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Sharin Rawhiya Jacob 
Digital Promise Global 

Mark Warschauer 
University of California, Irvine 

Elementary Computing for All: A Computational Thinking Curriculum 
for Multilingual Students 

Over the last decade, there has been an explosion of national interest in computer science (CS) 
education. In response to this, several organizations and initiatives have emerged in recent 
years to expand the CS pipeline. However, within these broad and laudable efforts, one 
important area has been largely overlooked—the instruction of CS to multilingual students, 
including the large and growing number of students designated as English learners in K-12 
schools. These are one of the most underserved and understudied groups in CS education. In 
this article, we draw on existing research, as well as our own and others’ theoretical and 
empirical work to date, to put forth both a framework and curriculum for teaching CS to 
multilingual students.   

Keywords: computational thinking, computer science, English learner, multilingual, curriculum, 
elementary 

Introduction
ver the last decade, there has been an explosion of national interest in computer science (CS)
education. The growing importance of information technology professionals, the reliance of many 

sciences on computational methods, the influence of social media on various aspects of life, and 
international competition in artificial intelligence underscore the urgency to transform the US education 
system. This transformation is increasingly convincing policymakers and the general public to integrate 
comprehensive computer science education for all in K-12 classrooms. Despite the growing potential of 
CS in K-12 contexts, these technologies are not accessible to all students. 

In response to the need to broaden participation in CS, several organizations and initiatives have 
emerged in recent years to expand the CS pipeline. An early and important concern was the lack of female 
participation in CS (Cheryan et al., 2009; Kelleher & Pausch, 2007), and several initiatives have been 
launched to address this issue (Beyer, 2014; Cheryan et al., 2009; Kelleher & Pausch, 2007; Zhou et al., 
2020). More recently, projects and organizations have begun to tackle, through equity focused CS 
initiatives, other groups that are too frequently excluded from CS, especially students of color (Allen-
Handy et al., 2020; DiSalvo et al., 2011). There have also been important initiatives to extend CS instruction 
to children with special needs (Israel et al., 2015; Ladner et al., 2021). 

However, within these broad and laudable efforts, one important area has been largely 
overlooked—the instruction of CS to multilingual students, including the large and growing number of 
students designated as English learners in K-12 schools in the United States. The percentage of students 
designated as English learners grew from 8.1% (or 3.8 million students) in 2000 to 9.6% (or 4.9 million 
students) in 2016 and is projected to reach 25% of the student population by 2025 (McFarland et al., 
2019). Though there is a dearth of data on this rapidly growing population’s access to CS studies and 
careers, there is reason for considerable concern.  For example, US public schools serve a large number 
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of Latine students who are designated as English learners, a group distinctly underrepresented in the 
computer science (CS) arena (Code.org, CSTA, & ECEP Alliance, 2020; NCSES, 2021). As pointed out by 
Jacob et al. (2023), studies show that these Latine students who are designated as English learners 
encounter the most significant obstacles in both academic progress and accessing technological resources 
(Irwin et al., 2021). Moreover, there exists a widespread yet flawed notion that students designated as 
English learners must reach a certain level of English fluency before they can embark on CS education 
(Jacob et al., 2018; Jacob et al., 2023). This belief has led to a noticeable discrepancy in CS course offerings 
for students designated as English learners. Research demonstrates that schools with a larger presence of 
students designated as English learners (above 12%) provide significantly fewer CS courses compared to 
those with lower proportions of these students (Martin et al., 2015). This disparity is more pronounced in 
economically disadvantaged areas where most English learners reside, with schools in such 
neighborhoods offering limited CS courses (Code.org, CSTA, & ECEP Alliance, 2020). In addition, the 
representation of individuals from underrepresented groups in the CS workforce or media portrayals is 
minimal (Royal & Swift, 2016). This lack of representation, combined with limited access to technology at 
home and a dearth of mentors with computing backgrounds, adversely affects their interest in the CS field 
(Jacob, et al., 2022; Jacob et al., 2023). Finally, the instructional materials used in K-12 settings often fail 
to reflect the cultural and linguistic diversity of the students being served. This shortfall in culturally 
responsive teaching materials is an overlooked aspect in CS education as it relates to inclusiveness (Goode, 
2008; Goode et al., 2018). 

Because multilingual students are left at the margins of CS education, researchers, practitioners, 
and policymakers need to better understand how to provide culturally and linguistically responsive 
instruction to these students. In this article we examine the landscape of CS in K-12 education. We then 
discuss five empirically supported strategies for engaging multilingual students in Science, Technology, 
Engineering, and Mathematics (STEM) education as outlined in a recent report by the National Academies 
of Sciences, Engineering, and Mathematics (NASEM, 2018). We describe how these practices have been 
embedded in a yearlong CS curriculum designed to meet the needs of multilingual students, called 
Elementary Computing for All. We conclude with empirical findings synthesized from years of research on 
our Elementary Computing for All project on student and teacher outcomes from a yearlong 
implementation of the Elementary Computing for All curriculum. We then discuss implications for future 
research. 

CS Education in K-12 
To understand why multilingual students are marginalized in CS education, it is first necessary to clarify 
the nature of CS education in K-12 schools, encompassing three overlapping constructs: CS, coding, and 
computational thinking (CT). CS represents a discipline like science, math, engineering, and medicine and 
refers to the study of computers, algorithms, hardware, and software and their effects on society (CITE). 
Coding refers to the reading and writing of computer programming languages. Some coding languages are 
text-based such as Java, Python, C, and C++. At the same time, many novice learners use block-based 
programming languages, such as Scratch and Alice, to provide entry-level access to computational 
methods. Most block-based languages contain a coding console or an area where students can give 
programming commands. The programming commands in Scratch are coded into blocks that students 
snap together like Legos. These programming languages also typically contain a stage, or an area in the 
platform, in which students can choose from or create characters, backdrops, and sounds to develop 
games, stories, and animations. Block-based languages are typically taught in elementary and middle 
school, and students shift to text-based languages when they reach high school. However, findings from 
two introductory CS courses at the undergraduate level indicate that block-based languages such as 
Scratch are effective in transitioning students to text-based languages even at the postsecondary level 
(Mishra et al., 2014; Sykes, 2007).  



To make visible the problem-solving strategies inherent in CS and coding for students in K-12,  
Jeanette Wing (2006) coined the term “computational thinking” to refer to a problem-solving approach 
that uses concepts essential to computing but that can be generalized to a wide array of disciplines. 
Although computational thinking can be learned through coding, it can also be learned through unplugged 
activities that teach computational thinking without the use of computers. Computational thinking 
involves formulating questions in a manner that can be interpreted by a computer to achieve desired 
results (Wing, 2006). Fundamental to computational thinking is abstraction, which involves the ability to 
navigate multiple layers of a problem by identifying essential components of a model and ignoring 
extraneous details. In addition to abstraction, computational thinking skills include but are not limited to 
automation, algorithmic thinking, modularization, and data analysis (International Society for Technology 
in Education & CS Teachers Association, 2011). 

There is no consensus on the definition of computational thinking (Barr & Stephenson, 2011; 
Grover & Pea, 2013). Traditionally, CT has been thought to involve key computational concepts (i.e., 
sequence or order, conditionals or if-then statements, loops, or repeat blocks; Grover & Pea, 2013). 
Others argue that focusing on concepts represents a limited view of computational thinking and point to 
the practices and perspectives used (Brennan & Resnick, 2012). Some researchers have taken a 
sociocultural perspective, focusing on how CT can be used to address broader social issues such as 
equitable participation (Erete et al., 2017). Additionally, scholars have drawn upon Papert (1980) and 
diSessa (2000) to describe how CT connects to powerful ideas in the STEM disciplines (Wilensky et al., 
2014). However, all the aforementioned researchers agree that CT should be taught to all students in K-
12, as early as elementary school (Jacob & Warschauer, 2018).  

To this end, it is widely agreed that learning computational methods provides several affordances 
for diverse learners. First, they are critical for advancing scientific, technical, and social innovation. CS can 
be used to solve broader societal problems, such as tracing the path of infectious diseases or providing 
warning systems for disastrous hurricanes. At the same time, students can use CS to solve problems in 
their own communities (Tissenbaum et al., 2019). For example, students in desert climates integrated arts 
and crafts with computing technologies to develop drought- and heat-resistant lunch boxes (Ball et al., 
2017). The second affordance to teaching CS involves developing digital citizenship by preparing students 
to explore ethical considerations around computing and actively participate in digital media creation 
(Vogel et al., 2017). For example, students can discuss issues related to racial bias in artificial intelligence-
driven facial recognition algorithms or examine issues related to copyright with the advent of generative 
artificial intelligence software such as ChatGPT. Third, the thought processes underlying CS are applicable 
to a rapidly increasing number of jobs that grant power and prestige in a knowledge economy.  

Recently, CS educators have shifted the focus on learning from job preparation to the promotion 
of student agency (Vogel et al., 2017). Early exposure to high-quality computing education provides 
students with experiences that equip them with the means to decide whether to enter the computing 
workforce (Vogel et al., 2017). A panel of educational stakeholders has also pointed to the role of social 
justice in CS education (Vogel et al., 2017). When students take critical approaches to computing, they are 
provided opportunities to acknowledge bias in technology while providing meaningful critiques of the 
discipline (Vogel et al., 2017). Finally, the ability to think computationally has been positioned as a 
fundamental literacy that all students should acquire to fully participate in today’s society (diSessa, 2000; 
Jacob & Warschauer, 2018; Wing, 2006). Given these constellating factors, it is critical that we engage 
culturally and linguistically diverse learners in CS education so that they can benefit from the multiple 
advantages of its worldly applications.  

Engaging Multilingual Students in CS 
Borrowing from research on STEM education, multilingual students’ CS learning has been supported by 
several empirically supported practices. For example, building on multilingual students’ existing resources 



can increase their participation in CS (Jacob et al., 2022). We draw from a recent report by the National 
Academies of Sciences, Engineering, and Mathematics (NASEM, 2018), which uncovers five effective 
practices for engaging multilingual students in STEM: (1) engage students in disciplinary practices; (2) 
encourage rich classroom discourse; (3) build on students’ multiple meaning-making resources; (4) 
encourage students to use multiple registers and modalities; and (5) provide explicit focus on how 
language functions in the discipline. Although research on the efficacy of these practices in math and 
science classrooms has been well established (Jona et al., 2014; Sengupta et al., 2018; Weintrop et al., 
2016), studies on how these practices fit within the field of CS are limited. Below, we provide an overview 
of how these practices can be applied to CS education. We borrow heavily from empirical studies on 
Elementary Computing for All to discuss these five practices (Jacob, Parker, Warschauer, 2022; Jacob et 
al., 2022). 

In the CS classroom, students engage in disciplinary practices by testing theoretical conjectures 
about the empirical world. Several studies have demonstrated the affordances of engaging English  
learners (ELs) in inquiry-based instruction in S (Estrella et al., 2018; Janzen, 2008; Rosebery et al., 1992). 
Notably, scientific inquiry focuses on identifying and evaluating hypotheses to understand a set of 
principles governing the physical world (Giere, 1999). This objective contrasts with inquiry in CS, which 
focuses on constructing and testing logical processes to address an abstract computational problem 
(Wing, 2006). Instruction in CS then seeks to develop a set of skills, practices, and dispositions essential to 
understanding computational methods (Wing, 2006). Although inquiry-based learning represents a 
promising approach to engaging multilingual students in CS, several studies have shown that it is the highly 
structured and scaffolded approaches to inquiry-based instruction that improve social and academic 
outcomes for diverse learners (Kirschner et al., 2006; Reiser, 2004; Sweller & Cooper, 1985). Inquiry-based 
learning that lacks the appropriate scaffolding and teacher modeling often results in students getting 
stuck, which discourages them and leads to lost opportunities (Bransford et al., 2009).  

The second effective practice for engaging multilingual students in STEM involves building on 
students’ existing resources (NASEM, 2018). This can be achieved by leveraging students’ linguistic, 
cultural, semiotic, and embodied resources to increase their participation in disciplinary practices (Brown 
& Ryoo, 2008; Vogel et al., 2020). As students negotiate meaning in CS classrooms, they have 
opportunities to make connections between teacher output and computational artifacts, problematize 
knowledge, and question misconceptions (Gibbons, 2007).  

 Collaborative activities that encourage rich classroom discourse and interaction, such as pair 
work, group work, and peer feedback, facilitate opportunities for growth in both language and CS learning. 
When students are provided multiple opportunities to collaborate in CS classrooms, they engage in active 
listening as well as productive language functions to construct meaning, such as describing complex 
problems, identifying possible solutions, testing and debugging solutions, and analyzing program 
efficiency (Jacob et al., 2018; Swanson et al., 2014). In particular, scaffolding collaborative discourse has 
been shown to engage language learners in STEM practices (Jadallah et al., 2011). During scaffolded 
collaborative talk, students are provided multiple opportunities to use their everyday sense-making 
abilities to practice the functions of social interaction, such as paraphrasing, asking for clarification, 
building on others’ ideas, probing for meaning, and engaging in meaningful discussion (Michaels & 
O’Connor, 2015). Shea and Shanahan (2011) found that integrating language and disciplinary learning in 
a manner that facilitated peer-to-peer talk increased both English Language Arts (ELA) and math scores 
for multilingual students. Multilingual students are those who speak or are learning more than one 
language, including students who are designated as English learners. We refer to multilingual students 
throughout, as it represents an asset-based term for students who speak more than one language, 
whereas the term English Learner focuses solely on the target language. 

In addition to collaboration and inquiry, hands-on activities, visualizations, and scaffolding 
strategies engage students in multiple modalities to better teach key language and concepts. This is 



evidenced by Ryoo and Bedell’s (2019) study on the value of visualizations for helping multilingual 
students understand science content. Research indicates that expanding beyond linguistic modalities of 
speech and text to include nonlinguistic modalities such as symbols, simulations, models, and graphical 
notation facilitates the learning of key computational concepts (cf. Grapin et al., 2021; Lee et al., 2019). 
In CS classrooms, visual representations such as models and simulations are frequently used to engage 
students in computational methods. These representations leverage students' semiotic resources for CS 
learning (Grapin et al., 2021).  

Finally, linguistic scaffolds provide explicit focus on how language functions in the discipline. 
Early research situated in sociology and anthropology proposed that science is learned through social 
practices in which language learners construct knowledge through scientific discourse (Kelly & Chen, 1999; 
Latour, 1987; McGinn & Roth, 1999). Although scientific processes lend themselves to language functions 
(i.e., analyze, classify, demonstrate, hypothesize, observe, record, strategize, summarize, etc.; Lemke, 
1990; Snow et al., 1989), little work has been done to explore the functional language of CS. Jacob et al. 
(2018) described the first effort to develop CS language functions that provide linguistic scaffolding for 
the development of computational thinking. In CS, these functions include discussing the relationship 
between desired outcomes and coding strategies that result in those outcomes and analyzing errors in 
coding that prevent those outcomes from being achieved (Jacob et al., 2018). Explicit teaching of the 
corresponding language forms and functions reinforces students’ understanding while developing their 
linguistic repertoires (NASEM, 2018). For example, elementary students in a program that integrated 
content, English Language Development (ELD) standards, and corresponding linguistic frames into inquiry-
based STEM unit plans showed significant increases in ELD and ELA scores compared to students in a 
traditional elementary science curriculum (Zwiep & Straits, 2013).  

Other researchers focus on the theory of translanguaging (García & Li, 2014) to combat the idea 
that coding is an exclusive discourse (Vogel et al., 2020). They argue that viewing coding in this manner 
has excluded marginalized groups, such as multilingual students, from participating in CS (Vogel et al., 
2020). Translanguaging refers to the leveraging of students' entire linguistic repertoires for learning and 
represents a mechanism for including marginalized students in computing discourse (García & Li, 2014; 
Vogel et al., 2020). Findings from a study examining teacher use of translanguaging to engage multilingual 
students in CS education indicated that students leveraged their varied resources (i.e., linguistic, cultural, 
semiotic, and embodied) to develop computational literacies and increase their participation in CS 
learning (Vogel et al., 2020).       

Elementary Computing for All Curriculum 
Beginning with a partnership between the University of California, Irvine (UCI) and Santa Ana Unified 
School District (SAUSD), Elementary Computing for All is a Research Practice Partnership that has since 
included two large urban school districts and a dual immersion public charter school in Santa Ana. Almost 
95% of students in each of these three partner school districts are Latine, and roughly 50% of elementary 
children are classified as ELs. Chicago Public Schools and Boston Public Schools have also adopted the 
curriculum. Hundreds of unique users from 30 states and 24 countries have accessed the curriculum on 
our project website, and teachers from numerous districts and several other countries have joined.  

Research Practice Partnerships (RPPs) are collaborations between researchers and practitioners 
that seek to identify and solve problems of practice, or issues that participating practitioners consider to 
be of central importance (Coburn et al., 2013). RPPs use a bottom-up approach in which knowledge, 
although grounded in sound theory, is generated from the lived experiences of participating practitioners. 
Solving issues that are of high priority to practitioners while also engaging them in research and 
development increases the sustainability of implementation over traditional reform-based research 
interventions (Eisenhart & Towne, 2003). 



During the beginning stages of the partnership, SAUSD proposed a goal of increasing both STEM 
and literacy learning in their district. The Elementary Computing for All curriculum was designed to 
address this problem of practice by designing an integrated Grade 3-5 computational thinking and literacy 
curriculum in concert with teachers and administrators that meet the needs of the districts’ large 
percentages of ELs. Although the curricular intervention has undergone several iterations, it is grounded 
in the five practices described above as outlined in the National Academies report (NASEM, 2018). What 
follows is a description of how the curriculum has been adapted to incorporate these empirically 
supported practices (see Table 1). The descriptions of these practices below borrow heavily from existing 
research on the Elementary Computing for All curriculum (see Jacob, Parker, Warschauer, 2022; Jacob, 
Nguyen et al., 2022). 

Table 1 
Aligning Elementary Computing for All with the NASEM Practices 

 Practices  Methods/Techniques Strategies/Activities 

Engage students in 
disciplinary practices 

● Computational thinking skills, 
practices, and perspectives

● CS inquiry (5 E’s)
● Standards alignment (CSTA, ELD, 

ELA)

● Inquiry-based learning
● Use/Modify/Create 
● TIPP&SEE 
● Culminating unit projects
● Unplugged activities

Engage students in 
productive discourse and 
interactions with 
others 

● Pair programming 
● Small group
● Whole class

● Scratch charades
● Pair programming culminating 

projects 
● Peer feedback opportunities 
● Unplugged activities

Utilize and encourage 
students to use multiple 
registers and multiple 
modalities 

● Gestures
● Symbols
● Pictures
● Body movement
● Visualizations 
● Opportunities for reflection 
● Teacher questioning techniques 

● Multiple modalities (examples)
● Unplugged activities
● Simulations
● Videos
● TIPP&SEE 
● Registers (examples)
● End-of-unit reflections
● Sentence frames 

Build on students’ existing 
resources 

● Culturally responsive materials
● Inductive pedagogical

approaches

● Responsive storybooks 
● Code.org video resources
● Unplugged activities
● Memorable mentors

Provide some explicit focus 
on how language functions in 
the discipline 

● Systematic functional linguistic 
scaffolding

● Language objectives 

● Language frames
● End-of-unit reflections
● Interaction-based language 

activities



Elementary Computing for All engages students in disciplinary practices by using inquiry-based 
learning to provide authentic contexts for language use through student engagement in exploration, 
experimentation, and hands-on activities (National Research Council [NRC], 1996). The first iteration of 
the curriculum integrated inquiry-based learning by borrowing from the 5 E’s model of inquiry (Bybee, 
1997), which includes five stages of inquiry-based instruction: Engage, Explore, Explain, Elaborate, and 
Evaluate. Engagement involves creating student interest in a subject. Exploration refers to immersing 
students in hands-on activities that help them understand scientific phenomena. Explanations involve 
drawing on students' linguistic and conceptual resources to provide a rationale for observed phenomena. 
Elaboration involves the application of the learned material. Evaluation involves student reflection on 
their newly obtained knowledge.  

Although inquiry-based instruction using the 5 E’s yielded positive results for multilingual students 
(Jacob et al., 2020; Jacob et al., 2022), researchers and practitioners of Elementary Computing for All 
sought to understand the level of structure and scaffolding necessary to maximize inquiry-based learning 
for multilingual students in CS. To this end, Jacob, et al. (2020) sought to examine the types of inquiry-
based instruction that supported multilingual students’ development of computational thinking skills and 
CS identities. Jacob, Nguyen, et al. (2020) used a framework created by Windschitl (2003) to come up with 
four types of inquiry. These types ranged from more structured and scaffolded approaches to inquiry to 
more open and exploratory approaches to inquiry-based instruction. They and other researchers found 
that students who received more structured approaches to inquiry-based instruction developed more 
sophisticated computational artifacts and stronger CS identities (Jacob, Nguyen, et al., 2020; Prado et al., 
2022). Based on these findings, UCI and the University of Chicago partnered with SAUSD, MUSD, and 
Chicago Public Schools to add more structure to the yearlong computational thinking curriculum.  

Elementary Computing for All applied a well-studied strategy from reading research, THIEVES 
(Manz, 2002), to students’ CS projects to develop the TIPP&SEE strategy (Salac et al., 2020). Furthermore, 
to provide students with exposure to key CS concepts prior to creating projects on their own, Elementary 
Computing for All integrated the Use→Modify→Create model (Lee et al., 2011) into curricular units. What 
follows is an explanation of the Use→Modify→Create model (Lee et al., 2011) and TIPP & SEE (Salac et al., 
2020). 

Research suggests that providing unstructured inquiry with minimal guidance to diverse learners 
can lead to frustration and wasted opportunities (Bransford et al., 2009). Instructional models such as 
Use→Modify→Create (I. Lee et al., 2011) provide the necessary structure by having students first use 
existing programs, then work together to modify them, and finally create their own. The 
Use→Modify→Create model has shown promising results through its integration into a wide array of CS 
curricula (Franklin et al., 2020). During the use stage, an additional layer of scaffolding based on the 
reading comprehension strategy THIEVES (Manz, 2002) can be added to CS activities called TIPP&SEE. 
TIPP&SEE is designed to leverage students’ metacognitive strategies to prepare them for learning complex 
computational concepts. In the first stage of TIPP&SEE, students read the Title of the program and make 
a prediction about its contents, then analyze its Instructions to better understand the task at hand, and 
finally identify the Purpose of the program to consider the most salient features of learning. Finally, they 
Play with the program to understand its features and document their observations. Students then turn to 
the program’s code, by first examining the Sprites, or characters, within the program and identifying the 
Event that caused specific actions to be completed by the Sprites. Finally, students Explore making changes 
to code and describe how these changes affect program execution. This process provides critical support 
during the Use stage so that students can move on to making modifications and ultimately engage in 
creative exploration. Providing structured approaches such as Use→Modify→Create and TIPP & SEE to 
inquiry-based learning creates opportunities for success for diverse learners by equipping them with the 
programmatic logic necessary to engage in creative exploration without getting lost in the unlimited 
possibilities afforded by open-ended programming environments.  



To engage students in disciplinary practices, we also integrated computational thinking skills with 
literacy development by aligning the curriculum with the California Standards for English Language 
Development and the Common Core State Standards for English Language Arts (see Table 2). There is 
evidence to support the relationship between learning to read, write, and program (Bers, 2019; Peppler 
& Warschauer, 2011). Through the interconnected aspects of coding and reading, students have multiple 
opportunities to examine the relationship between symbols and their corresponding meanings. For 
example, the Scratch program is embedded with multimodal symbols that can be arranged in logical 
ways to develop programs. Connections such as these provide engaging environments for children to 
develop their emergent literacy skills (Peppler & Warschauer, 2011). 

Table 2 
Sample Learning Goals That Integrate Grade 4 Common Core ELA, English Language Development, and Computer Science 

Teachers Association Standards (Jacob, Parker, & Warschauer, 2022) 

Activity: Students program a story about their lives, families, or communities 

Computer science concepts: Loops, sequences, conditionals 
Computer Science Teachers Association (CSTA) Standards 
CSTA 1B-AP-10 

CSTA 1B-AP-13 

CSTA 1B-AP-15 

Create programs that include sequences, events, loops, and conditionals 

Use an iterative process to plan the development of a program by including others’ 
perspectives and considering user preferences 

Test and debug a program or algorithm to ensure it runs as intended 
English Language Development (ELD) Standards 

Emerging Expanding Bridging 

3. Offering opinions
Negotiate with or persuade others 
in conversations using basic learned 
phrases (e.g., I think) as well as 
open responses in order to gain 
and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others in 
conversations using a variety of learned 
phrases (e.g., That’s a good idea. 
However …) as well as open responses, 
in order to gain and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others in 
conversations using a variety of learned phrases 
(e.g., That’s a good idea. However …) as well as 
open responses in order to gain and/or hold the 
floor, elaborate on an idea, and provide 
different opinions.

11. Supporting opinions
Offer opinions and provide good 
reasons (e.g., My favorite book is X 
because X) referring to the text or 
to relevant background knowledge.

11. Supporting opinions
Offer opinions and provide good reasons 
and some textual evidence or relevant 
background knowledge (e.g., 
paraphrased examples from text or 
knowledge of content).

11. Supporting opinions
Offer opinions and provide good reasons with 
detailed textual evidence or relevant 
background knowledge (e.g., specific examples 
from text or knowledge of content).

Corresponding English Language Arts Standards 

CCSS.ELA-L.SL.4.1 

CCSS.ELA-L.SL.4.4 

CCSS.ELA-L.SL.4.6 

CCSS.ELA-L.W.4.9 

Engage effectively in a range of collaborative discussions with diverse partners, building 
on others’ ideas and expressing their own clearly. Report on a topic or text, tell a story, or 
recount an experience in an organized manner, using appropriate facts and relevant, 
descriptive details to support main ideas or themes; speak clearly at an understandable 
pace. Differentiate between contexts that call for formal English (e.g., presenting ideas) 
and situations where informal discourse is appropriate (e.g., small-group discussion); use 
formal English when appropriate to task and situation. Draw evidence from literary or 
informational texts to support analysis, reflection, and research. 



Through unplugged activities, Elementary Computing for All builds on students’ existing 
resources. These unplugged activities leverage students' multiple meaning-making repertoires to support 
CS learning. For example, if children learn about loops, or a repeat block, first they stand up and dance, 
then they identify each move of the dance, then they identify how sequences of moves repeat, and then 
how the entire dance repeats. It is not until students fully embody the concept of loops that the term is 
presented. In this way, they use their everyday sense-making abilities to make sense of abstract concepts. 
Furthermore, the curriculum integrated culturally sustaining materials such as children’s storybooks 
depicting diverse pioneers in the field of CS as well as memorable mentor videos highlighting the personal 
and professional journeys of Latine computer scientists and engineers. 

Third, Elementary Computing for All encourages rich classroom discourse by providing multiple  
opportunities for collaboration such as pair programming, peer feedback opportunities, and collaborative 
projects. Furthermore, teachers were provided professional development on interactional patterns that 
encourage students to ask for clarification, use their everyday sense-making abilities to understand 
abstract concepts, and infer meaning from context. 

Fourth, physical activities, unplugged activities, and visualizations were incorporated to engage 
students in multiple modalities, including but not limited to gestures, pictures, graphs, and symbols, 
which have been shown to simultaneously develop students' computational thinking and language skills 
(cf. Lee et al., 2019). For instance, through an unplugged exercise including movement and visual cues, 
students learn about key computational concepts such as parallelism, which refers to two actions 
happening at the same time. To learn about algorithms, or a list of steps that execute a function, students 
play Simon Says, in which the teacher instructs the class that they are a robot, and the students must 
provide instructions for the robot to move to a specific place in the classroom.  

Fifth, by using sentence frames that teachers make available for use by students through student 
reflections, peer evaluation, feedback, and help-seeking, the curriculum provides explicit teaching on 
how language functions in the discipline. For each of the lessons, students were provided with placemats 
that contained the corresponding sentence frames. 

Table 3 
Computer Science Language Functions (Jacob, Parker, & Warschauer, 2022) 

Teacher activities Student discourse  CS concepts 
(language 
function) Emerging Expanding Bridging 

Remind students to think about the 
events that will cause each action to 
happen in their project, which 
programs will run parallel to each 
other, and how their project will 
reset once it has finished running.  

I need help with 
__. 
__ caused ___ to 
happen. 
___ and ___ are 
running at the 
same time. 
I used ___ to 
reset the 
program. 

I am having 
difficulty with ___. 
__ is the event 
that caused __ to 
happen. 
__ and __ are 
running parallel to 
each other. 
I used _ to 
initialize the 
program. 

Could you help me fix the 
following challenge in my code 
___? 
The event that caused ___ to 
happen is ___. 
_ and _ are running parallel to 
each other/simultaneously/at 
the same time. 
__ caused the program to 
initialize. 

Debugging, 
events, 
initialization, 
parallelism  
(Describing, 
comparing) 

Instructional and Curricular Outcomes 
Research on Elementary Computing for All has demonstrated that grounding the curriculum in effective 
practices for engaging multilingual students in STEM has resulted in positive social and academic 
outcomes for these students—and that elementary school teachers of such students are able to 
successfully teach the curriculum without any prior coding experience. For example, the curriculum helps 
predominantly low-income Latine students, including large numbers of students designated as English 



learners, learn the discourse of CS, advance their coding skills, and develop strong CS identities, all while 
achieving greater growth in their standardized reading and math skills than their peers who do not have 
access to the curriculum.  

Student computational thinking outcomes 
Findings from a cross-case study showed that students who received structured approaches to inquiry-
based learning when receiving the Elementary Computing for All curriculum developed stronger 
computational thinking skills and CS identities (Jacob, Nguyen, et al., 2020). Furthermore, through the 
opportunities for self-expression embedded in the Scratch programming environment, students practiced 
key computational thinking practices such as (1) experimenting and iterating, (2) reusing and remixing, (3) 
testing and debugging, and (4) abstracting and modularizing (Jacob et al., 2020). 

Developing students' CS identities 
In a mixed-methods study, Jacob, Montoya, et al. (2022) found that students who participated in 
Elementary Computing for All significantly increased their CS identity attainment with respect to students’ 
experiences with CS, their perceptions of CS, their perceptions of themselves as computer scientists, and 
their family support for CS. Follow-up interviews suggested that the connections students make between 
informal learning environments, rooted in students' homes, families, and communities, served to bolster 
their perceptions of their ability to do CS in the classroom. Building from this study, Jacob, Montoya, and 
Warschauer (2022) sought to understand the intersectional factors that shaped young Latinas’ CS identity 
development. Findings indicated that parental support, cultural connections, and out-of-school learning 
helped these girls redefine stereotypes about who does CS and leverage the rich assets embedded in their 
diverse group membership. 

CS disciplinary language learning 
In a discourse analysis of peer-to-peer talk in students’ video reflections of their Scratch projects, Nguyen 
et al. (2020) found that linguistic scaffolding enriched students’ CS discourse, vocabulary usage, and 
description of computational thinking practices. Furthermore, students who elaborated on their projects 
and used more CS vocabulary had higher programming scores. This underscores the importance of peer-
to-peer talk in strengthening connections between CS language usage and the development of computing 
skills. In a similar study on teacher noticing of students' discourse, findings indicated that at the beginning 
of the year, teachers honed in on students' CS vocabulary and concept learning. After several design 
meetings with Elementary Computing for All researchers, teachers noticed how students leveraged their 
everyday sense-making abilities to understand abstract CS concepts. Prior research suggests that paying 
attention to students' everyday language usage and their disciplinary language usage facilitates students’ 
sense-making of complex and abstract phenomena and problems in STEM and CS (Gomez, 2007).  

Teacher instructional outcomes 
Teachers used instructional practices grounded in NASEM principles to engage students in integrated  
computational thinking, language, and literacy instruction. For example, they used strategies for activating 
prior knowledge, asking multiple questions to engage students in disciplinary practices; strategies for 
providing direct instruction that engaged students in multiple registers and modalities; and strategies for 
fostering student interaction and providing language support (Jacob, Parker, & Warschauer, 2022). They 
also used children’s storybooks to leverage students’ existing literacy skills to teach computational 
thinking. For example, through a read-aloud of “The Most Magnificent Thing,” a story about a young girl 
who builds a computational artifact with her dog, one classroom teacher taught computational thinking 
concepts such as sequence, abstraction, debugging, and design through the NASEM strategies mentioned 
above (Jacob, Parker, & Warschauer, 2022). 



Conclusion 
Multilingual students are one of the most understudied and underserved groups in CS education. 
Furthermore, there is little data about students designated as ELs in CS courses. This exploratory 
research helps to ameliorate these issues by identifying practices and instructional material that are 
empirically effective in engaging multilingual students in CS and STEM.  

Given the landscape surrounding CS education for students designated as ELs, it is critical for 
educators and practitioners to better understand the factors that shape CS learning for multilingual 
students and lead to more equitable CS instruction. This poses the question of how to move forward. 
There is much relevant work on providing effective practices for engaging multilingual students in STEM, 
but none of it is precisely targeted to the issue of how to successfully engage multilingual students in CS 
education. In this chapter, we draw on existing research, as well as our own and others’ theoretical and 
empirical work to date, to put forth both a framework and curriculum for teaching CS to multilingual 
students.  

Authors 
Sharin Rawhiya Jacob is a Resesrcher in Computational Thinking Pathways at Digital Promise Global. Her research 
interests examine the linguistic and sociocultural factors that contribute to multilingual students' success in 
computing. Sharin was recently awarded the UC Irvine Public Impact Distinguished Fellowship for her commitment 
to bringing actionable change for multilingual students in computing. 

Mark Warschauer is a Professor of Education and Informatics at the University of California, Irvine, and Director of 
the university’s Digital Learning Lab. He is one of the most widely cited scholars on digital learning topics such as 
computer-assisted language learning, digital literacy, the digital divide, one-to-one laptop classrooms, and artificial 
intelligence in education.  

Acknowledgments 
We would like to thank the National Science Foundation (Grants no. 1738825 and no. 1923136) and the US 
Department of Education (Grant no. U411C190092) for providing the funding that made this project possible. 
Findings expressed in this work are those of the authors and do not necessarily reflect the views of the National 
Science Foundation or the US Department of Education. 

References 
Allen-Handy, A., Ifill, V., Schaar, R. Y., Rogers, M., & Woodard, M. (2020). Black girls STEAMing through 

dance: Inspiring STEAM literacies, STEAM identities, and positive self-concept. Challenges and 
opportunities for transforming from STEM to STEAM education, 198-219. IGI Global. 

Ball, D., Tofel-Grehl, C., & Searle, K. A. (2017). Sustaining making in the era of accountability: STEM 
integration using e-textiles materials in a high school physics class. Proceedings of the 7th Annual 
Conference on Creativity and Fabrication in Education, 1-7. ACM. 
https://doi.org/10.1145/3141798.3141801 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is 
the role of the computer science education community? ACM Inroads, 2(1), 48–54. 
https://doi.org/10.1145/1929887.1929905 

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer science 
in early childhood. Journal of Computers in Education, 6(4), 499-528. 

Beyer, S. (2014). Why are women underrepresented in computer science? Gender differences in 
stereotypes, self-efficacy, values, and interests and predictors of future computer science course-
taking and grades. Computer Science Education, 24(2-3), 153-192. 

https://doi.org/10.1145/3141798.3141801
https://doi.org/10.1145/1929887.1929905


Bransford, J. D., Stipek, D. J., Vye, N. J., Gomez, L. M., & Lam, D. (2009). The role of research in 
educational improvement. Harvard Education Press. 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational 
Research Association, Vancouver, Canada, Vol. 1, 25. 

Brown, B. A., & Ryoo, K. (2008). Teaching science as a language: A “content-first” approach to science 
teaching. Journal of Research in Science Teaching, 45(5), 529-553. 

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Heinemann. 
Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues 

impact gender participation in computer science. Journal of Personality and Social Psychology, 97(6), 
1045. 

Coburn, C. E., Penuel, W. R., & Geil, K. E. (2013). Practice partnerships: A strategy for leveraging research 
for educational improvement in school districts. William T. Grant Foundation. 

Code.org, CSTA, & ECEP Alliance. (2020). 2020 state of computer science education: Illuminating 
disparities. https://advocacy.code.org/stateofcs 

DiSalvo, B., Yardi, S., Guzdial, M., McKlin, T., Meadows, C., Perry, K., & Bruckman, A. (2011). African 
American men constructing computing identity. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (pp. 2967-2970). https://doi.org/10.1145/1978942.1979381 

diSessa, A. A. (2000). Changing minds: computers, learning, and literacy. MIT Press. 
Eisenhart, M., & Towne, L. (2003). Contestation and change in national policy on “scientifically based” 

education research. Educational Researcher, 32(7), 31-38. 
Erete, S., Martin, C. K., & Pinkard, N. (2017). Digital Youth Divas: A program model for increasing 

knowledge, confidence, and perceptions of fit in STEM amongst black and brown middle school girls. 
Y. rankin & J. Thomas (Eds.), Moving students of color from consumers to producers of technology,
152-173. IGI Global.

Estrella, G., Au, J., Jaeggi, S. M., & Collins, P. (2018). Is inquiry science instruction effective for English 
language learners? A meta-analytic review. AERA Open, 4(2). 
https://doi.org/10.1177/2332858418767402 

Franklin, D., Coenraad, M., Palmer, J., Eatinger, D., Zipp, A., Anaya, M., White, M., Pham, H., Gokdemir, 
O., & Weintrop, D. (2020). An analysis of use-modify-create pedagogical approach's success in 
balancing structure and student agency. Proceedings of the 2020 ACM Conference on International 
Computing Education Research, 14-24. https://doi.org/10.1145/3372782.3406256 

García, O., & Wei, L. (2014). Translanguaging: Language, bilingualism and education. Palgrave 
Macmillan. 

Gibbons, P. (2007). Mediating academic language learning through classroom discourse. In J. Cummins & 
C. Davison (Eds.), International handbook of English language teaching, 701-718. Springer.

Giere, R. N. (1999). Science without laws. University of Chicago Press. 
Gomez, K. (2007). Negotiating discourses: Sixth-grade students’ use of multiple science discourses 

during a science fair presentation. Linguistics and Education, 18(1), 41-64. 
Goode, J. (2008). Increasing diversity in K-12 CS: Strategies from the field. Proceedings of the 39th 

SIGCSE technical symposium on computer science education, 362-366. 
https://doi.org/10.1145/1352135.1352259 

Goode, J., Flapan, J., & Margolis, J. (2018). Computer science for all: A school reform framework for 
broadening participation in computing. In W. G. Tierney, Z. B. Corwin, & A. Ochsner (Eds), 
Diversifying digital learning: Online literacy and educational opportunity, 45-65. John Hopkins 
University Press. 

https://advocacy.code.org/stateofcs
https://doi.org/10.1145/1978942.1979381
https://doi.org/10.1177/2332858418767402
https://doi.org/10.1145/3372782.3406256
https://doi.org/10.1145/1352135.1352259


Grapin, S. E., Llosa, L., Haas, A., & Lee, O. (2021). Affordances of computational models for English 
learners in science instruction: Conceptual foundation and initial inquiry. Journal of Science 
Education and Technology, 1-16. 

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. 
Educational Researcher, 42(1), 38-43. 

International Society for Technology in Education (ISTE) & Computer Science Teachers Association 
(CSTA). (2011). Operational definition of computational thinking for K-12 education. 
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf 

Irwin, V., Zhang, J., Wang, X., Hein, S., Wang, K., Roberts, A., York, C., Barmer, A., Mann, F. B., Dilig, R., 
Parker, S., Nachazel, T., Barnett, M., & Purcell, S. (2021). Report on the condition of education 2021 
(NCES 2021-144). National Center for Education Statistics. 

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–12 students with 
disabilities to learn computational thinking and computer programming. TEACHING Exceptional 
Children, 48(1), 45-53. 

Jacob, S., Garcia, L., & Warschauer, M. (2020). Leveraging multilingual identities in computer science 
education. M. R. Freiermuth & N. Zarrinabadi (Eds.), Technology and the psychology of second 
language learners and users. Palgrave-Macmillan. 

Jacob, S., Nguyen, H., Garcia, L., Richardson, D., & Warschauer, M. (2020). Teaching computational 
thinking to multilingual students through inquiry-based learning. 2020 Research on Equity and 
Sustained Participation in Engineering, Computing, and Technology (RESPECT), Vol. 1, 1-8. IEEE. 

Jacob, S., Nguyen, H., Tofel-Grehl, C., Richardson, D., & Warschauer, M. (2018). Teaching computational 
thinking to English learners. NYS TESOL Journal, 5(2), 12-24. 

Jacob, S. R., Montoya, J., Nguyen, H., Richardson, D., & Warschauer, M. (2022). Examining the what, 
why, and how of multilingual student identity development in computer science. ACM Transactions 
on Computing Education (TOCE), 22(3), 1-33. https://doi.org/10.1145/3500918 

Jacob, S. R., Montoya, J., & Warschauer, M. (2022). Exploring the intersectional development of 
computer science identities in young Latinas. Teachers College Record, 124(5), 166 –185. 

Jacob, S. R., Parker, M. C., & Warschauer, M. (2022). Integration of computational thinking into English 
language arts. In A. Ottenbreit-Leftwich, A. Yadav (Eds.), Computational thinking in preK-5: Empirical 
evidence for integration and future directions, 55-63. ACM. 

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal of CS Integration, 
1(1), 1-19. 

Jadallah, M., Anderson, R. C., Nguyen-Jahiel, K., Miller, B. W., Kim, I.-H., Kuo, L.-J., Dong, T., & Wu, X. 
(2011). Influence of a teacher’s scaffolding moves during child-led small-group discussions. American 
Educational Research Journal, 48(1), 194-230. 

Janzen, J. (2008). Teaching English language learners in the content areas. Review of Educational 
Research, 78(4), 1010-1038. 

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014). Embedding 
computational thinking in science, technology, engineering, and math (CT-STEM). Future Directions 
in Computer Science Education Summit Meeting, Orlando, FL, United States. 

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the 
ACM, 50(7), 58-64. 

Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices 
through oral and written discourse. Journal of Research in Science Teaching: The Official Journal of 
the National Association for Research in Science Teaching, 36(8), 883-915. 

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not 
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and 
inquiry-based teaching. Educational Psychologist, 41(2). 

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1145/3500918


Ladner, R. E., Seim, C., Sharif, A., Rizvi, N., & Glasser, A. (2021). Experiences of computing students with 
disabilities. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 
939-940. 

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard 
University Press. 

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). 
Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37. 

Lee, O., Llosa, L., Grapin, S., Haas, A., & Goggins, M. (2019). Science and language integration with 
English learners: A conceptual framework guiding instructional materials development. Science 
Education, 103(2), 317-337. 

Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex. 
Manz, S. L. (2002). A strategy for previewing textbooks: Teaching readers to become THIEVES. The 

Reading Teacher, 55(5), 434. 
Martin, A., McAlear, F., & Scott, A. (2015). Path not found: Disparities in access to computer science 

courses in California high schools. https://eric.ed.gov/?id=ED561181  
McFarland, J., Hussar, B., Zhang, J., Wang, X., Wang, K., Hein, S., ... & Barmer, A. (2019). The Condition of 

Education 2019. NCES 2019-144. National Center for Education Statistics. 
McGinn, M. K., & Roth, W. M. (1999). Preparing students for competent scientific practice: Implications 

of recent research in science and technology studies. Educational Researcher, 28(3), 14-24. 
Michaels, S., & O’Connor, C. (2015). Conceptualizing talk moves as tools: Professional development 

approaches for academically productive discussion. In Socializing intelligence through talk and 
dialogue, 347-362. 

Mishra, S., Balan, S., Iyer, S., & Murthy, S. (2014). Effect of a 2-week Scratch intervention in CS1 on 
learners with varying prior knowledge. Proceedings of the 2014 Conference on Innovation & 
Technology in Computer Science Education, 45-50. ACM. 

National Academies of Sciences, Engineering, and Medicine. (2018). English learners in STEM subjects: 
Transforming classrooms, schools, and lives. https://www.nap.edu/catalog/25182/english-learners-
in-stem-subjects-transforming-classrooms-schools-and-lives  

National Center for Science and Engineering Statistics. (2021). Women, minorities, and persons with 
disabilities in science and engineering: 2021. https://ncses.nsf.gov/pubs/nsf21321/report/field-of-
degree-minorities  

National Research Council. (1996). National science education standards. National Academy Press. (ERIC 
Document Reproduction Service No. ED 391 690) 

Nguyen, H., Garcia, L., Jacob, S., Richardson, D., & Warschauer, M. (2020). Teachers' use of video 
reflections to reinforce computer science language and concepts. In 2020 Research on Equity and 
Sustained Participation in Engineering, Computing, and Technology (RESPECT), Vol. 1, 1-8. IEEE. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books. 
Peppler, K. A., & Warschauer, M. (2011). Uncovering literacies, disrupting stereotypes: Examining the 

(dis)abilities of a child learning to computer program and read. International Journal of Learning and 
Media, 3(3), 15-41. 

Prado, Y., Jacob, S., & Warschauer, M. (2022). Teaching computational thinking to exceptional learners: 
Lessons from two inclusive classrooms. Computer Science Education, 32(2), 188-212. 
https://doi.org/10.1080/08993408.2021.1914459 

Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing 
student work. The Journal of the Learning Sciences, 13(3), 273-304. 

Rosebery, A. S., Warren, B., & Conant, F. R. (1992). Appropriating scientific discourse: Findings from 
language minority classrooms. The Journal of the Learning Sciences, 2(1), 61-94. 

https://eric.ed.gov/?id=ED561181
https://www.nap.edu/catalog/25182/english-learners-in-stem-subjects-transforming-classrooms-schools-and-lives
https://www.nap.edu/catalog/25182/english-learners-in-stem-subjects-transforming-classrooms-schools-and-lives
https://ncses.nsf.gov/pubs/nsf21321/report/field-of-degree-minorities
https://ncses.nsf.gov/pubs/nsf21321/report/field-of-degree-minorities
https://doi.org/10.1080/08993408.2021.1914459


Royal, D., & Swift, A. (2016, October 18). U.S. minority students less exposed to computer science. 
Gallup. http://www.gallup.com/poll/196307/minority-studentsless-exposed-computer-science.aspx  

Ryoo, K., & Bedell, K. (2019). Supporting linguistically diverse students' science learning with dynamic 
visualizations through discourse-rich practices. Journal of Research in Science Teaching, 56(3), 270-
301. 

Salac, J., Thomas, C., Butler, C., Sanchez, A., & Franklin, D. (2020). TIPP&SEE: A learning strategy to guide 
students through use-modify Scratch activities. In Proceedings of the 51st ACM Technical Symposium 
on Computer Science Education, 79-85. 

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in 
STEM education. Computational Thinking in the STEM Disciplines, 49-72. 

Shea, L. M., & Shanahan, T. B. (2011). Methods and strategies: Talk strategies. Science and Children, 
49(3), 62-66. 

Snow, M. A., Met, M., & Genesee, F. (1989). A conceptual framework for the integration of language and 
content in second/foreign language instruction. TESOL Quarterly, 23(2), 201-217. 

Swanson, L. H., Bianchini, J. A., & Lee, J. S. (2014). Engaging in argument and communicating 
information: A case study of English language learners and their science teacher in an urban high 
school. Journal of Research in Science Teaching, 51(1), 31-64. 

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in 
learning algebra. Cognition and Instruction, 2, 59-89. 

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming environment at the CS I 
level. Journal of Educational Computing Research, 36(2), 223-244. https://doi.org/10.2190/J175-
Q735-1345-270M 

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational 
action. Communications of the ACM, 62(3), 34-36. https://doi.org/10.1145/3265747  

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L. (2020). Languages, literacies and literate 
programming: Can we use the latest theories on how bilingual people learn to help us teach 
computational literacies? Computer Science Education, 1-24. 

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education: Unpacking arguments for 
and projected impacts of CS4All initiatives. In Proceedings of the 2017 ACM SIGCSE technical 
symposium on CS education, 609-614. https://doi.org/10.1145/3017680.3017755  

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 
computational thinking for mathematics and science classrooms. Journal of Science Education and 
Technology, 25(1), 127-147. 

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms. 
Communications of the ACM, 57(8), 24-28. https://dl.acm.org/doi/pdf/10.1145/2633031  

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences 
reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112-143. 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 
https://doi.org/10.1145/1118178.1118215  

Zhou, N., Cao, Y., Jacob, S., & Richardson, D. (2020). Teacher perceptions of equity in high school CS 
classrooms. ACM Transactions on Computing Education (TOCE), 20(3), 1-27. 

Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal 
of Science Teacher Education, 24(8), 1315-1331 

 
 
 
 
 

http://www.gallup.com/poll/196307/minority-studentsless-exposed-computer-science.aspx
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3017680.3017755
https://dl.acm.org/doi/pdf/10.1145/2633031
https://doi.org/10.1145/1118178.1118215



