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ABSTRACT OF THE DISSERTATION

Learning Robust Visual-Semantic Retrieval Models with Limited Supervision

by

Niluthpol Chowdhury Mithun

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2019
Dr. Amit K. Roy-Chowdhury, Chairperson

In recent years, tremendous success has been achieved in many computer vision

tasks using deep learning models trained on large hand-labeled image datasets. In many

applications, this may be impractical or infeasible, either because of the non-availability of

large datasets or the amount of time and resource needed for labeling. In this respect, an

increasingly important problem in the field of computer vision, multimedia and machine

learning is how to learn useful models for tasks where labeled data is sparse. In this thesis,

we focus on learning comprehensive joint representations for different cross-modal visual-

textual retrieval tasks leveraging weak supervision, that is noisier and/or less precise but

cheaper and/or more efficient to collect.

Cross-modal visual-textual retrieval has gained considerable momentum in recent

years due to the promise of deep neural network models in learning robust aligned represen-

tations across modalities. However, the difficulty in collecting aligned pairs of visual data

and natural language description and limited availability such pairs in existing datasets

makes it extremely difficult to train effective models, which would generalize well to uncon-
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trolled scenarios as they are heavily reliant on large volumes of training data that closely

mimic what is expected in the test cases. In this regard, we first present our work on

developing a multi-faceted joint embedding framework-based video to text retrieval system

that utilizes multi-modal cues (e.g., objects, action, place, sound) from videos to reduce the

effect of limited data. Then, we describe our approach on training text to video moment re-

trieval systems leveraging only video-level text descriptions without any temporal boundary

annotations. Next, we present our work on learning powerful joint representations of images

and text from small fully annotated datasets with supervision from weakly-annotated web

images. Extensive experimentation on different benchmark datasets demonstrates that our

approaches show substantially better performance compared to baselines and state-of-the-

art alternative approaches.
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Chapter 1

Introduction

1.1 Challenges

Cross-modal retrieval of visual data using natural language description has at-

tracted intense attention in recent years [154, 57, 148, 149, 96, 25, 129, 100], but remains

a very challenging problem [154, 28, 90] due to the gap and ambiguity between modali-

ties. The majority of the success in different visual-semantic retrieval tasks (e.g., image to

text retrieval, video to text retrieval, text to video moment retrieval) has been achieved

by the joint embedding models trained in a supervised way using vision-language pairs

from hand-labeled datasets. Although, these datasets cover a significant number of labeled

pairs, creating a large-scale dataset by collecting such pairs is extremely difficult and labor-

intensive [68]. Moreover, it is generally feasible to have only a limited number of users to

annotate training data, which may lead to a biased model [134, 49, 156].

Availability of limited labeled vision-language pairs in datasets makes it extremely

difficult to develop comprehensive systems by training deep neural network models for most
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cross-modal visual-semantic retrieval tasks. Hence, although trained models on existing

vision-language datasets show good performance on benchmark datasets, applying such

models in an open-world setting is unlikely to show satisfactory cross-dataset generalization

(training on a dataset, testing on a different dataset) performance. The process of developing

robust algorithms with a limited degree of supervision is non-trivial and has been hardly

explored for the problem of cross-modal retrieval between textual and visual queries. In this

regard, we study three challenging cross-modal vision-language retrieval tasks and describe

our works focusing on developing efficient solutions with limited supervision leveraging

incidental signals or weak labels that is less precise but less costly to collect.

1.2 Contributions

Joint embeddings have been widely used in multimedia data mining as they enable

us to integrate the understanding of different modalities together. These embedding models

are usually learned by mapping inputs from two or more distinct domains (e.g., images and

text) into a common latent space, where the transformed vectors of semantically associated

inputs should be close. Learning an appropriate embedding is crucial for achieving high-

performance in many multimedia applications involving multiple modalities. The second

chapter focuses on learning effective joint embedding models for the video-text retrieval

task. Most existing approaches for video-text retrieval are very similar to the image-text

retrieval methods by design and we observe that simple adaptation of a state-of-the-art

image-text embedding methods [28] shows better result than most existing video-text re-

trieval approaches [25, 99]. However, such methods ignore lots of contextual information in

2



video sequences such as temporal activities or audio. Hence, they often fail to retrieve the

most relevant information to understand important questions for efficient matching. While

developing a system without considering most available cues in the video content is un-

likely to be comprehensive, an inappropriate fusion of complementary cues could adversely

increase ambiguity and degrade performance. Moreover, existing hand labeled video-text

datasets are very small which makes it extremely difficult to train deep neural network

models to understand videos in general to develop a successful video-text retrieval system.

To lessen the effect of such cases, we analyze how to judiciously utilize different available

cues from videos effectively for efficient retrieval.

The text to video moment retrieval task is more challenging than the task of local-

izing activities in videos, which is a comparatively well-studied field [83, 143, 157, 147, 104,

123]. Recent activity localization approaches show success, but these methods are limited

to a pre-defined set of activity classes. In this regard, there has been a recent interest in

localizing moments in a video from natural language description [44, 34, 148, 18]. Super-

vision in terms of labeled text description related to parts of the video is used to train

these models. However, these supervised approaches are plagued by the issue of collecting

human-annotated text descriptions of the videos along with the temporal extensions of the

moments corresponding to each of the descriptions of a video. Moreover, it is often difficult

to mark the start and end locations of a certain moment, which introduces ambiguity in the

training data. On the other hand, it is often much easier to describe the moments appearing

in a video in natural language than providing exact temporal boundaries associated with

each of the descriptions. Moreover, such descriptions can often be obtained easily from cap-
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tions through some sources in the web. Motivated by this, we pose a question in the third

chapter: Is it possible to develop a weakly-supervised framework for video moment localiza-

tion from the text, leveraging only video-level textual annotation? Temporal localization

using weak description is a much more challenging task than the supervised approaches.

However, this is extremely relevant to address due to the difficulty and non-scalability of

acquiring a precise frame-wise information with text descriptions which requires enormous

amount of manual labor.

We also study how to utilize web images in training comprehensive joint embed-

ding models from small clean datasets for image-text retrieval. Although existing datasets

contain limited labeled image-text pairs, streams of images with noisy tags are readily avail-

able in datasets, such as Flickr-1M [54], as well as in nearly infinite numbers on the web.

Developing a practical system for image-text retrieval considering a large number of web

images is more likely to be robust. However, inefficient utilization of weakly-annotated

images may increase ambiguity and degrade performance. Motivated by this observation,

we pose an important question in the fourth chapter: Can a large number of web images

with noisy annotations be leveraged upon with a fully annotated dataset of images with tex-

tual descriptions to learn better joint embedding models?. This is an extremely relevant

problem to address due to the difficulty and non-scalability of obtaining a large amount of

human-annotated training set of image-text pairs.

Main Contributions. We address three novel and practical cross-modal visual-semantic

retrieval problems in this thesis as follows.

• First, how to develop a robust video-text retrieval system by utilizing multiple

4



salient cues from videos (different visual features and audio inputs) to deal with the issue

of limited video-text pairs in existing datasets.

• Second, how to temporally localize video moments from text queries without

requiring human-crafted training data consisting of videos with text-based localization of

moments; rather, we achieve the same with video-level descriptions only.

• Third, how to exploit large scale web data and associated tags for learning more

effective multi-modal joint embedding models without requiring a large amount of human-

crafted training data.

Towards solving these problems, we develop novel frameworks that show clear

performance improvement over state-of-the-art methods and baselines in the tasks.

1.3 Organization of the Thesis

We organize the rest of the thesis as follows. In Chapter 2, we present our work on

developing a multi-faceted joint embedding framework for effective video-text retrieval that

utilizes multiple salient cues from videos to deal with the issue of limited number of pairs in

existing video-text datasets. In Chapter 3, we propose a weakly-supervised framework for

text to video moment retrieval trained utilizing only video-level text descriptions without

any temporal boundary annotations of the moments. In Chapter 4, we study how to leverage

supervision from web images and associated tags in training robust joint embedding models

for image-text retrieval from small fully annotated datasets. We conclude the thesis in

Chapter 5 with concluding remarks and some future research directions.
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Chapter 2

Joint Visual-Semantic Embedding

for Video-Text Retrieval

2.1 Introduction

The goal of this work is to retrieve the correlated text description given a random

video, and vice versa, to retrieve the matching videos provided with text descriptions (See

Fig. 2.1). While several computer vision tasks (e.g., image classification [43, 94, 51], object

detection [113, 112, 92]) are now reaching maturity, cross-modal retrieval between visual

data and natural language description remains a very challenging problem [154, 90] due to

the gap and ambiguity between different modalities and availability of limited training data.

Some recent works [93, 66, 145, 57, 32] attempt to utilize cross-modal joint embeddings to

address the gap. By projecting data from multiple modalities into the same joint space,

the similarity of the resulting points would reflect the semantic closeness between their
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A reporter is talking 

about a movie scene 

from the wolverines

A man playing guitar 

and a group of people 

dancing with him

Children and adults 

are performing various 

forms of martial arts

A person is melting 

chocolate in a oven

Figure 2.1: Illustration of Video-Text retrieval task: given a text query, retrieve and rank
videos from the database based on how well they depict the text, and vice versa.

corresponding original inputs. In this work, we focus on learning joint video-text embedding

models and combining video cues for different purposes effectively for developing robust

video-text retrieval system.

The video-text retrieval task is one step further than the image-text retrieval task,

which is a comparatively well-studied field. Most existing approaches for video-text re-

trieval are very similar to the image-text retrieval methods by design and focus mainly on

the modification of loss functions [25, 150, 129, 99, 100]. We observe that simple adap-

tation of a state-of-the-art image-text embedding method [28] by mean-pooling features

from video frames generates a better result than existing video-text retrieval approaches

[25, 99]. However, such methods ignore lots of contextual information in video sequences

such as temporal activities or specific scene entities, and thus they often can only retrieve

some generic responses related to the appearance of static frame. They may fail to retrieve

the most relevant information in many cases to understand important questions for efficient
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“A dog is barking in field” “Gunshot broke out at the concert”

Figure 2.2: Sample frame from two videos and associated caption to illustrate the signifi-
cance of utilizing supplementary cues from videos to improve the chance of correct retrieval.

retrieval such as ‘What happened in the video’, or ‘Where did the video take place’. This

greatly undermines the robustness of the systems; for instance, it is very difficult to distin-

guish a video with the caption “a dog is barking” apart from another “a dog is playing”

based only on visual appearance (See Fig. 2.2). Associating video motion content and the

environmental scene can give supplementary cues in this scenario and improve the chance of

correct prediction. Similarly, to understand a video described by “gunshot broke out at the

concert” may require analysis of different visual (e.g., appearance, motion, environment)

and audio cues simultaneously. On the other hand, a lot of videos may contain redundant

or identical contents, and hence, an efficient video-text retrieval should utilize the most

distinct cues in the content to resolve ambiguities in retrieval.

While developing a system without considering most available cues in the video

content is unlikely to be comprehensive, an inappropriate fusion of complementary features

could adversely increase ambiguity and degrade performance. Additionally, existing hand

labeled video-text datasets are very small and very restrictive considering the amount of

rich descriptions that a human can compose and the enormous amount of diversity in the

visual world. This makes it extremely difficult to train deep models to understand videos
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in general to develop a successful video-text retrieval system. To ameliorate such cases,

we analyze how to judiciously utilize different cues from videos. We propose a mixture of

experts system, which is tailored towards achieving high performance in the task of cross-

modal video-text retrieval. We believe focusing on three major facets (i.e., concepts for

Who, What, and Where) from videos is crucial for efficient retrieval performance. In this

regard, our framework utilizes three salient features (i.e., object, action, place) from videos

(extracted using pre-trained deep neural networks) for learning joint video-text embeddings

and uses an ensemble approach to fuse them. Furthermore, we propose a modified pairwise

ranking loss for the task that emphasizes on hard negatives and relative ranking of positive

labels. Our approach shows significant performance improvement compared to previous

approaches and baselines.

Contributions: The main contributions of this work can be summarized as follows.

• The success of video-text retrieval depends on more robust video understanding.

In this chapter, we study how to achieve the goal by utilizing multimodal features from

a video (different visual features and audio inputs). Our proposed framework uses action,

object, place, text and audio features by a fusion strategy for efficient retrieval.

•We present a modified pairwise loss function to better learn the joint embedding

which emphasizes on hard negatives and applies a weight-based penalty on the loss based

on the relative ranking of the correct match in the retrieval.

• We conduct extensive experiments and demonstrate a clear improvement over

the state-of-the-art methods in the video to text retrieval tasks on the MSR-VTT dataset

[149] and MSVD dataset [17].
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2.2 Related Work

Image-Text Retrieval. Recently, there has been significant interest in learning

robust visual-semantic embeddings for image-text retrieval [93, 58, 45, 141]. Based on a

triplet of object, action and, scene, a method for projecting text and image to a joint

space was proposed in early work [29]. Canonical Correlation Analysis (CCA) and several

extensions of it have been used in many previous works for learning joint embeddings for

the cross-modal retrieval task [124, 47, 38, 151, 109, 41] which focuses on maximizing the

correlation between the projections of the modalities. In [38], authors extended classic

two-view CCA approach with a third view coming from high-level semantics and proposed

an unsupervised way to derive the third view from clustering the tags. In [109], authors

proposed a method named MACC (Multimedia Aggregated Correlated Components) aiming

to reduce the gap between cross-modal data in the joint space by embedding visual and

textual features into a local context that reflects the data distribution in the joint space.

Extension of CCA with deep neural networks named deep CCA (DCCA) has also been

utilized to learn joint embeddings [151, 2], which focus on learning two deep neural networks

simultaneously to project two views that are maximally correlated. While CCA-based

methods are popular, these methods have been reported to be unstable and incur a high

memory cost due to the covariance matrix calculation with large-amount of data [144, 84].

Recently, there are also several works leveraging adversarial learning to train joint image-

text embeddings for cross-modal retrieval [141, 21].

Most recent works relating to text and image modality are trained with ranking

loss [64, 32, 144, 28, 96, 136]. In [32], authors proposed a method for projecting words and
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visual content to a joint space utilizing ranking loss that applies a penalty when a non-

matching word is ranked higher than the matching one. A cross-modal image-text retrieval

method has been presented in [64] that utilizes triplet ranking loss to project image feature

and RNN based sentence description to a common latent space. Several image-text retrieval

methods have adopted a similar approach with slight modifications in input feature repre-

sentations [96], similarity score calculation [144], or loss function [28]. VSEPP model [28]

modified the pair-wise ranking loss based on violations caused by the hard-negatives (i.e.,

non-matching query closest to each training query) and has been shown to be effective in

the retrieval task. For image-sentence matching, a LSTM based network is presented in

[52] that recurrently selects pairwise instances from image and sentence descriptions, and

aggregates local similarity. In [96], authors proposed a multimodal attention mechanism to

attend to sentence fragments and image regions selectively for similarity calculation. Our

method complements these works that learn joint image-text embedding using a ranking

loss ( e.g., [64, 136, 28]). The proposed retrieval framework can be applied to most of these

approaches for improved video-text retrieval performance.

Video Hyperlinking. Video hyperlinking is also closely relevant to our work.

Given an anchor video segment, the task is to focus on retrieving and ranking a list of

target videos based on the likelihood of being relevant to the content of the anchor [3, 10].

Multimodal representations have been utilized widely in video hyperlinking approaches in

recent years [13, 140, 3]. Most of these approaches rely heavily on multimodal autoencoders

for jointly embedding multimodal data [139, 30, 15]. Bidirectional deep neural network

(BiDNN) based representations have also been shown to be very effective in video hyper-
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linking benchmarks [140, 138]. BiDNN is also a variation of multimodal autoencoder, which

performs multimodal fusion using a cross-modal translation with two interlocked deep neu-

ral networks [139, 138]. Considering the input data, video-text retrieval is dealing with the

same multimodal input as video hyperlinking in many cases. However, video-text retrieval

task is more challenging than hyperlinking since it requires to distinctively retrieve match-

ing data from a different modality, which requires effective utilization of the correlations in

between cross-modal cues.

Video-Text Retrieval. Most relevant to our work are the methods that relate

video and language modalities. Two major tasks in computer vision related to connecting

these two modalities are video-text retrieval and video captioning. In this work, we only

focus on the retrieval task. Similar to image-text retrieval approaches, most video-text

retrieval methods employ a shared subspace. In [150], authors vectorize each subject-verb-

object triplet extracted from a given sentence by word2vec model [88] and then aggregate

the Subject, Verb, Object (SVO) vector into a sentence level vector using RNN. The video

feature vector is obtained by mean pooling over frame-level features. Then a joint embedding

is trained using a least squares loss to project the sentence representation and the video

representation into a joint space. Web image search results of input text have been exploited

by [99], which focused on word disambiguation. In [137], a stacked GRU is utilized to

associate sequence of video frames to a sequence of words. In [100], authors propose an

LSTM with visual-semantic embedding method that jointly minimizes a contextual loss

to estimate relationships among the words in the sentence and a relevance loss to reflect

the distance between video and sentence vectors in the shared space. A method named
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Word2VisualVec is proposed in [25] for the video to sentence matching task that projects

vectorized sentence into visual feature space using mean squared loss. A shared space across

image, text and sound modality is proposed in [5] utilizing ranking loss, which can also be

applied to video-text retrieval task.

Utilizing multiple characteristics of video (e.g., activities, audio, locations, time) is

evidently crucial for efficient retrieval [152]. In the closely related task of video captioning,

dynamic information from video along with static appearance features has been shown to

be very effective [155, 111]. However, most of the existing video-text retrieval approaches

depend on one visual cue for retrieval. In contrast to the existing works, our approach

focuses on effectively utilizing different visual cues and audio (if available) concurrently.

Ensemble Approaches. Our retrieval system is based on an ensemble frame-

work [107, 31]. A strong psychological context of the ensemble approach can be found from

its intrinsic connection in decision making in many daily life situations [107]. Seeking the

opinions of several experts, weighing them and combining to make an important decision

is an innate behavior of human. The ensemble methods hinge on the same idea and utilize

multiple models for making an optimized decision, as in our case diverse cues are available

from videos and we would like to utilize multiple expert models which focus on different

cues independently to obtain a stronger prediction model. Moreover, ensemble-based sys-

tems have been reported to be very useful when dealing with a lack of adequate training

data [107]. As diversity of the models is crucial for the success of ensemble frameworks

[108], it is important for our case to choose a diverse set of video-text embeddings that are

significantly different from one another.
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Figure 2.3: An overview of the proposed retrieval process. We propose to learn three joint
video-text embedding networks as shown in the figure. Given a query sentence, we calculate
the sentence’s similarity scores with each one of the videos in the entire dataset in all of the
three embedding spaces and use a fusion of scores for the final retrieval result.

2.3 Approach

In this section, we first provide an overview of our proposed framework (Sec-

tion 2.3.1). Then, we describe the input feature representation for video and text (Sec-

tion 2.3.2). Next, we describe the basic framework for learning visual-semantic embedding

using pair-wise ranking loss (Section 2.3.3). After that, we present our modification on the

loss function which improves the basic framework to achieve better recall (Section 2.3.4).

Finally, we present the proposed fusion step for video-text matching (Section 2.3.5).
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2.3.1 Overview of the Proposed Approach

In a typical cross-modal video-text retrieval system, an embedding network is

learned to project video features and text features into the same joint space, and then

retrieval is performed by searching the nearest neighbor in the latent space. Since in this

work we are looking at videos in general, detecting most relevant information such as object,

activities, and places could be very conducive for higher performance. Therefore, along with

developing algorithms to train better joint visual-semantic embedding models, it is also very

important to develop strategies to effectively utilize different available cues from videos for

a more comprehensive retrieval system.

In this work, we propose to leverage the capability of neural networks to learn a

deep representation first and fuse the video features in the latent spaces so that we can

develop expert networks focusing on specific subtasks (e.g. detecting activities, detecting

objects). For analyzing videos, we use a model trained to detect objects, a second model

trained to detect activities, and a third model focusing on understanding the place. These

heterogeneous features may not be used together directly by simple concatenation to train

a successful video-text model as intra-modal characteristics are likely to be suppressed in

such an approach. However, an ensemble of video-text models can be used, where a video-

text embedding is trained on each of the video features independently. The final retrieval

is performed by combining the individual decisions of several experts [107]. An overview

of our proposed retrieval framework is shown in Fig. 2.3. In Fig. 2.3, Object-Text space is

the expert in solving ambiguity related to who is in the video, whereas Activity-Text space

is the expert in retrieving what activity is happening and place-Text space is the expert
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in solving ambiguity regarding locations in the video. We believe that such an ensemble

approach will significantly reduce the chance of poor/wrong prediction.

We follow network architecture proposed in [64] that learns the embedding model

using a two-branch network using image-text pairs. One of the branches in this network

takes text feature as input and the other branch takes in a video feature. We propose a

modified bi-directional pairwise ranking loss to train the embedding. Inspired by the success

of ranking loss proposed in [28] in image-text retrieval task, we emphasize on hard negatives.

We also apply a weight-based penalty on the loss according to the relative ranking of the

correct match in the retrieved result.

2.3.2 Input Feature Representation

Text Feature. For encoding sentences, we use Gated Recurrent Units (GRU)

[23]. We set the dimensionality of the joint embedding space, D, to 1024. The dimension

of the word embeddings that are input to the GRU is 300. Note that the word embedding

model and the GRU are trained end-to-end in this work.

Object Feature. For encoding image appearance, we adopt deep pre-trained

convolutional neural network (CNN) model trained on ImageNet as the encoder. Specifi-

cally, we utilize state-of-the-art 152 layer ResNet model ResNet152 [43]. We extract image

features directly from the penultimate fully connected layer. We first rescale the image to

224x224 and feed into CNN as inputs. The dimension of the image embedding is 2048.

Activity Feature. The ResNet CNN can efficiently capture visual concepts in

static frames. However, an effective approach to learning temporal dynamics in videos was

proposed by inflating a 2-D CNN to a deep 3-D CNN named I3D in [14]. We use I3D model
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to encode activities in videos. In this work, we utilize the pre-trained RGB-I3D model and

extract 1024 dimensional feature utilizing continuous 16 frames of video as the input.

Place Feature. For encoding video feature focusing on scene/place, we utilize

deep pre-trained CNN model trained on Places-365 dataset as the encoder [159]. Specifically,

we utilize 50 layer model ResNet50 [43]. We extract image features directly from the

penultimate fully connected layer. We re-scale the image to 224x224 and feed into CNN as

inputs. The dimension of the image embedding is 2048.

Audio Feature. We believe that by associating audio, we can get important cues

to the real-life events, which would help us remove ambiguity in many cases. We extract

audio feature using state-of-the-art SoundNet CNN [4], which provides 1024 dimensional

feature from input raw audio waveform. Note that, we only utilize the audio which is readily

available with the videos.

2.3.3 Learning Joint Embedding

In this section, we describe the basic framework for learning joint embedding based

on bi-directional ranking loss.

Given a video feature representation (i.e., appearance feature, or activity feature,

or scene feature) v (v ∈ RV ), the projection for a video feature on the joint space can be

derived as v = W (v)v (v ∈ RD). In the same way, the projection of input text embedding

t(t ∈ RT ) to joint space is t = W (t)t(t ∈ RD). Here, W (v) ∈ RD×V is the transformation

matrix that projects the video content into the joint embedding space, and D denotes

the dimension of the joint space. Similarly, W (t) ∈ RD×T maps input sentence/caption

embedding to the joint space. Given feature representation for words in a sentence, the
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sentence embedding t is found from the hidden state of the GRU. Here, given the feature

representation of both videos and corresponding text, the goal is to learn a joint embedding

characterized by θ (i.e., W (v), W (t) and GRU weights) such that the video content and

semantic content are projected into the joint embedding space. We keep image encoder

(e.g., pre-trained CNN) fixed in this work, as the video-text datasets are small in size.

In the embedding space, it is expected that the similarity between a video and text

pair to be more reflective of semantic closeness between videos and their corresponding texts.

Many prior approaches have utilized pairwise ranking loss for learning joint embedding

between visual input and textual input. They minimize a hinge based triplet ranking loss

combining bi-directional ranking terms, in order to maximize the similarity between a video

embedding and the corresponding text embedding, and while at the same time, minimize

the similarity to all other non-matching ones. The optimization problem can be written as,

min
θ

∑
v

∑
t−

[α− S(v, t) + S(v, t−)]+ +
∑
t

∑
v−

[α− S(t, v) + S(t, v−)]+ (2.1)

where, [f ]+ = max(0, f). t− is a non-matching text embedding, and t is the matching text

embedding for video embedding v. This is similar for text embedding t. α is the margin

value for the pairwise ranking loss. The scoring function S(v, t) is defined as the similarity

function to measure the similarity between the videos and text in the joint embedded space.

We use cosine similarity in this work, as it is easy to compute and shown to be very effective

in learning joint embeddings. [64, 28].

In Eq. (2.1), in the first term, for each pair (v, t), the sum is taken over all non-

matching text embedding t−. It attempts to ensure that for each visual feature, matching

text features should be closer than non-matching ones in the joint space. Similarly, the sec-
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ond term attempts to ensure that text embedding that corresponds to the video embedding

should be closer in the joint space to each other than non-matching video embeddings.

2.3.4 Proposed Ranking Loss

Recently, focusing on hard-negatives has been shown to be effective in many em-

bedding tasks [28, 118, 85]. Inspired by this, we focus on hard negatives (i.e., the negative

video and text sample closest to a positive/matching (v, t) pair) instead of summing over all

negatives in our formulation. For a positive/matching pair (v, t), the hardest negative sam-

ple can be identified using v̂ = arg max
v−

S(t, v−) and t̂ = arg max
t−

S(v, t−). The optimization

problem can be rewritten as following to focus on hard-negatives,

min
θ

∑
v

[α− S(v, t) + S(v, t̂)]+ +
∑
t

[α− S(t, v) + S(t, v̂)]+ (2.2)

The loss in Eq. 2.2 is similar to the loss in Eq. 2.1 but it is specified in terms of

the hardest negatives [28]. We start with the loss function in Eq. 2.2 and further modify

the loss function following the idea of weighted ranking [133] to weigh the loss based on the

relative ranking of positive labels.

min
θ

∑
v

L(rv)[α− S(v, t) + S(v, t̂)]+ +
∑
t

L(rt)[α− S(t, v) + S(t, v̂)]+ (2.3)

where L(.) is a weighting function for different ranks. For a video embedding v, rv is the

rank of matching sentence t among all compared sentences. Similarly, for a text embedding

t, rt is the rank of matching video embedding v among all compared videos in the batch.

We define the weighting function as L(r) = (1 + β/(N − r + 1)), where N is the number

of compared videos and β is the weighting factor. Fig. 2.4 shows an example showing the
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Figure 2.4: An example showing the significance of the proposed ranking loss. The idea is
that if a large number of non-matching instances are ranked higher than the matching one
given the current state of the model, then the model must be updated by a larger amount
(Case:(b) ). However, the model needs to be updated by a smaller amount if the matching
instance is already ranked higher than most non-matching ones (Case:(a) ) Here, the idea is
illustrated with a positive/matching video-text pair (v, t) (The cross-modal pair is shown
with filled circles) and margin θ = 0. For the positive pair (v, t), the non-matching/negative
examples which contributes to the loss (i.e., empty circles in the figure) are shown with t−.
t̂ is the highest violating negative sample.

significance of the proposed ranking loss.

It is very common, in practice, to only compare samples within a mini-batch at

each iteration rather than comparing the entire training set for computational efficiency

[85, 118, 57]. This is known as semi-hard negative mining [85, 118]. Moreover, selecting the

hardest negatives in practice may often lead to a collapsed model and semi-hard negative

mining helps to mitigate this issue [85, 118]. We utilize a batch-size of 128 in our experiment.

It is evident from Eq. 2.3 that the loss applies a weight-based penalty based on

the relative ranking of the correct match in retrieved result. If a positive match is ranked

top in the list, then L(.) will assign a small weight to the loss and will not cost the loss too

much. However, if a positive match is not ranked top, L(.) will assign a much larger weight

to the loss, which will ultimately try to push the positive matching pair to the top of rank.
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2.3.5 Matching and Ranking

The video-text retrieval task focuses on returning for each query video, a ranked

list of the most likely text description from a dataset and vice versa. We believe, we need to

understand three main aspects of each video: (1) Who: the salient objects of the video, (2)

What: the action and events in the video and (3) Where: the place aspect of the video. To

achieve this, we learn three expert joint video-text embedding spaces as shown in Fig. 2.3.

The Object-Text embedding space is the common space where both appearance

features and text feature are mapped to. Hence, this space can link video and sentences

focusing on the objects. On the other hand, the Activity-Text embedding space focuses on

linking video and language description which emphasizes more on the events in the video.

Action features and audio features both provide important cues for understanding different

events in a video. We fuse action and audio features (if available) by concatenation and map

the concatenated feature and text feature into a common space, namely, the Activity-Text

space. If the audio feature is absent from videos, we only use the action feature as the video

representation for learning the Activity-Text space. The Place-Text embedding space is the

common space where visual features focusing on scene/place aspect and text feature are

mapped to. Hence, this space can link video and sentences focusing on the entire scene. We

utilize the same loss functions described in Sec. 2.3.4 for training these embedding models.

At the time of retrieval, given a query sentence, we compute the similarity score

of the query sentence with each one of the videos in the dataset in three video-text embed-

ding spaces and use a fusion of similarity scores for the final ranking. Conversely, given a

query video, we calculate its similarity scores with all the sentences in the dataset in three
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embedding spaces and use a fusion of similarity scores for the final ranking.

Sv−t(v, t) = w1So−t + w2Sa−t + w3Sp−t (2.4)

It may be desired to use a weighted sum when it is necessary in a task to put more emphasis

on one of the facets of the video (objects or captions or scene). In this work, we empirically

found putting comparatively higher importance to So−t (Object-Text) and Sa−t (Activity-

Text), and slightly lower importance to Sp−t (Place-Text) works better in evaluated datasets

than putting equal importance to all. We empirically choose w1 = 1, w2 = 1 and w3 = 0.5

in our experiments based on our evaluation on the validation set.

2.4 Experiments

In this section, we first describe the datasets and evaluation metric (Section 4.1).

Then, we describe the training details. Next, we provide quantitative results on MSR-

VTT dataset (Section 4.3) and MSVD dataset (Section 4.4) to show the effectiveness of our

proposed framework. Finally. we present some qualitative examples analyzing our success

and failure cases (Section 4.5).

2.4.1 Datasets and Evaluation Metric

We present experiments on two standard benchmark datasets: Microsoft Research

Video to Text (MSR-VTT) Dataset [149] and Microsoft Video Description dataset (MSVD)

[17] to evaluate the performance of our proposed framework. We adopt rank-based metric

for quantitative performance evaluation.

22



T
ab

le
2
.1

:
V

id
eo

-t
o-

T
ex

t
an

d
T

ex
t-

to
-V

id
eo

R
et

ri
ev

al
R

es
u

lt
s

on
M

S
R

-V
T

T
D

at
as

et
.

#
M

et
h

o
d

V
id

eo
-t

o
-T

ex
t

R
et

ri
ev

a
l—

T
ex

t-
to

-V
id

eo
R

et
ri

ev
a
l

R
@

1
R

@
5

R
@

1
0

M
ed

R
M

ea
n

R
R

@
1

R
@

5
R

@
1
0

M
ed

R
M

ea
n

R

1
.1

V
S

E
(O

b
je

ct
-T

ex
t)

7
.7

2
0
.3

3
1
.2

2
8
.0

1
8
5
.8

5
.0

1
6
.4

2
4
.6

4
7
.0

2
1
5
.1

V
S

E
P

P
(O

b
je

ct
-T

ex
t)

1
0
.2

2
5
.4

3
5
.1

2
5

2
2
8
.1

5
.7

1
7
.1

2
4
.8

6
5

3
0
0
.8

O
u

rs
(O

b
je

ct
-T

ex
t)

1
0
.5

2
6
.7

3
5
.9

2
5

2
6
6
.6

5
.8

1
7
.6

2
5
.2

6
1

2
9
6
.6

1
.2

O
u

rs
(A

u
d

io
-T

ex
t)

0
.4

1
.1

1
.9

1
0
5
1

2
6
3
4
.9

0
.2

0
.9

1
.5

1
2
9
2

1
3
0
0

O
u

rs
(A

ct
iv

it
y
-T

ex
t)

8
.4

2
2
.2

3
2
.3

3
0
.3

2
2
9
.9

4
.6

1
5
.3

2
2
.7

7
1

3
0
3
.7

O
u

rs
(P

la
ce

-T
ex

t)
7
.1

1
9
.8

2
8
.7

3
8

2
7
5
.1

4
.3

1
4

2
1
.1

7
7

3
0
9
.6

1
.3

C
O

N
(O

b
je

ct
,

A
ct

iv
it

y
)-

T
ex

t
9
.1

2
4
.6

3
6

2
3

1
8
1
.4

5
.5

1
7
.6

2
5
.9

5
1

2
4
3
.4

C
O

N
(O

b
je

ct
,

A
ct

iv
it

y,
A

u
d

io
)-

T
ex

t
9
.3

2
7
.8

3
8

2
2

1
6
2
.3

5
.7

1
8
.4

2
6
.8

4
8

2
4
2
.5

1
.4

J
o
in

t
Im

a
g
e-

T
ex

t-
A

u
d

io
E

m
b

ed
d

in
g

8
.7

2
2
.4

3
2
.1

3
1

2
2
5
.8

4
.8

1
5
.3

2
2
.9

7
3

3
1
3
.6

1
.5

F
u

si
o
n

[O
b

je
ct

-T
ex

t,
A

ct
iv

it
y

(I
3
D

)-
T

ex
t]

1
2
.3

3
1
.3

4
2
.9

1
6

1
4
5
.4

6
.8

2
0
.7

2
9
.5

3
9

2
2
4
.7

F
u

si
o
n

[O
b

je
ct

-T
ex

t,
A

ct
iv

it
y
(I

3
d

-A
u

d
io

)-
T

ex
t]

1
2
.5

3
2
.1

4
2
.4

1
6

1
3
4

7
2
0
.9

2
9
.7

3
8

2
1
3
.8

F
u

si
o
n

[O
b

je
ct

-T
ex

t,
P

la
ce

-T
ex

t]
1
1
.8

3
0
.1

4
0
.8

1
8

1
7
2
.1

6
.5

1
9
.9

2
8
.5

4
3

2
3
4
.1

F
u

si
o
n

[A
ct

iv
it

y
-T

ex
t,

P
la

ce
-T

ex
t]

1
1

2
8
.4

3
9
.3

2
0

1
5
2
.1

5
.9

1
8
.6

2
7
.4

4
4

2
2
4
.7

1
.6

F
u
si
o
n

[O
b
je
c
t-
T
e
x
t,

A
c
ti
v
it
y
-T

e
x
t,

P
la
c
e
-T

e
x
t]

1
3
.8

3
3
.5

4
4
.3

1
4

1
1
9
.2

7
.3

2
1
.7

3
0
.9

3
4

1
9
6
.1

1
.7

R
a
n

k
F

u
si

o
n

[O
b

je
ct

-T
ex

t,
A

ct
iv

it
y
-T

ex
t,

P
la

ce
-T

ex
t]

1
2
.2

3
1
.6

4
2
.7

1
6

1
2
7
.6

6
.8

2
0
.5

2
9
.4

3
8

2
0
4
.3

23



MSR-VTT. The MSR-VTT is a large-scale video description dataset. This

dataset contains 10,000 video clips. The dataset is split into 6513 videos for training,

2990 videos for testing and 497 videos for the validation set. Each video has 20 sentence

descriptions. This is one of the largest video captioning dataset in terms of the quantity of

sentences and the size of the vocabulary.

MSVD. The MSVD dataset contains 1970 Youtube clips, and each video is anno-

tated with about 40 sentences. We use only the English descriptions. For a fair comparison,

we used the same splits utilized in prior works [137], with 1200 videos for training, 100 videos

for validation, and 670 videos for testing. The MSVD dataset is also used in [99] for video-

text retrieval task, where they randomly chose 5 ground-truth sentences per video. We use

the same setting when we compare with that approach.

Evaluation Metric. We use the standard evaluation criteria used in most prior

works on image-text retrieval task [99, 64, 25]. We measure rank-based performance by

R@K, Median Rank(MedR) and Mean Rank (MeanR). R@K (Recall at K) calculates

the percentage of test samples for which the correct result is found in the top-K retrieved

points to the query sample. We report results for R@1, R@5 and R@10. Median Rank

calculates the median of the ground-truth results in the ranking. Similarly, Mean Rank

calculates the mean rank of all correct results.

2.4.2 Training Details

We used two Titan Xp GPUs for this work. We implemented the network using

PyTorch following [28]. We start training with a learning rate of 0.002 and keep the learning
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rate fixed for 15 epochs. Then the learning rate is lowered by a factor of 10 and the training

continued for another 15 epochs. We use a batch-size of 128 in all the experiments. The

embedding networks are trained using ADAM optimizer [63]. When the L2 norm of the

gradients for the entire layer exceeds 2, gradients are clipped. We tried different values for

margin α in training and found 0.1 ≤ α ≤ 0.2 works reasonably well. We empirically choose

α as 0.2. The embedding model was evaluated on the validation set after every epoch. The

model with the best sum of recalls on the validation set is chosen as the final model.

2.4.3 Results on MSR-VTT Dataset

We report the result on MSR-VTT dataset [149] in Table 2.1. We implement

several baselines to analyze different components of the proposed approach. To understand

the effect of different loss functions, features, effect of feature concatenation and proposed

fusion method, we divide the table into 7 rows (1.1-1.7). In row-1.1, we report the results

on applying two different variants of pair-wise ranking loss. VSE[64] is based on the basic

triplet ranking loss similar to Eq. 2.1 and VSEPP[28] is based on the loss function that

emphasizes on hard-negatives as shown in Eq. 2.2. Note that, all other reported results in

Table 2.1 are based on the modified pairwise ranking loss proposed in Eq. 2.3. In row-1.2, we

provide the performance of different features in learning the embedding using the proposed

loss. In row-1.3, we present results for the learned embedding utilizing a feature vector that

is a direct concatenation of different video features. In row-1.4, we provide the result when

a shared representation between image, text and audio modality is learned using proposed

loss following the idea in [5] and used for video-text retrieval task. In row-1.5, we provide

the result based on the proposed approach that employs two video-text joint embeddings

25



for retrieval. In row-1.6, we provide the result based on the proposed ensemble approach

that employs all three video-text joint embeddings for retrieval. Additionally, in row-1.7,

we also provide the result for the case where the rank fusion has been considered in place

of the proposed score fusion.

Loss Function. For evaluating the performance of different ranking loss functions

in the task, we can compare results reported in row-1.1 and row-1.2. We can choose only

results based on Object-Text spaces from these two rows for a fair comparison. We see

that VSEPP loss function and proposed loss function performs significantly better than

the traditional VSE loss function in R@1, R@5, R@10. However, VSE loss function has

better performance in terms of the mean rank. This phenomenon is expected based on the

characteristics of the loss functions. As higher R@1, R@5 and R@10 are more desirable

for a efficient video-text retrieval system than the mean rank, we see that our proposed

loss function performs better than other loss functions in this task. We observe similar

performance improvement using our loss function in other video-text spaces too.

Video Features. We can compare the performance of different video features in

learning the embedding using the proposed loss from row-1.2. We observe that object

feature and activity feature from video performs reasonably well in learning a joint video-

text space. The performance is very low when only audio feature is used for learning the

embedding. It can be expected that the natural sound associated in a video alone does not

contain as much information as videos in most cases. However, utilizing audio along with

i3d feature as activity features provides a slight boost in performance as shown in row-1.3

and row-1.4 of Table 2.1.
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Feature Concatenation for Representing Video. Rather than training multiple video-

semantic spaces, one can argue that we can simply concatenate all the available video fea-

tures and learn a single video-text space using this concatenated video feature [25, 149].

However, we observe from row-1.3 that integrating complementary features by static con-

catenation based fusion strategy fails to utilize the full potential of different video features

for the task. Comparing row-1.2 and row-1.3, we observe that a concatenation of object

feature, activity feature and Audio feature performs even worse than utilizing only object

feature in R@1. Although we see some improvement in other evaluation metrics, overall

the improvement is very limited. We believe that both appearance and action feature gets

suppressed in such concatenation as they focus on representing different entities of a video.

Learning a Shared Space across Image, Text and Audio. Learning a shared space

across image, text and sound modality is proposed for cross-modal retrieval task in [5].

Following the idea, we trained a shared space across video-text-sound modality using the

pairwise ranking loss by utilizing video-text and video-sound pairs. The result is reported

in row-1.4. We observe that performance in video-text retrieval task degrades after training

such an joint representation across 3 modalities. Training such a representation gives the

flexibility to transfer across multiple modalities. Nevertheless, we believe it is not tailored

towards achieving high performance in a specific task. Moreover, aligning across 3 modalities

is a more computationally difficult task and requires many more examples to train.

Proposed Fusion. The best result in Table. 2.1 is achieved by our proposed fu-

sion approach as shown in row-1.6. We see that the proposed method achieves 31.43%

improvement in R@1 for text retrieval and 25.86% improvement for video retrieval in R@1
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compared to best performing Ours(Object-text) as shown in row-1.2, which is the best

among the other methods which use a single embedding space for the retrieval task. In

row-1.5, Fusion[Object-text & Activity(I3D-Audio)-text] differs from Fusion[Object-text &

Activity(I3D)-text] in the feature used in learning the activity-text space. We see that uti-

lizing audio in learning the embedding improves the result slightly. However, as the retrieval

performance of individual audio feature is very low (shown in row-1.2), we did not utilize

audio-text space separately in fusion as we found it degraded the performance significantly.

Comparing row-1.6, row-1.5 and row-1.2, we find that the ensemble approach

with score fusion results in significant improvement in performance, although there is no

guarantee that the combination of multiple models will perform better than the individual

models in the ensemble in every single case. However, the ensemble average consistently

improves performance significantly.

Rank vs Similarity Score in Fusion. We provide the retrieval result based on weighted

rank aggregation of three video-text spaces in row-1.7. Comparing the effect of rank fusion

in replacement of the score fusion from row-1.6 and row-1.7 in Table. 2.1, it is also evident

that the proposed score fusion approach shows consistent performance improvement over

rank fusion approach. It is possible that exploiting similarity score to combine multiple ev-

idences may be less effective than using rank values in some cases, as score fusion approach

independently weights scores and does not consider overall performance in weighting [70].

However, we empirically find that utilizing score fusion is more advantageous than rank

fusion in our system in terms of retrieval effectiveness.
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Table 2.2: Video-to-Text Retrieval Results on MSVD Dataset. We highlight the proposed
method. The methods which has ’Ours’ keyword are trained with the proposed loss.

Method R@1 R@5 R@10 MedR MeanR

Results Using Partition used by JMET and JMDV

CCA 245.3

JMET 208.5

JMDV 224.1

W2VV-ResNet152 16.3 44.8 14 110.2

VSE (Object-Text) 15.8 30.2 41.4 12 84.8

VSEPP(Object-Text) 21.2 43.4 52.2 9 79.2

Ours(Object-Text) 23.4 45.4 53 8 75.9

Ours(Activity-Text) 21.3 43.7 53.3 9 72.2

Ours(Place-Text) 11.2 25.1 34.3 27 147.7

Ours-Fusion(O-T, P-T) 25.7 45.4 54 7 65.4

Ours-Fusion(A-T, P-T) 26 46.1 55.8 7 53.5

Ours-Fusion(O-T, A-T) 31.5 51 61.5 5 41.7

Ours-Fusion(O-T, A-T, P-T) 33.3 52.5 62.5 5 40.2

Rank-Fusion(O-T, A-T, P-T) 30 51.3 61.8 5 42.3

Results Using Partition used by LJRV

ST 2.99 10.9 17.5 77 241

LJRV 9.85 27.1 38.4 19 75.2

W2VV(Object-Text) 17.9 - 49.4 11 57.6

Ours(Object-Text) 20.9 43.7 54.9 7 56.1

Ours(Activity-Text) 17.5 39.6 51.3 10 54.8

Ours(Place-Text) 8.5 23.3 32.7 26 99.3

Ours-Fusion(O-T, A-T) 25.5 51.3 61.9 5 32.5

Ours-Fusion(O-T, A-T, P-T) 26.4 51.9 64.5 5 31.1

Rank-Fusion(O-T, A-T, P-T) 24.3 49.3 62.4 6 34.6

2.4.4 Results on MSVD Dataset

We report the results of video to text retrieval task on MSVD dataset [17] in

Table 2.2 and the results for text to video retrieval in Table 2.3.

We compare our approach with existing video-text retrieval approaches, CCA[124],

ST [65], JMDV [150], LJRV [99], JMET [100], and W2VV [25]. For these approaches, we

directly cite scores from respective papers when available. We report score for JMET from

[25]. The score of CCA is reported from [150] and the score of ST from [99]. If scores for

multiple models are reported, we report the score of the best performing method.
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Table 2.3: Text-to-Video Retrieval Results on MSVD Dataset. We highlight the proposed
method. The methods which has ’Ours’ keyword are trained with the proposed loss.

Method R@1 R@5 R@10 MedR MeanR

Results Using Partition used by JMET and JMDV

CCA 251.3

JMDV 236.3

VSE(Object-Text) 12.3 30.1 42.3 14 57.7

VSEPP(Object-Text) 15.4 39.6 53 9 43.8

Ours(Object-Text) 16.1 41.1 53.5 9 42.7

Ours(Activity-Text) 15.4 39.2 51.4 10 43.2

Ours(Place-Text) 7.9 24.5 36 21 64.6

Ours-Fusion(O-T, P-T) 17 42.2 56 8 36.5

Ours-Fusion(A-T, P-T) 17.2 42.6 55.6 8 34.1

Ours-Fusion(O-T, A-T) 20.3 47.8 61.1 6 28.3

Ours-Fusion(O-T, A-T, P-T) 21.3 48.5 61.6 6 26.3

Rank-Fusion(O-T, A-T, P-T) 19.4 45.8 59.4 7 29.2

Results Using Partition used by LJRV

ST 2.6 11.6 19.3 51 106

LJRV 7.7 23.4 35 21 49.1

Ours(Object-Text) 15 40.2 51.9 9 45.3

Ours(Activity-Text) 14.6 38.9 51 10 45.1

Ours(Place-Text) 7.9 24.5 36 21 64.6

Ours-Fusion(O-T, A-T) 20.2 47.5 60.7 6 29

Ours-Fusion(O-T, A-T, P-T) 20.7 47.8 61.9 6 26.8

Rank-Fusion(O-T, A-T, P-T) 18.5 44.9 58.8 7 30.2
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We also implement and compare results with state-of-the-art image-embedding

approach VSE[64] and VSEPP[28] in the Object-Text(O-T) embedding space. Addition-

ally, to show the impact of only using the proposed loss in retrieval, we also report results

based on the Activity-Text(A-T) space and Place-Text(P-T) space in the tables. Our pro-

posed fusion is named as Ours-Fusion(O-T,A-T,P-T) in the Table. 2.2 and Table. 2.3. The

proposed fusion system utilizes the proposed loss and employs three video-text embedding

spaces for calculating the similarity between video and text. As the audio is muted in this

dataset, we train the Activity-Text space utilizing only I3D feature from videos. We also

report results for our fusion approach using any two of the three video-text spaces in the

tables. Additionally, we report results of Rank-Fusion(O-T, A-T, P-T), which uses rank in

place of similarity score in combining retrieval results of three video-text spaces in fusion.

From Table 2.2 and Table 2.3, it is evident that our proposed approach performs

significantly better than existing ones. The result is improved significantly by utilizing the

fusion proposed in this chapter that utilizes multiple video-text spaces in calculating the

final ranking. Moreover, utilizing the proposed loss improves the result over previous state-

of-the-art methods. It can also be identified that our loss function is not only useful for

learning embedding independently, but also it is useful for the proposed fusion. We observe

that utilizing the proposed loss function improves the result over previous state-of-the-art

methods consistently, with a minimum improvement of 10.38% from best existing method

VSEPP(Object-Text) in Video-to-Text Retrieval and 4.55% in Text-to-Video Retrieval. The

result is improved further by utilizing the proposed fusion framework in this chapter that

utilizes multiple video-text spaces in an ensemble fusion approach in calculating the final
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ranking, with an improvement of 57.07% from the best existing method in the video to text

retrieval and 38.31% in the text to video retrieval. Among the video-text spaces, object-

text and activity-text space show better performance in retrieval, compared to place-text

space which indicates that the annotators focused more on object and activity aspects in

annotating the videos. Similar to the results of MSR-VTT dataset, we observe that the

proposed score fusion approach consistently shows superior performance than rank fusion

approach in both video to text and text to video retrieval.

2.4.5 Qualitative Results

We report the qualitative results on MSVD dataset in Fig. 2.5 and the results on

MSR-VTT dataset in Fig. 2.6.

MSVD Dataset. In Fig. 2.5, we show examples of a few test videos from

MSVD dataset and the top 1 retrieved captions for the proposed approach. We also show

the retrieval result when only one of the embeddings is used for retrieval. Additionally, we

report the rank of the highest ranked ground-truth caption in the figure. We can observe

from the figure that in most of the cases, utilizing cue from multiple video-text spaces helps

to match the correct caption. We see from Fig. 2.5 that, among 9 videos, the retrieval

performance is improved or higher recall is retained for 7 videos. Video-6 and video-9

show two failure cases, where utilizing multiple video-text spaces degrades the performance

slightly than using object-text in video-6 and activity-text in video-9. These failure cases

provide a future direction of this work focusing on developing more sophisticated algorithms

to combine similarity scores from multiple joint spaces.
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Proposed Fusion: (1) A man pets a couple of dogs.

Object-Text: (24) a man is standing in front of a microphone

holding a violin in one hand and a violin bow in the other.

Activity-Text: (6) A couple of slow lorises are eating fruit.

GT: A man is petting two dogs while holding a guitar.

Proposed Fusion: (1) A person is driving a motorcycle

through waves on the shore.

Object-Text: (1) A man is riding a bike across the waves

by the beachside.
Activity-Text: (6) A man on a motorcycle falls into a pool

of mud.

GT: A man is riding a motorcycle in the water at the edge

of a beach.

Object-Text: (2) Two women are wrestling each other.

Activity-Text: (118) A young woman is putting stickers

all over her face.

Proposed Fusion: (4) Women are dancing.

GT: A man is drying off a woman with a towel.

Proposed Fusion: (1) The girl rode her brown horse.

Object-Text: (13) A guy is riding a horse.

Activity-Text: (1) The girl rode her brown horse.

GT: A woman is riding a horse on an open ground.

Object-Text: (9) A man is drinking a large goblet of beer.

Activity-Text: (6) The lady tried to wake up the man in

costume.

Proposed Fusion: (2) The boy hugged the girl.

GT: A man and a woman are having a phone conversation.

Proposed Fusion: (3) A woman is chopping a red bell

pepper into small pieces.

Object-Text: (58) A woman is chopping a red bell pepper

into small pieces.
Activity-Text: (18) A cat is eating a small wedge of

watermelon.

GT: Someone wearing blue rubber gloves is slicing a

tomato with a large knife.

GT: A man slicing a bun in half with a knife appears to cut 

himself.

Proposed Fusion: (1) A man slicing the roasted duck.

Object-Text: (141) Man chops meat and puts it in a plate.

Activity-Text: (7) A man is cutting vegetables.

GT: A man pours a plate of shredded cheese in a pot of sauce.

Proposed Fusion: (2) A person mixes flour and water in a 

bowl.

Object-Text: (4) Someone is mixing up chocolate batter in a 

bowl.

Activity-Text: (8) Someone has picked up a handful of white 

substance from mixing bowl and squeezing it in a lump.

GT: Several people are dancing on the patio.

Activity-Text: (1) People are dancing together near a house.

Proposed Fusion: (2) Many men and women are dancing in

street.

Object-Text: (44) A man persuades two ladies standing by

the beach to come with him and then the three of them run

to join some other people.

1 2 3

4 5 6

7 8 9

Figure 2.5: Examples of 9 test videos from MSVD dataset and the top 1 retrieved captions
by using a single video-text space and the fusion approach with our loss function. The
value in brackets is the rank of the highest ranked ground-truth caption. Ground Truth
(GT) is a sample from the ground-truth captions. Among all the approaches, object-text
(ResNet152 as video feature) and activity-text (I3D as video feature) are systems where
single video-text space is used for retrieval. We also report result for the fusion system
where three video-text spaces (object-text, activity-text and place-text) are used.

MSR-VTT Dataset. Similar to Fig. 2.5, we also show qualitative results

for a few test videos from MSR-VTT dataset in Fig. 2.6. Video 1-6 in Fig. 2.6 shows

a few examples where utilizing cue from multiple video-text spaces helps to match the

correct caption compared to using only one of the video-text space. Moreover, we also

see the result was improved after utilizing audio in learning the second video-text space

(Activity-text space). We observe this improvement for most of the videos, as we also

observe from Table. 2.1. Video 7-9 shows some failure cases for our fusion approach in

Fig. 2.6. Video 7 shows a case, where utilizing multiple video-text spaces for retrieval
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Proposed Fusion: (4) The young girls sing for the judges

Object-Text: (11) A girl singer perform in front of judges.

Activity-Text: (14) A girl with a guitar sings and preforms

for judges.

GT: A group of three young children singing on a stage in

front of judges..

Fusion-No Audio: (9) The young girls sing for the judges..

6

7

Proposed Fusion: (2) A man is talking about the first

manned space flight.

Object-Text: (1) A man explaining about a space device.

Activity-Text: (39) Hyenas are walking around a lion waiting

for scraps.

GT: A man is talking about satellites in space.

Fusion-No Audio: (3) Characters from minecraft floating in

space talking about going to the moon.

2

Proposed Fusion: (1) A young girl is laughing while the

young man looks concerned.

Object-Text: (161) Guy walking alone on road.

Activity-Text: (16) A girl is talking on the phone and a

woman attacks her.

GT: A woman waits at a table in a restaurant and cheers after

a man passes her.

Fusion (No Audio): (14) A girl sitting on a sofa talking.

8

Proposed Fusion: (4) In this video there are some soldiers

getting ready for war.

Object-Text: (15) Military police is pointing a gun at a

person on the ground.

Activity-Text: (7) Man describes difference between two steaks.

GT: A group of people looking through ammunition.

Fusion-No Audio: (1) Soldiers are getting ready with their

weapons.

Proposed Fusion : (1) A reporter speaks to a military

person in front of a large crowd on television.

Object-Text: (37) A man is giving a speech.

Activity-Text: (7) A male commentates over gameplay

while discussing his channel and an upcoming interview..

GT: Military figures are discussing their actions on a

television news program.

Fusion (No Audio): (6) A man giving a speech to a large

crowd of people.

3

9

4

Proposed Fusion: (2) A wrestler at a match is talking to other

wrestlers and some people on stage with him..

Object-Text: (11) Wrestlers are talking to the crowd.

Activity-Text: (10) A man discussing a wrestler as the

wrestling match starts.

GT: A group of people talking in a professional wrestling

ring..

Fusion-No Audio: (4) Wrestlers are in the ring talking

Proposed Fusion : (4) This is a video of chef made meals in a

show.

Object-Text: (22) The chef puts various food items into a pot

and shows the viewers how to make a dish.

Activity-Text: (30) A chef discusses needed ingredients.

GT: A woman hosting the show while a man cooks a dish..

Fusion (No Audio): (30) A man pours soda into a pot on the

stove.

5

1

Proposed Fusion: (1) A man narrates a game of minecraft

while running through a pink house.

Object-Text: (4) a minecraft video shows a character

climbing a staircase.
Activity-Text: (52) Someone playing mine craft while giving

commentary.

GT: A man is commentating while playing minecraft.

Fusion (No Audio): (12) A video game character is

exploring a castle.

Proposed Fusion: (4) An advertisement about the stroller

baby jogger.

Object-Text: (3) A quick motion clips scene of a blue

stroller and it s details.

Activity-Text: (8) A woman is giving demo for baby trolley.

GT: A woman demonstrating the functions of a baby stroller.

Fusion-No Audio: (1) An advertisement for a jogger stroller

a woman in black is using the stroller.

Figure 2.6: A snapshot of 9 test videos from MSR-VTT dataset with success and failure
cases, the top 1 retrieved captions for four approaches based on the proposed loss function
and the rank of the highest ranked ground-truth caption inside the bracket. We also report
results for fusion approaches where three video-text spaces are used for retrieval. The
fusion approaches use an object-text space trained with ResNet feature and place-text
space trained with ResNet50(Place) feature, while in the proposed fusion, the activity-text
space is trained using concatenated I3D and Audio feature.

degrades the performance slightly compared to utilizing only one of the video-text space.

For Video-8 and video-9 in Fig. 2.6, we observe that the performance improves after fusion

overall, but the performance is better when the audio is not used in learning video-text

space. On the other hand, video 1-6 shows example of cases where utilizing audio along

with visual cues helped to improve the result.
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2.4.6 Discussion

The experimental results are aligned with our rationale that utilizing multiple

characteristics of a video is crucial for developing an efficient video-text retrieval system.

Experiments also demonstrate that our proposed ranking loss function is effective in learning

video-text embeddings better than existing ones. However, we observe that major improve-

ment in performance comes from our mixture of experts system which utilizes evidence

from three complementary video-text spaces for retrieval. Our mixture of expert video-text

model may not outperform the performance of a single video-text model in the ensemble in

every single case, but it is evident from experiments that our system significantly reduces

the overall risk of making a particularly poor decision.

From qualitative results, we observe it cannot be claimed in general that one

video feature is consistently better than others for the task of video-text retrieval. It can

be easily identified from the top-1 retrieved captions in Fig. 2.5 and Fig. 2.6 that the

video-text embedding (Object-Text) learned utilizing object appearance feature (ResNet)

as video feature is significantly different from the joint embedding (Activity-Text) learned

using Activity feature (I3D) as video feature. The variation between the rank of the highest

matching caption further strengthens this observation. Object-text space performs better

than the activity-text space in retrieval for some videos. For other videos, the activity-text

space achieves higher performance. However, it can be claimed that combining knowledge

from multiple video-text embedding spaces consistently shows better performance than

utilizing only one of them.
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We observe from Fig. 2.6 that using audio is crucial in many cases where there is

deep semantic relation between visual content and audio (e.g., the audio is from the third

person narration of the video, the audio is music or song) and it gives important cues in

reducing description ambiguity (e.g., video-2, video-5 and video-6 in Fig. 2.6). We observe

that the performance degrades in some cases when audio is utilized in the system (e.g.,

video-8 in Fig. 2.6). We see an overall improvement in the quantitative result (Table 2.1)

which also supports our idea of using audio. Since we did not exploit the structure of

the audio and analyze the structural alignment between audio and video, it is difficult to

determine whether audio is always helpful. For instance, audio can come from different

things (persons, animals or objects) in a video, and it might shift our attention away from

the main subject. Moreover, the captions in the datasets are provided mostly based on

visual aspects, which makes information related to audio very sparse. Hence, the overall

improvement using audio was limited.

2.5 Conclusion

For multimedia applications, constructing a joint representation that could carry

information for multiple modalities could be very conducive for downstream use cases. In

this chapter, we study how to leverage diverse video features effectively for developing a

robust cross-modal video-text retrieval system. In this chapter, we study how to effectively

utilize available multimodal cues from videos in learning joint representations for the cross-

modal video-text retrieval task. Existing hand labeled video-text datasets are often very

limited by their size considering the enormous amount of diversity the visual world contains.
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This makes it extremely difficult to develop a robust video-text retrieval system based on

deep neural network models. In this regard, we propose a framework that simultaneously

utilizes multi-modal visual cues by a “mixture of experts” approach for retrieval. Our

proposed framework learns three expert video-text embedding models focusing on three

salient video cues (i.e., object, activity, place) and uses a combination of these models for

high-quality prediction. A modified pair-wise ranking loss function is also proposed for

better learning the joint embeddings, which focuses on hard negatives and applies a weight-

based penalty based on the relative ranking of the correct match. Extensive evaluations

on MSVD and MSR-VTT datasets demonstrate that our framework performs significantly

better than baselines and state-of-the-art systems.
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Chapter 3

Video Moment Retrieval from Text

Queries with Weak Supervision

3.1 Introduction

Cross-modal retrieval of visual data using natural language description has at-

tracted intense attention in recent years [45, 154, 64, 57, 148, 149, 96], but remains a very

challenging problem [154, 28, 90] due to the differences and ambiguity between different

modalities. The identification of the video moment (or segment) is important since it al-

lows the user to focus on the portion of the video that is most relevant to the textual query,

and is beneficial when the video has a lot of non-relevant portions. (See Fig. 3.1). The

aforementioned approaches operate in a fully supervised setting, i.e., they have access to

text descriptions along with the exact temporal location of the visual data corresponding

to the descriptions. However, obtaining such annotations is tedious and noisy, requiring
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Query: A man holding a camera comes into view.

29.2 sec. 41.3 sec.

Query: Old man in white finishes filming then leaves.

12.6 sec. 24 sec.

Figure 3.1: Illustration of text to video moment retrieval task: given a text query, retrieve
and rank videos segments based on how well they depict the text description.

multiple annotators. The process of developing algorithms which demand a weaker degree

of supervision is non-trivial and is yet to be explored by researchers for the problem of video

moment retrieval using text queries. In this work, we focus, particularly on this problem.

The text to video moment retrieval task is more challenging than the task of

localizing categorical activities in videos, which is a comparatively well-studied field [83,

143, 157, 147, 104, 123]. Although these methods show success on activity localization,

unlike text to moment retrieval, they are limited to a pre-defined set of activity classes. In

this regard, there has been a recent interest in localizing moments in a video from natural

language description [44, 34, 148, 18]. Supervision in terms of text description with their

temporal boundaries in a video is used to train these models. However, acquiring such

dense annotations of text-temporal boundary tuples are often tedious and costly, as it is

difficult to mark the start and end locations of a certain moment, which may also introduce

ambiguity in the training data.
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On the contrary, it is often much easier to just describe the moments appearing in

a video with a set of natural language sentences, than providing exact temporal boundaries

associated with each of the sentences. Moreover, such descriptions can often be obtained

easily from captions through some sources on the web. Motivated by this, we pose a ques-

tion: is it possible to develop a weakly-supervised framework for video moment localization

from the text, leveraging only video-level textual annotation, without their temporal bound-

aries? Temporal localization of moments using weak description is a much more challenging

task than its supervised counterpart. It is extremely relevant to address this question, due

to the difficulty and non-scalability of acquiring precise frame-wise information with text

descriptions in the fully supervised setting.

Overview of the Proposed Framework. An illustration of our proposed weakly-

supervised framework presented in Fig. 3.2. Given a video, we first extract frame-wise

visual features from pre-trained Convolutional Neural Network architectures. We also ex-

tract features for text descriptions using Recurrent Neural Network based models. Similar

to the video-text embedding model described in chapter 2, we train a joint embedding net-

work to project video features and text features into the same space. However, as we have

text descriptions for the videos as a whole and not moment-wise descriptions like in a fully

supervised setting, the learning procedure for text to video moment retrieval is non-trivial.

Given a certain text description, we obtain its similarity with the video features,

which gives an indication of temporal locations which may correspond to the textual de-

scription. We call this Text-Guided Attention as it helps to highlight the relevant temporal

locations, given a text description. Thereafter, we use this attention to pool the video

40



Joint Video-

Text Space

Video
CNN

Feature 

Vectors

FC

W
ei

g
h

te
d

 

P
o

o
li

n
g

GRU GRU GRU GRU GRU GRU

…          A      reporter    is      talking    about        a       movie     scene      …

GRU GRU GRU GRU

Sentence Description
Sentence 

Feature

FC

FC
Text-

Guided 

Attention

Attention Block

Figure 3.2: A brief illustration of our proposed weakly supervised framework for learning
joint embedding model with Text-Guided Attention for text to video moment retrieval. Our
framework learns a latent alignment between video frames and text corresponding to the
video. This alignment is utilized for attending video features based on relevance and the
pooled video feature is used for learning the joint video-text embedding. In the figure, CNN
refers to a convolutional neural network, and FC refers to a fully-connected neural network.

features along the temporal direction to obtain a single text-dependent feature vector for a

video. We then train the network to minimize a loss which reduces the distance between

the text-dependent video feature vector and the text vector itself. We hypothesize that

along with learning a shared video-text embedding, hidden units will emerge internally to

learn the notion of relevance between moments of video and corresponding text description.

During the testing phase, we use TGA for localizing the moments, given a text query, as it

highlights the portion of the video corresponding to the query.

Contributions: The main contributions of the proposed approach are as follows.

•We address a novel and practical problem of temporally localizing video moments

from text queries without requiring temporal boundary annotations of the text descriptions

while training but using only the video-level text descriptions.

•We propose a joint visual-semantic embedding framework, that learns the notion

of relevant moments from video using only video-level description. Our joint embedding
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network utilizes latent alignment between video frames and sentence description as Text-

Guided Attention for the videos to learn the embedding.

• Experiments on two benchmark datasets: DiDeMo [44] and Charades-STA [34]

show that our weakly-supervised approach performs reasonably well compared to supervised

baselines in the task of text to video moment retrieval.

3.2 Related Works

Image/Video Retrieval using Text Queries. Cross-modal language-vision

retrieval methods focus on retrieving relevant figs/videos from a database given text de-

scriptions. Most of the recent methods for image-text retrieval task focus on learning joint

visual-semantic embedding models [58, 64, 32, 144, 28, 96, 136, 93]. Inspired by the success

of these approaches, most video-text retrieval methods also employ a joint subspace model

[150, 25, 137, 100, 90, 91]. In this joint space, the similarity of different points reflects

the semantic closeness between their corresponding original inputs. These text-based video

retrieval approaches focus on retrieving an entire video from dataset given text description.

However, we focus on temporally localizing a specific moment relevant to a text query,

within a given video. Similar to the video/image to text retrieval approaches, our proposed

framework is also based on learning joint video-text embedding models. However, instead

of focusing only on aligning video and text in the joint space as in video-text retrieval, our

aim is to learn a latent alignment between video frames and text descriptions, which is used

for obtaining the relevant moments corresponding to a given text query.
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Activity Localization. The moment retrieval aspect of our work is related to

the problem of temporal activity localization in untrimmed videos. From the perspective

of our interest, the works in literature pertaining to activity localization can be categorized

as either fully supervised or weakly supervised. Works in fully supervised setting include

SSN [157], R-C3D [147], TAL-Net [16] among others. Most of these works structure their

framework by using temporal action proposals with activity location predictors. However,

in the weakly supervised setting, the exact location of each activity is unknown, and only the

video-level labels are accessible during training. In order to deal with that, researchers take

a Multiple Instance Learning approach [143] with constraints applied for better localization

[104, 98]. Our task of video moment retrieval from text description is more challenging than

the activity localization task, as our method is not limited to a pre-defined set of categories,

but rather sentences in natural language.

Text to Video Moment Retrieval. Most relevant to our work are the meth-

ods that focus on identifying relevant portions from text description using fully-supervised

annotations: MCN [44], CTRL [34], EFRC [148], ROLE [79], TGN [18]. These methods

are severely plagued by the issue of collecting training videos with temporal natural lan-

guage annotation. Temporal sliding window over videos frames [44], or hard-coded segments

containing a fixed number of frames [34] has been used for generating moment candidate

corresponding to a text description. Moreover, unlike in images, generating temporal pro-

posals for videos in an unsupervised manner is itself a challenging task. In [148, 147], the

authors proposed an end-to-end framework where the activity proposals are generated as

one of the initial steps, but for the much easier task of activity localization. Attention
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mechanism has been used in [79, 148] for the text to video moment retrieval task. Although

we also use attention, our usage is significantly different from them. ROLE [79] uses at-

tention over the words using video moment context, which they obtain from the temporal

labels. EFRC [148] uses attention in training a temporal proposal network as it has access

to temporal boundary annotations of the sentences. We use attention over the temporal

dimension of the videos as we do not have access to the temporal boundaries. More im-

portantly, our method is weakly-supervised, which requires only video-level text annotation

during training. Hence, the data collection cost for our approach is substantially less, and

it is possible to acquire and train using larger video-text captioning datasets.

A weakly supervised setting is considered in [11] for the video-text alignment task,

which is to assign temporal boundaries to a set of temporally ordered sentences, whereas our

task is to retrieve a portion of the video given a sentence. Moreover, [11] assumes temporal

ordering between the sentences as additional supervision. Also, their method would require

dense sentence annotations describing all portions of the video including tokens representing

background moments (if any). The task considered in this work is a generalization of the

task in [11]. We consider that there can be multiple sentences describing different temporal

portions of a single video and do not consider any temporal ordering information of the

sentences. The Text-Guided Attention mechanism used in our framework allows us to deal

with multiple sentence descriptions during training and provide the relevant portions for

each of them during testing, even with weak supervision.
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3.3 Approach

In this section, we first describe the network architecture and input feature rep-

resentation for representing video and text (Sec. 3.3.1). Then, we present our proposed

Text-Guided Attention module (Sec. 3.3.2). Finally, we describe the framework for learning

joint video-text embedding (Sec.3.3.3).

Problem Definition. In this chapter, we consider that the training set consists

of videos paired with text descriptions composed of multiple sentences. Each sentence

describes different temporal regions of the video. However, we do not have access to the

temporal boundaries of the moments referred to by the sentences. At test time, we use a

sentence to retrieve relevant portions of the video.

3.3.1 Network Structure and Features

Network Structure. The joint embedding model is trained using a two-branch

deep neural network model, as shown in Fig. 3.2. The two branches consist of different

expert neural networks to extract modality-specific representations from the given input.

The expert networks are followed by fully connected embedding layers which focus on trans-

forming the modality-specific representations to joint representations. In this work, we keep

the pre-trained image encoder fixed as we have limited training data. The fully-connected

embedding layers, the word embedding, the GRU are trained end-to-end. We set the di-

mensionality (D) of the joint embedding space to 1024.

Text Representation. We use Gated Recurrent Units (GRU) [23] for encoding

the sentences. GRU has been very popular for generating a representation for sentences in
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Figure 3.3: This figure presents the procedure of computing the Text-Guided Attention
and using it to generate sentence-wise video features. We first obtain the cosine similarity
between the features at every time instant of the video vi, and its corresponding sentences
wi
j , followed by a softmax layer along the temporal dimension to obtain the sentence-wise

temporal attention. Thereafter, we use these attentions to compute a weighted average of
the video features to finally obtain the sentence-wise video features.

recent works [28, 64]. The word embeddings are input to the GRU. The dimensionality of

the word embeddings is 300.

Video Representation. We utilize pre-trained convolutional neural network

models as the expert network for encoding videos. Specifically, following [34] we utilize

C3D model [131] for feature extraction from every 16 frames of video for the Charades-STA

dataset. A 16 layer VGG model [122] is used for frame-level feature extraction in experi-

ments on DiDeMo dataset following [44]. We extract features from the penultimate fully

connected layer. For both the C3D and VGG16 model, the dimension of the representation

from the penultimate fully connected layer is 4096.
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3.3.2 Text-Guided Attention

After the feature extraction process, we have a training setD = {{wi
j}
nwi
j=1, {vik}

nvi
k=1}

nd
i=1,

where nd is the number of training pairs, wi
j represents the jth sentence feature of ith video,

vik represent the video feature at the kth time instant of the ith video, nwi and nvi are the

number of sentences in the text description and video time instants for the ith video in the

dataset. Please note that we do not consider any ordering in the text descriptions.

Each of the sentences provides us information about a certain part of the given

video. In a fully supervised setting, where we have access to the temporal boundaries

associated with each sentence, we can apply a pooling technique to first pool the relevant

portion of the video features and then use a similarity measure to learn a joint video

segment-text embedding. However, in our case of weakly supervised moment retrieval, we

do not have access to the temporal boundaries associated with the sentences. Thus, we

need to first obtain the portions of the video which are relevant to a given sentence query.

If some portion of the video frames corresponds to a particular sentence, we would

expect them to have similar features. Thus, the cosine similarity between text and video

features should be higher in the temporally relevant portions and low in the irrelevant ones.

Moreover, as the sentence described a part of the video rather than individual temporal

segments, the video feature obtained after pooling the relevant portions should be very

similar to the sentence description feature. We employ this idea to learn the joint video-

text embedding via an attention mechanism based on the sentence descriptions, which we

name Text-Guided Attention (TGA). Note that during the test phase, we use TGA to

obtain the localization.
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We first apply a Fully Connected (FC) layer with ReLU [69] and Dropout [126]

on the video features at each time instance to transform them into the same dimensional

space as the text features. We denote these features as v̄ik. In order to obtain the sentence

specific attention over the temporal dimension, we first obtain the cosine similarity between

each temporal feature and sentence descriptions. The similarity between the jth sentence

and the kth temporal feature of the ith training video can be represented as follows,

sikj =
wi
j
T
vik

||wi
j ||2||vik||2

(3.1)

Once we obtain the similarity scores for the temporal locations, we apply a softmax op-

eration along the temporal dimension to obtain an attention vector for the ith video as

follows,

aikj =
exp(sikj)∑nvi
k=1 exp(sikj)

(3.2)

These should have high values at temporal locations which are relevant to the given sentence

vector wi
j . We consider this as local similarity because the individual temporal features may

correspond to different aspects of a sentence and thus each of the temporal features might be

a bit scattered away from the sentence feature. However, the feature obtained after pooling

the video temporal features corresponding to the relevant locations should be quite similar

to the entire sentence feature. We consider this global similarity. We use the attention in

Eqn. 3.2 to obtain the pooled video feature for the sentence description wi
j as follows,

f ij =

nvi∑
k=1

aikjv
i
k (3.3)

Note that, this feature vector corresponds to the particular sentence description

wi
j only. In a similar procedure, we can extract the text-specific video feature vector
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corresponding to the other sentences in the text descriptions of the same video and other

videos as well. Fig. 3.3 presents an overview of the sentence-wise video feature extraction

procedure using the video temporal features and a set of sentence descriptions for the

video. We use these feature vectors to derive the loss function to be optimized to learn the

parameters of the network. This is described next.

3.3.3 Training Joint Embedding

We now describe the loss function we optimize to learn the joint video-text embed-

ding. Many prior approaches have utilized pairwise ranking loss as the objective for learning

joint embedding between visual and textual input [64, 158, 145, 58]. Specifically, these ap-

proaches minimize a hinge-based triplet ranking loss in order to maximize the similarity

between an image embedding and corresponding text embedding and minimize similarity

to all other non-matching ones. Note that, the loss function has also been presented in

Eq. 2.1 in Chapter 2 as VSE loss.

For the sake of notational simplicity, we drop the index i, j, k denoting the video

number, sentence index and time instant. Given a text-specific video feature vector based

on TGA, f (∈ RV ) and paired text feature vector w (∈ RT ), the projection for the video

feature on the joint space can be derived as vp = W (v)f (vp ∈ RD). Similarly, the projection

of paired text vector in the embedding space can be expressed as tp = W (t)w(tp ∈ RD).

Here, W (v) ∈ RD×V is the transformation matrix that projects the video content into the

joint embedding and D is the dimensionality of the joint space. Similarly, W (t) ∈ RD×T

maps input sentence/caption embedding to the joint space.
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Using these pairs of feature representation of both videos and corresponding sen-

tences, the goal is to learn a joint embedding such that the positive pairs are closer than the

negative pairs in the feature space. Now, the video-text loss function LV T can be expressed

as follows,

LV T =
∑

(vp,tp)

{∑
t−p

max
[
0,∆− S(vp, tp) + S(vp, t

−
p )
]

+
∑
v−
p

max
[
0,∆− S(tp,vp) + S(tp,v

−
p )
]} (3.4)

where t−p is a non-matching text embedding for video embedding vp, and tp is the matching

text embedding. This is similar for video embedding vp and non-matching image embedding

v−p . ∆ is the margin value for the ranking loss. The scoring function S(vp, tp) measures

the similarity between the image embedding and text embedding in the joint space. We

utilize cosine similarity in the representation space to compute similarity. Cosine similarity

is widely used in learning joint embedding models in prior works on image-text retrieval

[158, 64, 28, 93]. Our approach does not depend on any specific choice of similarity function.

In Eq. (3.4), the first term attempts to ensure that for each visual input, the

matching text inputs should be closer than non-matching text inputs in learning the joint

space. However, the second term in Eq. (3.4) attempts to ensure that for each text input,

the matching image input should be closer in the joint space than the non-matching images.

3.3.4 Batch-wise Training

We train our network using Stochastic Gradient Descent (SGD) by dividing the

dataset into batches. For a video with multiple sentences, we create multiple video-sentence

pairs, with the same video, but different sentences in the corresponding video’s text descrip-
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tion. During training, our method learns to automatically identify the relevant portions for

each sentence using the Text-Guided Attention. The negative instances v−p and t−p corre-

spond to all the instances which are not positive in the current batch of data.

3.4 Experiments

We perform experiments on two benchmark datasets with the goal of comparing

the performance of our weakly-supervised approach against different supervised baselines.

As we introduce the problem in this work, to the best of our knowledge, ours is the first

to show results on this task. Ideally, any weakly supervised methods would attempt at

attaining the performance of the supervised methods, with similar features and setting.

We first describe the details on the datasets and evaluation metric in Sec. 3.4.1,

followed by the training details in Sec. 3.4.2. Then, we report the results of different methods

on DiDeMo and Charades-STA dataset in Sec. 3.4.3.

3.4.1 Datasets and Evaluation Metric

We present experiments on two benchmark datasets for sentence description based

video moment localization, namely Charades-STA [34] and DiDeMo [44] to evaluate the

performance of our proposed framework.

Charades-STA. The Charades-STA dataset for text to video moment retrieval

was introduced in [34]. The dataset contains 16,128 sentence-moment pairs with 12,408 in

the training set and 3,720 in the testing set. The Charades dataset was originally introduced

in [121] which contains temporal activity annotation and video-level paragraph description
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for the videos. The authors of [34] enhanced the dataset [121] for evaluating temporal

localization of moments in videos given text queries. The video-level descriptions from the

original dataset were decomposed into short sentences. Then, these sentences are assigned

to segments in videos based on matching keywords for activity categories. The annotations

are manually verified at last.

DiDeMo. The Distinct Describable Moments (DiDeMo) dataset [44] is one of

the largest and most diverse datasets for the temporal localization of events in videos

given natural language descriptions. The videos are collected from Flickr and each video

is trimmed to a maximum of 30 seconds. The videos in the dataset are divided into 5-

second segments to reduce the complexity of annotation. The dataset is split into training,

validation and test sets containing 8,395, 1,065 and 1,004 videos respectively. The dataset

contains a total of 26,892 moments and one moment could be associated with descriptions

from multiple annotators. The descriptions in DiDeMo dataset are detailed and contain

camera movement, temporal transition indicators, and activities. Moreover, the descriptions

in DiDeMo are verified so that each description refers to a single moment.

Evaluation Metric. We use the evaluation criteria following prior works in

literature [44, 34]. Specifically, we follow [44] for evaluating DiDeMo dataset and [34]

for evaluating Charades-STA. We measure rank-based performance R@K (Recall at K)

which calculates the percentage of test samples for which the correct result is found in the

top-K retrievals to the query sample. We report results for R@1, R@5, and R@10. We

also calculate temporal intersection over union (tIoU) for Charades-STA dataset and mean

intersection over union (mIoU) for DiDeMo dataset.
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3.4.2 Implementation Details

We used two Telsa K80 GPUs and implemented the network using PyTorch [103].

We start training with a learning rate of 0.001 and keep the learning rate fixed for 15 epochs.

The learning rate is lowered by a factor of 10 every 15 epochs. We tried different values for

margin α in training and found 0.1 ≤ ∆ ≤ 0.2 works reasonably well. We empirically choose

∆ as 0.1 for Charades-STA and 0.2 for DiDeMo in the experiments. We use a batch-size

of 128 in all the experiments. ADAM optimizer was used in training the joint embedding

networks [63]. The model was evaluated on the validation set on the video-text retrieval

task after every epoch. To deal with the over-fitting issue, we choose the best model based

on the highest sum of recalls.

3.4.3 Quantitative Results

We report the experimental results on Charades-STA dataset [34] in Table 3.1 and

DiDeMo dataset [44] in Table 3.3.

Results on Charades-STA Dataset

The quantitative results on Charades-STA dataset [34] are reported in Table 3.1.

The evaluation setup in Charades-STA dataset [34] considers a set of IoU (Intersection over

Union) thresholds. We report for IoU 0.3, 0.5 and 0.7 in Table 3.1. For these IoU thresholds,

we report the recalls - R@1, R@5, and R@10 in Table 3.1. Following [34], we use sliding

windows of 128 and 256 to obtain the possible temporal segments. The segments are ranked

based on the corresponding Text-Guided Attention score.
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Table 3.1: This table presents the results on the Charades-STA dataset, using the evalua-
tion protocol used in previous works. We also use C3D feature for a fair comparison. The
proposed weakly-supervised approach performs significantly better that visual-semantic em-
bedding based baselines: VSA-RNN and VSA-STV. Our approach also performs reasonably
compared to state-of-the-art approaches CTRL[34] and EFRC [148].

Method
IoU=0.3 IoU=0.5 IoU=0.7

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Random - - - 8.51 37.12 - 3.03 14.06 -

VSA-RNN - - - 10.50 48.43 - 4.32 20.21 -

VSA-STV - - - 16.91 53.89 - 5.81 23.58 -

CTRL - - - 23.63 58.92 - 8.89 29.52 -

EFRC 53.00 94.60 98.50 33.80 77.30 91.60 15.00 43.90 60.90

Proposed 32.14 86.58 99.33 19.94 65.52 89.36 8.84 33.51 53.45

Compared Methods. We compare our approach with state-of-the-art text to

video moment retrieval approaches, CTRL[34], EFRC[148], and baseline approaches, VSA-

RNN[57] and VSA-STV[65]. For these methods, we directly cite performances from respec-

tive papers when available [34, 148]. We report score for VSA-RNN and VSA-STV from

[34]. If the score for multiple models is reported, we select the score of the best performing

method in R@1. Here, VSA-RNN (Visual-Semantic Embedding with LSTM) and VSA-

STV (Visual-Semantic Embedding with Skip-thought vector) are text-based image/video

retrieval baselines. We also report results for “Random” which selects a candidate moment

randomly. Similar to these approaches, we also utilize the C3D model for obtaining feature

representation of videos for fair comparison. We follow the evaluation criteria utilized in

prior works [34, 148].

Analysis of Results. We observe that the proposed approach consistently per-

form comparably to the fully-supervised approaches in all evaluation metrics. Our weakly-
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Table 3.2: Ablation Study of the Model on Charades-STA Dataset

Input Encoding Margin IoU=0.3 IoU=0.5 IoU=0.7

Video Feature Text Feature (∆) R@1 R@5 R@1 R@5 R@1 R@5

C3D GRU 0.05 30.6 86.4 17.7 64.9 8.1 33.4

C3D GRU 0.15 31.5 87.3 19.4 65.9 8.2 32.9

C3D GRU 0.20 31.7 87.7 18.9 65.5 8.4 33.8

C3D GRU 0.10 32.1 86.6 19.9 65.5 8.9 33.5

C3D Bi-GRU 0.10 32.5 87.9 19.9 65.6 9.2 33.5

I3D GRU 0.10 33.1 87.5 19.7 65.4 9.3 33.2

ResNet-152 GRU 0.10 28.9 87.4 18.8 66.0 9.0 33.6

DenseNet-121 GRU 0.10 31.2 87.1 19.0 66.2 8.9 34.1

supervised TGA based approach performs significantly better than supervised visual-semantic

embedding based approaches VSA-RNN and VSA-STV. We observe that the proposed

method achieves a minimum absolute improvement of 13.3% in R@5 and 4.5% in R@1 from

VSA-RNN. The relative performance improvement over VSA-STV is a minimum of 17.9%

in R@1 and 21.5% in R@5. We also observe that the proposed approach achieves better

performance than state-of-the-art method CTRL [34] on R@5 evaluation metrics with a

maximum relative improvement of about 13.5% in R@5 with IoU=0.7. Our approach also

shows reasonable performance compared to EFRC [148].

Ablation Study. We present a ablation study on Charades dataset in Ta-

ble 3.2.The Table 3.2 shows that our method performs reasonably well over a range of

parameters and feature choice. However, ∆=0.1 performs better overall compared to other

margin values. Also, C3D, I3D works slightly better than ResNet, DenseNet, and Bi-GRU

performs slightly better than GRU.
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Results on DiDeMo Datset

Table 3.3 summarizes the results on the DiDeMo dataset [44]. DiDeMo only has

a coarse annotation of moments. As the videos are trimmed at 30 seconds and the videos

are divided into 5-second segments, each video has 21 possible moments. We follow the

evaluation setup in [44], which is designed for evaluating 21 possible moments from sentence

descriptions. Average of Text-Guided Attention scores of corresponding segments is used

as the confidence score for the moments and used for ranking. Following previous works

[44, 148], the performance in the dataset is evaluated based on R@1, R@5, and mean

intersection over union (mIoU) criteria.

Compared Methods. In Table 3.3, we report results for several baselines to

analyze the performance of our proposed approach. We divide the table into 3 rows (2.1-

2.3). In row-2.1, we report the results of trivial baselines (i.e., Random and Upper-Bound)

following evaluation protocol reported in [44]. In row-2.2, we group the results of LSTM-

RGB-Local [44], EFRC [148], and our proposed approach for a fair comparison, as these

methods are trained with only the VGG-16 RGB feature. We report the performance of

the proposed approach in both validation and test set as LSTM-RGB-local model has been

evaluated on validation set [44]. In row-2.3, we report results for state-of-the-art approaches

MCN [44] and TGN [18]. We also report results of CCA [66] and natural language object

retrieval based baseline Txt-Obj-Retrieval [48] in row-2.3. These methods additionally

use optical flow feature along with VGG16 RGB feature. We report the performance of

MCN [44], TGN [18] and EFRC [148] from the respective papers. The results of LSTM-

RGB-Local, Txt-Obj-Retrieval, Random, and Upper-Bound are reported from [44].
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Table 3.3: This table reports results on DiDeMo following the evaluation protocol in [44].
Our approach performs on par with several competitive fully-supervised approaches

# Method R@1 R@5 mIoU

3.3.1
Upper Bound 74.75 100 96.05

Random 3.75 22.5 22.64

3.3.2

LSTM-RGB-Local [44] 13.10 44.82 25.13

EFRC [148] 13.23 46.98 27.57

Proposed (Val. Set) 11.18 35.62 24.47

Proposed (Test Set) 12.19 39.74 24.92

3.3.3

CCA 18.11 52.11 37.82

Txt-Obj-Retrieval [48] 16.20 43.94 27.18

MCN [44] 27.57 79.69 41.70

TGN [18] 28.23 79.26 42.97

Analysis of Results. Similar to the results on Charades-STA, it is evident from

Table 3.3 that our proposed weakly supervised approach consistently shows comparable

performance to several fully-supervised approaches. From row-2.2, we observe that our

proposed approach achieves similar performance as LSTM-RGB-Local [44] and EFRC [148].

We observe that R@5 accuracy is slightly lower for our approach compared to supervised

approaches. However, R@1 accuracy and mIoU is almost similar. Comparing row-2.3,

we observe that the performance is comparable to CCA and Txt-Obj-Retrieval baselines.

The performance is low compared to MCN [44] and TGN [18]. Both of the approaches use

additional optical flow features in their framework. MCN additionally use a moment-context

feature. Hence, a performance drop is not unexpected. However, we have already observed

from the row-2.2 that the performance of our weakly supervised approach is comparable to

the MCN baseline model of LSTM-RGB-Local which uses the same RGB feature in training

as our proposed method.
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3.4.4 Qualitative Results

We provide six qualitative examples of moments predicted by the proposed ap-

proach from Charades-STA dataset [34] in Fig. 3.4. In Fig. 3.4, case 1, 2, and 4 show

some examples where our approach was successful in retrieving the ground truth moment

with high IoU. Cases 1 and 2 are examples where the same video has been used to retrieve

different moments based on two different text descriptions. We see our text-aware attention

module was successful in finding the correct segment of the video in both the cases.

While our method retrieves the correct moment from sentence description many

cases, it fails to retrieve the correct moment in some cases (e.g., case 3, 5, and 6). Among

these three cases, case 3 presents an ambiguous query where the person stands on the

doorway but does not enter into the room. The GT moment covers a smaller segment,

while our system predicts a longer one. We observe the performance of our system suffers

when important visual contents occupy only small portions in frames, e.g., case 5 and 6.

In case 6, a sandwich is mentioned in the query which occupies a small portion of frames

initially and our framework shifted the start time of the moment to a much later time

instant than in the ground truth. Similarly, in case 5, our system was only successful in

identifying the person laughing into a blanket after the scene is zoomed in. We believe

these are difficult to capture without additional spatial attention modeling or generating

region proposals. Moreover, utilizing more cues from videos (e.g., audio, and context) may

be helpful in reducing ambiguity in these cases.
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3.5 Conclusion

There have been a few recent methods proposed in text to video moment retrieval

using natural language queries, but requiring full supervision during training. However, ac-

quiring a large number of training videos with temporal boundary annotations for each text

description is extremely time-consuming and often not scalable. In order to cope with this

issue, in this work, we introduce the novel problem of learning from weak labels for the task

of text to video moment retrieval. The weak nature of the supervision is because, during

training, we only have access to the video-text pairs rather than the temporal extent of the

video to which different text descriptions relate. We propose a joint visual-semantic em-

bedding based framework that learns the notion of relevant segments from video using only

video-level sentence descriptions. Specifically, our main idea is to utilize latent alignment

between video frames and sentence descriptions using Text-Guided Attention (TGA). TGA

is then used during the test phase to retrieve relevant moments. Our formulation of the

task makes it more realistic compared to existing methods in the literature which require

supervision as temporal boundaries or temporal ordering of the sentences. Moreover, the

weak nature of the task allows it to learn from easily available web data, which requires

minimal effort to acquire compared to manual annotations. Experiments on two bench-

mark datasets demonstrate that our method in spite of being weakly supervised performs

comparably to several fully supervised approaches.
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Query: A person runs down a few stairs.

6.5 sGT 0 s

5.3 sPrediction 0 s

(1)

Query: Person seems to be laughing into the blanket.

10.9 sGT 0 s

10.7 sPrediction 5.3 s

Query: A person is standing in the room holding a sandwich.

14.0 sGT 0 s

16.0 sPrediction 10.7 s

Query: Person walks through the doorway into a room.

6.3 sGT 0 s

10.7 sPrediction 0 s

Query: The person put the box on a bed.

18.6 sGT 10.8 s

16.0 sPrediction 10.7 s

(3)

(4)

(5)

(6)

Query: The person sits on a pillow on the floor.

5.3 sGT 11.7 s

5.3 sPrediction 10.7 s

(2)

Figure 3.4: A snapshot of six queries and test videos from Charades-STA dataset with
success and failure cases. GT is a ground-truth annotation and Prediction is the moment
predicted by the proposed approach. Queries 1, 2, and 4 show cases where our approach
was successful in retrieving the GT moment with very high temporal intersection over union
(IoU). However, queries 3, 5, and 6 show cases where our approach was not successful in
retrieving the GT moment with high IoU.

60



Chapter 4

Web-Supervised Joint Embedding

for Cross-Modal Image-Text

Retrieval

4.1 Introduction

Joint embeddings have been widely used in multimedia data mining as they enable

us to integrate the understanding of different modalities together. These embeddings are

usually learned by mapping inputs from two or more distinct domains (e.g., images and

text) into a common latent space, where the transformed vectors of semantically associated

inputs should be close. Learning an appropriate embedding is crucial for achieving high-

performance in many multimedia applications involving multiple modalities. In this work,

we focus on the task of cross-modal retrieval between images and language (See Fig. 4.1),
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A guy that is 

riding his bike 

next to a train

Person playing 

golf outdoors in 

the field

A group of three 

young children 

singing on a stage

A guy is driving 

a car during 

sunset

Figure 4.1: Illustration of Image-Text retrieval task: Given a text query, retrieve and rank
images from the database based on how well they depict the text or vice versa.

i.e., the retrieval of images given sentence query, and retrieval of text from a query image.

The majority of the success in image-text retrieval task has been achieved by the

joint embedding models trained in a supervised way using image-text pairs from hand-

labeled image datasets (e.g., MSCOCO [20], Flickr30k [106]). Although, these datasets

cover a significant number of images (e.g., about 80k in MSCOCO and 30K in Flickr30K),

creating a larger dataset with image-sentence pairs is extremely difficult and labor-intensive

[68]. Moreover, it is generally feasible to have only a limited number of users to annotate

training images, which may lead to a biased model [134, 49, 156]. Hence, while these

datasets provide a convenient modeling assumption, they are very restrictive considering the

enormous amount of rich descriptions that a human can compose [57]. Accordingly, although

trained models show good performance on benchmark datasets for image-text retrieval task,

applying such models in the open-world setting is unlikely to show satisfactory cross-dataset

generalization (training on a dataset, testing on a different dataset) performance.
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On the other hand, streams of images with noisy tags are readily available in

datasets, such as Flickr-1M [54], as well as in nearly infinite numbers on the web. Developing

a practical system for image-text retrieval considering a large number of web images is

more likely to be robust. However, inefficient utilization of weakly-annotated images may

increase ambiguity and degrade performance. Motivated by this observation, we pose an

important question: Can a large number of web images with noisy annotations be leveraged

upon with a fully annotated dataset of images with textual descriptions to learn better joint

embeddings? Fig. 4.2 shows an illustration of this scenario. This is an extremely relevant

problem to address due to the difficulty and non-scalability of obtaining a large amount of

human-annotated training set of image-text pairs. In this work, we study how to judiciously

utilize web images to develop a successful image-text retrieval system. We propose a novel

framework that can augment any ranking loss based supervised formulation with weakly-

supervised web data for learning robust joint embeddings.

The raw tags associated with web images are often incomplete and error-prone.

Hence, directly utilizing such data without any refinement in the objective of webly super-

vised learning may lead to an increased ambiguity and degraded performance. Moreover,

the learning approach should be able to deal with huge amount missing information as en-

countered frequently in our setting (i.e., most social media images may not contain many

relevant tags). These challenges make the problem of learning robust joint embedding mod-

els using web images extremely difficult when the amount of noisy tags associated with

web images is unexpectedly high compared to clean relevant tags. In this regard, we also

explore the research question - Based on a limited fully annotated set of images with textual
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Sentence Descriptions:
▪ Two men sitting on opposite sides

of a table looking at laptops
▪ Two males at a brown table two

laptops and newspapers and
glasses

▪ The two men are continuing to
work on their project

Sentence Descriptions:
▪ Two people sitting on benches 

with trees in the background
▪ People seated on wooden 

chairs and a bicycle parked 
nearby.

▪ Two women sitting on benches 
with trees in the background.

Train Set 1 (Dataset of Videos and Clean Text Descriptions)

Image Image

Tags: 

Person, Sunny, 
Newspaper, Drinking, 
Coffee, News, Man, 

Morning, Bench

Tags: 

Two, Men, Beard, 
Suit, Photograph, 

Friend, Sunny, 
Outdoor, Park

Train Set 2 (Web Images and Corresponding Noisy Tags)

Image Image

Use Embedding in Cross-Modal Retrieval

Trained Visual-Semantic 
Embedding

Test Description: Two men in suits 
looking at laptop on a sunny day

Test Image

Figure 4.2: The problem setting of our work. Our goal is to utilize web images associated
with noisy tags to learn a robust visual-semantic embedding from a dataset of clean images
with ground truth sentences. We test the learned latent space by projecting images and
text descriptions from the test set in the embedding and perform cross-modal retrieval.

descriptions, is it possible to refine the tags of web image and utilize them in boosting the

performance of joint image-text embedding models? For example, can we build a reasonable

joint image-text embedding model when we have access to only 5% of labeled data from

image-text datasets (e.g., MSCOCO) and the remaining 95% data are weakly annotated?

Although, existing largest image-text datasets cover a limited number of images (e.g., about

80k in MSCOCO and 30K in Flickr30K), it is critical to consider availability of a signif-

icantly smaller number of cross-modal pairs (e.g., 2K pairs) focusing on specific practical

applications, such as cross-modal retrieval focusing on a sudden emergency scenario. In such

a case, it is extremely crucial to complement scarcer clean set of pairs with freely available

web images to improve the performance of image-text embedding models. However, avail-

ability of a small clean set makes it extremely difficult to train a reliable model, considering

significantly high amount of noisy and missing entries typical in web image tagging.

64



4.1.1 Overview of the Proposed Webly Supervised Embedding Approach

In the cross-modal image-text retrieval task, an embedding network is learned to

project image features and text features into the same joint space, and then the retrieval is

performed by searching the nearest neighbor in the latent space. In this work, we attempt

to utilize web images annotated with noisy tags for improving joint embeddings trained

using a dataset of images and ground-truth sentence descriptions. However, combining web

image-tag pairs with image-text pairs in training the embedding is non-trivial. The great-

est obstacle arises from noisy tags and the intrinsic difference between the representation

of sentence description and tags. A typical representation of text is similar to, and yet very

different from the representation of tags. Sentences are usually represented using RNN-

based encoder with word-to-vec (Word2Vec) model, providing sequential input vectors to

the encoder. In contrast, tags do not have sequential information and a useful represen-

tation of tags can be tf-idf weighted BOW vectors or the average of all Word2Vec vectors

corresponding to the tags.

To bridge this gap, we propose a two-stage approach that learns the joint image-

text representation. Firstly, we use a supervised formulation that leverages the available

clean image-text pairs from a dataset to learn an aligned representation that can be shared

across three modalities (e.g., image, tag, text). As tags are not available directly in the

datasets, we consider nouns and verbs from a sentence as dummy tags (Fig. 4.3). We

leverage ranking loss based formulation with image-text and image-tags pairs to learn a

shared representation across modalities. Secondly, we utilize weakly-annotated image-tags

pairs from the web (e.g., Flickr) to update the previously learned shared representation,
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which allows us to transfer knowledge from thousands of freely available weakly annotated

images to develop a better cross-modal retrieval system. Our proposed approach is also

motivated by learning using privileged information (LUPI) paradigm [135, 119] and multi-

task learning strategies in deep neural networks [114, 9] that share representations between

closely related tasks for enhanced learning performance.

4.1.2 Overview of the Proposed Image-Tag Refinement Approach

The idea is to first refine the tags of weakly annotated web image collection utilizing

their latent relationships with the small clean set of images. The two set of image collections

can be inter-related easily based on associated tags, however, we can only have partial

observations of the relationships due to the noisy nature of web image tags. We propose to

utilize the observed incomplete relationships in a tensor completion framework to predict

the missing tags and remove the noisy ones. The proposed image tag refinement approach is

motivated by the success of tensor completion approaches in multi-way data analysis [110,

128, 97]. In this work, we formulate the web image-tag refinement as a CP decomposition

based tensor completion approach that leverages ternary interactions among dataset images,

tags and web images in refining web image tags. To efficiently recover missing dynamics,

we also incorporate intra-modal similarity as auxiliary information to regularize the tensor

completion problem. Refined web images are then used with webly supervised learning

frameworks for training joint image-text embeddings.
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4.1.3 Contributions

We address a novel and practical problem in this chapter—how to exploit large

scale web data for learning an effective joint visual-semantic embedding models without

requiring large amount of human-crafted training data. Towards solving this problem, we

make the following main contributions.

• We propose a webly supervised approach utilizing web image collection with

associated noisy tags, and a clean dataset containing images and ground truth sentence

descriptions for learning robust joint representations.

•We develop a novel framework with ranking loss for augmenting a typical super-

vised method with weakly-supervised web data to learn a more robust joint embedding.

• We also present an extension of our webly supervised image-text embedding

framework in the presence of very limited clean labeled data and web images containing

significant noise. In the framework, the web images associated with noisy tags are first

refined using proposed tensor completion approach and then used with a small clean dataset

in webly supervised learning frameworks for training joint image-text embedding models.

• We propose to refine tags of web images by modeling the inter-relation between

web image collection and clean dataset images (based on associated tags) as a tensor and

utilizing intra-modal similarity as side information in a CP decomposition based tensor

completion framework.

• We demonstrate clear performance improvement in image-text retrieval using

proposed web-supervised approach on standard benchmark image-text retrieval datasets,

e.g., Flickr30K [106] and MSCOCO [77].
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Figure 4.3: A brief illustration of our proposed framework for learning visual-semantic
embedding model utilizing image-text pairs from a dataset and image-tag pairs from the
web. First, a dataset of images and their sentence descriptions are used to learn an aligned
image-text representation. Then, we update the joint representation using web images and
corresponding tags. The trained embedding is used in image-text retrieval task.

4.2 Related Work

Visual-Semantic Embedding: Joint visual-semantic models have shown ex-

cellent performance on several multimedia tasks, e.g., cross-modal retrieval [145, 66, 50, 90],

image captioning [86, 57], image classification [53, 32, 38] video summarization [22, 105].

Cross-modal retrieval methods require computing semantic similarity between two different

modalities, i.e., vision and language. Learning joint visual-semantic representation natu-

rally fits to our task of image-text retrieval since it is possible to directly compare visual

data and sentence descriptions in such a joint space [28, 96].

Image-Text Retrieval: Recently, there has been significant interest in devel-

oping powerful image-text retrieval methods in multimedia, computer vision and machine

learning communities [58, 45]. In [29], a method for mapping visual and textual data to

a common space based on extracting a triplet of object, action, and scene is presented.

A number of image-text embedding approaches has been developed based on Canonical
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Correlation Analysis (CCA) [151, 124, 47, 38]. Ranking loss has been used for training

the embedding in most recent works relating image and language modality for image-text

retrieval [64, 32, 144, 28, 96]. In [32], words and images are projected to a common space

utilizing a ranking loss that applies a penalty when an incorrect label is ranked higher than

the correct one. A bi-directional ranking loss based formulation is used to project image

features and sentence features to a joint space for cross-modal image-text retrieval in [64].

Several image-text retrieval methods extended this work [64] with slight modi-

fications in the loss function [28], similarity calculation [136, 144] or input features [96].

In [28], authors modified the ranking loss based on violations incurred by relatively hard

negatives. An embedding network is proposed in [144] that uses the bi-directional ranking

loss along with neighbourhood constraints. Multi-modal attention mechanism is proposed

in [96] to selectively attend to specific image regions and sentence fragments and calculate

similarity. A multi-modal LSTM network is proposed in [52] that recurrently select salient

pairwise instances from image and text, and aggregate local similarity measurement for

image-sentence matching. Our method complements the works that projects words and

images to a common space utilizing a bi-directional ranking loss. The proposed formulation

could be extended and applied to most of these approaches with little modifications.

Webly Supervised Learning: The method of manually annotating images for

training does not scale well to the open-world setting as it is impracticable to collect and

annotate images for all relevant concepts [72, 94]. Moreover, there exists different types

of bias in the existing datasets [134, 130, 62]. In order to circumvent these issues, several

recent studies focused on using web images and associated metadata as auxiliary source of
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information to train their models [73, 37, 127]. Although web images are noisy, utilizing

such weakly-labeled web images in training has been shown to be very effective in several

multimedia tasks [39, 73, 56].

Our work is motivated by these works on learning more powerful models by realiz-

ing the potential of web data. As the largest MSCOCO dataset for image-sentence retrieval

has only 80K training images, we believe it is extremely crucial and practical to comple-

ment scarcer clean image-sentence data with web images to improve the generalization

ability of image-text embedding models. Most relevant to our work is [39], where authors

constructed a dictionary by taking a few thousand most common words and represent text

as tf-idf weighted bag of words (BoW) vectors that ignore word order and represents each

caption as a vector of word frequencies. Although, such a feature representation allows

them to utilize the same feature extractor for sentences and set of tags, it fails to consider

the inherent sequential nature present in sentences in training joint embedding models.

Tensor completion for multi-modal data analysis. Tensor completion ap-

proaches focus on estimating the missing elements of partially observed tensors [125]. CP

decomposition [46, 42] and Tucker decomposition [132, 24] are most widely used approaches

for low-rank decomposition of tensors. There are several works on completing tensors to

estimate missing data based on tensor decomposition [97, 80, 116]. In this work, we de-

velop a tensor decomposition based tensor completion approach. We specifically use CP

decomposition as it has been found that Tucker decomposition based approaches are com-

putationally less flexible than CP decomposition approaches in handling large datasets in

a distributed manner as it needs to deal with complex core tensor [125].
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There have been a few works on exploiting tensor decomposition based approaches

in tag refinement [116, 128, 117]. These works assume the availability of additional user

information along with images and tags and utilize Tucker decomposition based approach

for tag refinement. Although user information may provide important cues in refining tags,

user information is unlikely to be available in most cases. In this work, we explore the

use of a small clean dataset containing images and tags in refining web image tags so that

we can limit the propagation of noisy tags in recovering missing tags. Several previous

works have shown that utilizing relationships among data as auxiliary information helps to

improve the quality of tensor decomposition significantly when limited entries are observed

[97, 160, 35, 142]. Inspired by these works, we use intra-modal similarity matrices as side

information in the proposed approach to deal with a high ratio of missing entries.

4.3 Learning Webly Supervised Image-Text Embedding

In this section, we first describe the network structure (Section 4.3.1). Then, we

revisit the basic framework for learning image text mapping using pair-wise ranking loss

(Section 4.3.2). Finally, we present our proposed strategy to incorporate the tags in the

framework to learn an improved embedding (Section 4.3.3).

4.3.1 Network Structure and Input Feature

Network Structure: Similar to the two-branch network utilized in Chapter 2

and Chapter 3, we again learn our joint embedding model using a deep neural network

framework. As shown in Fig. 4.3, our model has three different branches for utilizing
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image, sentence, and tags. Each branch has different expert network for a specific modality

followed by two fully connected embedding layers. The idea is that the expert networks will

focus on identifying modality-specific features at first and the embedding layers will convert

the modality-specific features to modality-robust features. The parameters of these expert

networks can be fine-tuned together with training the embedding layers. For simplicity, we

keep image encoder (e.g., pre-trained CNN) and tag encoder (e.g., pre-trained Word2Vec

model) fixed in this work. The word embedding and the GRU for sentence representation

are trained end-to-end.

Text Representation: For encoding sentences, we use Gated Recurrent Units

(GRU) [23], which has been used for representing sentence in many recent works [28, 64].

We set the dimensionality of the joint embedding space, D, to 1024. The dimensionality of

the word embeddings that are input to the GRU is 300.

Image Representation: For encoding image, we adopt a deep CNN model

trained on ImageNet dataset as the encoder. Specifically, we experiment with state-of-

the-art 152 layer ResNet model [43] and 19 layer VGG model [122] in this work. We extract

image features directly from the penultimate fully connected layer. The dimension of the

image embedding is 2048 for ResNet152 and 4096 for VGG19. We first re-scale the image

to 256x256 and 224x224 center crop is feed into CNNs as inputs.

Tag Representation: We generate the feature representation of tags by sum-

ming over the Word2Vec [87] embeddings of all tags associated with an image and then

normalizing it by the number of tags. Averaged word vectors has been shown to be a

strong feature for text in several tasks [153, 61, 60].
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4.3.2 Train Joint Embedding with Ranking Loss

We now describe the basic framework for learning joint image-sentence embedding

based on bi-directional ranking loss. Many prior approaches have utilized pairwise ranking

loss as the objective for learning joint embedding between visual input and textual input

[64, 158, 145, 58]. Specifically, these approaches minimize a hinge-based triplet ranking loss

in order to maximize the similarity between an image embedding and corresponding text

embedding and minimize similarity to all other non-matching ones.

Given a image feature representation i (i ∈ RV ), the projection on the joint space

can be derived as i = W (i)i (i ∈ RD). Similarly, the projection of input text embedding

s (s ∈ RT ) to joint space can be derived by s = W (s)s (s ∈ RD). Here, W (i) ∈ RD×V

is the transformation matrix that maps the visual content into the joint space and D is

the dimensionality of the space. In the same way, W (s) ∈ RD×T maps input sentence

embedding to the joint space. Given feature representation for words in a sentence, the

sentence embedding s is found from the hidden state of the GRU. Here, given the feature

representation of both images and corresponding text, the goal is to learn a joint embedding

characterized by θ (i.e., W (i), W (s) and GRU weights) such that the image content and

semantic content are projected into the joint space. Now, the image-sentence loss function

LIS can be written as following,

LIS =
∑
(i,s)

{∑
s−

max
[
0,∆− f(i, s) + f(i, s−)

]
+
∑
i−

max
[
0,∆− f(s, i) + f(s, i−)

]}
(4.1)

where s− is a non-matching text embedding for image embedding i, and s is the matching

text embedding. This is similar for image embedding i and non-matching image embedding
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i−. ∆ is the margin value for the ranking loss. The scoring function f(i, s) measure the

similarity between the images and text in the joint embedded space. In this work, we

use cosine similarity in the representation space to calculate similarity, which is widely

used in learning image-text embedding and shown to be very effective in many prior works

[158, 64, 28]. Our approach does not depend on any particular choice of similarity function.

The first term in Eq. (4.1) represent the sum over all non-matching text embedding

s− which attempts to ensure that for each visual feature, corresponding/matching text

features should be closer than non-matching ones in the joint space. Similarly, the second

term attempts to ensure that text embedding that corresponds to the image embedding

should be closer in the joint space to each other than non-matching image embeddings.

Recently, focusing on hard-negatives has been shown to be effective in learning

joint embeddings [28, 158, 118, 85]. Subsequently, the loss in Eq. 4.1 is modified to focus

on hard negatives (i.e., the negative closest to each positive (i, s) pair) instead of sum over

all negatives in the formulation. For a positive pair (i, s), the hardest negative sample can

be identified using î = arg max
i−

f(s, i−) and ŝ = arg max
s−

f(i, s−). Hence, the ranking loss

function can be written as following,

LIS =
∑
(i,s)

{
max

[
0, ∆− f(i, s) + f(i, ŝ)

]
+max

[
0, ∆− f(s, i) + f(s, î)

]}
(4.2)

We name Eq. 4.1 as VSE loss and Eq. 4.2 as VSEPP loss. We utilize both of these loss

functions in evaluating our proposed approach.
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4.3.3 Training Joint Embedding with Web Data

In this work, we try to utilize image-tag pairs from the web for improving joint

embeddings trained using a clean dataset with images-sentence pairs. Our aim is to learn

a good representation for image-text embedding that ideally ignores the data-dependent

noise and generalizes well. Utilization of web data effectively increases the sample size used

for training our model and can be considered as implicit data augmentation. However, it

is not possible to directly update the embedding (Sec. 4.3.2) using image-tag pairs. GRU

based approach is not suitable for representing tags since tags do not have any semantic

context as in the sentences.

Our task can also be considered from the perspective of learning with side or

privileged information strategies [135, 119], as in our case an additional tag modality is

available at training time and we would like to utilize this extra information to train a

stronger model. However, directly employing LUPI strategies are also not possible in our

case as the training data do not provide three modality information at the same time. The

training datasets (e.g., MSCOCO, Flickr30K) provide only image-sentence pairs and does

not provide tags. On the other hand, web source provides images with tags, but no sentence

descriptions. To bridge this gap, we propose a two-stage approach to train the joint image-

text representation. In the first stage, we leverage the clean image-text pairs from a dataset

to learn an aligned representation shared across three modalities (e.g., image, tag, text). In

the second stage, we adapt the model trained in the first stage with web data and tags.

Stage I: Training initial Embedding. We leverage image-text pairs from an

annotated dataset to learn a joint embedding for image, tag and text. As tags are not
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available directly in the datasets, we consider nouns and verbs from relevant sentence as

dummy tags for an image (Fig. 4.3). For learning the shared representation, we combine

the image-text ranking loss objective (Sec. 4.3.2), with image-tag ranking loss objective.

We believe combining image-tag ranking loss objective provides a regularization effect in

training that leads to more generalized image-text embedding.

Now the goal is to learn a joint embedding characterized by θ (i.e., W (i), W (t),

W (s) and GRU weights) such that the image, sentence and tags are projected into the joint

space. Here, W (t) projects the representation of tags t on the joint space as, t = W (t)t. The

resulting loss function can be written as following,

L = λ1LIS + λ2LIT (4.3)

where, LIT represent image-tag ranking loss, which is similar to image-sentence ranking

loss objective LIS in Sec. 4.3.2. Similar to VSEPP loss in Eq. 4.2, LIT can be written as,

LIT =
∑
(i,t)

{
max

[
0, ∆− f(i, t) + f(i, t̂)

]
+max

[
0, ∆− f(t, i) + f(t, î)

]}
(4.4)

where for a positive image-tag pair (i, t), the hardest negative sample tag representation can

be identified as t̂. Note that all tags associated with a image is considered for generating

tag representation in creating a image-tag pair rather than considering a single tag related

to that image. In Eq. 4.3, λ1 and λ2 are predefined weights for different losses. In the

first training stage, both losses are used (λ1 = 1 and λ2 = 1) while in the second stage,

image-text loss is not used (λ1 = 0 and λ2 = 1).

Stage II: Model Adaptation with Web Data. After Stage I converges, we

have a shared representation of image, sentence description and tags with a learned image-

tag embedding model. In Stage II, we utilize weakly-annotated image-tags pairs from
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Flickr to update the previously learned embedding network using LIT loss. This enables

us to transfer knowledge from thousands of freely available weakly annotated images in

learning the embedding. We utilize a smaller learning rate in Stage II, as network achieves

competitive performance after Stage I and tuning the embedding network with a high

learning rate from weakly-annotated data may lead to catastrophic forgetting [59].

As web data is very prone to label noise, we found it is extremely hard to learn

good representation for our task in many cases. Hence, in Stage II, we adopt a curriculum

learning-based strategy in training. Curriculum learning allows the model to learn from

easier instances first so they can be used as building blocks to learn more complex ones,

which leads to a better performance in the final task. It has been shown in many previous

works that appropriate curriculum strategies guide the learner towards better local minima

[8]. Our idea is to gradually inject difficult information to the learner such that in the early

stages of training, the network is presented with images related to frequently occurring

concepts/keywords in the clean training set. Images related to rarely occurring concepts

are presented at a later stage. Since the network trained in Stage I is more likely to have

learned well about frequently occurring concepts in the dataset, label noise is less likely to

affect the network adversely.

4.4 Refinement of Tags of Web Image Collection

Our webly supervised joint embedding learning framework may suffer when the

amount of clean fully annotated images is very low. In such a case, we propose to include

a web image tag refinement approach in the webly supervised joint image-text embedding
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framework. The framework attempts at attaining better performance compared to the

image-text embedding baselines that directly uses raw image and tags in training with-

out any refinement. We optimize ranking loss function in learning webly supervised joint

embedding models to show the benefits of the proposed tag refinement step in the overall

image-text retrieval performance.

The intuition is that the multi-dimensional relation that exists between web image

with noisy tags and images with clean tags can be modeled as a multi-dimensional tensor.

Analyzing the multi-dimensional relation tensor can be beneficial in refining tags of web

images. We consider that we have three types of entities (i.e., web images, dataset images,

and selected tags) and the ternary relationship (based on tag association) among the entities

is modeled as a tensor. We propose a CP decomposition based tensor completion approach

to complete the observed tensor to recover the missing relationships. A brief illustration of

our proposed tensor completion approach is shown in Fig. 4.4. We start by giving notations

and then present the approach.

Preliminaries: Throughout this chapter, we use calligraphic bold uppercase letters

to denote tensors, uppercase letters to denote matrices and lowercase letters to denote

vectors. For a third order tensor X , its entries are denoted by Xijk. The Frobenius norm

of X ∈ R|D|×|W |×|T | is defined as ||X ||F =
√∑|D|

i=1

∑|W |
j=1

∑|T |
k=1X 2

ijk.

The CP tensor decomposition aims to approximate an order-N tensor with R

latent factors as a sum of R rank-one tensors [67, 120]. For a third order tensor X , it can

be written as :

X ≈ X̃ = [[Z(1), Z(2), Z(3)]]
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Here, [[Z(1), Z(2), Z(3)]] represents a weighted sum of rank-1 tensors where the vectors that

specify the rank-1s are columns of the factor matrices Z(1), Z(2), and Z(3).

4.4.1 Tag Refinement using CP tensor completion model.

We consider that we have access to three types of data, i.e., the images from

dataset D = {di}|D|i=1 (for which we know the associated tags correctly), the images from the

web W = {ni}|W |j=1 (for which we know some associated noisy tags), and the selected tag set

T = {ti}|T |k=1. X denotes the tensor with complete tri-modal dynamics. Since very few tags

are found in most images, X is likely to be sparse and low-rank. If the i-th image from the

dataset and the j-th image from web image collection are both annotated with the kth tag

from the selected tag set, Xijk = 1. Otherwise, Xijk = 0. However, as web images mostly

have a few associated noisy tags, we only have a partial observation of X at the start.

In the image-tag refinement, our goal is to refine tags of web image set W by

predicting missing tags and removing noisy tags. We propose to model the recovery of

missing tags and removing noisy tags based on a tensor completion framework. Our model

is built following CP tensor completion model [36] as follows:

min
Z(n),X

1

2
||X − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F ;

s.t. Ω ∗X = T ,Z(n) ≥ 0

(4.5)

T denotes the observations we have for X . The latent factor matrices for the clean dataset

images, web image set, and tag set are denoted respectively by Z(1) ∈ R|D|×R, Z(2) ∈ R|W |×R

and Z(3) ∈ R|T |×R. Here, R is the number of latent factors. Ω is a non-negative weight

tensor with the same size as X . If Xijk is observed, Ωijk = 1. Otherwise Ωijk = 0.
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Figure 4.4: Brief Illustration of our CP decomposition based Tensor Completion approach
for Image-Tag Refinement.

Our goal is to seek an estimated X for recovering the missing dynamics of tags

based upon the partially observed data. However, we need more information to recover

X . In this regard, we also consider intra-relationships in the three types of data as side

information as described below.

4.4.2 Regularize CP model with auxiliary information.

We believe that using intra-modal relations between entities can help as additional

side information in our tensor factorization framework. We can calculate the intra-modal

relationship between images based on image similarity measures. Similarly, we can model

the relationship between tags by calculating the similarity between tags. In this work, we

use the cosine similarity measure. Given, feature representation of images, the similarity

between the images of the dataset can be calculated as follows:

ΘDataset(i, j) =
dTi dj

||di||2 ||dj ||2
(4.6)
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ΘWeb and ΘTag similarity matrices are also calculated in a similar fashion to Eq. 4.5 using

cosine similarity measure. We utilize the similarity matrices as auxiliary information in our

CP completion model. The idea is that if two images are similar, the latent representations

of these two images should be similar. Therefore, we want to make the latent representations

of two similar entities to be close. This can be obtained by minimizing the following:

LAUX =
∑
i,j

Θ(i, j) ||Z(n)
i,: − Z

(n)
j,: ||

2

=
∑
i,j

Z
(n)T

i,: Θ(i, j)Z
(n)
i,: −

∑
i,j

Z
(n)T

i,: Θ(i, j)Z
(n)
j,:

= tr(Z(n)TL Z(n))

where Z
(n)
i,: is the ith row of the factor matrix Z(n) for the nth mode of tensor X (n ∈

{1, 2, 3}). D is a diagonal matrix with Dij =
∑

j Θij and L = D − Θ is the Laplacian of

similarity matrix Θ. Now, adding the auxiliary information, the Eq. 4.5 becomes:

min
Z(n),X

1

2
||X − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F

+

3∑
n=1

αntr(Z
(n)TLn Z(n));

s.t. Ω ∗X = T ,Z(n) ≥ 0

(4.7)

α is a hyper-parameter to control the weight of auxiliary information from different factors.

4.4.3 ADMM Optimization.

In this section, we present details about the alternating direction method of mul-

tipliers (ADMM) approach [12, 76, 36] to solve our optimization problem in Eq.4.7. Specif-

ically, the overall procedure of the ADMM algorithm consists of three main steps following

[36]. First, an auxiliary variable is introduced to separate the objective function into two
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different objectives. Second, an augmented Lagrangian is formed with combining both lin-

ear and quadratic terms through a scaled dual variable. Third, the augmented Lagrangian

is minimized iteratively with respect to the primal variables and the dual variable until

convergence. To facilitate the optimization, we consider an equivalent form of Eq. 4.7 by

introducing an auxiliary variable U :

min
Z(n),X

1

2
||X − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F

+
3∑

n=1

αntr(U
(n)TLn U (n));

s.t. Ω ∗X = T ,Z(n) = U(n) ≥ 0

(4.8)

The objective function in Eq. 4.8 is not convex together. We can form the augmented

Lagrangian Lµ(U (n), Z(n),Λ(n)) with both linear and quadratic terms as follows:

Lµ(U (n), Z(n),Λ(n),X ) =
1

2
||X − [[Z(1), Z(2), Z(3)]] ||2F

+
λ

2

3∑
n=1

||Z(n)||2F +
3∑

n=1

αntr(U
(n)TLn U (n)) +

1

2
||Ω ∗X − T ||2F

+
3∑

n=1

< Λ(n), U (n) − Z(n) > +
3∑

n=1

µ

2
||U (n) − Z(n)||2F

(4.9)

where Λ is a dual variable, 〈., .〉 denote the inner product, ‖.‖F is the Frobenius norm and

µ > 0 is a penalty parameter.

To solve the problem in Eq. 4.9 at each iteration t, ADMM updates the variables

in alternating fashion as:

U
(n)
t+1 = arg min

U(n)

Lµ(Ut, Zt,Λt,Xt) (4.10)

Z
(n)
t+1 = arg min

Z(n)

Lµ(Ut+1, Zt,Λt,Xt) (4.11)
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Xt+1 = arg min
X

Lµ(Ut+1, Zt+1,Λt+1,Xt) (4.12)

Λ
(n)
t+1 = arg min

Λ
Lµ(Ut+1, Zt+1,Λt,Xt) (4.13)

In the following, we present the derivation of specific update rules for Eq. 4.11, Eq. 4.10,

Eq. 4.13 and Eq.4.18.

Update U (n) when fixing others: To update U (n) (e.g., U (1) or U (2) or U (3))

after ignoring the variables that are irrelevant to U (n), the problem (4.11) becomes:

min
U(n)

αntr(U
(n)TL U (n))+ < Λ(n), U (n) − Z(n) > +

µ

2
||U (n) − Z(n)||2F

On combining both linear and quadratic error terms into a single term by scaling the dual

variable Λ, we get the following form :

min
U(n)

αntr(U
(n)TLn U (n)) +

µ

2
‖U (n) − Z(n) + Λ(n)/µ‖2F (4.14)

Note that, it is a convex quadratic problem. Solving for U (n) yields:

U
(n)
t+1 = (µI + αnLn)−1(µU

(n)
t − Λ

(n)
t ) (4.15)

Update Z(n) when fixing others: To update Z(n) (n ∈ 1, 2, 3), the method

alternates among the modes, fixing every factor matrix but Z(n) and solving for it. The

objective function can be written as follows:

min
Z(n)

1

2
||X(n) − Z(n)A(n)T ||2F +

λ

2
||Z(n)||2F

+
µ

2
‖U (n) − Z(n) + Λ(n)/µ‖2F

(4.16)

Here, X(n) represents the mode-n matrix unfolding of tensor X . the mode-n matricization

of X̃ can be written in terms the factor matrices as ˜X(n) = Z(n)A(n)T where A(n) = (Z(M)�

83



..Z(n+1) � Z(n−1) � .. � Z(1))|M=3. Here, � denotes Khatri-Rao product. Now, solving

Eq. 4.16 for Z(n) yields:

Z
(n)
t+1 = (A(n) A(n)T + λI + µI)−1 (X t(n) A

(n)T + µU
(n)
t+1 + Λ

(n)
t ) (4.17)

Update X : To solve for X , we can write the objective in Eq. 4.9 as follows:

min
X

1

2
||X − [[Z(1), Z(2), Z(3)]] ||2F +

1

2
||Ω ∗X − T ||2F (4.18)

Now solving for X yields:

Xt+1 = T + (1−Ω) ∗ [[Z(1),Z(2),Z(3)]] (4.19)

Update Λ(n): Having (U,Z) fixed, perform a gradient ascent update with step size of µ on

the Lagrange multipliers as

Λ
(n)
t+1 = Λ

(n)
t + µ(U

(n)
t+1 − Z

(n)
t+1) (4.20)

The overall ADMM procedure is shown in Algo. 1. After convergence, we have the

final completed tensor X . From X , we can recover the tags for our web image collection.

Summing X over dataset image dimensions, we can have a matrix whose values indicate

the strength of association between web images and tags.

4.5 Experiments

We perform experiments on two standard benchmark datasets with the main goal

of analyzing the performance of different supervised methods by utilizing large scale web

data using our curriculum guided webly supervised approach. Ideally, we would expect an
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Algorithm 1 An ADMM solver for (Eq. 4.9)

1: Input: T , Ω, Θ(n) and λ, N = 3, n = 1 : N , µ > 0, Th = 10−5, nIter = 1000

2: Initialization: Initialize U (n), Z(n),Λ(n), iter to zero, X = T .

3: while (max{||Z(n) − U (n)||F ;n = 1, ..., N} < Th) or (iter ≤ nIter) do

4: U
(n)
t+1 ← (µI + αnLn)−1(µZ

(n)
t − Λ

(n)
t );

5: Z
(n)
t+1 ← (A(n) A(n)T + λI + µI)−1 (X t(n) A

(n)T + µU
(n)
t+1 + Λ

(n)
t );

6: Xt+1 ← T + (1−Ω) ∗ [[Z(1),Z(2),Z(3)]];

7: Λ
(n)
t+1 ← Λ

(n)
t + µ(U

(n)
t+1 − Z

(n)
t+1);

8: iter ← iter + 1;

9: end while

10: Output: Tensor X , Factor Matrices Z(1), Z(2) and Z(3).

improvement in performance irrespective of the loss function and features used to learn the

embedding in Sec. 4.3.

We first describe the details on the datasets, evaluation metric and training details

in Sec. 4.5.1. We report the results of different methods on MSCOCO dataset in Sec. 4.5.2

and results on Flickr30K dataset in Sec. 4.5.2.

4.5.1 Datasets and Implementation Details

We present cros-modal retrieval experiments on standard benchmark datasets con-

taining images with corresponding text descriptions: MSCOCO [20] and Flickr30K [106] to

evaluate the performance of proposed framework.

MSCOCO. The MSCOCO is a large-scale image description dataset. This is

the largest image captioning dataset in terms of the number of sentences and the size of the
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vocabulary. This dataset contains around 123K images. Each image comes with 5 captions.

Following [57], we use the training, testing and validation split. In this split, the training

set contains 82, 783 images, 5000 validation images and 5000 test images. However, there

are also 30, 504 images from the original validation set of MS-COCO which have been left

out in this split. We refer to this set as restval(RV). Some papers use RV with training

set for training to improve accuracy. We report results using RV. In most of the previous

works, the results are reported by averaging over 5 folds of 1K test images [64, 144, 26].

Flickr30K. Flickr30K is another very popular image description dataset. Flickr30K

has a standard 31, 783 images for training. Each image comes with 5 captions, annotated

by AMT workers. We follow the dataset division provided in [57]. In this dataset split, the

training set contains 29,000 images, 1000 validation images and 1000 test images.

Web Image Collection. We use photo-sharing website Flickr to retrieve web

images with tags and use those images without any additional manual labeling. To collect

images, we create a list of 1000 most occurring keywords in MSCOCO and Flickr30K dataset

text descriptions and sort them in descending order based on frequency. We remove stop-

words and group similar words together after performing lemmatization. We then use this

list of keywords to query Flickr and retrieve around 200 images per query, together with

their tags. In this way, we collect about 210,000 images with tags. We only collect images

having at least two English tags and we don’t collect more than 5 images from a single

owner. We also utilize first 5 tags to remove duplicate images.

Evaluation Metric. We use the standard evaluation criteria used in most

prior work on image-text retrieval task [64, 28, 25]. We measure rank-based performance
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by R@K and Median Rank(MedR). R@K (Recall at K) calculates the percentage of test

samples for which the correct result is ranked within the top-K retrieved results to the

query sample. We report results for R@1 and R@10. Median Rank calculates the median

of the ground-truth results in the ranking.

Training Details. We start training with a learning rate of 0.0002 and keep

the learning rate fixed for 10 epochs. We then lower the learning rate by a factor of 10

every 10 epochs and continue training for 30 epochs. During updating the learned model

in Stage I with web images in Stage II, we start training with a learning rate of 0.00002.

The embedding networks are trained using ADAM optimizer [63]. Gradients are clipped

when the L2 norm of the gradients(for the entire layer) exceeds 2. We tried different values

for margin ∆ in training and empirically choose ∆ as 0.2, which we found performed well

consistently on the datasets. We evaluate the model on the validation set after every epoch.

The best model is chosen based on the sum of recalls in the validation set to deal with the

over-fitting issue. We use a batch-size of 128 in the experiment. We also tried with other

mini-batch sizes of 32 and 64 but didn’t notice significant impact on the performance. We

used two Telsa K80 GPUs and implemented the network using PyTorch toolkit.

4.5.2 Comparative Evaluations on Benchmark Datasets

Results on MSCOCO Dataset

We report the result of testing on MSCOCO dataset [77] in Table 4.1. To un-

derstand the effect of the proposed webly supervised approach, we divide the table in 3

rows (1.1-1.3). We compare our results with several representative image-text retrieval ap-
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Table 4.1: Image-to-Text Retrieval Results on MSCOCO Dataset.

# Method
Image-to-Text Retrieval Text-to-Image Retrieval

R@1 R@10 Med R R@1 R@10 Med R

1.1

Embedding-Net 54.9 92.2 - 43.3 87.5 -

2Way-Net 55.8 - - 39.7 - -

Sm-LSTM 53.2 91.5 1 40.7 87.4 2

Order-Embedding 46.7 88.9 2 37.9 85.9 2

SAE-VGG19 46.8 87.7 2 35.8 82.9 2.4

SAE-ResNet152 59.2 95.2 1 44.7 88.4 2

1.2 VSE-VGG19 46.8 89 1.8 34.2 83.6 2.6

VSEPP-VGG19 51.9 90.4 1 39.5 85.6 2

VSE-ResNet152 52.7 91.8 1 36 85.5 2.2

VSEPP-ResNet152 58.3 93.3 1 43.6 87.8 2

1.3 Ours (VSE-VGG19) 47.2 90.9 1.6 35.1 85.3 2

Ours (VSEPP-VGG19) 53.7 92.5 1 41.2 89.7 2

Ours (VSE-ResNet152) 52.9 94.3 1 42.2 89.1 2

Ours (VSEPP-ResNet152) 61.5 96.1 1 46.3 89.4 2

proaches, Embedding-Net [144], 2Way-Net [26], Sm-LSTM [52], Order-Embedding [136],

SAE [39], VSE [64] and VSEPP [28]. For these approaches, we directly cite scores from

respective papers when available and select the score of the best performing method if score

for multiple models are reported.

In row-1.2, we report the results on applying two different variants of ranking

loss based baseline VSE and VSEPP with two different feature representation from [28].

VSE [64] is based on the triplet ranking loss similar to Eq. 4.1 and VSEPP[28] is based on

the loss function that emphasizes on hard-negatives as shown in Eq. 4.2. We consider VSE

and VSEPP loss based formulation as the baseline for this work. Finally, in row-1.3, results

using the proposed approach are reported. To enable a fair comparison, we apply our webly

supervised method using the same VSE and VSEPP loss used by methods in row-1.2.
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Table 4.2: Image-to-Text Retrieval Results on Flickr30K Dataset.

# Method
Image-to-Text Retrieval Text-to-Image Retrieval

R@1 R@10 Med R R@1 R@10 Med R

2.1

Embedding-Net 43.2 79.8 - 31.7 72.4 -

2Way-Net 49.8 - 36 - -

Sm-LSTM 42.5 81.5 2 30.2 72.3 3

Order-Embedding 43.8 83 2 32.7 73.9 4

SAE VGG19 32.8 70.3 3 25.2 63.5 5

SAE ResNet152 43.4 80.7 2 31 71.3 3

2.2

VSE -VGG19 29.8 71.9 3 23 61 6

VSEPP -VGG19 31.9 68 4 26.8 66.8 4

VSE-ResNet152 38.2 80.8 2 26.6 67 4

VSEPP-ResNet152 43.7 82.1 2 32.3 72.1 3

2.3

Ours (VSE -VGG19) 32.4 74.1 3 24.9 64.3 5

Ours( VSEPP -VGG19) 37.8 77.1 3 27.9 68.9 4

Ours( VSE–ResNet152) 41.4 84.5 2 29.7 71.9 4

Ours (VSEPP-ResNet152) 47.4 85.9 2 35.2 74.8 3

Effect of Proposed Webly Supervised Training. For evaluating the impact of our

approach, we compare results reported in row-1.2 and row-1.3. Our method utilizes the

same loss functions and features used in row-1.2 for a fair comparison. From Table 4.1, We

observe that the proposed approach improves performance consistently in all the cases. For

image-to-text retrieval task, the average performance increase in text-to-image retrieval is

7.5% in R@1 and 3.2% in R@10.

We also compare proposed approach with web supervised approach SAE[39] re-

ported in row-1.1. In this regard, we implement SAE based webly supervised approach

following [39] with our data. We use the same feature and VSEPP ranking loss for a

fair comparison and follow the exact same settings for experiments. We observe that our

approach consistently performs better.
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Ours-VSEPP-ResNet: (1) A

man holding a glass speaking to

someone.

VSEPP-ResNet: (4) Two people

sitting close to one another

talking on cell phones

.

GT: A man holds a glass in a

room with many other people.

1

Ours-VSEPP-ResNet: (1) A

group of two women and one

man sitting at a table.

VSEPP-ResNet: (3) The class is

enjoying reading the various

books.

GT: Two men and a woman sit at

a table that is in front of a large

bookshelf

2

Ours-VSEPP-ResNet: (1) Many

people are their tables smiling for

the camera.

VSEPP-ResNet: (1) Something

in the room has everyones

attention at the tables.

GT: Many people are sitting at

tables for a reception

3

Ours-VSEPP-ResNet:(1) Pitcher

in the motion of starting to pitch

the ball to the plate.

VSEPP-ResNet: (2) A boy

swinging his baseball bat at a

baseball field.

GT: A pitcher on the ground is

getting ready to throw the ball

4

Figure 4.5: Examples of 4 test images from Flickr30K dataset and the top 1 retrieved
captions for our web supervised VSEPP-ResNet152 and standard VSEPP-ResNet as shown
in Table. 4.2. The value in brackets is the rank of the highest ranked ground-truth caption
in retrieval. Ground Truth (GT) is a sample from the ground-truth captions. Image 1,2
and 4 show a few examples where utilizing our approach helps to match the correct caption,
compared to using the typical approach.

Effect of Loss Function. While evaluating the performance of different ranking

loss, we observe that our webly supervised approach shows performance improvement for

both VSE and VSEPP based formulation, and the performance improvement rate is similar

for both VSE and VSEPP (See row-1.2 and row-1.3). Similar to the previous works [28, 158],

we also find that methods using VSEPP loss performs better than VSE loss. We observe

that in the image-to-text retrieval task, the performance improvement using VSEPP based

formulation is higher and in the text-to-image retrieval task, the performance improvement

for VSE based formulation is higher.

Effect of Feature. For evaluating the impact of different image feature in our web-

supervised learning, we compare VGG19 feature based results with ResNet152 feature based

results. We find consistent performance improvement using both VGG19 and ResNet152
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feature. However, the performance improvement is slightly more when ResNet152 feature

is used. In image-to-text retrieval, the average performance improvement in R@1 using

ResNet152 feature is 4%, compared to 2.3% using VGG19 feature. In text-to-image retrieval

task, the average performance improvement in R@1 using ResNet152 feature is 11.18%,

compared to 3.5% using VGG19 feature.

Our webly supervised learning approach is agnostic to the choice loss function

used for cross-modal feature fusion and we believe more sophisticated ones will only benefit

our approach. We use two different variants of pairwise ranking loss (VSE and VSEPP)

in the evaluation and observe that our approach improves the performance in both cases

irrespective of the feature used to represent the images.

Results on Flickr30K Dataset

Table 4.2 summarizes the results on Flickr30K dataset [106]. Similar to Table 4.1,

we divide the table in 3 rows (2.1-2.3) to understand the effect of the proposed approach

compared to other approaches. From Table 4.2, we have the following key observations: (1)

Similar to the results on MSCOCO dataset, our proposed approach consistently improves

the performance of different supervised method(row-2.2 and row-2.3) in image-to-text re-

trieval by a margin of about 3%-6% in R@1 and 3%-9% in R@10. The maximum improve-

ment of 6%-9% is observed in the VSEPP-VGG19 case while the least mean improvement

of 4.8% is observed in VSE-VGG19 case. (2) In text-to-image retrieval task, the average

performance improvement using our webly-supervised approach are 2.25% and 3.25% in

R@1 and R@10 respectively. These improvements once again show that learning by utiliz-

ing large scale web data covering a wide variety of concepts lead to a robust embedding for
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cross-modal retrieval tasks. In Fig. 4.5, we show examples of few test images from Flickr30K

dataset and the top 1 retrieved captions for the VSEPP-ResNet152 based formulations.

4.5.3 Comparative Evaluation with Image-Tag Refinement

In this section, we first provide details about data preparation and implementation

details related to image-teag refinement experiments. Then, we provide experimental results

on Flickr30K and MSCOCO dataset to evaluate the impact of the refinement step on the

final performance.

Data Preparation. We are interested in estimating the influence of noisy or

missing tags on the performance of our approach. However, it is very difficult to collect a

large number of web images with tags and label them. Hence, we create synthetic data based

on image-text pairs from datasets (e.g., Flickr30K) to evaluate the effect of our image-tag

refinement approach. First, we create a synthetic clean image-tag dataset from the training

sets of the datasets. For each image, we collect unique nouns and verbs as image tags from

the associated 5 sentences. We retain only the top 1000 occurring words in the train set.

We then create a noisy image-tag dataset from the synthetic clean set based on

the missing ratio of tags (e.g., 30%, 50%, 70%) we would like to consider in evaluating the

approach. In this regard, given a missing (%) we randomly select the overall number of tags

to be replaced. We remove most of the tags and replace a few tags with random English

words from the dictionary. In this way, we create several noisy image-tag datasets based

on different missing ratios. These noisy image-tag datasets are considered as our observed

set. From the synthetic clean Image-Tag datasets, we utilize the first 1K images from the
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training set as our small clean image-text set as D in tensor completion (1000=1000). The

noisy image-tag dataset is created from the remaining training images and these images

are considered as images from web W . The top 1000 occurring words in the training set is

considered as the tags set T (|T |=1000).

Implementation Details. The tensor completion approach is implemented using

Matlab tensor toolbox [6, 1]. In the constructed observed tensor T , we only know the

observed non-zero entries. However, we do not have any prior information about zero

entries whether they are missing or not relevant. However, for a good reconstruction of the

tensor, a certain amount of observed entries is often required [125]. We randomly sample

zeros from remaining entries to have an equal observed ratio as non-zeros. We vary tensor

rank from 10 to 20, and empirically fix the rank as 20, which we found to be consistently

performing well in terms of lower relative standard error in tensor completion. We utilize

ranking loss function in Eq. 4.2 in training joint embedding models.

Results Analysis

In this section, we report image-text retrieval results on Flickr30K dataset and

MSCOCO dataset varying the percentage of missing tags. We also evaluate the proposed

tensor completion approach based on relative error difference between the predicted tensor

and the observed tensor.

Flickr30K Dataset. We report the image-to-text retrieval and text-to-image

retrieval results on Flickr 30K Dataset in Table 4.3. To understand the effect of the proposed

tag refinement approach in overall performance, we report performance varying the ratio
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of missing data. From Table 4.3, we have several key observations. First, we observe

that the predicted set shows better performance compared to the observed set in almost

all evaluation metrics. We find in case of 30% missing data, observed set performs better

than predicted set in R@1 in the image to text retrieval. However, the predicted set shows

performance improvement in the other metrics in both image-to-text and text-to-image

retrieval. We observe similar improvement in case of other missing data ratios. Second, in

image-to-text retrieval, we see that as we increase the percentage of missing data, the model

learned using the predicted set performs significantly better than the model learned using

the observed set. Initially, in the case of 30% missing data, the performance of predicted

and observed set is comparable. As the missing data percentage increases, the observed set

shows a significant drop in performance which is expected. However, the predicted set is

able to limit the performance drop by recovering some related tags.

Results on MSCOCO Dataset. Table 4.4 summarizes the image-to-text re-

trieval and text-to-image retrieval results on the MSCOCO dataset. Similar to Table 4.2, we

compare retrieval results based on the joint embedding models trained using the actual set,

the observed set, and the predicted set. It is evident from the Table that our proposed tag

refinement approach helps to improve performance over directly using images with raw tags

(observed set). As expected, the performance drops for both observed set and predicted set

as the percentage of missing entries from the actual set increase. Similar to the observations

from Table 4.3, we again see that in case of a low missing ratio in the observed set, the

observed and predicted set shows comparable performance. However, the performance of

the prediction method is very promising as it shows significant improvement compared to

the observed set when the missing data percentage is high (70%). We see a 3% absolute
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Table 4.5: Relative errors for recovering missing tags (before and after tensor completion)
for different percentage of missing entries. We observe that the predicted tensor gives on
average 11.4% improvement over the observed tensor

Flickr30K MSCOCO

30% 50% 70% 30% 50% 70%

Observed 0.563 0.721 0.8391 0.534 0.703 0.838

Predicted 0.514 0.649 0.7621 0.463 0.635 0.751

Improvement 9.53% 11.09% 10.10% 15.33% 10.71% 11.58%

improvement in R@1 and 102 point decrease in median rank using the proposed approach

in the image to text retrieval with 70% missing data.

Relative Errors in Tensor Completion

Relative Error is one of the most commonly used evaluation metrics in evaluating

the performance of tensor completion algorithms. The relative error for predicted tensor is

calculated by the standard error in tensor prediction (Frobenius norm difference between

ground-truth tensor and the predicted tensor), divided by the Frobenius norm of the ground-

truth tensor. The relative error for observed tensor is calculated in a similar way. In

Table 4.5, we compare relative errors of predicted tensor and observed tensor for different

percentage of missing entries (i.e., 30%, 50%, and 70%). From the Table 4.5, we find that the

predicted tensor results in consistently decreasing the relative error significantly compared

to the observed tensor across datasets and missing percentage. The average improvement

using the proposed prediction approach in relative error is about 11.4%. The maximum

improvement of 15.33% is observed in MSCOCO dataset with 30% missing data and the

minimum improvement of 9.53% is observed in Flickr30K dataset with 30% missing data.
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4.6 Conclusion

In this work, our goal is to leverage web images with tags to assist training robust

image-text embedding models for target task of image-text retrieval that has limited la-

beled data. While recent image-text retrieval methods offer great promise by learning deep

representations aligned across modalities, most of these methods are plagued by the issue

of training with small-scale datasets covering a limited number of images with ground-truth

sentences. Moreover, it is extremely expensive to create a larger dataset by annotating

millions of images with sentences and may lead to a biased model. Inspired by the re-

cent success of web-supervised learning in deep neural networks, we attempt to capitalize

readily-available web images with noisy annotations to learn robust image-text joint rep-

resentation. We propose a two-stage approach for the task that can augment a typical

supervised pair-wise ranking loss based formulation with weakly-annotated web images to

learn a more robust visual-semantic embedding. Experiments on two standard benchmark

datasets demonstrate that our method achieves a significant performance gain in image-text

retrieval compared to state-of-the-art approaches.

We also address the problem that directly using web images with raw tags in

training may hurt the performance of the webly supervised approaches significantly when

the ratio of missing tags is high and available clean labeled data is very limited. In this

regard, we propose a CP decomposition based tensor completion approach to refine tags of

web images by modeling the ternary inter-relation between the web image collection and

the clean dataset images (based on associated tags) as a tensor and utilizing intra-modal

similarity as side information to regularize the tensor completion problem. Our image tag
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refinement approach combined with supervised image-text embedding approaches provide a

way for improving the learning of joint embedding models in the presence of significant noise

from web data and limited clean labeled data. Experiments on two benchmark image-text

datasets with different percentage of missing data demonstrate that the proposed approach

can successfully recover more than 10% missing data on average and consequently helps to

achieve a consistent performance gain in cross-modal image-text retrieval task.
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Chapter 5

Conclusions

5.1 Thesis Summary

One increasingly important problem for most computer vision tasks in the light of

data-hungry deep neural network models is how to learn useful models with limited labeled

training data. Developing robust models with a limited degree of supervision could be

extremely useful for cross-modal visual-semantic retrieval tasks as collecting pairs of visual

data and natural language description is extremely labor-intensive and prone to significant

errors. However, developing effective algorithms with limited supervision is non-trivial and

has been hardly explored for the problem of cross-modal retrieval between textual and visual

queries. In this thesis, we explore several cross-modal vision-language retrieval tasks (i.e.,

image-text retrieval, video-text retrieval and text to video moment retrieval) focusing on

developing efficient solutions leveraging available incidental signals or weak labels.

In Chapter 2, we present an efficient framework for cross-modal video-text re-

trieval utilizing three salient video cues (i.e., object, activity, place) simultaneously by a
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mixture of expert joint embedding approach. In Chapter 3, we introduce a novel problem

of learning from weak labels for the task of text to video moment retrieval and propose a

joint embedding based framework that learns the notion of relevant segments from video

using only video-level sentence descriptions without any temporal boundary annotations.

In Chapter 4, we present a novel webly supervised joint visual-semantic embedding learn-

ing approach that provides a way to augment a typical supervised learning approach with

weakly-supervised web data to learn robust joint embedding models. Experimental results

show that our methods achieve excellent performance gain over existing approaches and

baselines in standard benchmark datasets.

5.2 Future Research Directions

5.2.1 Cross-Modal Retrieval for Visual Localization

In this thesis, we mainly focus on vision-language retrieval tasks. However, our

proposed approaches and ideas can be adapted to improve several other multi-modal re-

trieval and analysis tasks, e.g., cross-modal geo-localization. Developing approaches for

cross-modal matching between images of different modality and viewpoint (e.g., ground

to aerial image matching) would be very helpful for vision-based localization across au-

tonomous platforms and can be an interesting future research direction.

5.2.2 Moment Retrieval using Text Queries from Video Collection

We have addressed the problem of retrieving matching videos from a database

based on text description in Chapter 1 and retrieving moments in a long video using textual
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queries in Chapter 2. One natural extension would be to retrieve relevant moments from a

video collection using natural language queries. One simple baseline solution to the problem

would be to utilize the method in Chapter 2 followed by the method in Chapter 3. Effectively

localizing video moments from large untrimmed video collections is an interesting future

direction of our work and can very helpful in many computer vision applications.

5.2.3 Tensor Embedding for Fusing Multimodal Cues

We have shown in Chapter 2 that integrating information from different video

cues yields robust, and more effective retrieval performance compared to using a single

cue. While we have explored fusion approaches (e.g., feature concatenation and late fusion)

for fusing cues from visual data, these approaches can not model both intra-modal and

inter-modal dynamics efficiently. Our proposed approach consists of training several joint

embeddings independently and performing a decision voting which prevents the retrieval

model from learning inter-modality dynamics in an efficient way. Developing a tensor fusion

based embedding approaches can be an interesting and more comprehensive approach to

model both intra-modal and inter-modal dynamics for more effective retrieval.

5.2.4 Text Description Generation with Active Learning

Recent advancements in visual-textual retrieval and analysis tasks have been plagued

significantly by the challenging and labor-intensive nature of annotating images/videos with

text descriptions. Hence, existing datasets have a limited number of labeled vision-language

pairs, which makes it very difficult to develop effective retrieval systems by training deep

neural network models. On the other hand, active learning approaches have been shown to
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be very effective in constructing high-quality image data-sets with limited human labeling.

However, prior approaches have mainly focused on the issue of annotating images with a

single label. Active learning to generate natural language descriptions of visual data can be

a very interesting and challenging future research direction.
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