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Asynchronous Transmission for Multiple Access

Channels: Rate-Region Analysis and System Design

for Uplink NOMA

Mehdi Ganji, Student Member, IEEE, Xun Zou, Student Member, IEEE, and

Hamid Jafarkhani, Fellow, IEEE

Abstract

In this work, we thoroughly analyze the rate-region provided by the asynchronous transmission in

multiple access channels (MACs). We derive the corresponding capacity-regions, applicable to a wide

range of pulse shaping methods. We analytically prove that asynchronous transmission enlarges the

capacity-region of MACs. Although successive interference cancellation (SIC) can achieve the optimal

sum-rate for the conventional uplink non-orthogonal multiple access (NOMA) methods, it is unable to

achieve the boundary of the capacity-region for the asynchronous transmission. We demonstrate that

for the asynchronous transmission, the optimal SIC decoding order to achieve the maximum sum-rate

is based on the users’ channel strengths. This optimal ordering is in contrast to the conventional uplink

NOMA, where various decoding orders can result in the maximum sum-rate. Furthermore, we provide

practical transceiver designs to approach the capacity-region. The memory induced by asynchronous

transmission enables the use of the trellis-based detection methods which improves the performance. In

addition, we propose a transceiver design, based on channel diagonalization to exploit the frequency-

selectivity introduced by timing offsets. The proposed transceiver design, joint with the turbo principle,

enables us to achieve a rate pair that is not achievable by the synchronous transmission.

I. INTRODUCTION

With the increase of mobile users and the higher data demand, the use of non-orthogonal

methods in wireless networks is inevitable. Notably, in the uplink, where multiple users attempt

to connect to the base station (BS), orthogonal multiple access (OMA) incurs inefficiency in

resource utilization and requires more overhead signals. The capacity-region of the multiple
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access channel (MAC) is derived and expressed in [1], [2] and is historically called the Cover-

Wyner pentagon. While the performance analysis of the MAC and multiuser detection schemes

is not new [3], recently, it has resurfaced under the category of uplink non-orthogonal-multiple-

access (NOMA). For example, in the power-domain NOMA, the signals from multiple users are

superposed with different power levels exploiting the difference in channel coefficients and a

multiuser detection method, such as successive interference cancellation (SIC), is employed at

the receiver [4]. The advantages of the NOMA over the OMA have been extensively studied

in [5] and the references therein including higher system throughput compared with OMA and

supporting massive connectivity.

In most of the work in the literature, perfect synchronization in time and frequency is a

common presumption. Indeed, the asynchrony is mostly considered an impairment [6], [7],

where different synchronization methods are applied to eliminate it [8]. However, by using an

appropriate transceiver design, asynchrony can indeed be beneficial. Asynchronous transmission

refers to the case where the symbol epochs of the signals transmitted by the users are not

aligned at the receiver. The results in [9] show that time asynchrony can increase the MAC’s

capacity-region in a code division multiple access (CDMA) system model where each user uses

rectangular code sequences. By intentionally introducing symbol asynchrony in the transmitted

signal, a higher diversity gain can be achieved by zero-forcing detection in spatial multiplexing

[10]–[12]. The benefits of asynchrony in CDMA systems with random spreading are analyzed in

[13], and it is shown that asynchronous transmission can indeed enhance the spectral efficiency.

Besides, asynchronous NOMA (ANOMA) achieves a better throughput performance compared to

the conventional (synchronous) NOMA [14]–[17]. Orthogonal differential decoding is improved

by utilizing the oversampling technique [18], [19] to achieve the sampling diversity gain.

An asynchronous network coding transmission strategy for multiuser cooperative networks is

investigated in [20]. In [21], an interference cancellation (IC) technique, exploiting a triangular

pattern, is proposed for asynchronous NOMA systems. In [22], a message passing (MP) detection

method is proposed for symbol-asynchronous uplink NOMA systems.

The results of [9] are applicable to the pulse shapes whose duration is bounded by the symbol

interval which limits its applicability to next-generation wireless networks. Due to the importance

of bandwidth-efficient pulse shaping in modern communication, we generalize the results of [9]

to band-limited pulse shapes such as raised cosine (r.c.). To derive the capacity region, the

concept of asymptotic similarity of Toeplitz and Circular matrices [23], [24] is employed, which
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links the capacity region to the Fourier transform of the used pulse shapes. The introduced

relation provides insightful results including the effect of pulse shaping on the performance

of ANOMA and optimal timing delays. In addition, we prove that while SIC is optimal for

synchronous transmission in a capacity-achieving sense, it provides a sub-optimal rate-region

for the asynchronous transmission. We analytically show the optimal decoding order of SIC

detection for the asynchronous transmission. Moreover, to bridge the gap between theoretical

capacity analysis and practical design of communication systems, we provide a transceiver design

to approach the capacity-region boundaries. The major contributions of this work are summarized

as follows:

• The MAC capacity-region analysis is generalized to a wide range of pulse shapes including

the well-known and practically common r.c. pulse shape. In addition, the effect of users’

channel coefficients on the capacity-region is analyzed.

• The advantage of asynchronous transmission in enlarging the capacity-region is analytically

proven. It is proved that the time delay of half symbol interval provides the largest capacity

region for r.c. pulse shape.

• The performance of the well-known SIC method is thoroughly analyzed and compared for

the scenarios of synchronous and asynchronous transmissions.

• Due to the memory imposed by asynchronous transmission, the receiver is enabled to

use trellis-based detection methods which significantly improve the performance. ANOMA

methods are applicable even if the difference in the channel quality is not significant which

is required for the power-domain NOMA.

• To further improve the performance and reduce computational complexity, a new transceiver

design is proposed, exploiting the introduced frequency-selectivity by asynchronous trans-

mission. The new design in conjunction with the turbo principle provides a performance

close to the capacity boundaries, not achievable by conventional synchronous transmission.

The rest of the manuscript is organised as follows: In Section II, the general system model,

characteristics, and input-output relation are outlined. In Section III, the capacity-region is derived

for a general type of pulse shape. In Section IV, the transceiver design is discussed and various

receiver designs are proposed and analyzed, including SIC, trellis-based receivers, and turbo

receivers. In Section V, numerical results are provided to analyze the performance of the proposed

transceiver designs and finally, the conclusion is presented in Section VI.
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(a) Symbol Synchronous (b) Symbol Asynchronous

Fig. 1: Demonstration of sufficient statistics for synchronous and asynchronous transmission.

II. SYSTEM MODEL

For a system with K single-antenna users and one common receiver, assuming frame

synchronisation and a flat fading channel model, we can write the received signal as

y(t) =
K∑
k=1

hk

N∑
n=1

sk[n]p(t− nT − τkT ) + ν(t). (1)

User k transmits a codeword (sk[1], · · · , sk[N ]) ∈ SNk , where Sk represents the input domain, p(t)

is the normalized pulse shaping function, i.e.,
∫
|p(t)|2dt = 1, with the support of Tp, T denotes

the symbol interval and ν(t) is the white Gaussian noise with variance of σ2. The τk ∈ [0, 1)

accounts for the timing offset of User k, and hk represents the kth user’s channel coefficient and

are known to the receiver. For capacity analysis, the symbols are assumed to be chosen from

Gaussian processes whose optimal power spectral density (PSD) should be found. However, for

practical transceiver design, well-known constellations, e.g., BPSK, and proper coding schemes

are assumed. In addition, it is assumed that the pulse shape occupies a frequency bandwidth of

B. For example, for a r.c. or root raised cosine (r.r.c) pulse shape with roll-off factor of β, the

occupied bandwidth is B = 1+β
T

, where T is assumed to be normalized to 1.

If the transmitted signals are not aligned at the receiver, then the channel is symbol

asynchronous as shown in Fig. 1. To get the sufficient statistics, a matched filter with the

impulse response p(t) is applied to the received signal and its output is sampled at time instants

tnk = nT + τkT , n = 1, 2, · · · , N , k = 1, · · · , K which results in the output samples yk[n]. One

can arrange the output samples in a vector and define yk = (yk[1], · · · , yk[N ])T . Each set of

samples, yk, is matched to the corresponding time delay, i.e., τk. For synchronous transmission,

sufficient statistics include one set of samples while for asynchronous transmission, it includes

K set of samples as shown in Fig. 1. For each set of samples we can have the input-output
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relationship of yk =
∑K

l=1 hlRklsl+νk. Matrix Rkl is an N×N Toeplitz matrix whose elements

depend on the pulse shape, the corresponding time delay and are calculated by:

[Rkl]n,m =g(τklT + (m− n)T ) , gτkl(m− n), m, n = 1, · · · , N, (2)

where τkl = τl−τk and g(t) = p(t)∗p(t), where the operation ∗ represents convolution. The vector

νk represents the noise vector whose co-variance matrix is defined as Qkl = E[νkνl
H ] = σ2Rkl.

For any square-root Nyquist pulse, e.g., r.r.c., Rkk = IN and RT
kl = Rlk. Also note that for

the synchronous transmission, i.e., τk = 0 ∀k, Rlk = IN . We can put all the received samples

together and define y =
(
y1

T , · · · ,yKT
)T to get the system model in a matrix form as:

y =


R11 · · · R1K

... . . . ...

RK1 · · · RKK



h1IN · · · 0N

... . . . ...

0N · · · hKIN



s1
...

sK

+


ν1
...

νK

 = RHs+ ν, (3)

where R is an NK ×NK matrix constructed by Toeplitz blocks of Rlk.

III. CAPACITY-REGION ANALYSIS

To analyze the capacity-region of the resulting asynchronous system, we assume a two-user

scenario. Let us define s1 and s2 as Gaussian processes with PSD of {S1(f), S2(f), f ∈ [0, 1]}

for Users 1 and 2, respectively. Then, the capacity-region of a two-user MAC with memory is

[25]:

C =
⋃

Sk(f)≥0, f∈[0,1]∫ 1
0 Sk(f)df≤Pk

k=1,2

(R1, R2),

0 ≤ R1 ≤ limN→∞
1
N
I(y; s1|s2)

0 ≤ R2 ≤ limN→∞
1
N
I(y; s2|s1)

0 ≤ R1 +R2 ≤ limN→∞
1
N
I(y; s1, s2)

, (4)

where Rk and Pk represent the achievable rate and the available power of User k, respectively,

and y represents the 2N received samples obtained as explained in Eq. (3). In the next theorem,

the capacity-region is derived.

Theorem 1: The capacity-region of a two-user asynchronous MAC is:

C =
⋃

Sk(f)≥0, k=1,2∫ 1
0
Sk(f)df≤Pk

(R1, R2),

0 ≤ R1 ≤ 1
2

∫ 1

0
log2

(
1 + S1(f)

σ2
1

)
df

0 ≤ R2 ≤ 1
2

∫ 1

0
log2

(
1 + S2(f)

σ2
2

)
df

0 ≤ R1 +R2 ≤ 1
2

∫ 1

0
log
(
1 + S1(f)

σ2
1

+ S2(f)
σ2
2

+
S1(f)S2(f)(1−G2

τ (f))

σ2
1σ

2
2

)
df

,
(5)
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where σ2
1 = σ2

|h1|2 , σ2
2 = σ2

|h2|2 and Gτ (f) depends on the pulse shape and the timing offset and is

defined as

Gτ (f) =

∣∣∣∣∣ 1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)∣∣∣∣∣ , (6)

where ĝ(f) is the Fourier transform of the matched filter pulse g(t).

Proof: The proof is presented in Appendix A.

Note that with no timing offset, i.e., τ = 0, Gτ (f) becomes the conventional folded spectrum

which is constant and is equal to 1 for Normalized Nyquist pulse shapes. Then, the capacity-

region of the MAC turns into the conventional Cover-Wyner region:

Csynch =

(R1, R2),

0 ≤ R1 ≤ 1
2

log2

(
1 + P1

σ2
1

)
0 ≤ R2 ≤ 1

2
log2

(
1 + P2

σ2
2

)
0 ≤ R1 +R2 ≤ 1

2
log
(

1 + P1

σ2
1

+ P2

σ2
2

)
. (7)

Proposition 1: The asynchronous transmission enlarges the capacity-region of a two-user MAC

compared with the synchronous transmission.

Proof: To prove the proposition, it is enough to prove that for the asynchronous transmission,

the function Gτ (f) is less than or equal to that of the synchronous transmission. Since ĝ(f) is a

non-negative real-valued function (due to the matched filtering process at the receiver), we have:

Gasynch(f) =

∣∣∣∣∣ 1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)∣∣∣∣∣ ≤ 1

T

∞∑
i=−∞

∣∣e−j2πτ(f+i)
∣∣ ∣∣∣∣ĝ(f + i

T

)∣∣∣∣, (8)

=
1

T

∞∑
i=−∞

ĝ

(
f + i

T

)
= Gsynch(f), ∀f.

Example 1: In this example, practically common pulse shape of r.r.c is considered. After

matched filtering, the effective pulse shape is the raised cosine whose frequency spectrum is

ĝ(f) =


T |f | ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

(
|f | − 1−β

2T

))]
1−β
2T

< |f | ≤ 1+β
2T

0 o.w.

. The phase-shifted folded spectrum,

Gτ (f) =
∣∣ 1
T

∑∞
i=−∞ e

−j2πτ(f+i)ĝ
(
f+i
T

)∣∣ is periodic with the period of 1 and can be derived as:

Gτ (f) =


1 0 ≤ f < 1−β

2∣∣e−j2πτfA(f) + e−j2πτ(f−1)A(f − 1)
∣∣ 1−β

2
≤ f ≤ 1+β

2

1 1+β
2
< f ≤ 1

, (9)
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(a) Schematic description of phase-shifted folded spectrum for different β
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(b) The resulting phase-shifted folded spectrums

Fig. 2: Demonstration of Gτ (f) for r.r.c. pulse with β = 0, 0.5, 1.

where A(f) = 1
2

[
1 + cos

(
πT
β

(
f
T
− 1−β

2T

))]
. Examples of Gτ (f) is shown with various

parameters in Fig. 2.

Proposition 2: The timing offset τ = 0.5 provides the largest capacity region for the r.r.c.

pulse shape.

Proof: To show the optimilaty of τ = 0.5, we show that for every frequency f0 in range

(1−β
2
, 1+β

2
), Gτ (f0) is minimized by τ = 0.5. Since A(f0) and A(f0−1) are real positive values,

Gτ (f0) can be interpreted as the magnitude of sum of two vectors, namely, e−j2πτf0A(f0) and

e−j2πτ(f0−1)A(f0 − 1) in a 2-dimensional space. Consequently, the magnitude of the sum vector

is minimized if the individual vectors are aligned in opposite directions. The phase difference

between two individual vectors is 2πτ which will be equal to π by setting τ = 0.5. Thus, τ = 0.5

minimizes Gτ (f0) for every f0, and provides the largest capacity region. The proof is illustrated

in Fig. 3

In simpler words, τ = 0.5 causes the shifted spectrums to add up with opposite phase offsets

and results in reduced Gτ (f). In addition, as observed in Fig. 2, a higher roll-off factor further

reduces Gτ (f). The underlying reason is that the increased out-of-Nyquist-band (ONB) spectrum

of the r.r.c. causes more destructive addition in the phase-shifted folded spectrum. With no ONB
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Fig. 3: Phase-shifted folded spectrum description: proof of optimality τ = 0.5.

spectrum, i.e., β = 0, we have Gτ (f) = 1, f ∈ [0, 1], ∀τ , and thus, the capacity-region is the

conventional Wyner-Cover pentagon for any choice of time delay. In summary, asynchronous

transmission exploits the ONB spectrum and is ineffective for the pulse shapes that do not have

an ONB spectrum such as the Sinc pulse shape.

The next step to specify the capacity-region is to find the optimal power allocations. It is

worth describing the achievable rate-region using constant PSDs first. Assuming a constant

power allocation for each user, i.e., Sk(f) = Pk, the achievable rate-region is:

C =

(R1, R2),

0 ≤ R1 ≤ 1
2 log2

(
1 + P1

σ2
1

)
0 ≤ R2 ≤ 1

2 log2

(
1 + P2

σ2
2

)
0 ≤ R1 +R2 ≤ 1

2

∫ 1

0
log
(
1 + P1

σ2
1
+ P2

σ2
2
+

P1P2(1−G2
τ (f))

σ2
1σ

2
2

)
df

 . (10)

Using Proposition 1, it is obvious that the asynchronous rate-region with constant PSDs is larger

than the capacity-region of the synchronous transmission. However, optimizing the input PSDs

provides further improvement in achievable rates and results in the asynchronous capacity-region.

Following the steps in [9], the optimization problem to find the optimal PSDs can be formulated

as:

arg max
S1(f),S2(f)

max
R1,R2

αR1 + (1− α)R2 (11)

s.t. Rk ∈ C in (5),

∫ 1

0

Sk(f)df = Pk, Sk(f) ≥ 0
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Fig. 4: Capacity-region of the asynchronous MAC with P1 = P2 = 20 dB and r.r.c. pulse shape.

for every 0 ≤ α ≤ 1. The inner maximization which describes the Pareto points of the region

can be simplified as:

arg max
S1(f),S2(f)

max{αF (S1(f), 0) + (1− α)[F (S1(f), S2(f))− F (S1(f), 0)],

α[F (S1(f), S2(f))− F (0, S2(f))] + (1− α)F (0, S2(f))} (12)

= arg max
S1(f),S2(f)

(2α− 1)F (S1(f), 0) + (1− α)F (S1(f), S2(f)) 1/2 ≤ α ≤ 1

(1− 2α)F (S1(f), 0) + αF (S1(f), S2(f)) 0 ≤ α ≤ 1/2
, (13)

where F (S1(f), S2(f)) = 1
2

∫ 1

0
log
(

1 + S1(f)

σ2
1

+ S2(f)

σ2
2

+ S1(f)S2(f)(1−G2
τ (f))

σ2
1σ

2
2

)
df . After solving the

nonlinear optimization problem for various values of α, the resulting capacity-regions for β = 0.5

and β = 1 are shown in Fig. 4. It is shown that the asynchronous transmission improves the

capacity-region compared with the synchronous transmission. In addition, τ = 0.5 provides the

largest capacity region. Although constant PSDs are optimal for synchronous transmission, those

cannot achieve the capacity for asynchronous transmission. However, even with constant PSDs,

the asynchronous transmission provides a significant improvement in achievable rates compared

with the synchronous transmission. Fig. 4 shows that power allocation is more effective for the

r.r.c. pulse shape with β = 0.5. In addition, simulation results that are not included here confirm

that as the transmit power increases, the provided gain by power optimization reduces.

Note that by increasing the roll-off factor, β, the gain provided by asynchronous transmission is

increased. For example, using r.r.c. with β = 0.5 and β = 1, asynchronous transmission provides
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Fig. 5: Capacity-region analysis of asynchronous MAC with P1 = P2 = 10 dB and r.r.c. pulse

shape.

up to 25% (Rsum : 2.3 → 2.87 [bits/s/Hz]) and 41% (Rsum : 1.73 → 2.44 [bits/s/Hz])

improvements in sum-rate, respectively, compared with the synchronous transmission. The further

improvement provided with the roll-off factor of β = 1 is supported by the fact that β = 1 results

in more reduction in the Gτ (f) function, shown in Fig. 2. Worth mentioning that using pulse

shapes with a greater roll-of factor is not spectrally efficient since the frequency spectrum is

not fully utilized. However, asynchronous transmission can restore the spectral efficiency loss

partially.

In the capacity-region, four points are of great importance, denoted as A,A′, B,B′ in Fig. 5.

Points A and A′ are obtained by maximizing the sum-rate upper-bound over one user’s PSD

while the other user’s PSD is assumed to be constant. By formulating the optimization problem,

considering the KKT conditions and some simplifications, we have:

S∗k(f) =

λ− σ2
k̄

+ Pk̄
σ2
k̄

σ2
k

+
Pk̄
σ2
k
(1−G2

τ (f))

+

, k = 1, 2, (14)

where k̄ = {1, 2}−k and [x]+ = max{0, x}. Eq. (14) shows that the optimal PSDs for points A

and A′ are not constants and depend on Gτ (f). In addition, the ratio of channel strengths, i.e.,
σ2
k̄

σ2
k
, plays an important role in specifying optimal PSDs. Particularly, when one of the users has

a much stronger channel strength, the dependence of the stronger user’s PSD on Gτ (f) reduces

and the optimal PSD approaches a constant PSD. On the other hand, the weaker user’s PSD
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Fig. 6: Optimal PSD pairs achieving the critical points, A,A′, B,B′, in the capacity-region figure.

greatly depends on Gτ (f) and the optimal PSD asymptotically assigns no power to frequencies

for which Gτ (f) = 1. These observations are illustrated in Fig. 6b, where the optimized PSD

for the stronger user (row A) is almost constant with insignificant variations while the weaker

user (row A′) selectively assigns its available power based on Gτ (f). This fact is the underlying

reason for the proximity of point A to the constant PSD corner (dashed line) and the large gap

between A′ and the constant PSD corner in Fig. 5b.

Points B and B′ are obtained by maximizing the sum-rate upper-bound over both users’ PSDs.

Similarly, the optimized PSDs can be obtained as:

S∗k(f) =

λ− σ2
k̄

+ S∗
k̄
(f)

σ2
k̄

σ2
k

+
S∗
k̄

(f)

σ2
k

(1−G2
τ (f))

+

, k = 1, 2. (15)

Again, if the difference between channel strengths is large, then, the stronger user’s optimal

PSD approaches a constant, as shown in Fig. 6b (row B,B′). Therefore, with asynchronous

transmission and assuming a near-far scenario, the power optimization is more critical for the

weaker user as the stronger user’s optimal PSD is close to a constant PSD.

For a synchronous scenario, the pentagon’s corner points can be achieved by the SIC method,

and the rest of Pareto points on the connecting line are achieved by time-sharing. This optimality

is the reason that SIC is widely used in the uplink NOMA literature. Due to the importance of

the SIC method, its achievable rates are analyzed in the next subsection.
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A. SIC’s Achievable Rate-Region

Using SIC and assuming the decoding order of {k, j}, the information symbols of User k are

decoded while User j’s signal is considered as noise. After removal of the decoded symbols,

the symbols belonged to User j are decoded without interference assuming error-free decoding

at the first stage [26]. For the asynchronous system model in Eq. (3), let us rewrite the received

samples as yk[m] = hksk[m] + hk̄
∑∞

n=−∞ gτ (n)sk̄[m + n] + νk[m], k = 1, 2. Note that due to

the time delay, the inter-user interference (IUI) is caused by multiple interfering symbols rather

than the one in the synchronous case. Assuming Gaussian signaling with error-free decoding

and defining ητ =
∑∞

n=−∞ g
2
τ (n), the achievable rate pairs for the ANOMA scheme using SIC

are:

R1 =
1

2
log2

(
1 +

P1|h1|2

ητP2|h2|2 + σ2

)
, R2 =

1

2
log2

(
1 +

P2|h2|2

σ2

)
, (16)

if the decoding order is {1, 2} and

R2 =
1

2
log2

(
1 +

P2|h2|2

ητP1|h1|2 + σ2

)
, R1 =

1

2
log2

(
1 +

P1|h1|2

σ2

)
, (17)

if the decoding order is {2, 1}. Equivalently, ητ can be calculated by ητ =
∫ 1

0
G2
τ (f)df ≤ 1,

where equality is achieved by τ = 0 [27]. The achievable rate pairs for the NOMA scheme using

SIC are similarly obtained by inserting η0 = 1. Therefore, for every set of power and channel

coefficients, the asynchronous transmission enjoys less inter-user interference compared to the

synchronous case. Particularly, for the r.r.c. pulse shape ητ = 1− β/4 + β/4 cos(2πτ), which is

minimized at τ = 0.5 [27]. The rate pairs for the NOMA scheme using SIC coincide with the

corner points of the pentagon capacity-region and the sum-rate is calculated as:

Rsum =
1

2
log2

(
1 +

Pj|hj|2

Pk|hk|2 + σ2

)
+

1

2
log2

(
1 +

Pk|hk|2

σ2

)
(k, j) = {(1, 2), (2, 1)} (18)

=
1

2
log2

(
1 +

P1|h1|2

σ2
+
P2|h2|2

σ2

)
, (19)

which is equal to the maximum sum-rate in capacity-region (7). Hence, assuming error-free

decoding, as done in capacity calculations, both decoding orders can provide the maximum

sum-rate in uplink NOMA. However, for ANOMA, decoding the stronger user first results in a

strictly larger sum-rate. In more details, assuming |h1|2 > |h2|2, and P1, P2, σ
2 > 0, results in

1
2

log2

(
1 + P1|h1|2

ητP2|h2|2+σ2

)
+ 1

2
log2

(
1 + P2|h2|2

σ2

)
> 1

2
log2

(
1 + P2|h2|2

ητP1|h1|2+σ2

)
+ 1

2
log2

(
1 + P1|h1|2

σ2

)
.

In addition, it can be easily concluded that the SIC rate-region achieved by the asynchronous
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transmission is larger than the capacity-region of the synchronous transmission. Nevertheless,

the SIC method is not capacity-achieving for ANOMA.

Proposition 3: Unlike NOMA, in which SIC is capacity-achieving, the SIC method cannot

achieve the boundaries of the capacity region for ANOMA.

Proof: The optimallity of the SIC method for the NOMA scheme was expressed previously.

For ANOMA, the maximum sum-rate achieved by SIC, assuming |h1|2 ≥ |h2|2, is RSIC
sum =

1
2

log2

(
1 + P1|h1|2

ητP2|h2|2+σ2

)
+ 1

2
log2

(
1 + P2|h2|2

σ2

)
. The sum-rate boundary of the rate-region with

constant PSDs is denoted by Rconst.
sum = 1

2

∫ 1

0
log
(

1 + P1|h1|2
σ2 + P2|h2|2

σ2 + P1P2|h1|2|h2|2(1−G2
τ (f))

σ4

)
df .

To prove the proposition, it is enough to show that RSIC
sum < Rconst.

sum :

RSIC
sum =

1

2
log2

(
1 +

P1|h1|2

ητP2|h2|2 + σ2

)
+

1

2
log2

(
1 +

P2|h2|2

σ2

)
(20)

(a)
=

1

2
log2

(
1 +

P1|h1|2∫ 1

0
Gτ (f)dfP2|h2|2 + σ2

)
+

1

2
log2

(
1 +

P2|h2|2

σ2

)
(21)

(b)

≤ 1

2

∫ 1

0

log2

(
1 +

P1|h1|2

Gτ (f)P2|h2|2 + σ2

)
df +

1

2
log2

(
1 +

P2|h2|2

σ2

)
(22)

(c)

≤ 1

2

∫ 1

0

log

(
1 +

P1|h1|2

σ2
+
P2|h2|2

σ2
+
P1P2|h1|2|h2|2(1−G2

τ (f))

σ2σ2

)
df (23)

= Rconst.
sum , (24)

where (a) is obtained by substituting ητ =
∫ 1

0
Gτ (f)df , (b) is the result of applying the Jenson’s

inequality to the convex function log2(1 + 1
x
), and finally, (c) can be achieved by simple

calculations assuming Gτ (f) ≤ 1,∀f . The equalities in (b) and (c) are achieved by having

a constant Gτ (f) = 1.

Fig. 7 depicts the rate-regions for ANOMA with the optimized PSD (i.e., capacity-regions),

the constant PSD, and the SIC method as well as the NOMA capacity-region with P1 = P2 =

10 dB, σ2
1 = 1, σ2

2 = 5, using the r.r.c. pulse shape having β = 0.5. The figure verifies the results

in this subsection.

IV. TRANSCEIVER DESIGN

The capacity-region derived in the previous section is obtained by using the well-known

Gaussian random coding. Although Gaussian random coding shows that a specific rate is

achievable, its practical implementation is cumbersome. Therefore, in practical applications,

proper transceiver design and using intelligent coding with manageable complexity are of
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Fig. 7: Different rate-regions for P1 = P2 = 10 dB, σ2
1 = 1, σ2

2 = 5, using r.r.c. with β = 0.5.

great importance. In this section, we focus on the transceiver design. We show that even with

practical considerations such as limited frame length and non-Gaussian symbols, asynchronous

transmission can provide significant performance gain. Note that some of the explained concepts

are well-studied in the literature in various contexts. Nevertheless, the details are presented here

for completeness. The highlight of this section includes (1) Introducing a Toeplitz system model

for the asynchronous transmission which resembles the Ungerboeck model for ISI channels.

Then, applying the trellis-based detection methods to the introduced system model which avoids

the complex process of noise whitening. (2) Proposing a transceiver design for asynchronous

transmission based on the concept of channel diagonalization. The proposed method outperforms

the NOMA method with comparable complexity. (3) Using the proposed transceiver design joint

with turbo principle to show that ANOMA can achieve an operational rate pair that is outside

of the capacity region of conventional NOMA.

Let us consider the general transmitter structure in Fig. 8. The information bits of User k,

denoted as ak = (ak[1], · · · , ak[U ]), are first encoded by an error correcting code to generate

bk = (bk[1], · · · , bk[V ]), where r = U
V

is the encoding rate. After interleaving the coded bits,

they are mapped to a predefined constellation resulting in symbols sk = (sk[1], · · · , sk[N ]),

where N = V
log2M

and M is the size of the constellation. This scheme is called Bit Interleaved

Coded Modulation (BICM) in the literature and is used in many applications and communication

standards [28], [29]. Then, the symbols are pulse shaped with the pulse p(t) and transmitted

through the channel which deteriorates the signal with channel coefficient of hk and imposes
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Fig. 8: Transmitter.

(a) Generic Receiver Design (b) Separate Equalizer and Decoder

Fig. 9: Receiver Structure.

the time delay of τk. The received signal is matched filter and sampled properly to generate

the discrete samples yk[n] at the receiver. The obtained samples, then, go through the detection

module to find the estimate of the transmitted information bits as shown in Fig. 9a. The MAP

decoder computes estimates of the information bits, â, minimizing bit error rate (BER).

âk[n] = arg max
a∈F2

P (ak[n] = a|y) = arg max
a∈F2

∑
a∈FU2 :ak[n]=a

P (y|a)P (a). (25)

Unfortunately, the BER-optimal decoder in Eq. (25) has a computational complexity that is of

order O
(
2U
)
, which becomes intractable as U increases. A conventional approach to reduce the

computational burden of the receiver is to split the detection problem into two sub-problems

of interference cancellation (IC) and decoding as shown in Fig. 9b. IC refers to canceling the

interference caused by the user’s own symbols, i.e., inter-symbol interference (ISI), or caused

by another interfering user, i.e., IUI. Next, more details on IC methods and their comparison for

NOMA and ANOMA are discussed.

A. Successive Interference Cancellation: SIC

One possible solution to remove IUI is SIC which is commonly used in the uplink NOMA

systems. As explained in the previous section, in SIC, the detected symbols of each user are

reconstructed and subtracted from the received samples. Assuming the IC order of {1, 2, · · · , K}

and error-free decoding, the effective SINR of the kth user can be calculated as:

δsynchk =
|hk|2Pk∑K

j=k+1 |hj|2Pj + σ2
, (26)



16

where the first term in the denominator is the interference power caused by undecoded users with

higher IC orders. Unlike NOMA where only one interfering symbol degrades the performance,

using ANOMA, due to timing offset, multiple adjacent symbols cause the interference as well.

Assuming the IC order of {1, 2, · · · , K} and error-free decoding, the effective SINR of the kth

user with ANOMA is:

δasynchk =
|hk|2Pk∑K

j=k+1 ητkj |hj|2Pj + σ2
, (27)

where ητkj =
∑u

n=−u g
2
τkj

(n) indicates the accumulative interference factor caused by interfering

symbols of User j. The factor u is the normalized truncation length, i.e. u = b Tp
2T
c. Because

ητ < 1 for τ 6= 0, the asynchronous transmission increases the effective SINR and can improve

the performance as verified by simulation results.

B. Trellis-Based Algorithms

Because of the memory and Toeplitz structure imposed by asynchronous transmission, trellis-

based equalization methods are applicable to ANOMA. In more details, if we re-order the

samples and define y[m] = (y1[m], · · · , yK [m])T and s[m] = (s1[m], · · · , sK [m])T , the input-

output relationship of the system can be presented in a matrix form as: y[1]
y[2]

...
y[N ]

 =


R′0 R′−1 ··· R′1−N
R′1 R′0 ··· R′2−N
... . . . . . . ...

R′N−1 R
′
N−2 ··· R′0

(H 0 ··· 0
0 H ··· 0
... . . . . . . ...
0 0 ··· H

) s[1]
s[2]

...
s[N ]

+

 ν[1]
ν[2]

...
ν[N ]

 , (28)

where H = diag(h1, · · · , hK) and R′
i is the K ×K constructing sub-block whose elements are

defined as:

R′
i(l, k) = g(iT + (τl − τk)T ). (29)

Matrix R′ is a block-Toeplitz matrix whose sub-blocks are not necessarily Toeplitz. Examples of

matrix R′ for rectangular pulse shapes with K = 2, N = 3, are shown below (τ1 = 0, τ2 = 0.2

on the left and τ1 = 0, τ2 = 0.5 on the right):

R′ =



1 0.8 0 0 0 0

0.8 1 0.2 0 0 0

0 0.2 1 0.8 0 0

0 0 0.8 1 0.2 0

0 0 0 0.2 1 0.8

0 0 0 0 0.8 1


, R′ =



1 0.5 0 0 0 0

0.5 1 0.5 0 0 0

0 0.5 1 0.5 0 0

0 0 0.5 1 0.5 0

0 0 0 0.5 1 0.5

0 0 0 0 0.5 1


. (30)
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Note that if the time delays are equi-spaced, i.e., τk = (k − 1) T
K
, k = 1, · · · , K, then the

matrix R′ will turn into a Toeplitz matrix. The resulting Toeplitz structure caused by equi-

spaced timing offsets enables the use of trellis-based algorithms such as the Viterbi and BCJR

algorithms. Equivalently, the Toeplitz system model is:

yl =
n=u′∑
n=−u′

rnhπ(l−n)sl−n + νl, l = 1, · · · , NK, (31)

where rn represents the diagonal elements of Toeplitz matrix R′, hk, sl and νl represent the

channel coefficients, transmitted symbols and noise samples, respectively, with a proper mapping.

To be more precise, yl = yπ(l)[ϕ(l)], rn = g(−n T
K

), sl = sπ(l)[ϕ(l)] and νl = νπ(l)[ϕ(l)] where

π(l) = (l− 1 mod K) + 1 and ϕ(l) = b(l − 1)/Kc+ 1. In addition, u′ depends on the truncation

length and the number of users, i.e., u′ = (K − 1)(u + 1)/2. The model in (31) is commonly

referred to as the Ungerboeck model in which the noise samples are not white, but are correlated

according to E[νl+nν
∗
l ] = σ2rn. Normally, the samples are filtered by a noise whitening filter to

generate a model with white noise, referred to as the Forney model [30].

To avoid the complex process of noise whitening, we directly use the Ungerboeck model

to apply trellis-based algorithms which is novel in the context of asynchronous transmission.

By representing the received signal vector y by an orthonormal basis and denoting its vector

representation by ŷ, it is possible to express [31]:

p(ŷ|s) ∝
∏
l

Pl(sl, sl−1, · · · , sl−u′), (32)

where

Pl(sl, sl−1, · · · , sl−u′) = exp

 1

σ2
Re

ylh∗π(l)s∗l − 1

2
|hπ(l)|2|sl|2r0 − h∗π(l)s

∗
l

u′∑
n=1

sl−nhπ(l−n)rl


 . (33)

Therefore, the likelihood function has a recursive factorization that can be expressed in terms

of the yl samples. We observe that only the u′ most recent input symbols sl−1, · · · , sl−u′ are

required at each time epoch l. Thus, the signal can be described by means of a trellis where

each state is defined as ρl = (sl−1, · · · , sl−u′). As an example, for BPSK modulation and u′ = 2,

a section of the corresponding trellis between the discrete-time instants l and l + 1 is shown in

Fig. 10. The Viterbi algorithm or BCJR can be applied to the trellis shown in Fig. 10 in which

the branch metrics are calculated based on the recursive factorization in (33) [32]. Interested

readers can refer to [30] for more details on the Ungerboeck model.
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Fig. 10: Trellis Representation.

Although we avoid the noise whitening process by using the Ungerboeck model, the trellis-

based algorithms’ computational complexity is determined by the number of trellis states, which

grows exponentially with the memory of the effective ISI channel. To reduce the receiver’s

computational complexity, we also propose another transceiver design, which is inspired by the

channel diagonalization used in the capacity derivation in Appendix A.

C. Optimal Transceiver

For notational simplicity, we present the optimal transceiver design for a two-user case but

the extension to more users is straightforward. Recalling the system model:y1
y2

 =

R11 R12

R21 R22

h1IN 0N

0N h2IN

s1
s2

+

ν1
ν2

 , (34)

the diagonal sub-blocks, Rkks, are identity matrices and off-diagonal sub-blocks are Toeplitz

matrices which can be decomposed using the singular value decomposition, i.e., R12 = RT
21 =

UGτV
T , where U and V are orthogonal matrices and Gτ is an N × N diagonal matrix

with singular values gis as its diagonal elements. Users 1 and 2 can apply precoding to send

s1 = UP1x1 and s2 = V P2x2, respectively. After processing the received samples to construct

ŷ1 = UTy1 and ŷ2 = V Ty2, we have:ŷ1
ŷ2

 =

IN Gτ

Gτ IN

h1P1 0N

0N h2P2

x1

x2

+

ν̂1
ν̂2

 , (35)

where ν̂1 = UTν1 and ν̂2 = V Tν2. Thus, E[ν̂1ν̂1
H ] = E[ν̂2ν̂2

H ] = σ2IN and E[ν̂1ν̂2
H ] =

E[ν̂2ν̂1
H ] = σ2Gτ . Due to the diagonalization of the channel sub-matrices and noise covariance

matrices, to detect x1[n] and x2[n], it is sufficient to use the following set of samples:ŷ1[n]

ŷ2[n]

 =

 1 gn

gn 1

h1P1[n] 0

0 h2P2[n]

x1[n]

x2[n]

+

ν̂1[n]

ν̂2[n]

 , (36)
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where the covariance matrix of the noise vector is
(

1 gn
gn 1

)
.

Remark 1: Intuitively, the frequency-selective channel of the interfering user is transformed

into multiple single-tap subchannels where the strength of each subchannel is denoted by gn.

Equivalently, the system model in (36) can be interpreted as an interference channel with a direct-

subchannel gain of 1 and a cross-subchannel gain of gn ≤ 1. Notably, the cross-subchannel gain

in the synchronous transmission system is always equal to 1. Therefore, depending on the used

pulse shape, the cross-subchannel gain can be reduced using asynchronous transmission. An

example of cross-subchannel gains are shown in Fig. 11.

Remark 2: In the trellis-based methods presented previously, every transmitted symbol

affects up to u′ output samples. However, with diagonalization, every transmitted symbol only

contributes to two output samples, reducing the detection complexity. The ML criterion can be

maximized over two transmitted symbols:

max
x1[n],x2[n]∈S

2Re{ŷ∗1[n]x̃1[n] + ŷ∗2[n]x̃2[n]} − |x̃1[n]|2 − |x̃2[n]|2 − 2Re{x̃∗1[n]x̃∗2[n]gn}, ∀n, (37)

where x̃k[n] = hkPk[n]xk[n]. The last term in the maximization shows the inter-dependence

of interfering symbols. As gn reduces, the inter-dependency reduces. Particularly, with gn = 0,

symbols can be detected separately without any interference. Note that for higher-order con-

stellations, simpler detection methods such as zero-forcing (ZF) are also applicable to ANOMA

while they are not relevant for NOMA with single antennas.

Remark 3: Based on the capacity-achieving power allocation scheme, presented in the previous

section, more power is allocated to subchannels with smaller cross-subchannel gains, i.e., gn.

Power allocation is particularly important for the weaker user which avoids assigning power
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to the subchannels with cross-subchannel gains of gn = 1 and concentrates more power to the

subchannels with smaller cross-subchannel gains. As an example, the power allocation functions

for a two-user scenario with r.r.c. pulse shape β = 0.5, τ = 0.5, P1 = P2 = 0 dB, σ2
1 = 2 and

σ2
2 = 1 are shown in Fig. 11.

After IC, the soft or hard information is passed to the de-mapping and de-interleaving modules.

Finally, the information on coded bits is passed to the decoder to decode the information bits,

as shown in Fig. 9b. Although the separation of the IC and decoding processes reduces the

receiver complexity, it results in substantial performance loss compared with the optimal receiver

formulated in (25). To recover the loss, and approach the capacity boundaries, we employ the

turbo principle. The turbo principle is based on the exchange of extrinsic information between

the IC and the decoder [33], [34].

D. Complexity Analysis

The complexity order of proposed IC methods including SIC, trellis-based and the ML-

based design are compared in Table I. The complexity of the SIC method is O (KM) per

TABLE I: Comparison of the complexity of IC Methods

Methods NOMA ANOMA

SIC O (KM) O (KM)

trellis-based NA O(M
(K−1)(u+1)

2 )

ML-based O
(
KMK

)
O

(
KMK

)
+O (KN)

symbol where K represents the number of users and M represents the constellation size. The

SIC method has the same complexity for both NOMA and ANOMA schemes. However, the

ANOMA scheme with SIC outperforms the NOMA scheme with SIC as explained in Section

IV-A. The complexity of the trellis-based algorithms such as Viterbi and BCJR is proportional

to the number of trellis states, which grows exponentially with the memory size of the effective

ISI channel [34]. The memory size of the effective ISI channel depends on the number of

users and the truncation length of the pulse shapes. As explained in Section IV-B, the number

of states in the introduced system model is M
(K−1)(u+1)

2 where u represents the normalized

truncation length of the pulse shape, i.e., u = b Tp
2T
c. Thus, the complexity order of the trellis-based

methods can be expressed as O(M
(K−1)(u+1)

2 ) per symbol. Trellis-based methods can be applied
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to ANOMA due to introduced memory by asynchronous transmission and are not applicable to

NOMA. Various implementation techniques exist in the literature to reduce the computational

complexity of the trellis-based methods such as reduced state estimation methods [35]. The ML-

based methods exhibit complexity orders of O
(
KMK

)
and O

(
KMK

)
+O (KN) for NOMA

and ANOMA, respectively. The additional complexity of O (KN) for ANOMA corresponds to

the channel diagonalization explained in Section IV-C. The channel diagonalization includes K

matrix multiplications, which each can be performed with a complexity of O (N2), resulting in

the overall complexity of O (KN) per symbol.

V. NUMERICAL RESULTS

In this section, we present numerical results to verify our analysis for NOMA and ANOMA

systems. We utilize the LDPC codes with length 64,800 from the DVB-S2X standard [36] for

channel coding. With the exception of the last set of simulations with a range of coding rates, we

use the rate r = 1/2. To improve the performance and reduce the dependence among transmitted

symbols, we use an interleaver to scramble the coded bits, executed by the common Mersenne

Twister algorithm [29]. After interleaving, the scrambled coded bits are mapped to constellation

symbols, e.g., BPSK and QPSK, to generate transmitted symbols after proper pulse shaping. The

r.r.c. with roll-off factor β = 0.5 is considered for pulse shaping and T = 10 µs which results

in occupied bandwidth of B = 150 MHz. The pulse shape is truncated to include 4 significant

side lobes and the timing offset is assumed to be τ = 0.5.

First, we present results for the sub-optimal separate detection schemes. Different types

of IC schemes including the well-known SIC, trellis-based algorithms, and ML methods are

considered. In Fig. 12, the SIC methods are compared for OMA, NOMA, and ANOMA. The

NOMA method exploits the difference in the channel qualities; as the difference between channel

coefficients increases, the provided gain improves which is confirmed by Fig. 12. In Fig. 12a, with

|h1|2 = 2, |h2|2 = 1, NOMA’s performance for the stronger user suffers from interference and is

worse than that of the OMA method. However, as the difference between channel coefficients

increases, i.e., |h1|2 = 4, |h2|2 = 1, the NOMA’s performance improves for both users since the

interference for decoding User 1’s message is reduced and thus the effect of error propagation

is decreased for decoding User 2’s message. On the other hand, the ANOMA method performs

well in both scenarios showing its capability even when the channel coefficients are close. As

the difference between channel coefficients increases, the performance gap between NOMA and
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Fig. 12: Comparing SIC method for OMA, NOMA and ANOMA methods.

ANOMA methods is reduced. Particularly, their performance for the weaker user converge since

the stronger user’s message is decoded and removed with a very small error, reducing the effect

of error propagation.

Trellis-based algorithms can exploit the favorable ISI caused by asynchronous transmission.

We apply the well-known BCJR algorithm for ANOMA, which is compared with the ML

NOMA method in Fig. 13. The trellis-based ANOMA method provides around 1.5 dB gain

for both stronger and weaker users compared with the ML NOMA method. The optimal

ANOMA transceiver employs the channel diagonalization and power allocation to further

improve the performance and reduce complexity. The weaker user only utilizes half of the

available subchannels and uses QPSK modulation to produce the same bit rate. To show the

strength of the proposed transceiver, we suffice to use the capacity-achieving power allocation

scheme, although more efficient BER-minimizing power allocations can be used. Since half

of the subchannels are occupied solely by the stronger user, the receiver enjoys interference-

free detection with lowered computational complexity. The resulting transceiver design provides

around 2.5 dB and 5 dB gains for the stronger user and weaker user, respectively, compared with

the NOMA method. In Fig. 14, the performance of the introduced ML-ANOMA is compared

with ML-NOMA for a 3-user scenario with |h1|2 = 10, |h2|2 = 4 and |h3|2 = 1. The ANOMA

transceiver employs channel diagonalization as explained in Section IV-C, however, with no

power allocation. It verifies that even without power allocation, the asynchronous transmission
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and |h3|2 = 1.

can be beneficial. The ANOMA transceiver based on channel diagonalization and ML detection

provides around 2 dB gain for each user.

In Fig. 15, a comparison between the performance of the ML NOMA and the proposed optimal

ANOMA is presented considering the turbo principle. We apply up to 15 turbo iterations and

the results show that the turbo principle improves the BER performance, particularly for the

weaker user. The reason is that, as soon as the stronger user is decoded, the error-free feedback

from the decoder can improve the performance of the weaker user substantially. The turbo

iterations provide around 3.5 dB and 1.5 dB gain for the weaker user in the ML NOMA
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with |h1|2 = 2, |h2|2 = 1.

and the optimal ANOMA, respectively. Note that the proposed transceiver design for ANOMA

substantially improves the performance of SIC ANOMA which verifies the sub-optimality of

SIC in ANOMA.

In Fig. 16, the performance of the synchronous and the asynchronous transmission is

compared for various transmission rates including r = [1
4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 5

6
, 8

9
, 9

10
] with

P1 = P2 = 1.76 dB and |h1|2 = 2, |h2|2 = 1. In Fig. 16a, the rate of the weaker user is

set to R2 = 75 Mbps and the BER performance of the stronger user is shown with respect

to various transmission rates. ANOMA can achieve up to R1 = 120 Mbps while NOMA only

achieves up to R1 = 75 Mbps. In Fig. 16b, the stronger user transmits with R1 = 120 Mbps and

the BER performance of the weaker user is shown with respect to various transmission rates.

ANOMA can support around R2 = 75 Mbps while NOMA only supports around R2 = 45 Mbps.

Thus, the asynchronous transmission can achieve the rate pair R1 = 120 Mbps, R2 = 75 Mbps,

shown with a star in Fig. 16c, which is not achievable by the synchronous transmission. These

results verify the capacity analysis and shows the effectiveness of the asynchronous transmission.

A. Final Remarks

• In this work, we assume flat fading channels, applicable to scenarios with no scattering such

as satellite communication [37]. In [27], it is shown that for high scattering environments,

the effect of asynchronous transmission is negligible. However, as the power of the dominant

path compared with the scattering paths is increased, the effect of asynchronous transmission
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Fig. 16: Performance comparison of synchronous and asynchronous transmission for various

operational rate points with P2 = P1 = 1.76 dB and |h1|2 = 2, |h2|2 = 1.

is intensified. As an alternative, frequency offsets can be intentionally added to induce time-

selectivity to improve the performance [17].

• The focus of this work is on two-user scenarios since in the context of NOMA, it is common

to cluster users into groups to maintain low complexity. For example, in [38], it is shown

that two layers of superposition coding is a good compromise between prospected gains

and added complexity.

• The optimal timing offset is shown to be τ = 0.5 for a two-user scenario. It is also verified

in [12] that the equi-spaced timing offsets are advantageous for any number of users. Thus,
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in a MAC, the timing offsets can be predetermined and be controlled by control channels.

In this work, we assume perfect knowledge of timing offsets, however, the effects of timing

error in performance are analyzed in [15] where it is shown that the performance of both

NOMA and ANOMA degrades comparably by timing errors.

VI. CONCLUSION

In this work, we thoroughly analyzed the rate-region provided by the asynchronous trans-

mission in multiple access channels. We proved that the capacity-region of asynchronous

transmission is larger than that of the synchronous transmission as long as the pulse shape

has the ONB spectrum. We studied the well-known SIC method and compared its performance

for NOMA and ANOMA. We also demonstrated that asynchronous transmission introduces

memory in the system model, which makes trellis-based algorithms applicable. The introduced

Toeplitz structure resembles frequency-selective channels, which can be exploited by proper

channel diagonalization and power allocation. The proposed optimal transceiver design joint

with the turbo principle can provide transmission rates close to the capacity boundary. We

showed theoretically and numerically that the proposed asynchronous method could achieve the

operational rates that are not achievable by the synchronous transmission.

APPENDIX A

PROOF OF THEOREM 1

The system model in Eq. (3) can be re-written for a two-user scenario as:

y =

R11 R12

R21 R22

h1IN 0N

0N h2IN

s1
s2

+

ν1
ν2

 = RHs+ ν. (38)

The mutual information I(y; s1, s2) can be upper-bounded by:

I(y; s1, s2) ≤
1

2
log det[2πe cov(y)]− 1

2
log det[2πe cov(ν)], (39)

where cov(y) = RHE[ssH ]HHR+Rσ2 and cov(ν) = Rσ2. Therefore,

I(y; s1, s2) ≤
1

2
log det

I2N +
1

σ2

|h1|2Qs1 0N

0N |h2|2Qs2

R11 R12

R21 R22

 , (40)

where Qsk is the covariance matrix of the input process for User k. The upper-bound is achieved

by Gaussian processes. Matrices R11 and R22 are equal to identity matrices and R12 and R21

are Toeplitz matrices. Let us decompose R12, that depends on the pulse shape and the timing

offset, using the singular value decomposition, i.e., R12 = RT
21 = UGτV

T , where U and V
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are orthogonal matrices and Gτ is an N ×N diagonal matrix consisting of the singular values

of R12. Hence, we can simplify the upper-bound using:

det

[
I2N +

1

σ2

(
|h1|2Qs1 0N

0N |h2|2Qs2

) (
R11 R12
R21 R22

)]
(41)

= det
[(

UT 0N
0N V T

)]
det

[
I2N +

1

σ2

(
|h1|2Qs1 0N

0N |h2|2Qs2

) (
IN R12
R21 IN

)]
det
[(

U 0N
0N V

)]
= det

[
I2N +

1

σ2

(
|h1|2UTQs1 0N

0N V T |h2|2Qs2

) (
U R12V

R21U V

)]
= det

[
I2N +

1

σ2

(
|h1|2UTQs1U |h1|2UTQs1UGτ
|h2|2V TQs2Gτ |h2|2V TQs2V

)]
= det

[
I2N +

1

σ2

(
|h1|2S1 0N
0N |h2|2S2

) (
IN Gτ
Gτ IN

)]
,

where S1 = UTQs1U and S2 = V TQs2V . To further simplify the upper-bound, we use Lemma

2 in [9], which states:

Lemma 1: Let A and B be N × N non-negative-definite matrices, and let G =

diag[g1, · · · , gN ] where |gn| ≤ 1, n = 1, · · · , N . Then,

det
[
I2N +

(
A 0N
0N B

) (
IN G
G IN

)]
≤

N∏
n=1

(
1 + ann + bnn + annbnn(1− g2

n)
)
, (42)

where ann and bnn are the diagonal elements of matrices A and B, respectively. The equality

is achieved when A and B are diagonal.

As a result, the upper-bound is achieved if S1 and S2 are diagonal, or equivalently, Qs1 and

Qs2 are eigen-decomposed by U and V , respectively. Denoting the diagonal elements of S1

and S2 as s1n and s2n, respectively, we have:

R1 +R2 ≤
1

2
lim
N→∞

N∑
n=1

log

(
1 +
|h1|2

σ2
s1n +

|h2|2

σ2
s2n +

|h1|2|h2|2

σ4
s1ns2n(1− g2

n)

)
1

N
. (43)

Toeplitz matrices are asymptotically equivalent to circulant matrices as the matrix dimension

goes to infinity [23], [39]. The implication of the asymptotic equivalence of Toeplitz matrices with

circular matrices is that the values of the singular values of Toeplitz matrices are asymptotically

equal to samples of their generating function. In more details, considering a Toeplitz matrix,

R, its generating function, R(f), f ∈ [0, 1], and its singular values, rn, n = 1, · · · , N , we have

rn = |R(n/N)|, n = 1, · · · , N [24].
Defining fn = n/N , dfN = 1/N , Sk(fn) = skn, and Gτ (fn) = gn,

we can rewrite the sum-rate upper-bound as C = 1
2

limN→∞
∑N

n=1C(fn)dfN where
C(fn) = log

(
1 + |h1|2

σ2 S1(fn) + |h2|2
σ2 S2(fn) + |h1|2|h2|2

σ4 S1(fn)S2(fn)(1−G2
τ (fn))

)
. Because
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C(fn) is bounded and almost everywhere continuous on the interval [0, 1], then it is Reimann
integrable on the interval [40], [41], and therefore:

R1 +R2 ≤
1

2

∫ 1

0

log

(
1 +
|h1|2

σ2
S1(f) +

|h2|2

σ2
S2(f) +

|h1|2|h2|2

σ4
S1(f)S2(f)(1−G2

τ (f))

)
df, (44)

where S1(f) and S2(f) are PSDs of Users 1 and 2, respectively. In addition, Gτ (f) = |R12(f)| =

|R12(f)| where R12(f) and R12(f) are the generating functions of Toeplitz matrices R12 and

R21, respectively. Therefore, we have:

C =
⋃

Sk(f)≥0, k=1,2∫ 1
0
Sk(f)df≤Pk

(R1, R2),

0 ≤ R1 ≤ 1
2

∫ 1

0
log2

(
1 + S1(f)

σ2
1

)
df

0 ≤ R2 ≤ 1
2

∫ 1

0
log2

(
1 + S2(f)

σ2
2

)
df

0 ≤ R1 +R2 ≤ 1
2

∫ 1

0
log
(
1 + S1(f)

σ2
1

+ S2(f)
σ2
2

+
S1(f)S2(f)(1−G2

τ (f))

σ2
1σ

2
2

)
df

,
where the union is over all the PSDs that satisfy users’ power constraints. The provided capacity-

region settles the proof of converse, setting upper-bounds on the achievable rate pairs. On the

other hand, the achievability is verified using Lemma 1 which states that the upper-bounds in the

capacity-region can be achieved by Gaussian processes with covariance matrices Qs1 = US1U
T

and Qs2 = V S2V
T where S1 and S2 are diagonal. Further discussion on finding the optimal

S1, S2 or equivalently users’ optimal PSDs are provided throughout the manuscript.

To analyze Gτ (f), recall the structure of R12 as:

R12 =


gτ (0) gτ (1) ··· gτ (N−1)

gτ (−1) gτ (0)
. . . ...

... . . . . . . g(1)
gτ (1−N) ··· gτ (−1) gτ (0),

 , (45)

where τ is the timing offset between two users and g(t) is the matched filter pulse. Recall

that gτ (m) = g(τT + mT ). The generating function of R12 is defined as R12(f) =∑N−1
n=1−N gτ (n)e−j2πnf and is periodic with period 1. Equivalently, R12(f) is:

R12(f) =
1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ(
f + i

T
), (46)

where ĝ(f) is the Fourier transform of g(t). Note that R12(f) can be interpreted as the folded-

spectrum. The only difference is that each replica is phase shifted due to the timing offset

between users. The concept of phase-shifted folded spectrum is shown in Fig. 2.
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