
UC Berkeley
The CATESOL Journal

Title
Elementary Computing for All: A Computational Thinking Curriculum for Multilingual
Students

Permalink
https://escholarship.org/uc/item/0dq5h39r

Journal
The CATESOL Journal, 35(1)

ISSN
1535-0517

Authors
Jacob, Sharin
Warschauer, Mark

Publication Date
2024-09-20

DOI
10.5070/B5.34830

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dq5h39r
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Sharin Rawhiya Jacob
Digital Promise Global

Mark Warschauer
University of California, Irvine

Elementary Computing for All: A Computational Thinking Curriculum
for Multilingual Students

Over the last decade, there has been an explosion of national interest in computer science (CS)
education. In response to this, several organizations and initiatives have emerged in recent
years to expand the CS pipeline. However, within these broad and laudable efforts, one
important area has been largely overlooked—the instruction of CS to multilingual students,
including the large and growing number of students designated as English learners in K-12
schools. These are one of the most underserved and understudied groups in CS education. In
this article, we draw on existing research, as well as our own and others’ theoretical and
empirical work to date, to put forth both a framework and curriculum for teaching CS to
multilingual students.

Keywords: computational thinking, computer science, English learner, multilingual, curriculum,
elementary

Introduction
ver the last decade, there has been an explosion of national interest in computer science (CS)
education. The growing importance of information technology professionals, the reliance of many

sciences on computational methods, the influence of social media on various aspects of life, and
international competition in artificial intelligence underscore the urgency to transform the US education
system. This transformation is increasingly convincing policymakers and the general public to integrate
comprehensive computer science education for all in K-12 classrooms. Despite the growing potential of
CS in K-12 contexts, these technologies are not accessible to all students.

In response to the need to broaden participation in CS, several organizations and initiatives have
emerged in recent years to expand the CS pipeline. An early and important concern was the lack of female
participation in CS (Cheryan et al., 2009; Kelleher & Pausch, 2007), and several initiatives have been
launched to address this issue (Beyer, 2014; Cheryan et al., 2009; Kelleher & Pausch, 2007; Zhou et al.,
2020). More recently, projects and organizations have begun to tackle, through equity focused CS
initiatives, other groups that are too frequently excluded from CS, especially students of color (Allen-
Handy et al., 2020; DiSalvo et al., 2011). There have also been important initiatives to extend CS instruction
to children with special needs (Israel et al., 2015; Ladner et al., 2021).

However, within these broad and laudable efforts, one important area has been largely
overlooked—the instruction of CS to multilingual students, including the large and growing number of
students designated as English learners in K-12 schools in the United States. The percentage of students
designated as English learners grew from 8.1% (or 3.8 million students) in 2000 to 9.6% (or 4.9 million
students) in 2016 and is projected to reach 25% of the student population by 2025 (McFarland et al.,
2019). Though there is a dearth of data on this rapidly growing population’s access to CS studies and
careers, there is reason for considerable concern. For example, US public schools serve a large number

O

of Latine students who are designated as English learners, a group distinctly underrepresented in the
computer science (CS) arena (Code.org, CSTA, & ECEP Alliance, 2020; NCSES, 2021). As pointed out by
Jacob et al. (2023), studies show that these Latine students who are designated as English learners
encounter the most significant obstacles in both academic progress and accessing technological resources
(Irwin et al., 2021). Moreover, there exists a widespread yet flawed notion that students designated as
English learners must reach a certain level of English fluency before they can embark on CS education
(Jacob et al., 2018; Jacob et al., 2023). This belief has led to a noticeable discrepancy in CS course offerings
for students designated as English learners. Research demonstrates that schools with a larger presence of
students designated as English learners (above 12%) provide significantly fewer CS courses compared to
those with lower proportions of these students (Martin et al., 2015). This disparity is more pronounced in
economically disadvantaged areas where most English learners reside, with schools in such
neighborhoods offering limited CS courses (Code.org, CSTA, & ECEP Alliance, 2020). In addition, the
representation of individuals from underrepresented groups in the CS workforce or media portrayals is
minimal (Royal & Swift, 2016). This lack of representation, combined with limited access to technology at
home and a dearth of mentors with computing backgrounds, adversely affects their interest in the CS field
(Jacob, et al., 2022; Jacob et al., 2023). Finally, the instructional materials used in K-12 settings often fail
to reflect the cultural and linguistic diversity of the students being served. This shortfall in culturally
responsive teaching materials is an overlooked aspect in CS education as it relates to inclusiveness (Goode,
2008; Goode et al., 2018).

Because multilingual students are left at the margins of CS education, researchers, practitioners,
and policymakers need to better understand how to provide culturally and linguistically responsive
instruction to these students. In this article we examine the landscape of CS in K-12 education. We then
discuss five empirically supported strategies for engaging multilingual students in Science, Technology,
Engineering, and Mathematics (STEM) education as outlined in a recent report by the National Academies
of Sciences, Engineering, and Mathematics (NASEM, 2018). We describe how these practices have been
embedded in a yearlong CS curriculum designed to meet the needs of multilingual students, called
Elementary Computing for All. We conclude with empirical findings synthesized from years of research on
our Elementary Computing for All project on student and teacher outcomes from a yearlong
implementation of the Elementary Computing for All curriculum. We then discuss implications for future
research.

CS Education in K-12
To understand why multilingual students are marginalized in CS education, it is first necessary to clarify
the nature of CS education in K-12 schools, encompassing three overlapping constructs: CS, coding, and
computational thinking (CT). CS represents a discipline like science, math, engineering, and medicine and
refers to the study of computers, algorithms, hardware, and software and their effects on society (CITE).
Coding refers to the reading and writing of computer programming languages. Some coding languages are
text-based such as Java, Python, C, and C++. At the same time, many novice learners use block-based
programming languages, such as Scratch and Alice, to provide entry-level access to computational
methods. Most block-based languages contain a coding console or an area where students can give
programming commands. The programming commands in Scratch are coded into blocks that students
snap together like Legos. These programming languages also typically contain a stage, or an area in the
platform, in which students can choose from or create characters, backdrops, and sounds to develop
games, stories, and animations. Block-based languages are typically taught in elementary and middle
school, and students shift to text-based languages when they reach high school. However, findings from
two introductory CS courses at the undergraduate level indicate that block-based languages such as
Scratch are effective in transitioning students to text-based languages even at the postsecondary level
(Mishra et al., 2014; Sykes, 2007).

To make visible the problem-solving strategies inherent in CS and coding for students in K-12,
Jeanette Wing (2006) coined the term “computational thinking” to refer to a problem-solving approach
that uses concepts essential to computing but that can be generalized to a wide array of disciplines.
Although computational thinking can be learned through coding, it can also be learned through unplugged
activities that teach computational thinking without the use of computers. Computational thinking
involves formulating questions in a manner that can be interpreted by a computer to achieve desired
results (Wing, 2006). Fundamental to computational thinking is abstraction, which involves the ability to
navigate multiple layers of a problem by identifying essential components of a model and ignoring
extraneous details. In addition to abstraction, computational thinking skills include but are not limited to
automation, algorithmic thinking, modularization, and data analysis (International Society for Technology
in Education & CS Teachers Association, 2011).

There is no consensus on the definition of computational thinking (Barr & Stephenson, 2011;
Grover & Pea, 2013). Traditionally, CT has been thought to involve key computational concepts (i.e.,
sequence or order, conditionals or if-then statements, loops, or repeat blocks; Grover & Pea, 2013).
Others argue that focusing on concepts represents a limited view of computational thinking and point to
the practices and perspectives used (Brennan & Resnick, 2012). Some researchers have taken a
sociocultural perspective, focusing on how CT can be used to address broader social issues such as
equitable participation (Erete et al., 2017). Additionally, scholars have drawn upon Papert (1980) and
diSessa (2000) to describe how CT connects to powerful ideas in the STEM disciplines (Wilensky et al.,
2014). However, all the aforementioned researchers agree that CT should be taught to all students in K-
12, as early as elementary school (Jacob & Warschauer, 2018).

To this end, it is widely agreed that learning computational methods provides several affordances
for diverse learners. First, they are critical for advancing scientific, technical, and social innovation. CS can
be used to solve broader societal problems, such as tracing the path of infectious diseases or providing
warning systems for disastrous hurricanes. At the same time, students can use CS to solve problems in
their own communities (Tissenbaum et al., 2019). For example, students in desert climates integrated arts
and crafts with computing technologies to develop drought- and heat-resistant lunch boxes (Ball et al.,
2017). The second affordance to teaching CS involves developing digital citizenship by preparing students
to explore ethical considerations around computing and actively participate in digital media creation
(Vogel et al., 2017). For example, students can discuss issues related to racial bias in artificial intelligence-
driven facial recognition algorithms or examine issues related to copyright with the advent of generative
artificial intelligence software such as ChatGPT. Third, the thought processes underlying CS are applicable
to a rapidly increasing number of jobs that grant power and prestige in a knowledge economy.

Recently, CS educators have shifted the focus on learning from job preparation to the promotion
of student agency (Vogel et al., 2017). Early exposure to high-quality computing education provides
students with experiences that equip them with the means to decide whether to enter the computing
workforce (Vogel et al., 2017). A panel of educational stakeholders has also pointed to the role of social
justice in CS education (Vogel et al., 2017). When students take critical approaches to computing, they are
provided opportunities to acknowledge bias in technology while providing meaningful critiques of the
discipline (Vogel et al., 2017). Finally, the ability to think computationally has been positioned as a
fundamental literacy that all students should acquire to fully participate in today’s society (diSessa, 2000;
Jacob & Warschauer, 2018; Wing, 2006). Given these constellating factors, it is critical that we engage
culturally and linguistically diverse learners in CS education so that they can benefit from the multiple
advantages of its worldly applications.

Engaging Multilingual Students in CS
Borrowing from research on STEM education, multilingual students’ CS learning has been supported by
several empirically supported practices. For example, building on multilingual students’ existing resources

can increase their participation in CS (Jacob et al., 2022). We draw from a recent report by the National
Academies of Sciences, Engineering, and Mathematics (NASEM, 2018), which uncovers five effective
practices for engaging multilingual students in STEM: (1) engage students in disciplinary practices; (2)
encourage rich classroom discourse; (3) build on students’ multiple meaning-making resources; (4)
encourage students to use multiple registers and modalities; and (5) provide explicit focus on how
language functions in the discipline. Although research on the efficacy of these practices in math and
science classrooms has been well established (Jona et al., 2014; Sengupta et al., 2018; Weintrop et al.,
2016), studies on how these practices fit within the field of CS are limited. Below, we provide an overview
of how these practices can be applied to CS education. We borrow heavily from empirical studies on
Elementary Computing for All to discuss these five practices (Jacob, Parker, Warschauer, 2022; Jacob et
al., 2022).

In the CS classroom, students engage in disciplinary practices by testing theoretical conjectures
about the empirical world. Several studies have demonstrated the affordances of engaging English
learners (ELs) in inquiry-based instruction in S (Estrella et al., 2018; Janzen, 2008; Rosebery et al., 1992).
Notably, scientific inquiry focuses on identifying and evaluating hypotheses to understand a set of
principles governing the physical world (Giere, 1999). This objective contrasts with inquiry in CS, which
focuses on constructing and testing logical processes to address an abstract computational problem
(Wing, 2006). Instruction in CS then seeks to develop a set of skills, practices, and dispositions essential to
understanding computational methods (Wing, 2006). Although inquiry-based learning represents a
promising approach to engaging multilingual students in CS, several studies have shown that it is the highly
structured and scaffolded approaches to inquiry-based instruction that improve social and academic
outcomes for diverse learners (Kirschner et al., 2006; Reiser, 2004; Sweller & Cooper, 1985). Inquiry-based
learning that lacks the appropriate scaffolding and teacher modeling often results in students getting
stuck, which discourages them and leads to lost opportunities (Bransford et al., 2009).

The second effective practice for engaging multilingual students in STEM involves building on
students’ existing resources (NASEM, 2018). This can be achieved by leveraging students’ linguistic,
cultural, semiotic, and embodied resources to increase their participation in disciplinary practices (Brown
& Ryoo, 2008; Vogel et al., 2020). As students negotiate meaning in CS classrooms, they have
opportunities to make connections between teacher output and computational artifacts, problematize
knowledge, and question misconceptions (Gibbons, 2007).

 Collaborative activities that encourage rich classroom discourse and interaction, such as pair
work, group work, and peer feedback, facilitate opportunities for growth in both language and CS learning.
When students are provided multiple opportunities to collaborate in CS classrooms, they engage in active
listening as well as productive language functions to construct meaning, such as describing complex
problems, identifying possible solutions, testing and debugging solutions, and analyzing program
efficiency (Jacob et al., 2018; Swanson et al., 2014). In particular, scaffolding collaborative discourse has
been shown to engage language learners in STEM practices (Jadallah et al., 2011). During scaffolded
collaborative talk, students are provided multiple opportunities to use their everyday sense-making
abilities to practice the functions of social interaction, such as paraphrasing, asking for clarification,
building on others’ ideas, probing for meaning, and engaging in meaningful discussion (Michaels &
O’Connor, 2015). Shea and Shanahan (2011) found that integrating language and disciplinary learning in
a manner that facilitated peer-to-peer talk increased both English Language Arts (ELA) and math scores
for multilingual students. Multilingual students are those who speak or are learning more than one
language, including students who are designated as English learners. We refer to multilingual students
throughout, as it represents an asset-based term for students who speak more than one language,
whereas the term English Learner focuses solely on the target language.

In addition to collaboration and inquiry, hands-on activities, visualizations, and scaffolding
strategies engage students in multiple modalities to better teach key language and concepts. This is

evidenced by Ryoo and Bedell’s (2019) study on the value of visualizations for helping multilingual
students understand science content. Research indicates that expanding beyond linguistic modalities of
speech and text to include nonlinguistic modalities such as symbols, simulations, models, and graphical
notation facilitates the learning of key computational concepts (cf. Grapin et al., 2021; Lee et al., 2019).
In CS classrooms, visual representations such as models and simulations are frequently used to engage
students in computational methods. These representations leverage students' semiotic resources for CS
learning (Grapin et al., 2021).

Finally, linguistic scaffolds provide explicit focus on how language functions in the discipline.
Early research situated in sociology and anthropology proposed that science is learned through social
practices in which language learners construct knowledge through scientific discourse (Kelly & Chen, 1999;
Latour, 1987; McGinn & Roth, 1999). Although scientific processes lend themselves to language functions
(i.e., analyze, classify, demonstrate, hypothesize, observe, record, strategize, summarize, etc.; Lemke,
1990; Snow et al., 1989), little work has been done to explore the functional language of CS. Jacob et al.
(2018) described the first effort to develop CS language functions that provide linguistic scaffolding for
the development of computational thinking. In CS, these functions include discussing the relationship
between desired outcomes and coding strategies that result in those outcomes and analyzing errors in
coding that prevent those outcomes from being achieved (Jacob et al., 2018). Explicit teaching of the
corresponding language forms and functions reinforces students’ understanding while developing their
linguistic repertoires (NASEM, 2018). For example, elementary students in a program that integrated
content, English Language Development (ELD) standards, and corresponding linguistic frames into inquiry-
based STEM unit plans showed significant increases in ELD and ELA scores compared to students in a
traditional elementary science curriculum (Zwiep & Straits, 2013).

Other researchers focus on the theory of translanguaging (García & Li, 2014) to combat the idea
that coding is an exclusive discourse (Vogel et al., 2020). They argue that viewing coding in this manner
has excluded marginalized groups, such as multilingual students, from participating in CS (Vogel et al.,
2020). Translanguaging refers to the leveraging of students' entire linguistic repertoires for learning and
represents a mechanism for including marginalized students in computing discourse (García & Li, 2014;
Vogel et al., 2020). Findings from a study examining teacher use of translanguaging to engage multilingual
students in CS education indicated that students leveraged their varied resources (i.e., linguistic, cultural,
semiotic, and embodied) to develop computational literacies and increase their participation in CS
learning (Vogel et al., 2020).

Elementary Computing for All Curriculum
Beginning with a partnership between the University of California, Irvine (UCI) and Santa Ana Unified
School District (SAUSD), Elementary Computing for All is a Research Practice Partnership that has since
included two large urban school districts and a dual immersion public charter school in Santa Ana. Almost
95% of students in each of these three partner school districts are Latine, and roughly 50% of elementary
children are classified as ELs. Chicago Public Schools and Boston Public Schools have also adopted the
curriculum. Hundreds of unique users from 30 states and 24 countries have accessed the curriculum on
our project website, and teachers from numerous districts and several other countries have joined.

Research Practice Partnerships (RPPs) are collaborations between researchers and practitioners
that seek to identify and solve problems of practice, or issues that participating practitioners consider to
be of central importance (Coburn et al., 2013). RPPs use a bottom-up approach in which knowledge,
although grounded in sound theory, is generated from the lived experiences of participating practitioners.
Solving issues that are of high priority to practitioners while also engaging them in research and
development increases the sustainability of implementation over traditional reform-based research
interventions (Eisenhart & Towne, 2003).

During the beginning stages of the partnership, SAUSD proposed a goal of increasing both STEM
and literacy learning in their district. The Elementary Computing for All curriculum was designed to
address this problem of practice by designing an integrated Grade 3-5 computational thinking and literacy
curriculum in concert with teachers and administrators that meet the needs of the districts’ large
percentages of ELs. Although the curricular intervention has undergone several iterations, it is grounded
in the five practices described above as outlined in the National Academies report (NASEM, 2018). What
follows is a description of how the curriculum has been adapted to incorporate these empirically
supported practices (see Table 1). The descriptions of these practices below borrow heavily from existing
research on the Elementary Computing for All curriculum (see Jacob, Parker, Warschauer, 2022; Jacob,
Nguyen et al., 2022).

Table 1
Aligning Elementary Computing for All with the NASEM Practices

 Practices Methods/Techniques Strategies/Activities

Engage students in
disciplinary practices

● Computational thinking skills,
practices, and perspectives

● CS inquiry (5 E’s)
● Standards alignment (CSTA, ELD,

ELA)

● Inquiry-based learning
● Use/Modify/Create
● TIPP&SEE
● Culminating unit projects
● Unplugged activities

Engage students in
productive discourse and
interactions with
others

● Pair programming
● Small group
● Whole class

● Scratch charades
● Pair programming culminating

projects
● Peer feedback opportunities
● Unplugged activities

Utilize and encourage
students to use multiple
registers and multiple
modalities

● Gestures
● Symbols
● Pictures
● Body movement
● Visualizations
● Opportunities for reflection
● Teacher questioning techniques

● Multiple modalities (examples)
● Unplugged activities
● Simulations
● Videos
● TIPP&SEE
● Registers (examples)
● End-of-unit reflections
● Sentence frames

Build on students’ existing
resources

● Culturally responsive materials
● Inductive pedagogical

approaches

● Responsive storybooks
● Code.org video resources
● Unplugged activities
● Memorable mentors

Provide some explicit focus
on how language functions in
the discipline

● Systematic functional linguistic
scaffolding

● Language objectives

● Language frames
● End-of-unit reflections
● Interaction-based language

activities

Elementary Computing for All engages students in disciplinary practices by using inquiry-based
learning to provide authentic contexts for language use through student engagement in exploration,
experimentation, and hands-on activities (National Research Council [NRC], 1996). The first iteration of
the curriculum integrated inquiry-based learning by borrowing from the 5 E’s model of inquiry (Bybee,
1997), which includes five stages of inquiry-based instruction: Engage, Explore, Explain, Elaborate, and
Evaluate. Engagement involves creating student interest in a subject. Exploration refers to immersing
students in hands-on activities that help them understand scientific phenomena. Explanations involve
drawing on students' linguistic and conceptual resources to provide a rationale for observed phenomena.
Elaboration involves the application of the learned material. Evaluation involves student reflection on
their newly obtained knowledge.

Although inquiry-based instruction using the 5 E’s yielded positive results for multilingual students
(Jacob et al., 2020; Jacob et al., 2022), researchers and practitioners of Elementary Computing for All
sought to understand the level of structure and scaffolding necessary to maximize inquiry-based learning
for multilingual students in CS. To this end, Jacob, et al. (2020) sought to examine the types of inquiry-
based instruction that supported multilingual students’ development of computational thinking skills and
CS identities. Jacob, Nguyen, et al. (2020) used a framework created by Windschitl (2003) to come up with
four types of inquiry. These types ranged from more structured and scaffolded approaches to inquiry to
more open and exploratory approaches to inquiry-based instruction. They and other researchers found
that students who received more structured approaches to inquiry-based instruction developed more
sophisticated computational artifacts and stronger CS identities (Jacob, Nguyen, et al., 2020; Prado et al.,
2022). Based on these findings, UCI and the University of Chicago partnered with SAUSD, MUSD, and
Chicago Public Schools to add more structure to the yearlong computational thinking curriculum.

Elementary Computing for All applied a well-studied strategy from reading research, THIEVES
(Manz, 2002), to students’ CS projects to develop the TIPP&SEE strategy (Salac et al., 2020). Furthermore,
to provide students with exposure to key CS concepts prior to creating projects on their own, Elementary
Computing for All integrated the Use→Modify→Create model (Lee et al., 2011) into curricular units. What
follows is an explanation of the Use→Modify→Create model (Lee et al., 2011) and TIPP & SEE (Salac et al.,
2020).

Research suggests that providing unstructured inquiry with minimal guidance to diverse learners
can lead to frustration and wasted opportunities (Bransford et al., 2009). Instructional models such as
Use→Modify→Create (I. Lee et al., 2011) provide the necessary structure by having students first use
existing programs, then work together to modify them, and finally create their own. The
Use→Modify→Create model has shown promising results through its integration into a wide array of CS
curricula (Franklin et al., 2020). During the use stage, an additional layer of scaffolding based on the
reading comprehension strategy THIEVES (Manz, 2002) can be added to CS activities called TIPP&SEE.
TIPP&SEE is designed to leverage students’ metacognitive strategies to prepare them for learning complex
computational concepts. In the first stage of TIPP&SEE, students read the Title of the program and make
a prediction about its contents, then analyze its Instructions to better understand the task at hand, and
finally identify the Purpose of the program to consider the most salient features of learning. Finally, they
Play with the program to understand its features and document their observations. Students then turn to
the program’s code, by first examining the Sprites, or characters, within the program and identifying the
Event that caused specific actions to be completed by the Sprites. Finally, students Explore making changes
to code and describe how these changes affect program execution. This process provides critical support
during the Use stage so that students can move on to making modifications and ultimately engage in
creative exploration. Providing structured approaches such as Use→Modify→Create and TIPP & SEE to
inquiry-based learning creates opportunities for success for diverse learners by equipping them with the
programmatic logic necessary to engage in creative exploration without getting lost in the unlimited
possibilities afforded by open-ended programming environments.

To engage students in disciplinary practices, we also integrated computational thinking skills with
literacy development by aligning the curriculum with the California Standards for English Language
Development and the Common Core State Standards for English Language Arts (see Table 2). There is
evidence to support the relationship between learning to read, write, and program (Bers, 2019; Peppler
& Warschauer, 2011). Through the interconnected aspects of coding and reading, students have multiple
opportunities to examine the relationship between symbols and their corresponding meanings. For
example, the Scratch program is embedded with multimodal symbols that can be arranged in logical
ways to develop programs. Connections such as these provide engaging environments for children to
develop their emergent literacy skills (Peppler & Warschauer, 2011).

Table 2
Sample Learning Goals That Integrate Grade 4 Common Core ELA, English Language Development, and Computer Science

Teachers Association Standards (Jacob, Parker, & Warschauer, 2022)

Activity: Students program a story about their lives, families, or communities

Computer science concepts: Loops, sequences, conditionals
Computer Science Teachers Association (CSTA) Standards
CSTA 1B-AP-10

CSTA 1B-AP-13

CSTA 1B-AP-15

Create programs that include sequences, events, loops, and conditionals

Use an iterative process to plan the development of a program by including others’
perspectives and considering user preferences

Test and debug a program or algorithm to ensure it runs as intended
English Language Development (ELD) Standards

Emerging Expanding Bridging

3. Offering opinions
Negotiate with or persuade others
in conversations using basic learned
phrases (e.g., I think) as well as
open responses in order to gain
and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others in
conversations using a variety of learned
phrases (e.g., That’s a good idea.
However …) as well as open responses,
in order to gain and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others in
conversations using a variety of learned phrases
(e.g., That’s a good idea. However …) as well as
open responses in order to gain and/or hold the
floor, elaborate on an idea, and provide
different opinions.

11. Supporting opinions
Offer opinions and provide good
reasons (e.g., My favorite book is X
because X) referring to the text or
to relevant background knowledge.

11. Supporting opinions
Offer opinions and provide good reasons
and some textual evidence or relevant
background knowledge (e.g.,
paraphrased examples from text or
knowledge of content).

11. Supporting opinions
Offer opinions and provide good reasons with
detailed textual evidence or relevant
background knowledge (e.g., specific examples
from text or knowledge of content).

Corresponding English Language Arts Standards

CCSS.ELA-L.SL.4.1

CCSS.ELA-L.SL.4.4

CCSS.ELA-L.SL.4.6

CCSS.ELA-L.W.4.9

Engage effectively in a range of collaborative discussions with diverse partners, building
on others’ ideas and expressing their own clearly. Report on a topic or text, tell a story, or
recount an experience in an organized manner, using appropriate facts and relevant,
descriptive details to support main ideas or themes; speak clearly at an understandable
pace. Differentiate between contexts that call for formal English (e.g., presenting ideas)
and situations where informal discourse is appropriate (e.g., small-group discussion); use
formal English when appropriate to task and situation. Draw evidence from literary or
informational texts to support analysis, reflection, and research.

Through unplugged activities, Elementary Computing for All builds on students’ existing
resources. These unplugged activities leverage students' multiple meaning-making repertoires to support
CS learning. For example, if children learn about loops, or a repeat block, first they stand up and dance,
then they identify each move of the dance, then they identify how sequences of moves repeat, and then
how the entire dance repeats. It is not until students fully embody the concept of loops that the term is
presented. In this way, they use their everyday sense-making abilities to make sense of abstract concepts.
Furthermore, the curriculum integrated culturally sustaining materials such as children’s storybooks
depicting diverse pioneers in the field of CS as well as memorable mentor videos highlighting the personal
and professional journeys of Latine computer scientists and engineers.

Third, Elementary Computing for All encourages rich classroom discourse by providing multiple
opportunities for collaboration such as pair programming, peer feedback opportunities, and collaborative
projects. Furthermore, teachers were provided professional development on interactional patterns that
encourage students to ask for clarification, use their everyday sense-making abilities to understand
abstract concepts, and infer meaning from context.

Fourth, physical activities, unplugged activities, and visualizations were incorporated to engage
students in multiple modalities, including but not limited to gestures, pictures, graphs, and symbols,
which have been shown to simultaneously develop students' computational thinking and language skills
(cf. Lee et al., 2019). For instance, through an unplugged exercise including movement and visual cues,
students learn about key computational concepts such as parallelism, which refers to two actions
happening at the same time. To learn about algorithms, or a list of steps that execute a function, students
play Simon Says, in which the teacher instructs the class that they are a robot, and the students must
provide instructions for the robot to move to a specific place in the classroom.

Fifth, by using sentence frames that teachers make available for use by students through student
reflections, peer evaluation, feedback, and help-seeking, the curriculum provides explicit teaching on
how language functions in the discipline. For each of the lessons, students were provided with placemats
that contained the corresponding sentence frames.

Table 3
Computer Science Language Functions (Jacob, Parker, & Warschauer, 2022)

Teacher activities Student discourse CS concepts
(language
function) Emerging Expanding Bridging

Remind students to think about the
events that will cause each action to
happen in their project, which
programs will run parallel to each
other, and how their project will
reset once it has finished running.

I need help with
__.
__ caused ___ to
happen.
___ and ___ are
running at the
same time.
I used ___ to
reset the
program.

I am having
difficulty with ___.
__ is the event
that caused __ to
happen.
__ and __ are
running parallel to
each other.
I used _ to
initialize the
program.

Could you help me fix the
following challenge in my code
___?
The event that caused ___ to
happen is ___.
_ and _ are running parallel to
each other/simultaneously/at
the same time.
__ caused the program to
initialize.

Debugging,
events,
initialization,
parallelism
(Describing,
comparing)

Instructional and Curricular Outcomes
Research on Elementary Computing for All has demonstrated that grounding the curriculum in effective
practices for engaging multilingual students in STEM has resulted in positive social and academic
outcomes for these students—and that elementary school teachers of such students are able to
successfully teach the curriculum without any prior coding experience. For example, the curriculum helps
predominantly low-income Latine students, including large numbers of students designated as English

learners, learn the discourse of CS, advance their coding skills, and develop strong CS identities, all while
achieving greater growth in their standardized reading and math skills than their peers who do not have
access to the curriculum.

Student computational thinking outcomes
Findings from a cross-case study showed that students who received structured approaches to inquiry-
based learning when receiving the Elementary Computing for All curriculum developed stronger
computational thinking skills and CS identities (Jacob, Nguyen, et al., 2020). Furthermore, through the
opportunities for self-expression embedded in the Scratch programming environment, students practiced
key computational thinking practices such as (1) experimenting and iterating, (2) reusing and remixing, (3)
testing and debugging, and (4) abstracting and modularizing (Jacob et al., 2020).

Developing students' CS identities
In a mixed-methods study, Jacob, Montoya, et al. (2022) found that students who participated in
Elementary Computing for All significantly increased their CS identity attainment with respect to students’
experiences with CS, their perceptions of CS, their perceptions of themselves as computer scientists, and
their family support for CS. Follow-up interviews suggested that the connections students make between
informal learning environments, rooted in students' homes, families, and communities, served to bolster
their perceptions of their ability to do CS in the classroom. Building from this study, Jacob, Montoya, and
Warschauer (2022) sought to understand the intersectional factors that shaped young Latinas’ CS identity
development. Findings indicated that parental support, cultural connections, and out-of-school learning
helped these girls redefine stereotypes about who does CS and leverage the rich assets embedded in their
diverse group membership.

CS disciplinary language learning
In a discourse analysis of peer-to-peer talk in students’ video reflections of their Scratch projects, Nguyen
et al. (2020) found that linguistic scaffolding enriched students’ CS discourse, vocabulary usage, and
description of computational thinking practices. Furthermore, students who elaborated on their projects
and used more CS vocabulary had higher programming scores. This underscores the importance of peer-
to-peer talk in strengthening connections between CS language usage and the development of computing
skills. In a similar study on teacher noticing of students' discourse, findings indicated that at the beginning
of the year, teachers honed in on students' CS vocabulary and concept learning. After several design
meetings with Elementary Computing for All researchers, teachers noticed how students leveraged their
everyday sense-making abilities to understand abstract CS concepts. Prior research suggests that paying
attention to students' everyday language usage and their disciplinary language usage facilitates students’
sense-making of complex and abstract phenomena and problems in STEM and CS (Gomez, 2007).

Teacher instructional outcomes
Teachers used instructional practices grounded in NASEM principles to engage students in integrated
computational thinking, language, and literacy instruction. For example, they used strategies for activating
prior knowledge, asking multiple questions to engage students in disciplinary practices; strategies for
providing direct instruction that engaged students in multiple registers and modalities; and strategies for
fostering student interaction and providing language support (Jacob, Parker, & Warschauer, 2022). They
also used children’s storybooks to leverage students’ existing literacy skills to teach computational
thinking. For example, through a read-aloud of “The Most Magnificent Thing,” a story about a young girl
who builds a computational artifact with her dog, one classroom teacher taught computational thinking
concepts such as sequence, abstraction, debugging, and design through the NASEM strategies mentioned
above (Jacob, Parker, & Warschauer, 2022).

Conclusion
Multilingual students are one of the most understudied and underserved groups in CS education.
Furthermore, there is little data about students designated as ELs in CS courses. This exploratory
research helps to ameliorate these issues by identifying practices and instructional material that are
empirically effective in engaging multilingual students in CS and STEM.

Given the landscape surrounding CS education for students designated as ELs, it is critical for
educators and practitioners to better understand the factors that shape CS learning for multilingual
students and lead to more equitable CS instruction. This poses the question of how to move forward.
There is much relevant work on providing effective practices for engaging multilingual students in STEM,
but none of it is precisely targeted to the issue of how to successfully engage multilingual students in CS
education. In this chapter, we draw on existing research, as well as our own and others’ theoretical and
empirical work to date, to put forth both a framework and curriculum for teaching CS to multilingual
students.

Authors
Sharin Rawhiya Jacob is a Resesrcher in Computational Thinking Pathways at Digital Promise Global. Her research
interests examine the linguistic and sociocultural factors that contribute to multilingual students' success in
computing. Sharin was recently awarded the UC Irvine Public Impact Distinguished Fellowship for her commitment
to bringing actionable change for multilingual students in computing.

Mark Warschauer is a Professor of Education and Informatics at the University of California, Irvine, and Director of
the university’s Digital Learning Lab. He is one of the most widely cited scholars on digital learning topics such as
computer-assisted language learning, digital literacy, the digital divide, one-to-one laptop classrooms, and artificial
intelligence in education.

Acknowledgments
We would like to thank the National Science Foundation (Grants no. 1738825 and no. 1923136) and the US
Department of Education (Grant no. U411C190092) for providing the funding that made this project possible.
Findings expressed in this work are those of the authors and do not necessarily reflect the views of the National
Science Foundation or the US Department of Education.

References
Allen-Handy, A., Ifill, V., Schaar, R. Y., Rogers, M., & Woodard, M. (2020). Black girls STEAMing through

dance: Inspiring STEAM literacies, STEAM identities, and positive self-concept. Challenges and
opportunities for transforming from STEM to STEAM education, 198-219. IGI Global.

Ball, D., Tofel-Grehl, C., & Searle, K. A. (2017). Sustaining making in the era of accountability: STEM
integration using e-textiles materials in a high school physics class. Proceedings of the 7th Annual
Conference on Creativity and Fabrication in Education, 1-7. ACM.
https://doi.org/10.1145/3141798.3141801

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is
the role of the computer science education community? ACM Inroads, 2(1), 48–54.
https://doi.org/10.1145/1929887.1929905

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer science
in early childhood. Journal of Computers in Education, 6(4), 499-528.

Beyer, S. (2014). Why are women underrepresented in computer science? Gender differences in
stereotypes, self-efficacy, values, and interests and predictors of future computer science course-
taking and grades. Computer Science Education, 24(2-3), 153-192.

https://doi.org/10.1145/3141798.3141801
https://doi.org/10.1145/1929887.1929905

Bransford, J. D., Stipek, D. J., Vye, N. J., Gomez, L. M., & Lam, D. (2009). The role of research in
educational improvement. Harvard Education Press.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vancouver, Canada, Vol. 1, 25.

Brown, B. A., & Ryoo, K. (2008). Teaching science as a language: A “content-first” approach to science
teaching. Journal of Research in Science Teaching, 45(5), 529-553.

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Heinemann.
Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues

impact gender participation in computer science. Journal of Personality and Social Psychology, 97(6),
1045.

Coburn, C. E., Penuel, W. R., & Geil, K. E. (2013). Practice partnerships: A strategy for leveraging research
for educational improvement in school districts. William T. Grant Foundation.

Code.org, CSTA, & ECEP Alliance. (2020). 2020 state of computer science education: Illuminating
disparities. https://advocacy.code.org/stateofcs

DiSalvo, B., Yardi, S., Guzdial, M., McKlin, T., Meadows, C., Perry, K., & Bruckman, A. (2011). African
American men constructing computing identity. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 2967-2970). https://doi.org/10.1145/1978942.1979381

diSessa, A. A. (2000). Changing minds: computers, learning, and literacy. MIT Press.
Eisenhart, M., & Towne, L. (2003). Contestation and change in national policy on “scientifically based”

education research. Educational Researcher, 32(7), 31-38.
Erete, S., Martin, C. K., & Pinkard, N. (2017). Digital Youth Divas: A program model for increasing

knowledge, confidence, and perceptions of fit in STEM amongst black and brown middle school girls.
Y. rankin & J. Thomas (Eds.), Moving students of color from consumers to producers of technology,
152-173. IGI Global.

Estrella, G., Au, J., Jaeggi, S. M., & Collins, P. (2018). Is inquiry science instruction effective for English
language learners? A meta-analytic review. AERA Open, 4(2).
https://doi.org/10.1177/2332858418767402

Franklin, D., Coenraad, M., Palmer, J., Eatinger, D., Zipp, A., Anaya, M., White, M., Pham, H., Gokdemir,
O., & Weintrop, D. (2020). An analysis of use-modify-create pedagogical approach's success in
balancing structure and student agency. Proceedings of the 2020 ACM Conference on International
Computing Education Research, 14-24. https://doi.org/10.1145/3372782.3406256

García, O., & Wei, L. (2014). Translanguaging: Language, bilingualism and education. Palgrave
Macmillan.

Gibbons, P. (2007). Mediating academic language learning through classroom discourse. In J. Cummins &
C. Davison (Eds.), International handbook of English language teaching, 701-718. Springer.

Giere, R. N. (1999). Science without laws. University of Chicago Press.
Gomez, K. (2007). Negotiating discourses: Sixth-grade students’ use of multiple science discourses

during a science fair presentation. Linguistics and Education, 18(1), 41-64.
Goode, J. (2008). Increasing diversity in K-12 CS: Strategies from the field. Proceedings of the 39th

SIGCSE technical symposium on computer science education, 362-366.
https://doi.org/10.1145/1352135.1352259

Goode, J., Flapan, J., & Margolis, J. (2018). Computer science for all: A school reform framework for
broadening participation in computing. In W. G. Tierney, Z. B. Corwin, & A. Ochsner (Eds),
Diversifying digital learning: Online literacy and educational opportunity, 45-65. John Hopkins
University Press.

https://advocacy.code.org/stateofcs
https://doi.org/10.1145/1978942.1979381
https://doi.org/10.1177/2332858418767402
https://doi.org/10.1145/3372782.3406256
https://doi.org/10.1145/1352135.1352259

Grapin, S. E., Llosa, L., Haas, A., & Lee, O. (2021). Affordances of computational models for English
learners in science instruction: Conceptual foundation and initial inquiry. Journal of Science
Education and Technology, 1-16.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38-43.

International Society for Technology in Education (ISTE) & Computer Science Teachers Association
(CSTA). (2011). Operational definition of computational thinking for K-12 education.
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

Irwin, V., Zhang, J., Wang, X., Hein, S., Wang, K., Roberts, A., York, C., Barmer, A., Mann, F. B., Dilig, R.,
Parker, S., Nachazel, T., Barnett, M., & Purcell, S. (2021). Report on the condition of education 2021
(NCES 2021-144). National Center for Education Statistics.

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–12 students with
disabilities to learn computational thinking and computer programming. TEACHING Exceptional
Children, 48(1), 45-53.

Jacob, S., Garcia, L., & Warschauer, M. (2020). Leveraging multilingual identities in computer science
education. M. R. Freiermuth & N. Zarrinabadi (Eds.), Technology and the psychology of second
language learners and users. Palgrave-Macmillan.

Jacob, S., Nguyen, H., Garcia, L., Richardson, D., & Warschauer, M. (2020). Teaching computational
thinking to multilingual students through inquiry-based learning. 2020 Research on Equity and
Sustained Participation in Engineering, Computing, and Technology (RESPECT), Vol. 1, 1-8. IEEE.

Jacob, S., Nguyen, H., Tofel-Grehl, C., Richardson, D., & Warschauer, M. (2018). Teaching computational
thinking to English learners. NYS TESOL Journal, 5(2), 12-24.

Jacob, S. R., Montoya, J., Nguyen, H., Richardson, D., & Warschauer, M. (2022). Examining the what,
why, and how of multilingual student identity development in computer science. ACM Transactions
on Computing Education (TOCE), 22(3), 1-33. https://doi.org/10.1145/3500918

Jacob, S. R., Montoya, J., & Warschauer, M. (2022). Exploring the intersectional development of
computer science identities in young Latinas. Teachers College Record, 124(5), 166 –185.

Jacob, S. R., Parker, M. C., & Warschauer, M. (2022). Integration of computational thinking into English
language arts. In A. Ottenbreit-Leftwich, A. Yadav (Eds.), Computational thinking in preK-5: Empirical
evidence for integration and future directions, 55-63. ACM.

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal of CS Integration,
1(1), 1-19.

Jadallah, M., Anderson, R. C., Nguyen-Jahiel, K., Miller, B. W., Kim, I.-H., Kuo, L.-J., Dong, T., & Wu, X.
(2011). Influence of a teacher’s scaffolding moves during child-led small-group discussions. American
Educational Research Journal, 48(1), 194-230.

Janzen, J. (2008). Teaching English language learners in the content areas. Review of Educational
Research, 78(4), 1010-1038.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014). Embedding
computational thinking in science, technology, engineering, and math (CT-STEM). Future Directions
in Computer Science Education Summit Meeting, Orlando, FL, United States.

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the
ACM, 50(7), 58-64.

Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices
through oral and written discourse. Journal of Research in Science Teaching: The Official Journal of
the National Association for Research in Science Teaching, 36(8), 883-915.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psychologist, 41(2).

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1145/3500918

Ladner, R. E., Seim, C., Sharif, A., Rizvi, N., & Glasser, A. (2021). Experiences of computing students with
disabilities. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education,
939-940.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard
University Press.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37.

Lee, O., Llosa, L., Grapin, S., Haas, A., & Goggins, M. (2019). Science and language integration with
English learners: A conceptual framework guiding instructional materials development. Science
Education, 103(2), 317-337.

Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex.
Manz, S. L. (2002). A strategy for previewing textbooks: Teaching readers to become THIEVES. The

Reading Teacher, 55(5), 434.
Martin, A., McAlear, F., & Scott, A. (2015). Path not found: Disparities in access to computer science

courses in California high schools. https://eric.ed.gov/?id=ED561181
McFarland, J., Hussar, B., Zhang, J., Wang, X., Wang, K., Hein, S., ... & Barmer, A. (2019). The Condition of

Education 2019. NCES 2019-144. National Center for Education Statistics.
McGinn, M. K., & Roth, W. M. (1999). Preparing students for competent scientific practice: Implications

of recent research in science and technology studies. Educational Researcher, 28(3), 14-24.
Michaels, S., & O’Connor, C. (2015). Conceptualizing talk moves as tools: Professional development

approaches for academically productive discussion. In Socializing intelligence through talk and
dialogue, 347-362.

Mishra, S., Balan, S., Iyer, S., & Murthy, S. (2014). Effect of a 2-week Scratch intervention in CS1 on
learners with varying prior knowledge. Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, 45-50. ACM.

National Academies of Sciences, Engineering, and Medicine. (2018). English learners in STEM subjects:
Transforming classrooms, schools, and lives. https://www.nap.edu/catalog/25182/english-learners-
in-stem-subjects-transforming-classrooms-schools-and-lives

National Center for Science and Engineering Statistics. (2021). Women, minorities, and persons with
disabilities in science and engineering: 2021. https://ncses.nsf.gov/pubs/nsf21321/report/field-of-
degree-minorities

National Research Council. (1996). National science education standards. National Academy Press. (ERIC
Document Reproduction Service No. ED 391 690)

Nguyen, H., Garcia, L., Jacob, S., Richardson, D., & Warschauer, M. (2020). Teachers' use of video
reflections to reinforce computer science language and concepts. In 2020 Research on Equity and
Sustained Participation in Engineering, Computing, and Technology (RESPECT), Vol. 1, 1-8. IEEE.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Peppler, K. A., & Warschauer, M. (2011). Uncovering literacies, disrupting stereotypes: Examining the

(dis)abilities of a child learning to computer program and read. International Journal of Learning and
Media, 3(3), 15-41.

Prado, Y., Jacob, S., & Warschauer, M. (2022). Teaching computational thinking to exceptional learners:
Lessons from two inclusive classrooms. Computer Science Education, 32(2), 188-212.
https://doi.org/10.1080/08993408.2021.1914459

Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing
student work. The Journal of the Learning Sciences, 13(3), 273-304.

Rosebery, A. S., Warren, B., & Conant, F. R. (1992). Appropriating scientific discourse: Findings from
language minority classrooms. The Journal of the Learning Sciences, 2(1), 61-94.

https://eric.ed.gov/?id=ED561181
https://www.nap.edu/catalog/25182/english-learners-in-stem-subjects-transforming-classrooms-schools-and-lives
https://www.nap.edu/catalog/25182/english-learners-in-stem-subjects-transforming-classrooms-schools-and-lives
https://ncses.nsf.gov/pubs/nsf21321/report/field-of-degree-minorities
https://ncses.nsf.gov/pubs/nsf21321/report/field-of-degree-minorities
https://doi.org/10.1080/08993408.2021.1914459

Royal, D., & Swift, A. (2016, October 18). U.S. minority students less exposed to computer science.
Gallup. http://www.gallup.com/poll/196307/minority-studentsless-exposed-computer-science.aspx

Ryoo, K., & Bedell, K. (2019). Supporting linguistically diverse students' science learning with dynamic
visualizations through discourse-rich practices. Journal of Research in Science Teaching, 56(3), 270-
301.

Salac, J., Thomas, C., Butler, C., Sanchez, A., & Franklin, D. (2020). TIPP&SEE: A learning strategy to guide
students through use-modify Scratch activities. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, 79-85.

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in
STEM education. Computational Thinking in the STEM Disciplines, 49-72.

Shea, L. M., & Shanahan, T. B. (2011). Methods and strategies: Talk strategies. Science and Children,
49(3), 62-66.

Snow, M. A., Met, M., & Genesee, F. (1989). A conceptual framework for the integration of language and
content in second/foreign language instruction. TESOL Quarterly, 23(2), 201-217.

Swanson, L. H., Bianchini, J. A., & Lee, J. S. (2014). Engaging in argument and communicating
information: A case study of English language learners and their science teacher in an urban high
school. Journal of Research in Science Teaching, 51(1), 31-64.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in
learning algebra. Cognition and Instruction, 2, 59-89.

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming environment at the CS I
level. Journal of Educational Computing Research, 36(2), 223-244. https://doi.org/10.2190/J175-
Q735-1345-270M

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational
action. Communications of the ACM, 62(3), 34-36. https://doi.org/10.1145/3265747

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L. (2020). Languages, literacies and literate
programming: Can we use the latest theories on how bilingual people learn to help us teach
computational literacies? Computer Science Education, 1-24.

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education: Unpacking arguments for
and projected impacts of CS4All initiatives. In Proceedings of the 2017 ACM SIGCSE technical
symposium on CS education, 609-614. https://doi.org/10.1145/3017680.3017755

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms.
Communications of the ACM, 57(8), 24-28. https://dl.acm.org/doi/pdf/10.1145/2633031

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences
reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112-143.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Zhou, N., Cao, Y., Jacob, S., & Richardson, D. (2020). Teacher perceptions of equity in high school CS
classrooms. ACM Transactions on Computing Education (TOCE), 20(3), 1-27.

Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal
of Science Teacher Education, 24(8), 1315-1331

http://www.gallup.com/poll/196307/minority-studentsless-exposed-computer-science.aspx
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3017680.3017755
https://dl.acm.org/doi/pdf/10.1145/2633031
https://doi.org/10.1145/1118178.1118215

