were possible in statistical mechanics, it would not carry

over to the case of cosmological models. Thus the claim that the uniform probability

distribution in cosmology is justified because of its success in justifying the uniform

probability distribution in statistical mechanics is highly doubtful, however one thinks

it is justified in statistical mechanics.

Even if there is no unique probability distribution that can be justified, it

may nevertheless be the case that there is a natural measure on the space of possible
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cosmologies. This is the case with the GHS measure. As I pointed out in §3.3.5,

however, mathematical naturalness does not guarantee physical significance. It is a

distinct step to interpret this natural measure as a likelihood measure, one which

requires some justification. After all, measures play various roles in a physical theory,

especially as a standard for integration along trajectories. There is no reason to

assume that a measure must play the role of a likelihood measure in any theory that

comes equipped with one.

One may try to infer from the putative success of typicality arguments in

statistical mechanics to their applicability in cosmology. Yet, if typicality arguments

are successful in statistical mechanics, then they are because they depend importantly

on the precise structure of phase space. One generally has empirical evidence that

suggests the correct phase space for a system in statistical mechanics. One does not

have this in the case of cosmology (because of the reference class problem). Thus

what is typical in cosmology depends very much on what set of cosmologies one is

considering—and there is no guarantee that what is typical in one context is typical

in another.

4.3 Likelihood in the Solution Space of General

Relativity

In the remaining two sections of this chapter I set aside the conceptual problems

which I have raised in the previous section, and consider the prospects of simply

rigorously defining some notion of likelihood on the space of cosmologies, without

worrying about whether it makes much sense to do so. First I deal with the case
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where the space of possible universes is taken to be the solution space of GTR; second

I deal with the case where the solution space is restricted to be finite dimensional by

specific modeling assumptions, focusing on the GHS measure on minisuperspace.

Recall that a relativistic spacetime M is a 4-manifold M that is Hausdorff,

connected, and paracompact, and a Lorentzian metric g, is a rank 2 covariant metric

tensor field associated with M which has Lorentz signature (1, 3).25 I begin my

discussion by pointing out a series of obvious facts that are however seldom if ever

mentioned explicitly in discussions of the space of relativistic spacetimes. First, this

space of possible cosmologies ranges over the set of topological 4-manifolds; moreover,

for each topological 4-manifold, there is also a range of smoothness structures on

these 4-manifolds; finally, for each smooth manifold, there is a (“kinematic”) range

of Lorentzian metrics, which range is restricted by the EFE to yield the possible

(“dynamical”) set of cosmologies.

There is presently relatively little that we can say about the structure of this

large and complicated set. With specific modeling assumptions, this set can be reduced

to something much more tractable. For example, in the case of FRW spacetimes, one

chooses a particular solution to the EFE which restricts the possible 4-manifolds to

those that can be expressed as twisted products I ×a Σ (a is the scale factor), where I

is an open timelike interval in the Lorentzian manifold R1,1 and Σ is a homogeneous

and isotropic three-dimensional Riemannian manifold (McCabe 2004, 530). Since

one can fully classify these 3-manifolds (Wolf 2010), one can enumerate the different

possible FRW spacetime manifolds (McCabe 2004, 561). With such an enumeration

one could (at least conceivably) specify the likelihoods of each kind of product of

25Left tacit in defining a spacetime this way is the Levi-Civita derivative operator ∇, the unique
covariant derivative operator compatible with the metric g.
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3-manifolds and 1-manifolds. This is the topic of §4.4.

If one were to want a complete likelihood measure on the full space of possible

cosmologies (relativistic spacetimes), one would require a means of classifying 4-

manifolds. The classification of 4-manifolds is a notoriously difficult problem (and

distinctly so in comparison to other dimensions, where classification is established by

geometrization or surgery) (Freedman and Quinn 1990; Donaldson and Kronheimer

1997). It is therefore unclear what structure can be put on this set of manifolds which

would make it amenable to attributions of likelihood. The discovery of so-called exotic

smoothness structures on the topological manifold R4, i.e. smoothness structures that

are homeomorphic to R4 but not diffeomorphic to the standard Euclidean smoothness

structure on R4, are a particularly notable and surprising underdetermination of

spacetime models, one that is typically overlooked in cosmological work, where the

Euclidean smoothness structure is automatically presumed on R4.26

Is this underdetermination of spacetime topology or smoothness structure an

epistemic threat? Manchak (2009, 2011) argues that we do face a substantial epistemic

predicament in cosmology because of this kind of underdetermination, in particular

because global properties of spacetime, such as inextendibility and hole-freeness, are

underdetermined by the theoretical possibility of observationally indistinguishable

spacetimes which do or do not possess these properties (Glymour 1977; Malament

1977)—even assuming robust inductive principles for local conditions on spacetime.

His arguments have influenced several commentators to claim that knowledge of any

global property of spacetime is indeed beyond our epistemic horizon (Beisbart 2009;

26“The discovery of exotic smoothness structures shows that there are many, often an infinity, of
nondiffeomorphic and thus physically inequivalent smoothness structures on many topological spaces
of interest to physics. Because of these discoveries, we must face the fact that there is no a priori
basis for preferring one such structure to another, or to the ‘standard’ one just as we have no a priori
reason to prefer flat to curved spacetime models” (Asselmeyer-Maluga and Brans 2007, 13).



194

Norton 2011; Butterfield 2012, 2014).

However in some cases we may have good reason to reject this topological

underdetermination (Magnus 2005; McCoy forthcoming). We may, for example, have

good reason to favor a specific choice that breaks the underdetermination, or it may

be the case that the underdetermination in question is of a superfluous feature that

only arises because of our choice of theoretical framework.27 Indeed, in some cases

we may be able to infer that our spacetime has a certain topology if it best explains

observational phenomena. For example, if we inhabited a “small universe” (Ellis and

Schreiber 1986) in which light has had time to travel around the universe multiple

times, we might be able to observe multiple images of galaxies, etc. If the topology of

our spacetime were multiply-connected, the same would perhaps be possible (Lachièze-

Rey and Luminet 1995; Luminet et al. 2003). Exotic smoothness structures could

also have astrophysical effects (S ladkowski 2009). In these cases we may have good

physical reasons to favor a particular choice of cosmological model.

I do not wish to take a particular stance here on whether underdetermination

of differential and topological manifold structures is a serious epistemological problem.

Too little is known. My point is merely that one must either justify a choice to

break the underdetermination, or else one must incorporate it in some way when

defining cosmological likelihoods. All accounts of cosmological likelihoods presently

ignore the issue, making specific choices of topology and smoothness structures

without justification. This is not at all surprising, since the potential threat of

underdetermination from non-standard topologies and smoothness structures is little

27To be sure, some assumptions have been made already to limit the topological possibilities
from the beginning. For example, we only consider locally Euclidean Hausdorff manifolds that are
connected, and paracompact. There are relatively straightforward arguments to favor these particular
choices though (Ellis 1971; Hawking and Ellis 1973).
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discussed in the philosophical or physical literature.28 Nevertheless, a complete account

of likelihood for the space of possible cosmologies ought to say something about these

issues. Unfortunately, owing to the state of the art, little can be said definitively

without considerable restriction of the general case. Thus this lacuna casts considerable

doubt on an the viability of any general claim asserting the existence of cosmological

probabilities.

The restriction generally taken by workers investigating the solution space

of general relativity, and derivatively the space of cosmologies, is to assume a fixed

spacetime manifold M (Isenberg and Marsden 1982, 188). Then one can understand

general relativity as a certain field theory on M using the framework of covariant

classical field theory from §3.2.2 (Fischer and Marsden 1979). This field bundle is a

map π : L(M)→M with typical fiber L, where L is the vector space of Lorentzian

metric tensors, e.g. for p in M , Lp = {gp |TpM × TpM → R} with gp normally

non-degenerate, symmetric, and possessing a Lorentzian signature. A configuration of

the field is represented by a section of this bundle, viz. a tensor field g on M . The

canonical configuration space of the theory is then the space of sections, which I

denote hence as L .

This canonical configuration space can be given some structure by topologizing

it, for example as way of introducing likelihoods topologically. Unfortunately, since

there is an infinity of sections of the field bundle, there is an infinity of topologies

which one can define on the set. How can one decide which topology is appropriate?

Fletcher (forthcoming) observes that some physicists have advocated a particular

topology as appropriate for discussing similarity relations in general relativity. For

28Debates on conventionalism, the unity of space, and to some extent underdetermination do
concern these specific kinds of underdetermination (Reichenbach 1958; Glymour 1972; ?; Nerlich
1994; Torretti 1996; Callender and Weingard 2000; McCabe 2004; Magnus 2005).
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example, Lerner (1973) favors the Whitney fine topology, a topology that is widely

used to prove stability results in GTR (Beem et al. 1996). Geroch has furnished some

examples, however, which suggest that this topology has “too many open sets,” i.e.

the topology is intuitively too fine (Geroch 1971)—at least for some purposes. Other

topologies have unintuitive results as well. The compact-open topology for example,

renders the verdict that chronology violating space-times are generic in L in any of the

compact-open topologies (Fletcher forthcoming; Curiel 2015, 12). Such considerations,

and some further results of his own, lead Fletcher to conclude that “it thus seems best

to accept a kind of methodological contextualism, where the best choice of topology is

the one that captures, as best as one can manage, at least the properties relevant to

the type of question at hand, ones that relevantly similar space-times should share”

(Fletcher forthcoming, 15).29 Of course, whether any intuitions one has about which

properties spacetimes should share can be adequately justified (in a particular context)

is then an issue which must be addressed in each individual case.

That being said, the space L does not obviously represent the space of solutions

to the EFE anyhow, since one may interpret this space as redundantly representing

physically distinct spacetimes.30 The EFE are diffeomorphism covariant. Thus, if

M and N are spacetime manifolds and ϕ : M → N is a diffeomorphism, then if

the Lorentzian metric g on manifold N is a solution to the EFE, it follows that the

pullback of g to M , i.e. ϕ∗g, is a solution to the EFE as well. Many interpret such

29Hawking (1971, 396) advocates a similar pluralism: “A given property may be stable or generic
in some topologies and not in others. Which of these topologies is of physical interest will depend on
the nature of the property under consideration.”

30In this vein, there has been much discussion of whether it is appropriate to regard GTR as a
“gauge theory” (Weinstein 1999; Teh forthcoming), particularly due to dissimilarities with Yang-Mills
Theory (Earman 2003; Redhead 2003; Weatherall forthcoming a). To some extent debating the
semantics of the term “gauge theory” is “essentially sterile” (Wallace 2003, 164). Yet there still
remains the important question as to what the significance of gauge is (Healey 2007; Guay 2008;
Rovelli 2014).
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diffeomorphic spacetimes as “equivalent” in the specific sense that they represent the

same physical spacetime, since they have the same observable consequences, etc.31

The interpretive assumption that diffeomorphism-related spacetimes are physically

identical is often recognized by calling the diffeomorphism group D the “gauge group”

of Einstein gravity. The natural thing to do to disregard unphysical differences is to

quotient L by the group of diffeomorphic automorphisms D (written L /D) to yield

the space of physical possibilities.32 Let us denote this space of solutions L /D simply

as E , and take it as the space of “gauge-equivalent” physically possible cosmologies.33

What structure does E or L have naturally? Unfortunately this question has

not been studied in nearly as much detail as the geometry of spacetime itself.34 Some

things are known. For example, it is desirable for many applications to treat (subsets

of) E or L as a manifold, but in general it is not possible to treat the entirety of

these spaces as a manifold because of the existence of conical singularities in the

31This point of view is disputed by proponents of the so-called “hole argument” (Earman and
Norton 1987). (Weatherall forthcoming b) is the strongest rebuttal of the argument, although similar
conclusions to Weatherall’s were reached in more metaphysical language earlier (Butterfield 1989;
Brighouse 1994).

32Since hamiltonian time evolution in canonical approaches to GTR is implemented by diffeomor-
phisms of 3-geometries, quotienting by diffeomorphisms does away with time evolution. This is the
well-known “problem of time.” Since time evolution is not relevant to the (macro-)probabilities of
universes, however, there is no issue with leaving time out of the picture. Schiffrin and Wald (2012, 2)
complain that “in the absence of nontrivial time evolution, one cannot make any arguments concerning
dynamical behavior, such as equilibration, the second law of thermodynamics, etc.” That may be
true, but if one is not making equilibrium arguments based on statistical mechanical probabilities,
i.e. if one is making a typicality argument, then timelessness is not a problem.

33As discussed in §4.2.1, one might have plausible physical motivations to restrict this set further
(or perhaps even enlargen it), but taking E as the correct space of possible of cosmologies is at
least supported by the straightforward reading of physical possibility, i.e. as nomological possibility
(Earman 1995; Earman et al. 2009). Note that often the space of cosmological solutions to EFE is
taken to be “pure gravity” spacetimes, i.e. spacetimes that satisfy the vacuum EFE. This is done, in
part, in the interest of finding a theory of quantum gravity by canonical quantization. My interest is
in classical models of the universe including their matter content, so I do not make such a restriction.

34 “What is not nearly as well developed is the study of the space of Lorentzian geometries, which
from the mathematical point of view includes questions about its topology, metric structure, and the
possibility of defining a measure on it, and from the physics point of view is crucial for addressing
questions such as when a sequence of spacetimes converges to another spacetime, when two geometries
are close, or how to calculate an integral over all geometries” (Bombelli and Noldus 2004).
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neighborhood of symmetric spacetimes (Fischer et al. 1980; Arms et al. 1982).35 What

then are the topological and measure-theoretic possibilities for defining likelihoods

in E ? Just as in the case of L , there is an infinity of topologies on E . In more

restrictive contexts a specific choice may perhaps be sufficiently well-motivated for

specific applications, as Fletcher (forthcoming) urges, but a choice for the entire space

can be challenged by any number of counterexamples for which the measure seems to

give the wrong intuitive result (Geroch 1971; Fletcher forthcoming).

Also, such solution spaces will generally be infinite-dimensional, essentially

because spacetimes have an infinity of degrees of freedom (Isenberg and Marsden

1982, 181).36 This presents a problem for a measure-theoretic approaches, a problem

to which Curiel (2015) draws attention. As he says, “it is a theorem...that infinite-

dimensional spaces of that kind do not admit non-trivial measures that harmonize

in the right way with any underlying topology” (Curiel 2015, 4). He concludes

on this basis alone that it is not possible in such spaces to indulge in the sort of

“pseudo-probabilistic” reasoning that cosmologists would like to employ (as a way

of reducing the underdetermination of possible cosmological models). Curiel’s main

point is that the kind of infinite-dimensional spaces one might expect to use do not

allow for the measure and topology to harmonize in the way to make claims such as

“most spacetimes (of some kind) are similar with respect to property X”—“most” is a

measure-theoretic notion and “similar with respect to” is a topological notion (Curiel

2015, 4). He explains the needed connection between measure and topology as follows:

35That said, for vacuum spacetimes Isenberg and Marsden (1982) are able to show that near
generic points the space of solutions is a symplectic manifold and as a whole is a stratified symplectic
manifold, at least with their choice of topology, and restricting to globally hyperbolic spacetimes and
spatially compact manifolds.

36“In cosmology, however, the systems one most often focuses on are entire spacetimes, and families
of spacetimes usually form infinite-dimensional spaces of a particular kind” (Curiel 2015, 4).
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Say we are interested in the likelihood of the appearance of a particu-
lar feature (having a singularity, e.g.) in a given family of spacetimes
satisfying some fixed condition (say, being spatially open). If one can
convincingly argue that spacetimes with that feature form a “large” open
set in some appropriate, physically motivated topology on the family,
then one concludes that such spacetimes are generic in the family, and so
have high prior probability of occurring. If one can similarly show that
such spacetimes form a meagre or nowhere-dense set in the family, one
concludes they have essentially zero probability. The intuition underlying
the conclusions always seems to be that, though we may not be able to
define it in the current state of knowledge, there should be a physically
significant measure consonant with the topology in the sense that it will
assign large measure to “large” open sets and essentially zero measure to
meagre or nowhere-dense sets. (Curiel 2015, 3)

In finite-dimensional spaces it is possible to harmonize these notions in a way to make

such claims have content. Although he points out that the natural infinite-dimensional

extension of finite-dimensional manifolds depends on the differentiability class of the

manifold one with which one starts, Fréchet manifolds cover the two relevant cases, and

it is a theorem then that “the only locally finite, translation-invariant Borel measure

on an infinite-dimensional, separable Fréchet space is the trivial measure ( viz. the

one that assigns measure zero to every measurable set)” (Curiel 2015, 13). It follows

that there is no sensible application of measure theory for the kinds of topological

manifolds one would expect to use for rigorously discussing cosmological likelihoods.

In conclusion, the remarks in this section serve to indicate how complicated

the space of possible cosmologies is, and how little its details are considered in claims

concerning the probabilities of its elements. One must consider the full range of

possible topological manifolds, the range of smoothness structures on them, and the

range of Lorentzian metrics that can be defined upon them. Restrictions from this

set require justification. Finally, as there remains much that is unknown about these

components, some caution is clearly warranted in making claims that concern the
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entirety of this possibility space, even setting aside the serious interpretational and

justificatory challenges discussed above.

4.4 Likelihood in FRW Spacetimes

As a way of avoiding the difficulties surveyed in the previous section, one may

wish to limit one’s attention to the simpler finite-dimensional cases, and hope that

the results are consistent with more general cosmological possibility spaces. Gibbons

et al. (1987) adopt this general approach and show how to derive a natural measure,

the GHS measure, on the set of FRW spacetimes with a scalar field as the matter

component. GHS choose the set of FRW spacetimes because it is the set of models on

which the HBB model is based (1.3), and therefore is a set of cosmologies that may

represent our own universe; a scalar field is chosen as the matter content to represent

the inflaton (2.4) because their aim is to investigate fine-tuning questions related to

inflation.

4.4.1 The Gibbons-Hawking-Stewart Measure

Following the procedure of §3.2.1, we must first identify the appropriate phase

space Γ for FRW spacetimes. To do this we need to look to the hamiltonian formulation

of GTR, which is based on the initial value formulation of GTR which was briefly

surveyed in §1.3.3. The Einstein equation simplifies considerably in the initial value

formulation, reducing to two constraint equations and two evolution equations. It is,

accordingly, a constrained hamiltonian system.

In the initial value formulation of GTR the “position” initial data are repre-

sented by the spatial metric hab and the “momentum” initial data by the extrinsic
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curvature πab (since £∇t(hab) = 2πab (1.3.3)). FRW spacetimes are spacetimes with

homogeneous and isotropic spacelike hypersurfaces, so we can foliate the spacetimes

by a one-parameter family of these spacelike hypersurfaces Σt that are orthogonal

to ξa = ∇at, which is a future-directed, twist-free, unit timelike field on M (1.3.2).37

The extrinsic curvature of an initial data surface Σt is Hhab (1.3.3), where H is the

Hubble parameter; thus the initial data for an FRW spacetime are represented by

both the spatial metric hab and the Hubble parameter H associated with a spatial

hypersurface Σ.

The space of initial data is the product of the set of homogeneous and isotropic

Riemannian 3-manifolds Σ and the set of Hubble parameters H. Homogeneous

and isotropic Riemannian manifolds have constant curvature κ; complete, connected

Riemannian manifolds of constant sectional curvature are called space forms. It is

a theorem that every simply-connected three-dimensional space form is isometric to

the sphere S3(
√

(1/κ)) if κ > 0, R3 if κ = 0, or the hyperbolic space H3(
√

(1/κ))

if κ < 0. The standard metrics on each of these manifolds is understood to be the

metric induced on them by embedding them in R4. Every Σ is therefore isometric to

one of these three classes of space forms. Spaceforms of each of the three kinds are

moreover homothetic, i.e. they are isometric up to a scale factor a2. Accordingly we

may represent curvature κ as a function of the scale factor; namely, for any Σ, a2κ is a

constant k. Then we can set any spatial metric hab = a2γab, where γab is the standard

metric on the appropriate space form, and all time dependence is located in the scale

factor.

As said, the Einstein equation reduces to two constraint equations and two

37The scalar field t representing time may of course be re-scaled by a number N on every Σt,
known as the “lapse” field. In developing the initial value and hamiltonian formulations of GTR one
makes use of N as well as the “shift” vector field Na.
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evolution equations in the initial value formulation ((1.26)-(1.29)):

R− (π a
a )2 + πabπ

ab = −16πTabξ
aξb (4.2)

Dcπ
c
a −Daπ

c
c = 8πTmrh

m
aξ
r (4.3)

£ξ(πab) = 2π c
a πcb − πccπab +Rab − 8πh m

a hnb(Tmn −
1

2
Thmn) (4.4)

£ξ(hab) = 2πab, (4.5)

where R is the Ricci scalar of Σ, Rab is the Ricci tensor of Σ, and Da is the derivative

operator on Σ. For FRW spacetimes, these equations reduce to the following three

(the second equation is trivial since πab does not vary across Σ:

R− 6H2 = −16πρ (4.6)

Ḣhab =

(
−H2 − 4π

3
(ρ+ 3p)

)
hab (4.7)

ḣab = 2Hhab, (4.8)

where ρ is the energy density and p the pressure of the matter. The first equation

is the Friedman equation (1.3) and the second is the Friedman acceleration equation

(1.4). Since hab = a2γab, ḣab = 2aȧγab, and 2Hhab = 2Ha2γab, it follows from the third

equation above that

H =
ȧ

a
, (4.9)

as the usual definition of H has it.

Taking the matter contents of spacetime to be the inflaton and representing it

as a scalar field φ in a potential V that evolves according to the coupled Einstein-Klein

Gordon equation, we have the following equations of motion (Hawking and Page 1988,
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790):

R− 6H2 = −16π

(
1

2
φ̇2 + V (φ)

)
; (4.10)

Ḣ = −4πφ̇2 −R/6; (4.11)

φ̈+ 3Hφ̇+ V ′(φ) = 0, (4.12)

where V ′ is the derivative of the potential with respect to φ.38 The third equation can

be derived from the previous two, however, so it is redundant.

For FRW spacetimes the spatial Ricci scalar is R = −6κ. As noted before, we

can cast κ in terms of the scale factor and a constant k: κ = k/a2. By introducing a as

a degree of freedom to replace κ as a degree of freedom, we have introduced an arbitrary

constant k which has no physical significance beyond identifying whether the space

form is flat, positively-curved, or negatively-curved. We therefore take equivalence

classes in these three cases and choose k = +1, 0, and −1 as representatives, i.e. so

that k ∈ {+1, 0,−1} as is standard. Thus we finally write R = −6k/a2, and we have

Friedman’s equations in their usual form for a scalar field in a potential:

(
ȧ

a

)2

=
8π

3

(
1

2
φ̇2 + V (φ)

)
− k

a2
; (4.13)

Ḣ = −4πφ̇2 +
k

a2
. (4.14)

The foregoing development shows that our initial data hab and πab are therefore

equivalently representable in the space {a, ȧ, φ, φ̇, k}. This space is not the space of

initial data, however, since the Friedman equation (the first one) is a constraint that

38If our interest were solely in assessing the HBB model’s fine-tuning, we could do the following
analysis for perfect fluid matter contents. The results would be qualitatively similar however, as
shown by Carroll and Tam (2010, §4.2).
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must be satisfied by initial data. One must also keep in mind that k is an index for

three separate copies of the space {a, ȧ, φ, φ̇}. There is no continuous path between

the three spaces.

Now that we have identified the relevant spaces for representing FRW space

forms, we put the theory into a hamiltonian formulation (Wald 1984, Appendix E).

We begin with the lagrangian for our theory of FRW spacetimes with a scalar field as

the matter contents, where we have re-introduced the lapse function N which serves

as a Lagrange multiplier:

L =
√
−g
(
R

16π
+

1

2N2
φ̇2 − V (φ)

)
. (4.15)

In terms of the variables we have chosen, this is

L = − 1

8π
(

3

N
aȧ2 − 3Na3 k

a2
) +

1

2N
a3φ̇2 −Na3V (φ), (4.16)

in agreement with (Hawking and Page 1988; Gibbons and Turok 2008; Carroll and

Tam 2010). The momenta of a and φ are

pa ≡
∂L
∂ȧ

=
−3aȧ

4πN
; pφ ≡

∂L
∂φ

=
a3φ̇

N
. (4.17)

The hamiltonian on this phase space is

H = paȧ+ pφφ̇− L = N

(
− 2πp2

a

3a
+

p2
φ

2a3
+ a3V (φ)− a3 3

8π

k

a2

)
, (4.18)

from which we recover (after setting N = 1) our constraint (the Friedman equation)
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as the hamiltonian constraint C:

C ≡ −2πp2
a

3a
+

p2
φ

2a3
+ a3V (φ)− a3 3

8π

k

a2
= 0. (4.19)

The phase space γ of our system is thus the four-dimensional space {a, pa, φ, pφ}

equipped with the canonical symplectic form

ωpa,a,pφ,φ = dpa ∧ da+ dpφ ∧ dφ, (4.20)

The dynamically accessible phase space points however are constrained to be

on the three-dimensional hypersurface C. Thus it would be inappropriate to use ω for

constructing a canonical volume measure on phase space. We can pull the symplectic

form onto the constraint surface by first solving the constraint for pφ:39

pφ = a3

(
4π

3

p2
a

a4
+

3

4π

k

a2
− 2V (φ)

)1/2

. (4.21)

Following Carroll and Tam, we also switch coordinates from pa to H, so that

pφ = a3

(
3

4π
(H2 + k/a2)− 2V (φ)

)1/2

, (4.22)

and

dpa = − 3

4π

(
2aHda+ a2dH

)
. (4.23)

39The scalar field can have positive or negative momentum, so strictly speaking there should be a
± in the following equation. The reader is welcome to annotate the equations that follow.
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The differential of pφ is then

dpφ =
(3/4π)a3HdH − a3V ′dφ+ 6a2((3H2 + 2k/a2)/8π − V )da

((3/4π)(H2 + k/a2)− 2V )1/2
. (4.24)

Substituting these into ω then gives the pullback of the symplectic form onto C. The

result is the following (pre-symplectic) differential form:

ωa,H,φ = ΘHa(dH ∧ da) + ΘHφ(dH ∧ dφ) + Θaφ(da ∧ dφ), (4.25)

where

ΘHa = − 3

4π
a2; (4.26)

ΘHφ =
(3/4π)a3H

((3/4π)(H2 + k/a2)− 2V )1/2
; (4.27)

Θaφ =
6a2((3H2 + 2k/a2)/8π − V )

((3/4π)(H2 + k/a2)− 2V )1/2
. (4.28)

This form is not symplectic (it is degenerate), so we cannot construct a natural

volume measure on C. Ideally, the “real” phase space of our system would be given

by “solving the dynamics,” and then taking equivalence classes of phase points that

are part of the same trajectory. In this way we would obtain the space of motions

and hence could pull the degenerate form back onto the space of motions to obtain

a new symplectic form (of degree two less than ω), from which we could construct

a canonical measure on this new phase space, again, the space of motions. Without

specifying the potential V , this is not possible. The approach GHS take instead is to

set H to some arbitrary value H∗ in the differential form and define their measure
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accordingly, i.e. set

dΩ = ωa,H,φ|H=H∗ = Θaφ|H=H∗dadφ. (4.29)

Finally, the GHS measure µGHS is defined on Lebesgue measurable sets U by

U 7→
∫
U

dΩ = −6

∫
U

a2 (3H2
∗ + 2k/a2)/8π − V

((3/4π)(H2
∗ + k/a2)− 2V )1/2

dadφ. (4.30)

This expression of the GHS measure is equivalent to those derived in (Carroll and

Tam 2010; Schiffrin and Wald 2012).40

4.4.2 The Flatness Problem

The GHS measure (4.30) diverges for large scale factors (its integrand has a

factor of a2). This point was originally recognized by Gibbons et al. (1987, 745); it

also converges to 0 for small scale factors. Due to the divergence, one might say that

for any choice of Hubble parameter H∗ almost all spacetimes will have a “large” scale

factor. More precisely, pick any scale factor a∗; the set of spacetimes with a < a∗ is a

negligible set (because the total measure of this set is finite). Thus it seems as if one

can make typicality claims on the basis of the GHS measure.

What is the significance of this fact about the GHS measure, specifically for

the flatness problem? The flatness problem, recall, arises because flatness appears to

be a special spatial geometry among the set of FRW spacetimes. Space can be curved

to any degree, so zero curvature seems unlikely on the face of it. Hawking and Page

40There are some complications with the k = 1 case. See (Schiffrin and Wald 2012, 8) for the
details. Note that I have also chosen not to set 8πG = 1, but rather maintained consistency with
the rest of this dissertation’s use of “geometrical units” by only setting G = 1. Also, Gibbons et al.
(1987) use a simplifying, but less transparent coordinate choice. They choose to investigate only
the special case where V = m2φ2/2 too. Nevertheless it can be shown with some work that their
expression is equivalent to this one as well (with their potential substituted for V ).
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argue that, on the contrary, the GHS measure shows that flatness is in fact highly

likely among FRW spacetimes:

Thus for arbitrarily large expansions (and long times), and for arbitrarily
low values of the energy density, the canonical measure implies that almost
all solutions of the Friedmann-Robertson-Walker scalar equations have
negligible spatial curvature and hence behave as k = 0 models. In this way
a uniform probability distribution in the canonical measure would explain
the flatness problem of cosmology... (Hawking and Page 1988, 803-4)

By “arbitrarily large expansions” (and “arbitrarily low values of energy density”) they

mean what was just written before. Pick any arbitrary a∗ (and any arbitrary φ∗).

Then, according to the GHS measure, almost all spacetimes have a > a∗ (and φ > φ∗),

or, equivalently, the spacetimes with a < a∗ (and φ < φ∗) compose a negligible set.41

Furthermore, since this holds for any choice of a∗, one may infer that almost all

spacetimes are arbitrarily close to having κ = 0. It is somewhat misleading to say

that curved FRW spacetimes with large scale factors “behave as k = 0 models;” it is

however outrightly false to say that a “uniform probability distribution” with resepct

to the GHS measure would explain the flatness problem of cosmology. There is in

fact no such uniform probability distribution, since the GHS measure is not finite.

Moroever, as noted in §3.2.1, there is also no canonical probability distribution ρ at all

which would make U 7→
∫
U
ρdΩGHS into a probability measure. As noted then, one

has to make a choice in order to obtain a probability measure in such a circumstance.

Carroll and Tam (2010, 14) invite us to consider the question in more “physically

transparent” terms by recasting the measure in terms of the curvature κ (which we

previously exchanged in favor of the scale factor a when deriving the GHS measure).

One can replace the scale factor a by the curvature κ using the relation from before,

41Gibbons and Turok (2008, 6) point out that φ is always bounded given H∗, so it is not necessary
to pick an arbitrary φ∗.
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namely κ = k/a2. (Note that this change of coordinates maps the entire set of scale

factors for the k = 0 case to the single point κ.) One then defines the GHS measure

for curved FRW spacetimes by the map

U 7→
∫
U

dΩ = −6

∫
U

1

|κ|5/2
(3H2

∗ + 2κ)/8π − V
((3/4π)(H2

∗ + κ)− 2V )1/2
dκdφ. (4.31)

It is clear that the measure diverges for small values of curvature, i.e. curvatures close

to flat, due to the curvature term in the denominator. This is pointed out by Carroll

and Tam. They suggest the following interpretation of this fact:

Considering first the measure on purely Robertson-Walker cosmologies
(without perturbations) as a function of spatial curvature, there is a
divergence at zero curvature. In other words, curved [FRW] cosmologies are
a set of measure zero—the flatness problem, as conventionally understood,
does not exist. (Carroll and Tam 2010, 15)

Both of these claims (that of Hawking and Page, and that of Carroll and Tam)

are as stated quite dubious. In the first place, the flatness problem in some sense does

exist when understood as a stability problem (§2.2.2), so their claims only hold under

the specific interpretation of the problem as a likelihood problem. Understanding

the flatness problem as a stability problem is in fact relatively common (Baumann

2009), so it is unclear whether the likelihood interpretation is the truly “conventional

understanding” of the flatness problem. Nevertheless, I did argue in chapter 2 that

the flatness problem appears to be best characterized as a likelihood problem, since

it can subsume other interpretations and the bulk of commentary on the problem

suggests it strongly. In any case, Carroll and Tam assume that the flatness problem

is conventionally understood in this way. They then claim that the problem is in

fact illusory since the canonical GHS measure—according to them—shows that FRW
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spacetimes are generically spatially flat.42

Secondly, Carroll and Tam assert that all values of their curvature coordinate

Ωk (essentially equivalent to κ) can be integrated over. Depending on how one treats

the k = 0 case, this claim may be true. Regardless, portraying the phase space in

terms of curvature as they do is misleading. For curved FRW spacetimes it is true

that the measure diverges for small values of curvature κ, as I noted above and as

Hawking and Page suggest in the passage from their paper quoted above. But the

recast measure is infinite at zero curvature merely because we have mapped the entire

set of k = 0 scale factors to κ = 0. It is infinite at zero curvature however only because

the GHS measure diverges for large scale factors, just as it does for curved FRW

spacetime. For this reason it is misleading to describe a “divergence at zero curvature;”

there is nothing special going on in flat FRW spacetimes (at least in this respect).43

Finally, and relatedly, curved FRW spacetimes are not a set of measure zero

as Carroll and Tam claim—at least according to the GHS measure.44 Recall that

the initial data of FRW spacetimes is representable in the k-indexed phase space

{a, ȧ, φ, φ̇}. The curvature constant k serves as an index for three different phase

spaces, each of which has an infinite total measure—even after taking into account

constraints and choosing a hypersurface in the constraint surface according to GHS’s

procedure. The unboundedness of the total phase space measure for each kind of FRW

spacetime is due, again, to the unbounded range of the scale factor Schiffrin and Wald

42Hawking and Page probably meant this as well, as would be plain if they had just written that
“the canonical measure would explain the flatness problem of cosmology” and left off mention of a
probability measure. The same basic claim is made as well by Coule (1995, 468).

43Carroll and Tam appear to equivocate several times between there being a divergence at κ = 0
and the measure diverging as κ → 0: “The integral diverges near [κ = 0], which is certainly a
physically allowed region of parameter space” (Carroll and Tam 2010, 17); “The measure diverges on
flat universes” (Carroll and Tam 2010, 28). These are obviously not equivalent statements

44For sure they are in some measure appropriate to a larger set of spacetimes—recall the discussion
of reference class in §4.2.1.
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(2012, 11).45 This point is quite plain when one expresses the GHS measure in terms

of the scale factor. Transforming to the curvature coordinate κ should not change the

fact that the total measure of each of these phase spaces is infinite. So, while it is

true that the GHS measure attributes infinite measure to flat FRW spacetimes (as

Carroll and Tam appear to recognize), it also does so both to positively curved FRW

spacetimes and to negatively curved spacetimes. Therefore it is absolutely not the

case that the curved FRW cosmologies are a set of measure zero (or even a negligible

set) according to the GHS measure. Hence one cannot conclude that the flatness

problem does not exist.

One might try to rescue Carroll and Tam’s claim about the flatness problem by

choosing some set of “nearly flat” curved spacetimes, e.g. the set of spacetimes with

curvature less than some κ∗ (at some time corresponding to Hubble parameter H∗).
46

Almost all spacetimes will have a “small” curvature κ in comparison to this curvature

κ∗. In other words, the set of spacetimes with κ > κ∗ is a negligible set. Since our

universe’s spatial curvature is “nearly flat,” i.e. intuitively it should be less than κ∗

(whatever it is), it then follows that our universe is actually typical, contra what is

assumed in the flatness problem. In this case it would be correct to conclude that the

flatness problem does not exist. Unfortunately this argument does not follow from the

GHS measure alone, since we have had to make an independent choice in choosing κ∗,

a choice that is not natural in any obvious sense. Moreover, it is doubtful that there is

45Besides in (Schiffrin and Wald 2012), this fact is correctly pointed out in (Gibbons et al. 1987;
Hawking and Page 1988). While Carroll and Tam (2010, 20-1) observe that “this divergence was
noted in the original GHS paper, where it was attributed to ‘universes with very large scale factors’
due to a different choice of variables,” they object to this as an interpretation: “This is not the
most physically transparent characterization, as any open universe will eventually have a large scale
factor.” For this reason they exchange the scale factor for curvature; it is not clear, however, how
this characterization is more physically transparent since it amounts to the same thing.

46 Indeed, Gibbons and Turok (2008) propose to introduce just such a “cutoff,” albeit for somewhat
different purposes. I discuss their approach below.
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any reasonable argument to justify a particular choice of κ∗—an explication of “close

to flat” in the language of GTR and in the context of FRW models; it appears to be a

completely arbitrary choice in this context...and certainly not all choices of κ∗ would

count our universe as flat.

Let us try a slightly different tack into the same headwind then. Suppose κ∗ is

the (non-zero) spatial curvature of our universe at the present time. The GHS measure

can be used to infer that almost all spacetimes with the same Hubble parameter

will have flatter spatial curvatures. In such circumstances, one might be inclined to

wonder “Why is my universe’s spatial curvature so large? It seems like it ought to be

much smaller if my universe is typical!” In other words, instead of a flatness problem,

it seems like we actually have a curvature problem! Of course the same problem

arises here, since one would say this for any κ∗ whatever, regardless of its magnitude.

Thus it is not clear how one would ever be in the position to be satisified with one’s

curvature in an FRW universe—at least insofar as one expects things in our universe

to be typical (in accord with Copernican principle-style reasoning).

No matter. The measure suggests a question. What is the answer? Well, the

only answer the theory gives is that the curvature of our universe depends on its

actual dynamical history. It has no other explanation within the theory. Appearances

to the contrary are deceiving, since there is evidently no such thing as a typical FRW

spacetime. To think that the Liouville can explain typicality in the theory depends

on an adequate justification that it can be treated as a typicality measure (3.3.5),

particularly if one thinks that the GHS measure can be used as a probability measure,

as Carroll and Tam evidently do:

When we consider questions of fine-tuning, however, we are comparing
the real world to what we think a randomly-chosen history of the universe
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would be like. (Carroll and Tam 2010, 11)

Some popular conceptions (in physics and beyond) of statistical mechanics

encourage this line of thought, specious though they be. What we think a random

choice looks like only has epistemic value when what we think a random choice is

accords well with apparent randomness in the world. Moreover, putatively successful

typicality arguments in statistical mechanics (Goldstein 2012) depend not only on

having a phase space measure, but also on both the dynamics of the system and

especially on a specification of macroproperties or macrostates (defined as regions of

phase space) (Frigg 2009; Frigg and Werndl 2012). Thus any claim of fine-tuning in

FRW spacetimes on the basis of the GHS measure (which does at least incorporate the

FRW dynamics) is bound to be undermined without additional justifiable assumptions

about what is in fact typical in cosmology—yet this is precisely something which we

have no hope of knowing in cosmology due to the uniqueness of the universe.47

Gibbons and Turok (2008, 6) correctly observe that universes with large scale

factors are universes with small spatial curvatures. They then claim that the scale

factor is neither “geometrically meaningful” nor “physically observable,” and therefore

propose to identify all the “indistinguishable” nearly flat spacetimes on the surface

identified by H∗.
48 They do so by effectively choosing a “cutoff” curvature κ∗ and

47Gibbons et al. (1987, 736) relate that “one popular way of explaining cosmological observations is
to exhibit a wide class of models in which that sort of observation is ‘generic.’ Conversely, observations
which are not generic are felt to require some special explanation, a reason why the required initial
conditions were favoured over some other set of initial conditions.” Consider that any individual
universe is “not generic” according to the GHS measure, since any phase space point is measure zero.
Does every “initial condition” therefore require explanation? The GHS measure also cannot tell us
whether k = 1, 0, or −1 is generic, since each corresponding set has infinite measure. Should k be
explained or not?

48It is not clear what they mean by “geometrically meaningful.” The scale factor is clearly geometric
in the relevant sense, since it relates spaceforms of the same kind by scalings. It is moreover physically
meaningful because space is expanding (or contracting) in FRW spacetimes. The precise value of a
does not matter, as it can be re-scaled, but that does not undermine its meaningfulness. It is also
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throwing out all the spacetimes with curvatures smaller than it. The advantage to

doing this is that the total measure of FRW spacetimes with curvatures larger than

κ∗ is finite.

The disadvantage is that this makes no sense. Carroll and Tam (2010, 20)

comment, “to us, this seems to be throwing away almost all the solutions, and keeping

a set of measure zero. It is true that universes with almost identical values of the

curvature parameter will be physically indistinguishable, but that doesn’t affect the

fact that almost all universes have this property.” Indeed, doing what Gibbons and

Turok do is throwing away almost all the solutions (although contra Carroll and Tam

the remaining set has finite measure, not measure zero). They are also right to point

out that if nearly flat universes are physically indistinguishable, so are “nearly-κ”

universes for almost any κ. Gibbons and Turok do not throw out these universes

however (else they would not have been left with any universes at all).

Ironically Carroll and Tam effectively make the same error as Gibbons and

Turok, essentially by identifying the flat and nearly flat spacetimes. Instead of throwing

out all the flat and nearly flat spacetimes like the latter pair, however, the former

pair throws out the complement of the flat and nearly flat spacetimes. They then

conclude that nearly all spacetimes are essentially flat. In particular, Carroll and Tam

propose to tame the divergence in the GHS measure by regularizing the integral, i.e.

making the measure finite. Since the GHS measure is not finite, regularizing it makes

it no longer the GHS measure, in which case any justification the measure had (by

its naturalness) is lost.49 One may as well have assumed the probability distribution

unclear how the fact that a is physically unobservable should matter, since most features of spacetime
are not observable, e.g. the metric g, the spatial curvature κ, etc. The physically relevant content
of these, including the scale factor, can be inferred from observations and appropriate theoretical
assumptions.

49Carroll more recently has conceded the artificiality of regularizing: “Earlier attempts to regularize
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they end up with right from the beginning.50 In any case, their justification for

this move is pragmatic: “This non-normalizability is problematic if we would like to

interpret the measure as determining the relative fraction of universes with different

physical properties” (Carroll and Tam 2010, 17). However this pragmatic motivation

is obviously an inadequate justification for radically modifying the GHS measure yet

claiming their measure retains its naturalness.

To sum up the considerations raised in this section, there is a dilemma facing

accounts that wish to use the GHS measure to explain away the flatness problem.

If they wish to claim that there is no flatness problem, either there is no flatness

problem according to the GHS measure alone or there is no flatness problem because

some additional assumptions must be made. As tempting as it may be to say that

“almost all FRW spacetimes are flat or nearly flat” according to the GHS measure,

there is no way to state “nearly flat” in a natural way and it is false that almost all

FRW spacetimes are flat alone. Thus the GHS measure alone cannot explain away

the flatness problem. If additional assumptions need be made, then those additional

assumptions require justification, for they would not be natural in the way that the

GHS measure is (else they would be incorporated into the phase space from the

beginning and therefore be correctly incorporated into the measure). No reasonable

the measure, for example by considering an ε-neighborhood around the zero-curvature hamiltonian
constraint surface (Carroll and Tam 2010) or by identifying universes with similar curvatures (Gibbons
and Turok 2008) have not proven satisfactory” (Remmen and Carroll 2013, 7). He however remains
convinced that almost all FRW spacetimes are “nearly flat:” “we should throw all of the others
away and deal with flat universes,” (Carroll forthcoming, 19); “the divergence for flat universes is an
indication that, in the canonical measure, almost all cosmological spacetimes are flat” (Remmen and
Carroll 2014, 1).

50Interestingly, there is a strong parallel with “natural” justifications of statistical mechanical
measures uniform with respect to the Lebesgue or Liouville measure over some macrostate (Maudlin
2007b). These are not equivalent to or derived from the Lebesgue or Liouville measure in any sense;
thus they do not benefit from the naturalness of this measure in their justification (as far as that
goes). They are distinct probability measures associated with phase space which merely use the
Lebesgue measure for convenience of definition.
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justification has been offered so far for such additions, nor does it seem that there

is one available, even setting aside the basic concern that mathematical naturalness

does not guarantee physical significance. I therefore conclude that claims which state

that there is no flatness problem according to the canonical measure are completely

unsupported, and moreover it appears unlikely that any such claim can be sustained.

It does not follow, however, that there is a flatness problem understood as a

likelihood problem. That would require the demonstration of an appropriate measure of

likelihood and a justification that it is a likelihood measure. Insofar as that justification

must be empirical, then there is no appropriate measure of likelihood in a one-universe

cosmology. Insofar as that justification may be other than empirical, then perhaps

there is an appropriate measure. These justifications, however, do not themselves

admit of justification, if the situation in statistical mechanics is any indication (§3.3.5).

Theoretical support which indicates that flat spacetimes are unlikely is required to

explicate the flatness problem as a likelihood problem 3.1. At least in the case of FRW

spacetimes, this support is apparently not to be expected.

4.4.3 The Likelihood of Inflation in FRW spacetimes

In the previous section I noted that there is no natural condition that picks

out “nearly flat” FRW spacetimes, and therefore the GHS measure cannot be used to

assess likelihoods in a way that would either support or dissolve the flatness problem.

There is at least a precise condition, however, for when inflation occurs: ä > 0, or

φ̇2 < V (φ) (§2.4), and so one can (potentially) pose precise questions about inflating
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spacetimes. In terms of our phase space variables, inflation occurs when

1

4π

(
H2 +

k

a2

)
< V (φ). (4.32)

Since the GHS measure is evaluated at a particular Hubble parameter H∗ and whether

inflation is occurring depends on H, the GHS measure cannot give a definitive

assessment of the likelihood of inflation without considering full histories. We also

require a specific model of inflation (a specific choice of V (φ)) in order to make the

assessment, since the condition depends on the precise shape of the potential.

To assess the flatness problem I considered two cases: either the flatness

problem concerns strict flatness, i.e. k = 0, or near flatness, i.e. κ small. The only

precise explication of “flat” is k = 0. Since the set of flat FRW universes has infinite

measure and the set of curved FRW universes has infinite measure, no conclusion

about likelihoods of flatness can be drawn on the basis of the GHS measure. Any

explication of “nearly flat” requires an arbitrary choice of curvature κ∗, a choice on

which any assessment of fine-tuning depends strongly. To answer questions concerning

the likelihood of inflation, the same cases must be considered.

There are two questions (§3.1): Is flatness a generic outcome of inflation? Are

inflating spacetimes generic?

Consider the first question (Ellis 1988): “Is flatness a generic outcome of

inflation?” Obviously for the k = 0 case the question is moot since space is flat

whether there is or is not inflation. For the k 6= 0 case we require some specification

of “nearly flat,” but, again, because the GHS measure diverges as κ → 0 (due to

arbitrarily large scale factors in phase space), any choice is arbitrary—almost all

spacetimes are “nearly flat” because of this divergence, regardless of whether inflation
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occurs or does not. Therefore only if all spacetimes undergo inflation can one claim

that flatness is a generic outcome of inflation in FRW spacetimes. Otherwise one is

left with an indeterminate result as before in the case of curvature fine-tuning.

This leads to the second question: “Do FRW spacetimes generically undergo

inflation?” To answer this question we should strictly speaking include the other

matter constituents of the universe. In any case, what one seemingly wants to know by

asking this question is not how likely it is that an FRW universe undergoes inflation,

but how likely it is that an FRW universe undergoes sufficient inflation to solve the

flatness problem.51 If the universe is spatially flat, then obviously there can be no

flatness problem for inflation to solve, in which case there is no reason to ask the

question. If the universe is curved, then it is clear that “solving the flatness problem”

depends on an assessment of the problem in terms of “near flatness,” which, once

again, is not possible on the basis of the GHS measure.

In any case, if one simply wants an answer to the question, regardless of its

relevance to the problem inflation is meant to solve, then one can attempt some

calculations. Schiffrin and Wald (2012, §IV) elect to treat the k = 0 case for a scalar

field in a simple self-interaction potential V = m2φ2/2, i.e. the slow roll inflation

scenario discussed in the previous chapter (§2.4). In this case the GHS volume element

simplifies to

dΩ ∝ a2

√
3

4π
H2
∗ −m2φ2 dadφ. (4.33)

Schiffrin and Wald (2012, 11) consider the histories of inflating spacetimes in the slow

roll regime, and show that spacetimes which undergo at least N e-folds of inflation are

51One can also ask how likely it is that an FRW universe undergoes sufficient inflation to solve the
horizon problem (Remmen and Carroll 2014), but, as I explain in the previous chapter, the horizon
problem is only a problem because it seems to be a constraint on solving the flatness problem and
the uniformity problem.
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the ones for which |φ| & 2
√
N . Thus the GHS-measure of this set is proportional to

∫
a2 da

∫ √3/4πH∗/m

2
√
N

√
3

4π
H2
∗ −m2φ2 dφ. (4.34)

The φ integral is finite; the a integral obviously is not. Moreover, it is clear that the

set of spacetimes which do not undergo at least N e-folds of inflation also have infinite

GHS-measure. Therefore the likelihood of inflation is indeterminate, as expected.

Both Carroll and Tam (2010) and Gibbons and Turok (2008) attempt to over-

come this problem with the GHS measure by modifying it (as I discussed previously).

They also choose to evaluate the likelihood of inflation at different values of H∗ and

come up with different answers. It is not surprising that they do, since dealing with

the divergence in the GHS measure requires making some choice to make the measure

finite. Once again, there is no canonical choice. Different choices will lead to different

results (Schiffrin and Wald (2012) thoroughly discuss this issue in their paper).

To illustrate the point, consider the following approach. Since the GHS measure

factorizes into two integrals, one over a and one over φ, one might think to define a

probability measure µρ with probability distribution ρ defined by

ρ =
1∫
dΩ

. (4.35)

Then µρ is simply

∫
a2 da

∫√3/4πH∗/m

2
√
N

√
3

4π
H2
∗ −m2φ2 dφ∫

dΩ
=

∫√3/4πH∗/m

2
√
N

√
3

4π
H2
∗ −m2φ2 dφ∫ √

3
4π
H2
∗ −m2φ2 dφ.

, (4.36)

since the integral over the scale factor drops out. This measure is not invariant under
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time evolution however because part of the measure has been effectively thrown away.

Depending on how one chooses H∗ one will compute wildly different probabilities of

inflation (Schiffrin and Wald 2012).52

Schiffrin and Wald conclude their analysis with the following thoughts:

Should one impose a cutoff in a at, say, the Planck time and conclude
that inflation is highly probable? Or, should one impose a cutoff in a
at a late time and conclude that inflation is highly improbable? Or,
should one impose an entirely different regularization scheme and perhaps
draw an entirely different conclusion? Our purpose here is not to answer
these questions but to emphasize that, even in this simple minisuperspace
model, one needs more information than the GHS measure to obtain the
probability of inflation. (Schiffrin and Wald 2012, 12)

I am in agreement with their final point (that one requires more information than the

GHS measure), but it seems to me that the situation is more intractable than they

let on: there is in fact no adequate choice of cutoff in a. In short, the “regularization

schemes” are employed for the instrumental purpose of deriving a finite measure—

they are not justified by the physics of FRW spacetimes alone. Thus we should not

believe that inflating spacetimes are generically flat based on likelihood arguments.

Rather we should believe that inflating spacetimes flatten spatial curvature because of

“no-hair”-like theorems (§1.3.4).

4.4.4 The Uniformity Problem

For various reasons one may not take the results concerning likelihoods in FRW

spacetimes too seriously. Carroll and Tam (2010, 21) suggest that “examining a single

scalar field in minisuperspace is an extremely unrealistic scenario;” more significantly,

52Carroll has since acknowledged Schiffrin and Wald’s criticism: “The procedure [Tam and I]
advocated in (Carroll and Tam 2010) for obtaining such a measure was faulty, as our suggested
regularization gave a result that was not invariant under a choice of surface on which to evaluate the
measure” (Carroll forthcoming, 19).



221

“minisuperspace is a set of measure zero in the full phase space. Even if we are only

interested in nearly [FRW] solutions, it is far from clear that the GHS measure will

give a valid estimate of the phase space measure of the spacetimes that are ‘close’ to a

given [FRW] solution” (Schiffrin and Wald 2012, 12-3). I discussed this latter problem

as a manifestation of the “reference class problem” above (§4.2.1). The approach

taken in both of the just-cited papers is to examine the analog of the GHS measure

on perturbed FRW spacetimes (§1.3.4). Obviously this does not solve the problem,

since one can run the same argument on perturbed FRW spacetimes as one did with

FRW spacetimes—likelihoods assigned to the perturbed FRW spacetimes are only

significant if they are consistent with likelihoods assigned to the full space of possible

cosmologies. Presumably, however, what they aim for is some “inductive” support

for conclusions which are consistent in both the containing and contained reference

classes, since it is not entirely clear what the set of possible cosmologies is.

In any case, for the uniformity problem to be a problem of likelihoods one must

obviously consider a larger set of spacetimes than the FRW spacetimes, since these

are by definition spatially uniform. The technical details involved in constructing a

Liouville measure on perturbed FRW spacetimes are somewhat more complex than

the technicalities so far discussed, so, as I did in §1.3.4, I will only mention the relevant

results and crucial assumptions.53 The canonical volume element Ω on “almost” FRW

53The interested reader is directed to (Schiffrin and Wald 2012, §V) and to (Carroll and Tam 2010,
§5) for further details.
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models (according to Schiffrin and Wald (2012)) is

ΩGHS ∧
(

a(H2
∗ + ka−2)

H∗(3H2
∗ − V + 3ka−2

)N1

×
N1∏
n=1

(k2
n − 3k)dΦ(n) ∧ dδ(n) ∧

(
1

4
a3

)N 2 N2∏
n=0

dḣ(n) ∧ dh(n). (4.37)

Here there are additional terms involving inhomogeneous scalar perturbations (Φ and

δ) and tensor perturbations (ḣ and h). The N1 and N2 correspond to short-wavelength

cutoffs for the scalar and tensor modes, respectively. These are necessary to make the

phase space finite. One must also impose a long-wavelength cutoff, which Schiffrin and

Wald implement by restricting attention only to spatially compact spacetimes (§4.2.1).

Finally, some explication of “almost” FRW must be made: Schiffrin and Wald take it

to mean that the magnitude of the metric perturbation Φ and the magnitude of the

density perturbation δ are small in comparison to the background FRW metric, as do

Carroll and Tam (2010).

There is no need to belabor the points made already in the previous chapters:

the main problems remain the same. In particular, the total measure of phase space

is infinite, so probabilistic arguments cannot be made on the basis of the canonical

measure. Indeed, Schiffrin and Wald note that “including more perturbation modes

makes the large-a divergence more severe” (Schiffrin and Wald 2012, 17). It follows

that the results on the probability of inflation given by Carroll and Tam (2010) are

not to be trusted because an arbitrary choice has to be made to derive them. One

can, again, get any probability one wants by a suitable choice of H.

Can one however make a likelihood argument with respect to uniformity?

Is there a uniformity problem according to the canonical measure? Carroll and
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Tam (2010, 25) claim that there is: “There is nothing in the measure that would

explain the small observed values of perturbations at early times. Hence, the observed

homogeneity of our universe does imply considerable fine-tuning; unlike the flatness

problem, the horizon problem is real.” Once again, this conclusion depends on the

physical significance of the Liouville measure associated with the set of perturbed

FRW spacetimes, something for which we lack a compelling justification in statistical

mechanics, much less cosmology (§3.3.5).
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Francesco Petruccione, and Nino Zangh̀ı, Berlin: Springer Verlag, 2001, 39–54.

. “Typicality and Notions of Probability in Physics.” In Probability in Physics,
edited by Yemima Ben-Menahem, and Meir Hemmo, Berlin: Springer Verlag, 2012,
chapter 4, 59–71.

Goldwirth, Dalia, and Tsvi Piran. “Initial Conditions for Inflation.” Physics Reports
214: (1992) 223–292.



235

Gotay, Mark. “A multisymplectic framework for classical field theory and the calculus
of variations I. Covariant Hamiltonian formalism.” In Mechanics, Analysis, and
Geometry: 200 Years After Lagrange, edited by Mauro Francaviglia, Amsterdam:
Elsevier, 1991.

Gotay, Mark, James Isenberg, Jerrold Marsden, and Richard Montgomery. “Momentum
Maps and Classical Fields.” ArXiv Eprint, 2004. http://arxiv.org/abs/physics/
9801019.

Guay, Alexandre. “A partial elucidation of the gauge principle.” Studies in History
and Philosophy of Modern Physics 39: (2008) 346–363.

Guth, Alan. “Inflationary universe: A possible solution to the horizon and flatness
problems.” Physical Review D 23, 2: (1981) 347–356.

. “Interview of Alan Guth by Alan Lightman on September 21, 1987.” Niels
Bohr Library & Archives, American Institute of Physics, College Park, MD USA,
1987. http://www.aip.org/history/ohilist/34306 1.html.

. The Inflationary Universe. Cambridge, MA: Perseus Books, 1997.

. “Eternal Inflation and its Implications.” Journal of Physics A: Mathematical
and Theoretical 40: (2007) 6811–6826.

Guth, Alan, David Kaiser, and Yasunori Nomura. “Inflationary paradigm after Planck
2013.” Physics Letters B 733: (2014) 112–119.

Guth, Alan, and So-Young Pi. “Fluctuations in the New Inflationary Universe.”
Physical Review Letters 49: (1982) 1110–1113.

Guth, Alan, and Erick Weinberg. “Could the Universe Have Recovered from a Slow
First-Order Phase Transition?” Nuclear Physics B 212: (1983) 321–364.

Guttmann, Yair. The Concept of Probability in Statistical Physics. Cambridge:
Cambridge University Press, 1999.
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