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ABSTRACT OF THE DISSERTATION

Essays on Auctions, Conflict, and Social Networks

By

Michael Caldara

Doctor of Philosophy in Economics

University of California, Irvine, 2014

Professor Michael McBride, Chair

The broad objective of this dissertation is to understand human behavior in large group

interactions. More narrowly, I apply game theory and experimental methods to three distinct

settings: pay-to-bid auctions, strategic network formation, and stateless societies. In each

case, I study the relationship between individual behavior and group outcomes. These

seemingly unrelated settings do share several elements in common: (1) groups are relatively

large, (2) groups benefit from cooperation, and (3) individual incentives are misaligned,

potentially leading to adversarial interactions (i.e., conflict). Additionally, each of the three

studies, detailed in Chapters 2, 3, and 4 respectively, makes a stand-alone contribution to

understanding its topic with implications for future research. Thus, the contribution of this

dissertation is twofold: the contribution of each individual Chapter to its subject and the

collective contribution of all Chapters to understanding large group interactions.
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Chapter 1

Introduction

Chapter 1 provides an overview of the dissertation. In Chapter 2 of this dissertation, I exper-

imentally study bidding behavior in pay-to-bid auctions, also known as “penny auctions.” I

find that auction revenues above the value of the prize can largely be explained by inexperi-

enced participants and that the earnings of individual participants are highly correlated with

strategic sophistication. In Chapter 3 of this dissertation (joint with Michael McBride), we

experimentally study the dynamics of strategic network formation with limited observation.

We find that the networks formed under limited observation are highly efficient and less

prone to positional jockeying among actors when compared to networks formed under full

observation. In Chapter 4 of this dissertation, I develop a model of the origin of the state.

Starting from an anarchic environment, where property is insecure and must be defended, I

show how evolutionary forces would favor the selection of a violent elite. When the distribu-

tion of violence capacities is relatively asymmetric or when the gains from cooperation are

low, this elite must be bought off to ensure cooperation. Lastly, Chapter 5 concludes.

1



1.1 Bidding Behavior in Pay-to-Bid Auctions

In Chapter 2, I experimentally study bidding behavior in pay-to-bid auctions, also known as

“penny auctions.” The auction mechanism has become increasingly popular among online

retailers in recent years and typically generates revenues well in excess of the value of the

prize, contrary to theoretical predictions. Several plausible explanations have been proposed,

but there is a dearth of empirical evidence to substantiate these explanations. To help dis-

tinguish between these explanations, I conduct a series of controlled laboratory experiments.

I find that auction revenues above the value of the prize can largely be explained by inex-

perienced participants and that the earnings of individual participants are highly correlated

with strategic sophistication. Persistent money losers learn to quit, suggesting that pay-to-

bid auctions can only generate revenues above the value of the prize so long as they can find

new, inexperienced bidders.

1.2 Network Formation with Limited Observation

In Chapter 3 (joint with Michael McBride), we experimentally study the dynamics of strate-

gic network formation with limited observation. Limited observation is a real feature of

many network formation settings, and yet much of the academic work on network forma-

tion assumes that the individual actors have full information about the network structure.

As a result, the impact of limited observation on connection decisions and on the network

structure is not well understood. We conduct the first ever experimental study of network

formation with limited observation. We find that the networks formed under limited observa-

tion are highly efficient and less prone to positional jockeying among actors when compared

to networks formed under full observation. The networks do exhibit some inefficient over-

connection, but redundant connections are generally outside of the observational range.

2



1.3 The Origin of the State as a Stationary Bandit

In Chapter 4, I develop a model of the origin of the state inspired by the seminal theory of Ol-

son (1993, 2000). Olson suggests that the state originated from the incentives of a stationary

bandit, who resorts to moderate tax-theft in the short-run to preserve long-run production

incentives. Olson’s framework is particularly well-suited to study predatory states, a com-

monality throughout recorded history and still prevalent in some parts of the world today.

Starting from an anarchic environment, where property is insecure and must be defended,

I show how evolutionary forces would favor the selection of a violent elite. The impact of

this dynamic depends greatly on the initial conditions. When the distribution of violence

capacities is relatively asymmetric or when the gains from cooperation are low, the elite

must be bought off to ensure cooperation and the cycle of predation persists. Alternatively,

when the distribution of violence capacities is relatively symmetric or when the gains from

cooperation are high, predation may cease to be profitable, allowing for the natural evolution

of property rights and peaceful economic exchange. In all cases, the natural incentives of

the elite will help to fortify the society against external threats.

3



Chapter 2

Bidding Behavior in Pay-to-Bid

Auctions

This chapter provides experimental evidence of significant over-bidding in pay-to-bid auc-

tions relative to the risk neutral Nash equilibrium prediction. Several theories that explain

the excess revenues are tested and a behavioral bias is identified as a key cause of the

over-bidding. Over-bidding decreases with experience, and strategic sophistication is highly

correlated with the earnings of individual participants. Many of the least successful subjects

(i.e., persistent money losers) cease auction participation altogether. This, along with the

observed learning effect, suggests that the pay-to-bid auction mechanism can only sustain

revenues above the value of the prize as long as new participants can be attracted.

2.1 Introduction

In recent years, the “pay-to-bid” auction (or “penny” auction), has become an increasingly

popular mechanism among online retailers. While this still fledgling industry has experienced

4



some turnover, most notably the 2011 shutdown of Swoopo.com, the industry as a whole is

growing quickly.1 The auction format boasts average revenues well in excess of the value

of the prize (Thaler New York Times 2009,2 Augenblick 2012, Platt, Price & Tappen 2013)

and yet tens if not hundreds of individuals willingly participate in each new auction. This

is in sharp contrast to the standard game theoretic prediction (Hinnosaar 2010, Augenblick

2012, Platt et al. 2013) that average revenues will equal at most the value of the prize. An

apparent key to the auction format’s success is its ability to effectively exploit behavioral

biases while still enticing new participants to join. This enticement stems from the generally

great deal offered to the high bidder (e.g., a High Definition Television for $24.36, a $200

gift card for $17.45, a Blu-ray player for $1.71). It is the participants as a collective whole

that lose, as the auctioneer collects a small non-refundable bid fee each time a bid is placed.

The three auctions in the above example, taken from a popular pay-to-bid auction website,

raised $2654.72 and the retail price of the items was $779.98. With such lopsided outcomes

it is no wonder the auction has been called “the evil stepchild of game theory and behavioral

economics” (Gimein Washington Post 2009).3

Several theories have been proposed to explain the discrepancy between empirical revenue

estimates and the game theoretic prediction (Byers, Mitzenmacher & Zervas 2010, Augen-

blick 2012, Platt et al. 2013), but no systematic attempt has been made to empirically assess

the plausibility of these theories. I seek to bridge this gap with the experimental method. By

examining bidding behavior in pay-to-bid auctions in a controlled laboratory setting, I can

observe auction outcomes in an environment where many of the confounding factors present

in field data have been removed (e.g., imperfect information, asymmetries, unmeasured risk

preferences, censored data). I provide perfect information, common values and a symmetric

1The industry experienced a 126 percent year over year increase in unique visitors per month in 2011,
and a 645 percent increase in 2012. Currently, the industry’s web traffic is equivalent to 1.2 percent of the
web traffic generated by Ebay. See Table A.3 for details.

2Thaler, Richard H. “Paying a Price for the Thrill of the Hunt.” The New York Times [New York] 15
Nov. 2009, New York Edition: BU5.

3Gimein, Mark. “The Big Money: The Pennies Add Up at Swoopo.com.” The Washington Post [Wash-
ington, D.C.] 12 Jul. 2009.
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playing field to allow for a closer comparison to the theory. Bidding behavior is tested in

both the continuous time setting experienced in pay-to-bid auctions on the internet, and

in the discrete time, simultaneous decision setting modeled in the theory. In addition, the

number of auction participants (3 or 5) is varied across treatments to aid in distinguishing

among competing explanations for the over-bidding.

A main contribution of this chapter is that the experimental design provides the ability to

distinguish between purely behavioral explanations of overbidding (sunk cost fallacy, escala-

tion of commitment, mistakes) and other environmental factors (information asymmetries,

risk preferences, shill bidding). On the one hand, if behavioral biases are the primary cause

of the empirically observed over-bidding, the pay-to-bid auction mechanism could be a use-

ful case study for researchers interested in studying behavioral economics in general. For

example, if the pay-to-bid mechanism serves to magnify known behavioral biases relative to

alternative auction formats, it could be used as a tool to explicitly study these biases. On

the other hand, if behavioral biases cannot explain the excess revenues, this could be cause

for concern for regulators such as the Federal Trade Commission who have expressed concern

that pay-to-bid auctions may be a form of gambling and that some websites may secretly

use computerized shill bidders to inflate prices.4 Either way, distinguishing between these

theories is a logical first step to help inform future research.

In all treatments, I find persistent over-bidding relative to the risk neutral Nash equilibrium

prediction and this over-bidding tapers off with time. Auction revenues in the treatments

with 5 auction participants are significantly greater than auction revenues in the treatments

with 3 auction participants, consistent with the hypothesis that participants do not ade-

quately adjust bidding probabilities to account for the number of other participants. I find

no difference between the auction revenues under the discrete rounds treatment and the auc-

tion revenues under the continuous time treatment, suggesting that the game modeled in the

4see e.g., www.consumer.ftc.gov/articles/0037-online-penny-auctions.
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baseline theory is capturing many of the key strategic considerations present in a pay-to-bid

auction on the internet. Risk aversion (measured using the Eckel & Grossman 2008 method)

has the predicted effect on number of bids placed relative to risk neutral participants, but the

results for risk seeking participants are inconclusive. I find strategic sophistication to be a

strong determinant of individual auction outcomes. I observe the use of signaling strategies,

but these strategies were not generally successful. This ineffectiveness may be in part due

to the shortened auction lengths and symmetries built in to the experiment design. Another

key finding is that many less successful participants cease participation entirely over the

course of the session. The findings that over-bidding decreases with experience and that

less successful participants learn to leave supports the hypothesis of Wang & Xu (2013) that

pay-to-bid auction websites profit from a “revolving door of new bidders.”5 For a fixed pool

of participants, it does not appear that the pay-to-bid auction format can generate sustained

revenues in excess of the value of the prize.

2.2 Background

The pay-to-bid auction, which has similarities to the dollar auction (Shubik 1971), the bucket

auction (Carpenter, Holmes & Matthews 2011, 2012), the war of attrition (Smith 1974,

Krishna & Morgan 1997) and the all-pay auction (Baye, Kovenock & de Vries 1996, Krishna

& Morgan 1997), is distinguished by the following features: Participants choose between

bidding and not bidding. When a participant bids, the auction price increases by a small

fixed increment and that participant is charged a non-refundable fee. A participant may

bid multiple times during the auction, but must pay the non-refundable fee each time she

bids. When there is no time left on the countdown clock, the last participant to place a bid

5 Wang & Xu (2013) show that newer bidders tend to lose money and and experienced bidders tend
to make money, but it is difficult to assess why this is the case using field data due to the presence of
confounding factors. The experimental study in this chapter avoids the problem by controlling for these
confounding factors.
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wins the prize and pays the end auction price. Like an English auction, whenever a bid is

placed in the last few seconds, a small amount of time (i.e., 15 or 20 seconds) is added to

the countdown clock. Thus, the auction can be in the “last few seconds” indefinitely.

It is clear from the structure of this auction that it is rife with the opportunity to succumb

to behavioral biases and to make mistakes. The bid fees are a sunk cost, the monetary

commitment of the active participants grows in small increments as the auction progresses,

decisions must be made in a short window of time, and each decision to not bid risks ending

the auction. Because the fees from past bids are lost forever, participants might fall victim

to the sunk cost fallacy. If we try to model these sunk costs with prospect theory and

loss aversion (Kahneman & Tversky 1979, 1991, 1992, Thaler 1980), excess revenues can be

explained by risk seeking behavior in small losses (bid fees) from the reference point (the

participant’s initial wealth).6 The growing monetary commitment of active participants may

lead to further escalation of commitment as these participants try to dig themselves out of a

hole. For instance, participants may be better able to rationalize unsuccessful bids through

further bidding (Staw 1981, Wong, Kwong & Ng 2008). Additionally, the negative emotions

that participants may encounter in this adversarial setting have been shown to increase the

likelihood of escalation (Wong, Yik & Kwong 2006, Tsai & Young 2010), although if the

participants are able to predict future regret (Wong & Kwong 2007, Ku 2008a), learn not

to escalate from prior experience (Ku 2008b) or set a mental budget to limit participation

(Heath 1995), this effect may be mitigated. Lastly, the short time between decisions may

lead to mistakes due to limited cognition (e.g., Simon 1976).

While it is easy to develop a list of behavioral phenomena such as the sunk cost fallacy,

escalation of commitment, bounded rationality, and loss aversion, that could explain the ex-

cess revenues of pay-to-bid auction websites, it is difficult to determine theoretically whether

these biases are driving excess revenues, and if so, which of these biases are the most salient.

6Alternatively, Augenblick (2012) shows a similar result by explicitly modeling naive sunk cost fallacy in
pay-to-bid auctions.
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A variety of alternative theories have been proposed that can also explain excess revenues,

including: Information asymmetries and imperfect information (Byers et al. 2010), risk lov-

ing preferences (Platt et al. 2013), shill bidding (Byers et al. 2010, Platt et al. 2013), and

signaling strategies (Byers et al. 2010, Augenblick 2012). Furthermore, evidence from field

data highlights the important influence that heterogeneities between participants have on

individual outcomes. Both strategic sophistication and experience (Wang & Xu 2013),7 and

reputation and signaling behavior (Goodman 2012) have been shown to play a role in indi-

vidual auction outcomes. While all of the above findings are plausible explanations for the

excess revenues of pay-to-bid auction websites, this analysis is complicated by the complexity

of the pay-to-bid auction format. For the sake of simplicity and tractability, the baseline

pay-to-bid auction theory of Hinnosaar (2010), Augenblick (2012), and Platt et al. (2013)

makes many abstractions. But until the theoretical model is better understood, we have no

way of knowing whether the game modeled by the baseline theory bears any resemblance to

the game being played by the participants on the pay-to-bid auction websites.

While this is the first manuscript to experimentally study the pay-to-bid auction format and

the first to compare it to the discrete time version modeled in the baseline theory, this work

fits into a large body of experimental work on related auction formats. Lam (2011) studies

the impact of an exit option on revenues in Augenblick’s (2012) discrete time version of the

pay-to-bid auction format. He finds revenues slightly below the value of the prize in the no

exit treatments and well below the value of the prize in the treatments with exit.8

Carpenter et al. (2011, 2012) find revenues well above the value of the prize in the procedu-

7 Wang & Xu use an adaptation of Camerer, Ho & Chong (2004) that is especially suited for measuring
sophistication in pay-to-bid auctions.

8The discrete time pay-to-bid auction format analyzed in this chapter differs from the format used in
Lam (2011) in two key ways. First, each bidder pays the bid fee regardless of whether that bidder is selected
to be the next round’s high bidder. This allows for a closer comparison to the continuous time pay-to-bid
auction, in which all bids are accepted. Second, to discourage the use of history dependent strategies such as
signaling, the identity of the high bidder is not revealed. This allows for a closer comparison to the theory,
as the equilibrium concepts used in the theory do not allow for history dependent strategies. The absence of
these design elements in Lam (2011) could serve to lower average revenues relative to the format analyzed
in this chapter.
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rally similar bucket auction, but the proceeds from these auctions go to charity and so it is

difficult to disentangle the revenue generated by selfish motives from the revenue generated

by charitable motives.

Much of the contest literature has found evidence of over-bidding in lottery and all-pay

contests. As the pay-to-bid auction is a type of dynamic contest, we might expect to observe

some over-bidding as well. Of key interest is the cause of any over-bidding, and whether

this over-bidding persists as subjects gain experience. For example, Sheremeta (2011) finds

evidence that mistakes play a role in over-bidding, Amaldoss & Rapoport (2009) attribute

this over-bidding to strategic sophistication, Gneezy & Smorodinsky (2006) find that over-

bidding depends on the number of players, and Herrmann & Orzen (2008) link over-bidding

with spiteful preferences. It is also possible that the dynamic nature of the pay-to-bid auction

may turn this result on its head, as Hrisch & Kirchkamp (2010) do find over-bidding in the

static all-pay auction, but find under-bidding in the dynamic war of attrition, despite the

theoretical similarities, and Lam (2011) finds under-bidding in the discrete time pay-to-bid

auction. In addition, there is evidence that experience diminishes over-bidding in the all-

pay auction (Davis & Reilly 1998), and so we might expect any over-bidding to diminish

with time. It is unclear whether the sunk cost fallacy will play an important role in this

setting. The fee structure of pay-to-bid auctions will clearly generate sunk costs, and so

we might expect to observe sunk cost fallacy as has been found in more general settings

(e.g., Arkes & Blumer 1985) but other studies find the effect to be small (e.g., Friedman,

Pommerenke, Lukose, Milam & Huberman 2007) and the results of Sheremeta (2010) for

multi-stage contests are inconsistent with sunk cost fallacy all together.
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2.3 Baseline Theory

2.3.1 The Model

I first summarize the theoretical models presented in Hinnosaar (2010), Augenblick (2012),

and Platt et al. (2013). In this summary, I devote particular attention to the case where

decisions are simultaneous and multiple bids can be accepted (i.e., the bid fee is charged

for every bid no matter what the outcome), both key features of pay-to-bid auctions on the

internet. The main abstraction of this model is that decisions are made in a series of discrete

rounds rather than in continuous time, but Augenblick (2012) shows that this abstraction

should not change any of the payoff-relevant outcomes.

The baseline model is as follows. A single item is put up for auction. A non-participating

auctioneer conducts the auction and a non-participating seller commits to sell the item at

the end auction price. Any revenues generated by the auction will be divided in some

manner between the auctioneer and the seller. There are n ≥ 2 participants in the auction,

indexed by i ∈ {1, 2, ..., n}, who share a known common value Π for the item. The number

of participants n is fixed throughout the auction and n is known to all participants. The

auction is conducted over a series of discrete rounds, indexed by t ∈ {0, 1, 2, ...}. In all rounds

t > 0, exactly one of the n participants is designated as the “high bidder,” a title that is

awarded based on the outcome of the prior round, and the remaining n− 1 participants are

designated as “non-leaders.” The auction starts in round t = 0 at initial price P0 ≥ 0 with

no high bidder.

In a given round t, non-leaders simultaneously choose between bidding and not bidding. The

high bidder does not participate in the round. If a participant chooses to bid, the auction

price increases by the price increment ε > 0, the participant pays a non-refundable bid fee

of C (ε < C < Π − ε), and the participant gains a chance to become next round’s high
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bidder. The high bidder is chosen at random from the set of all bidders and so the chance

that this participant will become next round’s high bidder is 1/k where k is the number of

bids placed in the round. If a participant chooses not to bid, this participant does not pay

the bid fee, but also does not have a chance of becoming the next round’s high bidder. If

all non-leaders pass in round t > 0, then the auction ends and the high bidder wins the

item at price Pt. If all non-leaders pass in round t = 0, then the auction ends and the seller

keeps the item. Hinnosaar (2010) shows that the risk neutral symmetric Markov perfect

equilibrium is recursively characterized by Equations A.1 and A.2 (see Appendix).9 Using

these equations, Hinnosaar (2010) provides bounds on expected revenue in the risk neutral

symmetric Markov perfect equilibrium. However, many asymmetric and non-Markovian

equilibria also exist. I generalize these propositions to include all equilibria in Theorem 2.1

below.

Theorem 2.1. Let E(R) denote the expected auction revenue conditional on sale in any

risk neutral equilibrium characterized by (A.1) and (A.2). Then E(R) has the following

properties:

i E(R) ≤ Π.

ii For all values of the auction parameters, there exists an equilibrium such that E(R) =

Π. This equilibrium may not be Markov perfect.

Proof. See Appendix A.3.

This theorem suggests that expected revenue in the risk neutral equilibrium should equal

at most the value of the item.10 Because there always exist equilibria such that E(R) = Π

9Markov perfection (Maskin & Tirole 2001) requires that a participant’s probability of bidding depend
only on payoff relevant-past events. In this context, all payoff relevant information is captured by the current
price pt. History dependent strategies such as signaling or cooperation are not considered.

10This is a weaker statement than can be made in the framework of Augenblick (2012) and Platt et al.
(2013), in which expected revenue equals the value of the item, and is due to the possibility of multiple bids
being accepted in a round.
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and never exist equilibria such that E(R) > Π under risk neutrality, I use E(R) = Π as

a conservative baseline prediction to compare against average revenue in the experiment

sessions. If instead the assumed equilibrium is such that E(R) < Π then this would only

serve to exaggerate any difference between the theoretical prediction and the empirical result

in the case of over-bidding.

Another important consideration is the effect of risk preferences on expected revenue. Platt

et al. (2013) show in their model of pay-to-bid auctions that when participants are symmet-

rically risk averse expected revenue decreases, and when the participants are symmetrically

risk loving expected revenue increases. The following theorem also holds for this model.

Theorem 2.2. (Platt et al. 2013) Let E(R) denote the expected auction revenue conditional

on sale in the symmetric equilibrium characterized by (A.1) and (A.2). Then E(R) has the

following properties:

i E(R) < Π when participants are symmetrically risk averse.

ii E(R) > Π when participants are symmetrically risk loving.

To summarize the predictions from the baseline theory: given any full information pay-to-

bid auction where participants make bidding decisions simultaneously in a series of discrete

rounds by maximizing expected utility, expected revenue is no greater than the value of the

item unless the participants are sufficiently risk loving in aggregate.

2.3.2 Reasons Why The Baseline Model Might Fail

Because the profit margins of pay-to-bid auction websites are empirically estimated to be

much greater than zero (e.g., Augenblick 2012, Platt et al. 2013), it is clear that the base-

line model fails to capture an important factor that is relevant in a real pay-to-bid auction.
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Several additional theories have been proposed in an attempt to explain this discrepancy be-

tween the theoretical prediction of zero profits and the empirical estimate of positive profits.

While each of these explanations is plausible, we must turn to empirical evidence to deter-

mine the true cause of this discrepancy. Field data is of limited use for these purposes as the

baseline theory makes many abstractions from the strategic environment of a real pay-to-bid

auction on the internet.11 For example, the number of participants is not generally known,

participants may have different valuations for the item and may face different bid costs, the

auctions are conducted in continuous time rather than discrete rounds, and because the user

ID of the high bidder is made public knowledge, bidder reputation and signaling strategies

may be a factor. The presence of these confounding factors makes direct comparison to the

theory difficult. On the other hand, in a controlled laboratory experiment I can exactly

replicate the strategic environment developed in the baseline theory to better differentiate

between these explanations. A key contribution of this chapter is its ability to isolate the

proximate cause of seller profits in pay-to-bid auctions. I summarize the theories below.

1. Information asymmetries and imperfect information

The baseline model assumes perfect information about the auction parameters (n,Π, C, ε),

and that all participants face the same auction parameters. However, only the bid increment

ε is known with certainty. In a pay-to-bid auction on the internet, only “bid” actions are

observed. The number of participants actively choosing “no bid” is unknown, and thus the

number of participants n is unknown. The value Π is also unknown because individual values

are private and need not be common to all participants. Lastly, because many pay-to-bid

auction websites regularly have auctions for “bid packs” (packs containing a quantity of

pre-paid bids), it is possible for some bidders to face a lower cost of bidding than others.

11This is not to say that field data is not useful for other purposes. For instance, the analyses of Wang &
Xu (2013) and Goodman (2012) shed light on important factors that can affect participant outcomes such
as experience, sophistication, reputation, and signaling behavior.
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Suppose that n− 1 participants believe that all n participants face the auction parameters

(n,Π, C, ε), but that 1 participant knows she faces a higher value Π′ or a lower cost C ′.

Byers et al. (2010) show that this will increase expected revenue E(R) so long as the n− 1

other participants do not realize the asymmetry. In addition, Byers et al. (2010) show that

when participants systematically underestimate the number of other participants n this will

increase expected revenue E(R). To control for these possibilities, I provide full information

about the auction parameters in the experiment.

2. Risk loving preferences

The baseline model also assumes that participants are risk neutral. If instead the participants

are risk loving, this would increase expected revenue. As pay-to-bid auction participants are

faced with relatively low winning probabilities and seemingly random auction outcomes with

high rewards, these auctions do have the feel of a lottery. Thus it is plausible that risk lovers

would be drawn to pay-to-bid auction websites by the thrill of winning, and that risk averse

and risk neutral individuals would learn to avoid the websites due to the losses generally

incurred by participants. This selection story, suggested by Platt et al. (2013), may help

to explain the large profits of pay-to-bid auction websites. I control for the possibility of a

selection effect by drawing a random sample of participants from a large and diverse subject

pool. I also measure risk preference to assess whether risk loving participants are a driving

force behind the large seller profits.

3. Shill bidding

Another possible explanation for the large profits is the presence of shill bidders. A shill

bidder is a participant who is employed by the seller to bid at key points in the auction to

keep the auction alive and increase average revenues. Platt et al. (2013) show that when
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a shill bidder is present and attempts to blend in by playing the optimal bidding strategy,

expected revenue is unchanged. There will be more bids when the shill bidder is present, but

because the shill bidder is not charged bid fees and cannot actually buy the item this increase

in bids does not affect revenue. However, as Byers et al. (2010) point out, if the shill bidder

deviates from the optimal strategy by over-bidding at key points, this will increase expected

revenue so long as the auction participants cannot detect the shill bidder’s behavior. There

are no shill bidders in this experiment and so this factor is controlled for.

4. Signaling strategies

Both Augenblick (2012) and Byers et al. (2010) note how signaling behavior may increase

expected revenue. Suppose participant i employs the strategy: bid with certainty no matter

what the price. Then the best response of all participants j 6= i is to never bid. This

asymmetric equilibrium, which exists for all choices of the auction parameters (n,Π, C, ε),

results in participant i winning the item after a single bid for a profit of Π−C − ε. As this

sort of equilibrium is quite favorable for participant i, participant i might try to signal this

strategy (out of equilibrium) by bidding with high frequency and by immediately outbidding

any opponents. If participant i is successful in implementing this strategy, then expected

revenue will decrease substantially. However, if multiple participants attempting to play

this strategy enter into a game of chicken, the resulting bidding war may serve to increase

auction revenue. To assess the impact of signaling, I conduct some treatments where the

ability to signal is limited (i.e. bid decisions are revealed simultaneously and the identity of

bidders is not known) and in the other treatments, where signaling is not limited, I measure

the amount of signaling and its effectiveness.
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5. Behavioral Biases

Augenblick (2012) also suggests that sunk cost fallacy may help to explain the large profits of

pay-to-bid auction websites. He shows that when participants experience regret from placing

bids that do not win the auction and when these participants naively underestimate their

future regret, this will increase auction revenue. Alternatively, the participants we observe

in internet pay-to-bid auctions may be boundedly rational or computationally limited. The

optimal bidding strategy is complex and must be solved numerically via backwards induction.

For this reason, it is unlikely that a new participant would arrive knowing the optimal

strategy. The more likely scenario is that a population of symmetric agents participating

in a series of identical pay-to-bid auctions might learn over time to bid as if the symmetric

equilibrium were being played. If this were the case and if new participants had a tendency

to bid more frequently than is optimal given the number of other participants, expected

revenue would increase in the short run, until behavior converged to the equilibrium level.

2.4 Experiment Design

2.4.1 Basics

I conducted 6 experimental sessions with a total of 192 subjects. Treatment variables are

the number of participants per auction, the strategy space, and the number of auctions in

a session. The remaining parameters are held constant across auctions. Each session had

between 20 and 39 subjects who were randomly matched into groups of 3 or 5 at the beginning

of every auction. Subjects participated in 1 practice auction and 8 real auctions in each the

five standard length sessions and 1 practice auction and 20 real auctions in the long session

(denoted by “L”). Thus, between 32 and 120 real auctions were conducted in each session
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and 456 auctions were conducted in total. The sessions took place during November of 2011

and January and April of 2012 in a computer laboratory at a large public university. The

experiment was programmed and conducted with the software z-Tree (Fischbacher 2007).

Screenshots of the experiment are shown in Figure A.1. Subjects were students who had

previously registered to be in the laboratory subject pool, and were recruited by E-mail

solicitation. Subjects were not allowed to participate in more than one session. At the

end of each session, subjects chose their preferred show-up payment and then answered a

short questionnaire. The questionnaire asked a variety of demographic questions (i.e., age,

academic status, courses taken, gender, and major), and asked how the subject decided when

to bid and when not to bid. This information is summarized in Table 2.1.

I utilize a between subjects design rather than a within subjects design to ensure an ad-

equate number of trials for behavior to converge in case of learning effects. In the first

session, denoted by “Discrete3,” bid decisions were made simultaneously in a series of dis-

crete rounds and there were 3 participants per auction. In the second and third sessions,

denoted by “Discrete5-1” and “Discrete5-2,” bid decisions were made simultaneously in a

series of discrete rounds and there were 5 participants per auction. In the fourth session,

denoted by “Continuous3,” bid decisions were made in continuous time and there were 3

participants per auction. In the fifth and sixth sessions, denoted by “Continuous5-1” and

“Continuous5-2 (L),” bid decisions were made in continuous time and there were 5 partici-

pants per auction. The Discrete5 and Continuous5 treatments were split over two sessions

because the computer laboratory could not accommodate the desired number of groups in

a single session. As can be seen in Table 2.1, there were a large number of groups for each

treatment condition and so it is unlikely that my results are driven by sampling variation.

Consistent with this claim, I cannot reject that average revenue was identical across the two

Discrete5 sessions or across the first 8 rounds of the Continuous5 sessions.

Subjects earned $1.00 for each 1.00 of experimental currency earned during the session. In
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Table 2.1: Session Information

Major*

Session
Number of 

subjects
Number of 

groups
Percent 
male*

Percent 
with 1+ 
statistics 
courses*

Percent 
Business or 
Economics

Percent 
Psychology 
or Cognitive 

Science

Percent Other 
Social 

Science, 
Sociology, 

Criminology

Percent 
Physical 
Science / 

Engineering

Percent Life 
Science / 
Biology / 

Public 
Health

Percent 
Humanities 

or 
Undecided/u

ndeclared

Average 
take-home 
earnings**

All 192 48 50% 60% 21% 7% 15% 28% 23% 6% $22.66

Discrete3 33 11 39% 61% 30% 6% 18% 21% 18% 6% $20.57

Discrete5-1 35 7 34% 60% 29% 11% 11% 31% 17% 0% $19.43

Discrete5-2 20 4 60% 75% 25% 15% 30% 10% 20% 0% $19.03

Continuous3 39 13 56% 41% 21% 0% 8% 36% 23% 13% $21.46

Continuous5-1 35 7 49% 57% 9% 9% 14% 26% 34% 9% $19.71

Continuous5-2 (L) 30 6 67% 80% 17% 3% 13% 37% 27% 3% $36.16

Table 1:  Session Information

Notes:  * denotes information obtained from the questionnaire.  ** includes the show up payment

addition, subjects received $2.00 at the beginning of the session to prevent bankruptcy, as

well as a payment for showing up. The amount of this show-up payment ranged from $0.25

to $12.25 and was determined based on the subject’s preference over three lotteries and the

outcome of the selected lottery. The average take-home amount was approximately $20 for

80 minutes of participation in the standard length sessions and approximately $36 for 120

minutes of participation in the long session.

2.4.2 A Single Auction

Subjects are randomly assigned to a group of 3 or 5 participants at the beginning of each

auction and shown a “start” screen (Figure A.1 (a)), with information on the auction pa-

rameters. This group is not fixed and participants are randomly assigned to a new group

at the beginning of the next auction. The auction is for a commodity with common value

Π = 2.00. The auction starting price P0, bid increment ε, and bid fee C are 0.00, 0.10 , and

0.15 respectively. Subjects begin each auction with an endowment (referred to in the soft-

ware as “bank account”) of 1.50, which is sufficient to ensure the subjects are never budget
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constrained during the auction.12 These parameters are held constant across all sessions and

treatments. After each subject indicates she is ready by pressing the “start” button, the

auction begins. In an auction round, the subjects choose between bidding and not bidding.

The auction continues until no bids are placed in a round or until Π − Pt ≤ 0, because

winning the auction ceases to be profitable in this range. At the conclusion of the auction,

the high bidder receives the common value of the commodity less the end auction price. The

resulting profit for the high bidder is given by Π − Pt ≡ 2.00 − 0.10 × (total # of bids).

In addition, each participant (including the high bidder) receives the residual value of her

bank account as profit at the end of the auction. To test whether the losing bidders cease to

participate over time, the subjects are paid for each auction, rather than a randomly selected

auction as is commonly done when trying to induce one-shot game behavior.

2.4.3 A Single Auction Round

Each round begins with 15 seconds on the countdown clock and the countdown begins

immediately. During a round, the subjects choose between bidding and not bidding. Subjects

can place a bid at any time by pressing the “Bid” button. If a subject does not press the

“Bid” button, then no bid is placed. Placing a bid costs 0.15 and increments the auction

price by 0.10. The round ends when the countdown clock reaches zero and, in the continuous

time treatments, whenever a bid is placed. At the end of a round, both the choices that were

made and the outcome of the round are revealed. If a subject places a bid in a round, that

subject becomes the next round’s high bidder. The high bidder is not allowed to bid while

she retains this title, but receives the commodity at the end auction price if no more bids

are placed. If multiple bids are placed in a round, then the high bidder is chosen at random

from the set of participants who placed a bid in this round.

12The endowment was given in pieces, rather than in a single lump sum payment at the beginning, so as
not to encourage over-bidding. For example, Price & Sheremeta (2011) find more over-bidding in lottery
contests when the endowment is given in a single lump sum payment.
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2.4.4 Number of Auction Participants

One key treatment variable is the number of auction participants. The baseline theory sug-

gests that expected revenue will not depend on the number of auction participants, as each

individual will adjust her probability of bidding to account for the number of other partici-

pants. However, this may not be the case in practice. For example, Gneezy & Smorodinsky

(2006) find that over-bidding is increasing in the number of participants in all-pay auctions.

If participants are bad at adjusting the probability of bidding to account for the number of

other participants, this could be one reason why pay-to-bid auction websites have revenue

in excess of the value of the prize. The two auction group sizes used in this experiment

are 3 and 5. These group sizes were chosen to ensure that a large amount of data could be

collected (smaller groups yield more auction level data for a given number of participants),

while also providing sufficient variation in the treatment variable. Because the high bidder

may not place a bid, there is one less active participant after the first round. Thus, 3 is

the smallest group size that can accommodate multiple participants in the later rounds of

the auction. The group size 5 doubles the number of participants in the later rounds of the

auction relative to 3.

2.4.5 Strategy Space

Another key treatment variable is the strategy space. The baseline theory assumes that

participants act simultaneously in a series of discrete rounds, but pay-to-bid auctions on the

internet are conducted in continuous time. Augenblick (2012) shows that the abstraction

from continuous time to simultaneous rounds should not theoretically affect auction revenue

because any equilibrium in the continuous time model can be converted into a payoff and

outcome equivalent equilibrium in the discrete time model. However, this result still relies

on the assumption that there is no additional informational content in the timing of a
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bid. Anyone watching a live pay-to-bid auction would see almost immediately that this

assumption may be violated. Bids are clustered towards the beginning and end of the

countdown clock, and the average timing of bids varies substantially across individuals. Wang

& Xu (2013) find evidence in auction data that different levels of bidder sophistication play

a role in this behavior. In addition, Goodman (2012) finds evidence of signaling behavior in

auction data, suggesting that non-Markovian strategies are played. These deviations from

equilibrium behavior in the baseline theory may have an effect on the revenue and so it is

possible that differences in the strategy space can explain why pay-to-bid auction sites have

revenues in excess of the value of the prize.

To test for this possibility I vary the strategy space between sessions. In one treatment, the

subjects make decisions simultaneously in discrete rounds as modeled in the baseline theory,

and in the other treatment, the subjects make decisions in continuous time as they would

in a pay-to-bid auction on the internet. In the discrete rounds treatment, subjects have 15

seconds to decide between bidding and not bidding and the outcome of these decisions is not

revealed until the countdown clock reaches 0. Because the timing of a bid has no strategic

value in this context and bids are revealed simultaneously, this treatment is equivalent to

the game modeled in the baseline theory. In addition, no identifiers are given to the subjects

in this treatment so as to not encourage the use of Markov strategies (signaling strategies in

particular). Omitting the identity of the bidder(s) each round makes it more difficult to use

these Markov strategies effectively, and so the strategies played are more likely to conform

with the strategies analyzed in the baseline theory. In the continuous time treatment, sub-

jects also have 15 seconds to decide between bidding and not bidding, but now the outcome

of the bid decision is revealed and the clock is reset as soon as a bid is placed. Here the

timing of a bid does have strategic value as information is revealed instantaneously. The

subjects are given identifiers in this treatment to allow for Markov strategies to be played.13

13Restricting the timing of decisions and withholding the identity of the bidder(s) both effectively reduce
the set of strategies that can be played. Thus, the combination of these restrictions represents a single change
in the strategy space.
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2.4.6 Measuring Risk Preferences

Risk preferences may affect the bid probabilities used in equilibrium, and thus may affect

expected revenue. For instance, Platt et al. (2013) show that when the pay-to-bid auction

participants are risk-seeking, expected revenue may be greater than the value of the prize.

To account for the effect these risk preferences have on expected revenue, I elicit the subjects

risk preferences at the end of the experiment session. With this measure of risk aversion,

I then categorize the subjects as risk averse, risk neutral, or risk loving. The lotteries are

designed with simplicity in mind, in accordance with the method of Eckel & Grossman

(2008). In particular the lotteries involve two outcomes, each with 50% probability, and the

lotteries are increasing linearly in standard deviation.

Each subject is asked to select her preferred show-up payment from a set of three possible

lotteries. The lotteries are presented in a random order to ensure there is no ordering bias to

the selections. One lottery gives $7 with probability 100%, the second lottery gives $10.25

with probability 50% and $4.25 with probability 50%, and the third lottery gives $12.25

with probability 50% and $0.25 with probability 50%. This decision is framed in the context

of a choice of show up payment so that subjects will view the lottery payoffs separately

from prior earnings in the experiment. If this is the case, then a subject with constant

relative risk aversion (CRRA) coefficient greater than 0.4 should prefer the first lottery, a

subject with CRRA coefficient less than −0.4 should prefer the third lottery, and a subject

with CRRA between −0.4 and 0.4 should prefer the second lottery. Thus, the first lottery

will generally appeal to risk averse subjects, the second lottery will generally appeal to risk

neutral subjects, and the third lottery will generally appeal to risk loving subjects. If a

subject does take her prior earnings into account when making her selection, this will serve

to increase the range of coefficients for which she prefers the “risk neutral” lottery, making

the measure cruder. Regardless of which case occurs, so long as the subjects are consistent in

how they evaluate these lotteries (i.e., they all generally do not account for prior earnings or
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they all generally do account for prior earnings), this approach will appropriately categorize

subjects. The most risk averse subjects will be categorized as risk averse, the most risk loving

subjects will be categorized as risk loving, and the subjects in between will be categorized

as risk neutral.

2.4.7 Hypotheses

I develop three testable hypotheses based on the predictions of the baseline theory.14

Hypothesis 1:

For all treatments, average revenue conditional on sale R̄ will be less than or equal to

the value of the item Π (R̄ ≤ Π).

As shown in Theorem 2.1 and Corollary A.1, E(R) should be no more than the value of the

item Π. This result does not depend on the number of participants n and it does not depend

on the strategy space.

Hypothesis 2:

For both group sizes (n = 3, 5), average revenue conditional on sale in the discrete

round sessions R̄d will equal average revenue conditional on sale in the continuous time

sessions R̄c (R̄d = R̄c).

The baseline theory suggests that equilibria in the continuous time setting are equivalent to

equilibria in the discrete time setting in terms of expected payoffs. Thus average revenue

conditional on sale should be the same across formats.

14In formulating Hypotheses 1 and 2, I assume that the participants are not risk loving in aggregate. As
will be seen later, most subjects measure as either risk neutral or risk averse, and so this assumption appears
to be satisfied.
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Hypothesis 3:

For both group sizes (n = 3, 5), risk averse individuals will bid the least on average,

risk loving individuals will bid the most on average, and risk neutral individuals will

be somewhere in between.

The baseline theory suggests that expected revenue will be lower when participants are

risk averse and higher when participants are risk loving. Ultimately this manifests itself

as a decrease in the aggregate number of bids when participants are risk averse and an

increase in the number of bids when participants are risk loving. Thus, we would expect risk

averse individuals to bid the least, risk loving individuals to bid the most, and risk neutral

individuals to bid a middling amount.

2.5 Results

All hypothesis tests reported in this section are also summarized in Tables A.1 and A.2.

Standard errors used for hypothesis testing are clustered at the session-auction level to ac-

count for possible dependencies within auction periods. The random re-matching procedure

ensures no group level dependencies across auction periods.

2.5.1 Hypothesis 1

For each auction in which at least one bid was placed, I record the revenue of this auction in

dollars. Auctions in which no bids are placed are excluded as the item was not sold.15 This

yields average revenue conditional on sale, which can be directly compared to the revenue

predictions of the baseline theory. Average revenue is reported by session and auction number

15In practice, items that are not sold on a pay-to-bid auction website can be re-listed at negligible cost on
a later date. Thus, it is easier to directly compute gross profits from revenues when non-sales are excluded.
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in Table 2.2. Average revenues in the Discrete3, Discrete5-1, Discrete5-2, Continuous3,

Continuous5-1, and Continuous5-2 (L) sessions are $2.22, $3.10, $3.02, $2.32, $2.94 and

$2.90 ($3.06 for the first 8 auctions) respectively. As the Discrete5-1 and Discrete5-2 sessions

and the Continuous5-1 and Continuous5-2 (L) each experienced the same treatment, I first

test whether average revenue is the same between these sessions. When comparing the

average revenue over the first 8 auctions from each of these sessions, I cannot reject the

null hypothesis of equal means (p-values 0.838 and 0.782 respectively). Thus I pool the

data from these sessions when possible in the remaining hypothesis tests. The resulting

averages for the first 8 auctions of the Discrete5 and Continuous5 treatments are $3.07 and

$3.00 respectively. For all treatments, I test whether average revenue is less than or equal

to the $2 value of the item. I reject this hypothesis at the 0.01 level for the Discrete5 and

Continuous5 treatments, and at the 0.05 level for the Continuous3 treatment. I cannot

reject that average revenue in the Discrete3 treatment is less than or equal to $2 (p-value

0.140). The above analysis casts doubt on Hypothesis 1, but it does not take into account the

Table 2.2: Average Revenue by Session and Auction Trial

Auction Trial

Session 1 2 3 4 5 6 7 8 9 10 Average

All 3.10$  2.47  2.98  2.47  2.93  2.05  2.52  2.22  -- -- 2.68$    

Discrete3 2.25$  2.17  3.00  1.63  3.04  2.41  1.75  1.78  -- -- 2.22$    

Discrete5-1 4.14$  2.70  3.38  3.42  3.39  1.83  2.96  2.60  -- -- 3.10$    

Discrete5-2 1.58$  3.19  3.25  2.83  4.31  2.42  2.92  3.17  -- -- 3.02$    

Continuous3 2.88$  2.13  2.96  1.67  2.50  1.96  2.54  1.94  -- -- 2.32$    

Continuous5-1 4.29$  2.93  2.54  3.82  2.32  1.86  3.11  2.68  -- -- 2.94$    

Continuous5-2 (L) 3.50$  2.25  3.95  2.38  4.33  3.79  1.85  2.38  2.96  3.40  

Continuous5-2 (L) (11-20) 3.29$  3.04  2.17  3.00  3.08  2.88  3.30  1.63  3.60  1.50  

Notes: Auctions in which the item was not sold are excluded.

2.90$    

possibility of learning over time. As can be seen in Figure 2.1, there is substantial variability
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in the average revenue across auction trials but average revenue tends to lie above the $2

value of the item, especially in early auctions. I find a significant downward trend in average

revenues, controlling for possible serial correlation, in all but the Discrete5-2 session (p-value

0.588). This trend is significant at the 0.01 level for the Discrete5-1 session, the 0.05 level for

the Continuous5-1 and Discrete3 sessions, and the 0.1 level for the Continuous5-2 (L) and

Continuous3 sessions. To accommodate this possibility, I also test Hypothesis 1 for the last

auction from each treatment using the estimated regression coefficients. Assuming average

revenues of $2.00 in the prior round, predicted revenues in the last auction of the Discrete3,

Discrete5-1, Discrete5-2, Continuous3, and Continuous5-1 and Continuous5-2 (L) sessions

are $1.41, $2.57, $2.86, $2.19, $2.64, and $2.53 respectively. For all sessions, I test whether

these predicted values less than or equal to the $2 value of the item. I reject this hypothesis

at the 0.05 level for the Discrete5-1 session and at the 0.1 level for the other 5 participant

sessions. I cannot reject this hypothesis for the Discrete3 or Continuous 3 sessions (p-values

1.000 and 0.156). Although I cannot reject that the predicted values in the last period of

the 3 participant sessions are less than or equal to $2, it is worth noting that in all but

one case the predicted value lies above the theoretical prediction. This is even the case

in the 20 round Continuous5-2 (L) session. That revenues have yet to converge to the $2

theoretical prediction even after such a lengthy period is indicative of a broader behavioral

phenomenon. One possible explanation for this behavior, which is consistent with the data

and prior research on contests, is that subjects have difficulty learning to bid at an optimal

level. Once involved in the bidding, these subjects exhibit a persistent bias towards over-

bidding. However, as I will show later, individual subjects may learn to avoid participation

altogether, especially after incurring large losses. The consistent drop in revenue in the later

rounds of a session also happens to coincide with the largest drop in observed participation.

Thus it appears that subjects are eventually learning not to bid at all, rather than to bid

less.

As average revenues in the treatments with 5 participants are significantly greater than
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Figure 2.1: Average Revenue by Auction Trial
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the value of the item and this difference remains in the later auctions, Hypothesis 1 is

rejected. Subjects exhibit a persistent bias towards over-bidding. This bias becomes less

severe as subjects gain experience, but it does not disappear even with moderate levels of

experience. Also, in the discrete round treatments, the aggregate effect of this bias depends

on the number of participants n. I find that average revenue is greater when n = 5 than
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when n = 3 (significant at the 0.01 level). This finding may help to explain why pay-to-

bid auction websites have such large average profits. These auctions generally have a large

number of bidders and so even a small individual bias towards over-bidding may lead to a

lot of over-bidding in aggregate. However, if bidders learn to stop participation altogether,

this can lead to steep declines in average revenue as is seen in the later auctions of each

treatment.

It is also worth noting that these revenue estimates are a lower bound on the true bias

towards over-bidding. In this experiment, participants were not allowed to bid once the

auction price reached $2 as this could potentially lead to bankruptcy.16 This limit was

reached in 57 of the 456 auctions I conducted (15 of which occurred sometime after the first

five auctions) even though any bid placed after the price reached $1.80 was guaranteed to

lose money. This suggests that participants may have been willing to bid past $2 if given

the opportunity. While this behavior is seemingly irrational, it is consistent with findings in

other experimental settings (e.g., Gneezy & Smorodinsky 2006, Herrmann & Orzen 2008).

2.5.2 Hypothesis 2

For both levels of the number of participants n, I compare average revenue in the discrete

round treatment to average revenue in the continuous time treatment. In both cases, I

cannot reject the null hypothesis that average revenue is the same across the two treatments

(p-values 0.680 for n = 3 and 0.507 for n = 5). I interpret this as confirming Hypothesis

2. This finding is encouraging as it suggests that the abstraction from continuous time to

discrete rounds does not fundamentally change the auction dynamics (at least when using

the model where multiple bids can be accepted). Thus, further efforts to develop the theory

16The obvious disadvantage of this restriction is that it places an upper bound on the observed over-
bidding. However, with this restriction in place, more data can be collected in the allotted time (more
rounds = longer auctions). This restriction also ensures that participants are never budget constrained given
the initial endowments and allows for a larger proportion of earnings to be tied to decisions rather than
given in the form of a flat payment to prevent bankruptcy.
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of pay-to-bid auctions can still make headway using this simpler framework.

2.5.3 Hypothesis 3

I code each participant as risk averse, risk neutral, or risk loving based upon the participant’s

preferred lottery. In total, 84 subjects measured as risk averse, 85 subjects measured as risk

neutral, and 23 subjects measured as risk loving. I then compute the average number of bids

placed per auction by the participants in each class of risk preferences. In order for average

revenue to equal the $2 prize, the average number of bids placed by each participant per

auction would need to be 2.67 in the n = 3 treatments and 1.6 in the n = 5 treatments. As

can be seen in Figure 2.2, the average number of bids placed per auction by risk averse, risk

neutral, and risk loving participants in the n = 3 treatments is 2.4, 3.1, and 2.4 respectively.

I reject the null hypothesis that all 3 populations are equal at the 0.05 level. Risk neutral is

significantly greater than risk averse (0.01 level) but risk loving is not significantly greater

than risk neutral (p-value 0.936). The average number of bids placed by risk averse, risk

neutral, and risk loving participants in the n = 5 treatments is 2.0, 2.4, and 2.3 respectively.

In this case, I cannot reject the null hypothesis that all 3 populations are equal (p-value

0.428). Thus, I find weak evidence that risk preferences do affect the frequency of bids. As

expected, risk averse participants bid less than risk neutral participants, but I cannot reject

that risk seeking participants bid less than or equal to risk neutral participants. It is difficult

to draw broad conclusions from the behavior of the risk seeking participants in particular due

to the limited number of observations in this category. Only 7 participants measure as risk

neutral for the n = 3 treatments and 16 measure as risk neutral for the n = 5 treatments. In

this limited sample, I do not find evidence that risk seeking participants bid systematically

more than risk neutral participants.17 As the hypothesized relationship holds in the n = 3

17I see no theoretical justification as to why risk seeking participants would bid less than risk neutral
participants. One possibility is that the mean of this relatively small sample of risk lovers is not indicative
of the population mean. Another possibility is that the risk loving category is capturing some unobservable
factor in addition to risk loving preferences. For example, the 12 risk loving subjects from the continuous
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Figure 2.2: Bids by Risk Preference
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treatments for risk averse and risk neutral subjects, but not for risk loving subjects, and

there is not a significant order effect in the n = 5 treatments my finding for Hypothesis 3

is inconclusive. I do however find strong evidence that risk seekers are not necessary for

pay-to-bid auctions to generate revenues well above the value of the prize. In the n = 5

treatments, even risk averse participants average more than 1.6 bids/auction it takes for the

seller to break even. In the n = 3 treatments, risk neutral participants bid more than the

2.67 bids/auction it takes for the seller to break even, and while risk averse participants bid

slightly less than this threshold, the average number of bids per item sold is 2.63 yielding

average losses of a mere $0.03/auction.

time treatments measure as less sophisticated on average than the other subjects (although not significantly
so).
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2.5.4 Individual Outcomes

Wang & Xu (2013) and Goodman (2012) use the timing of bids to show that factors such as

sophistication and signaling behavior can have a large impact on individual auction outcomes.

Key to both analyses is the strategic value of the timing of a bid in the continuous time

setting.

Consider a single sophisticated participant, who is cognizant of the strategic value of the

timing of a bid, and n − 1 unsophisticated participants, who act at random times in the

countdown clock.18 Suppose that the sophisticated participant is currently a non-leader

and the expected continuation value for a non-leader at the current auction price is greater

than or equal to 0 (V (pt) ≥ 0). First consider the case where the expected continuation

value for a non-leader at pt+1 is greater than or equal to the expected continuation value

for the high bidder at pt+1 less the cost of bidding (V (pt+1) ≥ V ∗(pt+1) − C). In this case,

if another participant will place a bid, the sophisticated participant prefers not to place

a bid. Thus, if the sophisticated participant knows the other participants are bidding at

random times, that participant should wait until the last second to place a bid to ensure

that she only places a bid when no other participant will bid. Next consider the case where

V (pt+1) < V ∗(pt+1) − C. In this case, the sophisticated participant prefers to act first to

ensure that she is the high bidder at price pt+1. Thus, the sophisticated participant is able

to improve her own individual outcomes by strategically bidding either early or late in the

countdown clock depending on which role, high bidder or non-leader, is more advantageous

in the next round.

While in practice not all opponents will be unsophisticated, the presence of some less sophis-

ticated participants gives an advantage to those who use the timing of bids strategically. In

particular, bidding in the middle of the clock is strategically inferior when the population

18While this example differs from that of Wang & Xu (2013), it is easy to understand and captures the
gist of their argument.
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contains a sufficient number of unsophisticated participants, and so Wang & Xu propose

using the proportion of middle bids as a proxy for strategic sophistication. They show that

a lower proportion of middle bids is associated with higher profits, suggesting that strategic

sophistication plays a role in individual outcomes. In addition, participants may be able

to use the timing of a bid as a signal. Bidding early in the countdown clock and bidding

frequently could signal strength (i.e., a high value, lower costs, a larger endowment) and ag-

gression. Goodman finds that participants who effectively employ signaling strategies tend

to fare better than participants who do not signal in pay-to-bid auctions on the internet.

This suggests that a participant’s perceived strength and aggression may play a role in in-

dividual auction outcomes. In my setting, because each participant is symmetric, signals

of strength are not credible. However, signals of aggression may still be credible, and so I

test for the effect of these signals. Following the method of Wang & Xu, I use proportion of

Figure 2.3: Bid Time Histogram
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middle bids as a proxy for sophistication. I classify a bid as a “middle bid” if it is placed

from the 5th second to the 12th second of the 15 second countdown clock. I chose this range

conservatively based on the bid timing histogram illustrated in Figure 2.3. As reported in
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Table 2.3 and illustrated in Figure 2.4, I find strong evidence supporting the relationship

between strategic sophistication and individual outcomes.19 Proportion of middle bids has

a strong negative correlation with the net earnings of subjects, as defined by total earnings

less initial endowment across all auctions. This relationship is significant at the 0.01 level

for the n = 3 treatment, and at the 0.05 level for the n = 5 treatment. The least squares

estimates suggest that a 1% increase in the proportion of middle bids is accompanied by

an average $0.04 to $0.08 reduction in net earnings. Furthermore, I find no statistically or

economically significant relationship between the proportion of middle bids and number of

bids for the n = 3 treatment (p-value 0.96) and only a slight (0.4%/bid) relationship for the

n = 5 treatment, so this finding is robust to the frequency of bids. As described by Good-

Figure 2.4: Net Earnings by Strategic Sophistication
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man (2012), “bidding runs” and “bid speed” are two potential ways in which a participant

could try to signal aggression. A bidding run is when a participant places multiple bids in a

row. For the purposes of this analysis, I consider any bidding run of length 3 or greater to

be a potential signal. At most, 20 bids will be placed in any given auction, and so a run of

19Values from the Continuous5-2 (L) session are taken from the end of the 8th auction for ease of com-
parison. Using the values from the 20th auction does not substantively change the results.
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Table 2.3: Strategic Sophistication Regressions

n=3 n=5

(1) (2) (3) (4) (5) (6)

% Middle Bids ‐8.421*** ‐8.476*** ‐3.620** ‐2.026

(2.680) (2.483) (1.696) (1.632)

# of Bids ‐0.087** ‐0.079*** ‐0.0001 0.004**

(0.033) (0.023) (0.002) (0.002)
Constant 0.953** 3.033*** ‐0.691* 0.591 0.121** 0.069*

(0.451) (0.884) (0.327) (0.480) (0.055) (0.036)

Notes: *significant at 0.1 level, **significant at 0.05 level, ***significant at 0.01 level.

n=3 n=5

Dependent Variable: Net Earnings Dep Var: % Middle Bids

length 3 makes up a large proportion of the total bids in an auction. In my data set, runs are

most commonly of length 3 or 4 but sometimes are as long as 10. One complication is that

a bidding run may not always be intended as a signal. We might also observe a bidding run

if two participants enter into a bidding war or if a participant succumbs to sunk cost fallacy.

To be conservative, I only consider a participant as having used a signaling strategy if that

participant has at least one bidding run in the session and also uses bid speed to signal. Bid

speed is the timing of a bid on the countdown clock. Earlier bids generally send a signal of

aggression, although as Goodman notes, when a bid is recorded at the 15 second mark it

is difficult to determine whether this is a fast bid or a result of nearly simultaneous bids in

the prior round. For this reason, and due to the relatively high proportion of bids that are

placed at the 1 second mark and the 15 second mark, I only code a participant as using the

fast bid signal if that participant places more early bids (first 4 seconds) than late bids (last

3 seconds).

In total, 8 out of 39 subjects in the Continuous3 treatment and 10 out of 65 subjects in

the Continuous5 treatment engaged in signaling behavior. As the goal of signaling in this

context is to discourage the participation of other bidders, and there are fewer participants

per auction in the Continuous3 treatment, we might expect that participants who signaled in

the Continuous3 treatment fared better than participants who signaled in the Continuous5
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treatment. I find this to be the case. Participants who signaled in the Continous3 treatment

averaged net earnings of −$0.37 which is significantly greater (0.05 level) than the −$2.10

average net earnings of participants who signaled in the Continuous5 treatment. Relative

to their counterparts who did not signal, participants who signaled did not fare very well.

Participants who did not signal in the Continuous5 treatment averaged net earnings of−$1.06

which is significantly greater (0.05 level) than the average net earnings of the participants

who signaled in this treatment. Participants who did not signal in the Continuous3 treatment

averaged net earnings of $0.04 which is greater, but not significantly so (p-value 0.32), than

the average net earnings of the participants who signaled in this treatment. As reported in

Table 2.4, the actual effect of signaling is unclear. When controlling for the number of bids

placed, signaling has a positive but insignificant effect on net earnings in both treatments.

However, participants who signaled placed 10 more bids on average than participants who

did not signal, and net earnings are decreasing in the number of bids placed. If these excess

bids can be attributed to the cost of signaling, it appears that signaling was not an effective

strategy. The apparent ineffectiveness of signaling in this setting is not entirely surprising.

Table 2.4: Signaling Regressions

n=3 n=5

(1) (2) (3) (4) (5) (6)

Signal ‐0.412 0.357 ‐1.039* 0.024 8.343** 12.096***

(0.893) (0.911) (0.597) (0.633) (3.438) (2.718)

# of Bids ‐0.092** ‐0.088***

(0.040) (0.026)

Constant 0.044 2.076** ‐1.056*** 0.457 22.032*** 17.204***

(0.404) (0.970) (0.236) (0.494) (1.557) (1.074)

Notes: *significant at 0.1 level, **significant at 0.05 level, ***significant at 0.01 level.

Dependent Variable: Net Earnings Dep Var: # of Bids

n=3 n=5

In designing this experiment, I have abstracted away from three important factors that

could make signaling effective in a pay-to-bid auction on the internet. First, in an effort to
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generate more data, I chose the auction parameters so that an auction would last no more

than 20 rounds. In many pay-to-bid auctions on the internet, the auction could last for

thousands of rounds, giving participants much more leeway to signal through bidding runs.

For example, bidding run of length 50 sends a much more effective signal than a bidding

run of length 3. Thus, as a consequence of the auction parameters I have chosen, it is more

difficult to signal through bidding runs. In addition, in this setting all participants have equal

endowments and are aware that they have equal endowments. This rules out the possibility

that the signaling party is a strong participant with a large endowment that will muscle out

the competition, a possibility that likely adds to the effectiveness of signaling in pay-to-bid

auctions on the internet. Even if participants have different intrinsic levels of aggression, the

signaling strategies that can be employed in this setting lend limited credibility. It is not

very costly for an intrinsically passive participant to signal aggression with fast bids and a

bidding run of length 3 or 4. Lastly, participants are assigned new identifiers at the beginning

of every auction. This precludes the possibility of a participant building a reputation across

auctions, a possibility that may aid in the effectiveness of signaling in pay-to-bid auctions on

the internet. So, while I find that signaling is not effective in the setting of this experiment,

this does not rule out the possibility that signaling is effective in pay-to-bid auctions on the

internet. In fact, evidence suggests that signaling is quite effective in the internet setting

(Goodman 2012).

2.5.5 Attrition

As suggested by Wang & Xu (2013), persistently unsuccessful participants may learn to stop

participating all together. To test for this possibility, I analyze each subject’s participation

decisions. If a subject places at least one bid within an auction, then it is clear that this

subject participated in the auction. On the other hand, if a subject does not bid in an

auction, this may or may not mean the subject participated in the auction. We only observe

37



when a subject does bid and not when a subject would bid under the right circumstances.

The latter is the criterion of interest in this analysis. To avoid over-estimating the level of

attrition, I consider three conservative measures.20 The measures described below are ordered

from least to most conservative. In all measures I consider the decision not to participate

to be irreversible. In the first measure of attrition, I code any subject who has bid at least

once during the session (only 4 out of 192 subjects never placed a bid) as participating in

every auction up until the point where that subject never bids again. So if a subject bids

once in the first auction, and once in the eighth auction, then I consider this subject to have

participated in every auction in the session. On the other hand, if a subject does not place

any bids in the seventh and eighth auctions, then I consider this subject to have participated

in the first 6 auctions. This measure will limit the bias towards over-estimating attrition,

although it is still subject to error in the later auctions of the session because we do not

observe what would have happened had the session continued. As can be seen in Figure 2.5

(a), the first instance of attrition occurred in the second auction, and by the last auction 53

out of the 188 initially participating subjects had ceased participation by this measure.

One potential problem with this measure is that some auctions end at low prices (even $0)

and we may not have enough evidence to plausibly claim that a subject attrited in an auction

for which we have observed so few decisions. To account for this, in the second measure of

attrition, I code any subject who has bid at least once during the session as participating

in every auction up until the point where that subject never bids again AND at least one

auction has elapsed in which n or more bids were placed. This restricts the attrition analysis

to cases where each subject had an opportunity to bid at least once on average. As can

be seen in Figure 2.5(b), by this measure, the first instance of attrition occurs in the third

auction, and by the last auction 37 out of the 188 initially participating subjects had ceased

participation. The third measure of attrition is the same as the second measure of attrition,

20I use the term attrition synonymously with permanent non-participation given the play of opponents.
Thus, I consider any subject who finds her persistent best response to be “never bid” to have attrited.
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Figure 2.5: Attrition Over Time
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(a) Measure 1
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(b) Measure 2

but with the additional assumption that everyone who participated in the second to last

auction also participated in the last auction. Due to the uncertainty about what would

have happened if the session had continued, the last auction is the most susceptible to over-

estimating attrition. By dropping the last auction from consideration, these questionable
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cases are no longer considered. The third measure of attrition cuts the number of subjects

who ceased participation down to 22 out of 188. It is unclear whether the second and third

measures of attrition are over-estimates or under-estimates of the true level of attrition, but

these measures seem to strike a balance between the different trade-offs.

All 53 subjects who ceased to participate in at least one of the three measures had cumulative

losses at the time that they stopped participating. For each of the three measures, I compare

the net earnings of the subjects who ceased to participate to the net earnings of the subjects

who participated throughout the session, adjusted to account for the aggregate trend in net

earnings. In all cases, the average net earnings of the subjects who ceased participation

is lower than the average net earnings of the subjects who participated throughout. This

difference is significant at the 0.05 level for the first and second measures, and significant at

the 0.1 level for the third measure. Across all auctions, subjects who ceased participation

averaged $0.58 - $0.72 less in net earnings than the subjects who participated throughout.

This finding is in strong support of Wang & Xu’s (2013) hypothesis. I observe that persistent

money losers do cease to participate and cease participation at a relatively high rate.

2.6 Conclusion

The main take away from this study is that the large profits of pay-to-bid auction websites can

be explained simply through mistakes, and inexperience. While it is certainly possible that

information asymmetries, imperfect information, risk preferences, and signaling strategies

may further increase revenues, none of these dynamics are needed to observe over-bidding.

Thus, the simple setting used in the baseline theory of Hinnosaar (2010), Augenblick (2012),

and Platt et al. (2013) captures the essence of the strategic environment of a pay-to-bid

auction. Consistent with Wang & Xu (2013), I find that the symmetric equilibrium con-

cept is the main deficiency in the current theory. There is substantial heterogeneity in the
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strategies employed by participants and these participants vary greatly in terms of strate-

gic sophistication. While the population as a whole may slowly approach the equilibrium

outcome where average revenue equals the value of the item, the path it takes to get there

in no way resembles symmetric equilibrium play. Thus even with symmetric agents, the

symmetric equilibrium is no more meaningful empirically than any of the many asymmetric

equilibria (other than analytical convenience). Furthermore, a combination of learning and

the long run attrition of less successful participants threatens the sustainability of the pay-

to-bid auction as a mechanism to generate revenues above the value of the auctioned item.

These excess revenues will only last as long as the pay-to-bid auction websites can attract

new, inexperienced bidders.

As behavioral biases appear to drive the excess revenues of pay-to-bid auction websites, the

pay-to-bid auction mechanism may be utilized as a tool in future research to study behavioral

biases more generally. In addition, the highly competitive pay-to-bid auction industry may

present an interesting test bed for researchers interested in behavioral game theory, as these

websites have developed a variety of related auction mechanism that may further magnify

behavioral biases.
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Chapter 3

An Experimental Study of Network

Formation with Limited Observation

Many social and economic networks emerge among actors that only partially observe the

network when forming network ties. We ask: what types of network architectures form

when actors have limited observation, and does limited observation lead to less efficient

structures? In this chapter, co-written with Michael McBride, we report numerous results

from a laboratory experiment that varies both network observation and the cost of forming

links. Overall, we find that limited network observation does not inevitably lead to highly

inefficient networks but instead might actually inhibit inefficient positional jockeying among

actors.

3.1 Introduction

Amy is not employed and looking for work. She asks her acquaintances to relay informa-

tion they learn about job openings in the hopes of finding a job that matches her skills
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and experience. She also actively seeks to form new acquaintances outside her current so-

cial network to broaden her awareness of job openings. Extending her social network is

costly and only yields benefits if the new acquaintances are well-connected in social groups

outside her existing network. However, Amy only partially observes her own network: she

knows her acquaintances and her acquaintances’ acquaintances, but not her acquaintances’

acquaintances’ acquaintances and so on. Because the observational range of her network is

limited, she may unknowingly devote a substantial amount of her scarce time forming ties

with people already in her network but outside her observational range. This inefficient job

search results in chronic unemployment.

Amy’s situation illustrates two important features of economic life. The first is that many

economic activities, from the exchange of goods and services to the transmission of valu-

able information,1 rely on underlying social networks that form endogenously through the

decentralized forming and severing of network ties. Recognition of this fact has led a large

theoretical literature on the formation of networks in various settings,2 and, more recently, a

small but growing experimental literature.3 The second feature is that an individual gener-

ally observes only a limited and local portion of her social network, a fact established from

field data.4 However, only a small theoretical literature examines how the presence of limited

observation affects network formation,5 and there is no experimental literature on the topic.

A number of questions thus remain unanswered: What types of network architectures emerge

1There are many examples of which a few are listed here: Conley & Udry (2001) study learning about
production techniques through informal networks in developing countries; Calv-Armengol & Jackson (2004)
examine learning about job openings through social contacts; Kranton & Minehart (2001) model exchange in
buyer-seller networks. For a larger survey of the literature on the economics of social networks, see Jackson
(2010).

2See e.g., Bala & Goyal (2000) for a model of network formation in which ties are formed unilaterally
and Jackson & Watts (2002) for a model of network formation in which ties are formed by mutual consent.

3Examples of the experimental literature include Falk & Kosfeld (2012), Callander & Plott (2005), Goeree,
Riedl & Ule (2009), Pantz (2006), Mantovani, Kirchsteiger, Mauleon & Vannetelbosch (2013), Rong & Houser
(2013), van Leeuwen, Offerman & Schram (2013), Carrillo & Gaduh (2012).

4Laumann (see 1969), Friedkin (see 1983), Kumbasar, Romney & Batchelder (see 1994), Bondonio (see
1998), Casciaro (see 1998).

5McBride (see 2006a,b, 2008), Francetich & Troyan (see 2010), Song & van der Schaar (see 2013). There
is a separate theoretical literature on learning in networks, for example Acemoglu, Dahleh & Lobel (2011).
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when actors have limited observation while forming and severing ties? Does the presence of

this limited observation lead to less efficient network structures than would form with full

observation? If so, what form do those inefficiencies take, and how large are the inefficiencies?

Answers to these questions will provide a better understanding of the effectiveness of social

networks in fostering or inhibiting economic activity and provide insights into potential

efficiency gains. For example, an intervention that allows Amy to increase the observational

range of her own network may help her allocate her time more effectively when forming new

ties.6

This chapter addresses these questions with the first experimental study of social network

formation in which decision makers have limited observation of the network. We choose for

our setting the Connections Model first introduced by Jackson & Wolinsky (1996). Actors

decide with whom to form costly ties, with each tie providing direct and indirect access to

benefits. Mutual consent is required for a tie to form, but a tie can be terminated unilaterally.

This model does not represent a specific real-life network setting but rather is a flexible

model that captures features of many real-life social networks. It has also been subsequently

theoretically and experimentally studied in later work (Jackson & Watts 2002, Watts 2001,

Pantz 2006, Calv-Armengol & Ilkili 2009, Mantovani et al. 2013, Carrillo & Gaduh 2012),

including in a limited observation context (McBride 2006b, Francetich & Troyan 2010).

Our experiment randomly matches subjects into groups of twelve for fifteen rounds of inter-

action. At the end of each round, a participant receives one point for each other participant

with whom she is directly or indirectly connected (i.e., a point for each other actor in her

component) and pays cost c for each of her direct ties. We exogenously vary two treatment

variables. One is the level of observation; under full observation the whole network is ob-

served in each round, and under neighbor observation the actor only observes her own ties

and the ties of her network neighbors. The other is the cost of forming ties ; the cost c is

6The business development tool RelSci (www.relsci.com) does precisely this by helping individuals to
discover potential clients and investors that they are indirectly connected to through mutual acquaintances.
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either low (c = 0.7) or high (c = 1.5). This design differs from previous network formation

experiments (see footnote 3) in two important ways. First, we allow for both full and limited

observation of the network, whereas prior studies allow only full observation. Second, our

twelve-person groups are much larger than the four or six-person groups used in prior ex-

periments, allowing for a richer set of possible network structures to emerge and increasing

the possibility of networks in which actors can only observe a limited portion of the entire

network structure in the neighbor observation setting.

We rely on the prior theoretical and experimental literature on network formation to generate

testable hypotheses. Jackson & Wolinsky (1996) define and apply the Pairwise Stability

(PS) concept to identify stable networks in the Connections Model, and McBride’s (2006b)

Conjectural Pairwise Stability (CPS) concept generalizes PS to identify stable networks when

actors in the Connections Model have limited observation. Analyses that more directly

consider formation dynamics vary in what is assumed about the forward-lookingness of

actors, though all prior work assumes full observation. In Bala & Goyal (2000) and Jackson

& Watts (2002), for example, actors form ties myopically by looking only for best responses

to immediately past or current period play; in other work, such as Herings, Mauleon &

Vannetelbosch (2009), Grandjean, Mauleon & Vince (2011) and Mantovani et al. (2013) in

which is defined the Pairwise Far-sighted Stability (PFS), the actors are forward-looking in

anticipating the future network structure.

The static analysis and the myopic-actor dynamic analysis yield clearer predictions, yet other

experiments reveal that subjects in network formation settings exhibit far-sighted behavior

(Mantovani et al. 2013, Carrillo & Gaduh 2012, van Leeuwen et al. 2013), a fact we account

for here. We synthesize the prior theoretical and experimental work and identify seven main

hypotheses about convergence and efficiency to test in our experiment. 1. Networks will be

more likely to converge under low cost than high cost due to the existence of (near) efficient

(C)PS networks. 2. Networks will be more likely to converge under neighbor observation
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than full observation because the set of CPS networks is a proper superset of the set of PS

networks. 3. Efficiency will be higher under low cost due to stronger incentives to maintain

connectivity. 4. Cycles (redundant ties) will be more likely under neighbor observation

because they may exist outside of observational range. 5. Stem actors (one tie) will be

dropped more often under full observation than neighbor observation because they are more

likely to reconnect with others. 6. Stem actors will be dropped more often under high

cost because the cost of these ties exceeds the immediate benefit of maintaining them. 7.

Risk averse individuals will be less likely to choose stem positions to avoid the risk of being

dropped from the network.

Our main findings match the hypotheses in some cases but not others. With respect to

convergence, we find evidence in favor of Hypothesis 1 but reject Hypothesis 2: convergence

(defined here as five rounds of no change in the network) is more likely with low cost than

high cost but is less likely under neighbor observation than full observation, contrary to the

prediction. With respect to efficiency, the evidence largely supports Hypotheses 3,4, and

6: efficiency is higher on average under low cost, cycles are more prevalent with neighbor

observation, and stems are more often removed under high cost. However, we do not find

that stems are more often removed under full observation, contrary to the prediction of

Hypothesis 5. We do not find a significant relationship between risk aversion and position

in the network, calling hypothesis 7 into question.

We also report other findings of interest. Holding both cost and observation fixed, the net-

works that converge are more efficient than those that do not, thus suggesting that subjects

are less likely to disrupt a well-functioning network even if it is not a PS network. Moreover,

holding cost fixed, network efficiency in the last five rounds is higher, on average, under

neighbor observation than full observation, and this is apparently due to less jockeying for

advantageous positions in the later periods under neighbor observation. Overall, though

convergence to inefficient networks is more common with neighbor observation, the lower in-
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cidence of jockeying led, surprisingly, to higher overall efficiency under neighbor observation

than under full observation. We do find evidence of far-sighted behavior, as expected, but

this behavior leads to even richer outcomes than those predicted by the existing solution

concepts.

We draw a number of important lessons from our findings. Limited observation does not

inevitably lead to inefficient networks as might be expected. To the contrary, limited ob-

servation may actually help efficiency because it leads to a reduction in jockeying among

actors attempting to gain advantages associated with certain positions in the network. This

reduction in jockeying keeps the network more connected than otherwise which, in our set-

ting, outweighs the inefficiencies in the form of redundant ties that we might expect under

limited observation. Whether or not limited observation is a help or hindrance to network

formation in the real world will likely depend on the relative importance of under-connection

versus over-connection. We also learn that far-sighted behavior may be a source of stability,

instability, efficiency or inefficiency, all depending on the context. Inefficient jockeying may

destabilize otherwise stable networks in the short run. Alternatively, when it promotes effi-

ciency, the anticipation of future jockeying may stabilize otherwise unstable networks in the

short run. In settings where stable networks are highly inefficient, far-sighted behavior may

even lead to efficient instability.

3.2 Theory

3.2.1 The Connections Model

Consider a set of actors N = {1, ..., n}, each of whom is a node in graph g. Let ij ∈ g denote

that there is a tie between i and j in g, while ij /∈ g means there is no tie. We assume

that the ties are symmetric, i.e., ij ∈ g ⇔ ji ∈ g. Let g + ij denote a graph that results
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from adding tie ij to g holding all else fixed, while g − ij denotes the removal of the ij tie

from g. We say that there is a path between i and j in g if either ij ∈ g or there exists

m distinct players i1, i2, ..., im, such that {ii1, i1i2, ..., imj} ⊂ g. Let Ni (g) ⊆ N denote i’s

component, which is the set of all j ∈ N with a (finite) path to i. Let Li (g) ⊆ N denote

the set of i’s ties, i.e., the set of all j ∈ N , j 6= i, such that ij ∈ g. A network is connected if

Ni (g) = N , and we say that a network is minimally connected if there is exactly one single

path between any two i and j. Being minimally connected implies no cycles. Figure 3.1

Figure 3.1: Network Examples

1 2 3 4 5

12 6

11 10 9 8 7
(a) Empty

1 2 3 4 5

12 6

11 10 9 8 7
(b) Disconnected

1 2 3 4 5

12 6

11 10 9 8 7
(c) Non-minimally connected

1 2 3 4 5

12 6

11 10 9 8 7

(d) Wheel (non-minimally connected)

1 2 3 4 5

12 6

11 10 9 8 7
(e) Minimally connected

1 2 3 4 5

12 6

11 10 9 8 7
(f) Line (minimally connected)

provides examples of networks and relevant network characteristics: (a) the empty network

which has no ties; (b) a network that is not empty but also not connected; i.e., 4 and 12 are

isolated; (c) a connected network that is not minimal, i.e., it has redundant ties that creates
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cycles of size three (569, 689) and four (5689); (d) a wheel network that is connected; (e)

a minimally connected network, created by removing the 5-9 and 6-8 ties from (c); and (f)

another minimally connected network, called the line network.

The simplified version of the Connections Model examined here assumes each actor has

payoff function

ui (g) =
∑

j∈Ni(g)

1−
∑

j∈Li(g)

c.

The value of being connected, either directly or indirectly, to another actor is 1, and the cost

of forming a direct tie is c.

Our experiment uses c ∈ {0.7, 1.5} and n = 12. It is straightforward to show that at each

cost level, an efficient network, defined here as a network that generates the maximum sum

of utilities, must be minimally connected, and any minimally connected network is efficient.

The intuition comes from recognizing the positive externality in ties. With low cost, adding

ties up to minimal connectedness adds consecutively more individual and social benefits

than cost, while adding ties beyond minimal connectedness produces additional cost but no

benefits. With high cost, minimally connected networks still produce the highest total net

benefits (though, if the cost were sufficiently large or if n were sufficiently small, then the

only efficient network is the empty network in which Li (g) = ∅ for all i ∈ N).

3.2.2 Full Observation

Multiple stability concepts have been used to identify the types of network structures that

may emerge in the Connections Model. Here we mention two prominent ones, Pairwise

Stability (PS) and Pairwise Farsighted Stability (PFS), as well as the dynamic implications

of each. The first examination of the Connections Model in Jackson & Wolinsky (1996) used
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the Pairwise Stability (PS) concept to identify stable networks. A graph g is Pairwise Stable

(PS) if (i) for all ij ∈ g, it is true that ui (g) ≥ ui (g − ij) and uj (g) ≥ uj (g − ij) and (ii) for

any ij 6= g, it is true that if ui (g + ij) > ui (g) then uj (g) > uj (g + ij). The first condition

requires both parties to prefer keeping a tie to severing a tie, and the second implies that

if one party strictly prefers a new tie then the other party to that tie must strictly prefer

against that tie. Notice that the PS concept implicitly assumes that, when deciding to form

or sever ties, each actor fully observes the entire network g, i.e., each actor perfectly knows

the utility of g + ij and g − ij.

It is straightforward to show that, with our experiment’s low cost c = 0.7, the set of PS

networks is the set of minimally connected networks, while the empty network is the unique

PS network with our high cost c = 1.5. With low cost, adding a tie to an actor not in your

own component is individually rational, as is removing redundant ties. Only for minimally

connected networks is it the case that no actor wants to add or remove ties. Under high cost,

it is again true that removing redundant ties is individually rational, so any PS network must

not have redundant ties. However, a minimal network that is not empty must necessarily

have at least one stem, i.e., an actor has that exactly one tie (e.g., nodes 1 and 12 in Figure

3.1(f), and an actor directly connected to a stem is strictly better off removing the tie to

that stem. The only network without redundant ties and stems is the empty network.

Watts (2001) and Jackson & Watts (2002) further examine the Connections Model in a

dynamic framework, again implicitly assuming full observation. In these models, some initial

network evolves according to the following inertia process: In each period, one (i, j)-pair is

selected at random, and those actors decide myopically whether to keep the status quo, form

a new tie, or sever an existing tie. As with the static PS concept, mutual consent is required

to add a tie but ties can be removed unilaterally. Networks that this dynamic might enter

but never leave are considered stable. Applying this dynamic in our setting yields a similar

prediction as the PS concept: the system converges to a minimally connected network when
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the cost is low, and it converges to the empty network when the cost is high.

Other work considers network formation with far-sighted actors. One far-sighted concept

used in the experimental literature on network formation is Pairwise Farsighted Stability

(PFS) (Herings et al. 2009, Grandjean et al. 2011, Mantovani et al. 2013). This relies on

the concept of a far-sighted improving path. As before, only one tie is changed at a time,

but best responses are evaluated relative to the end network rather than the immediately

adjacent network. A network g is PFS if all deviations from g to g ± ij are deterred by the

threat of ending in some PFS network g′ with no greater payoff for the deviator(s). The

PFS concept refines the set of PS networks (Herings et al. 2009) although it is motivated by

far-sighted rather than myopic actors. Here, the set of PFS networks is the same as the set of

PS networks in both cost environments.7 Far-sighted improving paths do exist between PS

networks under the low cost (e.g., when an actor with multiple ties removes a tie and some

other actor re-connects), but all such deviations could be credibly deterred by the reverse

path, which would result in no improvement. The empty network is the unique PS, and thus

PFS, network under high cost.

However, while PFS is a good descriptor of long-run group behavior in some settings (see

e.g., Carrillo & Gaduh 2012, Mantovani et al. 2013), we note two additional but relevant

complexities in our environment that may generate different far-sighted behavior than im-

plied by the prior theory. First, our paired inertia and fixed time horizon hinder the ability

of the group to deter deviations. It is improbable that inertia will select the correct pairs to

reverse any given deviation in the short-run, and thus these paths are not credible deterrents.

An actor may still choose to deviate in hope that it will lead to a nework with a greater

individual payoff (we refer to this as “jockeying for position” in later sections).8 Second, in

7Grandjean et al. (2011) and Mantovani et al. (2013) study environments in which some PS networks yield
different aggregate payoffs. Thus certain network structures Pareto dominate the others. In our environment,
all PS networks yield the same aggregate payoff.

8In a recent study, van Leeuwen et al. (2013) also find evidence of jockeying behavior in a setting where
ties are formed unilaterally and investments in a public good determine the benefits.
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our high cost environment, stability and efficiency are directly at odds. Far-sighted behavior

could also lead the actors towards a recurrence class of (near) efficient networks and so far-

sighted actors may still rationally achieve high levels of efficiency without ever converging to

a PFS network.9 Lastly, we note the main departure of our experiment from this previous

theoretical work is that multiple ties can change at a time (see Section 3.3.3 for a detailed

explanation). This aspect of our experimental design may introduce potential coordination

problems, as situations could arise in which two distinct pairs collectively would like to add

a single tie. However, this will only affect the path taken to the equilibrium networks rather

than the set of equilibrium networks itself. Redundant links and missed connections that

occur due to coordination failures will ultimately be remedied on the path to a PS network.

Bringing the theory and these issues together suggests the following predictions:

Claim 3.1. Assume n = 12 and full observation.

(a) With low cost c = 0.7, the process should converge to a minimally connected network.

(b) With high cost c = 1.5 and myopic actors, the process should converge to the empty

network.

(c) With high cost c = 1.5 and far-sighted actors, the process may or may not converge.

It will either converge to the empty network or it will transition between several high

efficiency networks.

3.2.3 Neighbor Observation

There is less theoretical work on the Connections Model with neighbor observation. McBride

(2006b) defines a Conjectural Pairwise Stable (CPS) network as a generalization of the PS

9Due to the finite length of our experiment, not all improving paths will yield a positive expected payoff,
especially in the later rounds. Thus we might observe some convergence to (near) efficient networks even
with far-sighted actors in the high cost setting.
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concept to a limited observation setting. Each actor has a belief about the network, which

takes the form of a probability distribution over possible networks. A network is CPS if each

actor in that network believes she is better off keeping her existing ties and not forming any

new ties and if her her beliefs are not contradicted by what she observes in the network. The

key difference between CPS and PS is that in CPS an actor may have incorrect beliefs about

the network as long as she has no information to contradict those beliefs. With neighbor

observation, this means that, in equilibrium: the actor must have correct beliefs about

her own ties and her neighbors’ ties; with common knowledge of the payoff structure and

knowledge of her own payoff, each actor’s beliefs must assign probability 0 to any network

in which i’s component differs in size from the actual network; but the actor’s beliefs about

the existence and location of other ties in the network may be incorrect. Any PS network

in which actors have correct beliefs is also CPS, but a few examples illustrate how some

networks may be CPS but not PS. One particular case is to have a connected but not

minimal network. Suppose the actual network is the wheel network in Figure 3.2(a), but

suppose actor 6 believes with probability 1 that the actual network is the line in Figure

3.2(b). This belief is consistent with what actor 6 observes and with her payoff, and she does

not want to remove or add ties given those beliefs. If every other actor similarly believes

that she is in the middle spot in a line network, then this network is CPS. Notice that if an

actor could see the cycle, then she would want to remove a tie. However, the cycle is outside

of each actor’s observational range, thereby allowing her beliefs to be incorrect about the

network’s exact structure. CPS networks can have smaller cycles, but the cycles must be of

size 5 or more to be outside the observational range under neighbor observation.

Some disconnected networks may also be CPS networks. Figure 3.2(c) contains a discon-

nected network made of two 6-actor wheels. Redundant ties are again out of observational

range. Yet, each actor knows from her payoff that her own component is of size 6. Whether

or not an actor i wants to initiate a tie to some j not in her observational range depends on

her belief about j’s ties. If actor 6 believes that her network is that shown in Figure 3.2(d),
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Figure 3.2: Network Examples: Neighbor Observation

1 2 3 4 5

12 6
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(a) Wheel (6’s perspective)

1 2 3 4 5

12 6

11 10 9 8 7

(b) Line (6’s perspective)

1 2 3 4 5

12 6

11 10 9 8 7

(c) Disconnected (6’s perspective)

j? j? j? 4 5

j? 6

j? j? j? 8 7

(d) Optimistic belief about (c)

j? j? j? 4 5

j? 6

j? j? j? 8 7

(e) Pessimistic belief about (c)

j? j? j? 4 5

j? 6

j? j? j? 8 7

(f) Uncertainty impedes connection

with j ∈ {1, 2, 3, 9, 10, 11, 12} equally likely to be connected to actor 8, then her expected

net benefit from forming a tie is 6
7

(6) + 1
7

(0) − c = 36
7
− c, which is strictly greater than 0

for c ∈ {0.7, 1.5}. Thus, if she optimistically believes, without contradicting her observation,

that unobserved parts of the network are highly connected, then she will form the tie. If

instead she believes that the network is that shown in Figure 3.2(e), again with each unob-

served actor equally likely to be connected with 8 and consistent with her observation, then

her expected net benefit from forming a tie is 6
7

(1)+ 1
7

(0)−c = 6
7
−c. So, if she pessimistically

believes that unobserved parts of the network are highly disconnected, then she will want to

form a tie if the cost is low c = 0.7 but not if the cost is high c = 1.5. Even when the size of

all components is known, as in Figure 3.2(f), uncertainty about the position of each actor in
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the network may inhibit connection. Actor 6’s expected net benefit from linking to j with

j ∈ {1, 2, 3, 9, 10, 11, 12} equally likely to be isolated is 1
7

(1) + 6
7

(0) − c = 1
7
− c regardless

of her level of optimism or pessimism. She will not want to form this connection in either

cost setting, even though she would want to form this connection with low cost c = 0.7 if

she knew the isolated actor’s identity with certainty.

Despite the potential for many networks to be CPS, CPS networks share several commonal-

ities that limit the scope of what is possible. First, in both cost environments, cycles of size

less than 5 are not CPS. Each actor in such a cycle can see the whole cycle and thus will

want to remove a tie. Second, with low cost c = 0.7, the network must have a component

of at least size 8 before even the most pessimistic of actors would not benefit from connect-

ing to an unobserved actor. For example, when all other actors are isolated, the expected

benefit from connecting to an unobserved actor for the center actor in a line of size 7 is

5
7

(1) + 2
7

(0) > 0.7 and for the center actor in a line of size 8 is 4
7

(1) + 3
7

(0) < 0.7. Third,

with high cost c = 1.5, any network with a stem is not CPS because the actor tied to this

stem would prefer to remove this tie. However, connected networks with large cycles and no

stems such as the wheel are CPS with high cost. An additional restriction on beliefs, the

rationalizability criterion, which requires that all actors in the conjectured network are best

responding to this network, further limits the scope of possible CPS networks. For example,

for high cost, the line network shown in Figure 3.2(b) is not rationalizable because actors 2

and 11 would benefit from removing the ties 1-2 and 11-12 respectively.

The CPS concept, like the PS concept, is static, and no theory to date has examined the

connections model with limited observation in the dynamic framework we consider here.10

In order to adapt the findings of Watts (2001) and Jackson & Watts (2002) to the case of

10Song & van der Schaar (2013) consider dynamic formation in a different limited observation setting.
They assume that upon being paired in a period, i observes j’s component (not the entire network) and vice
versa before deciding whether to form or sever a tie. Our information setting does not allow actors to have
such information. A larger difference, however, is that, similar to McBride (2008), they allow actors to be
of different type. This incomplete information setting introduces additional complexities not present in our
setting.
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limited observation, we must specify the initial beliefs of all actors and the process by which

these beliefs are updated as the network evolves. Here we consider two simple cases, at

opposite extremes of the belief spectrum, to help pin down the set of possible CPS networks

to which the system might converge. In both cases, we assume that beliefs satisfy anonymity,

stationarity, and memorylessness, in addition to the typical CPS requirement that beliefs do

not contradict the observed information.11 Anonymity requires that all unobserved actors

are assigned equal likelihood of being in each unobserved position in the conjectured network.

Thus, decision makers only need to consider the structure of the conjectured network rather

than all isomorphisms. Stationarity requires that beliefs be fixed unless the observed portion

of the network changes. Thus decision makers do not attempt to forecast the dynamic

path by which the network will evolve. Memorylessness requires an actor’s belief about the

existing network be formed independently of information observed in prior periods. Thus,

once an actor leaves the decision maker’s observational range, all information about this

actor’s position in the network is forgotten.

First consider the case of optimistic beliefs, e.g., Figure 3.2(d), in which actors assume that

there are at most 2 disconnected components, both of known size. With low cost, actors

will begin by connecting and continue connecting to unobserved actors until the network

reaches at least size 10 (3
7

(3) + 4
7

(0) > 0.7, but 2
7

(2) + 4
7

(0) < 0.7). Networks of size 10-12

are all possible depending on the order in which (i, j)-pairs are selected. Cycles of size 5 or

greater are possible as (i, j)-pairs in the same component who cannot see each other may be

randomly selected before the network reaches size 10+. With high cost, actors will begin by

connecting and continue connecting to unobserved actors until the network reaches at least

size 9 (4
7

(4) + 4
7

(0) > 1.5, but 3
7

(3) + 4
7

(0) < 1.5). Networks of size 9-12 are possible and, as

before, there may be cycles of size 5 or greater. However, whenever an actor is paired with a

known stem she will remove the tie to that stem, and so the network would never converge

11These assumptions are admittedly quite strict and we do not expect them to hold in all cases. However,
they do provide a simple and natural starting point for prediction. Furthermore, these assumptions are
consistent with extreme forms of myopia.
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in this case.

Now consider the case of pessimistic beliefs, e.g., Figure 3.2(e), in which actors assume

all individuals outside of the component are isolated. With low cost, actors will begin by

connecting and continue connecting to unobserved actors until the network reaches size 8

(5
7

(1) + 2
7

(0) > 0.7, but 4
7

(1) + 3
7

(0) < 0.7). Networks of size 8-12 are possible and there

still may be cycles of size 5 or greater. With high cost, actors will never connect, and

the network will remain empty. If instead, actors are assumed to be far-sighted, they may

take myopically detrimental actions as part of a far-sighted improving path. Such actions

might include adding ties to unobserved individuals beyond what is myopically rational in

an effort to achieve a maximal component (accidental redundant ties could be removed later)

or adding ties with pessimistic beliefs and high cost as part of a path to a more efficient

network (the dynamic would still not converge in this case).

As before, allowing multiple ties to change at a time introduces potential coordination prob-

lems. This may lead to visible cycles or missed connections, but we expect these known

inefficiencies to be remedied by the actors at the next opportunity. Coordination failures

may also lead to unobserved cycles that are never removed, but most of these cycles could

occur even when one tie changes at a time.

We summarize the above logic with this prediction:

Claim 3.2. Assume n = 12 and neighbor observation.

(a) With low cost c = 0.7, the process should converge to a network with no more than

two components (one at least size 8) and no visible cycles. All CPS networks can be

reached.

(b) With high cost c = 1.5, the process may or may not converge, but if it does, it will

converge to the empty network.
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3.2.4 Jockeying for Position and Positional Risk

Individual connection decisions become more complicated when actors jockey for position.

Consider, for example, the stem position in a connected network (e.g., actor 1 is a stem in

Figure 3.2(b)). The stem position is the best possible position in a component for an actor

because she receives the maximal benefit at the minimum cost. This is no longer necessarily

the case when actors jockey for position in the short-run. Recall that jockeying for position

involves removing a tie with the expectation that some other actor will re-connect. The stem

position is particularly vulnerable to this behavior because of the low cost of removal. Thus,

with random paired inertia, the stem position is less attractive to a risk averse actor due to

the small chance that her partner will remove this tie in subsequent periods. We expect risk

averse actors to be more likely to avoid this position, when possible.

3.3 Experiment Design

3.3.1 Basics

We conducted 8 experiment sessions at a large public university with a total of 240 sub-

jects.12 Our treatment variables are the cost of forming ties (c = 0.7 and c = 1.5) and the

level of observation (neighbor or full). The treatment was chosen exogenously prior to the

beginning of each session and remained fixed throughout the session. A total of 2 sessions

were conducted for each of the 4 treatments in our between-subjects 2x2 factorial design.

Subjects were students who had previously registered to be in the laboratory subject pool,

12In addition, we conducted a 2 group, 24 subject pilot prior to the first session to inform our choice of
control variables. The two main conclusions from the pilot were that 20 periods per match was unnecessarily
long (we reduced it to 15) and that assessing one relationship at a time was more manageable for the subjects
than assessing 5 relationships at a time (we listened to this feedback from the questionnaire and restricted
the decision to assessing one relationship at a time). We do not include the pilot data here due to the
differences in the control variables and the absence of random rematching.
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Table 3.1: Session Information

Major

# of

Subjects

% Male % Bus/

Econ

% Psy/

Cog Sci

% Other

Soc Sci

% Eng/

Phys Sci

% Bio/

Life Sci

% Hum/

Undec

Avg

Earn ($)

All 240 42.1 13.3 7.9 15.0 27.9 25.8 10.0 33.09

NO – LC 60 36.7 10.0 10.0 6.7 33.3 28.3 11.7 37.00

NO – HC 72 38.9 13.9 6.9 18.1 18.1 33.3 9.7 31.16

FO – LC 60 48.3 16.7 5.0 21.7 25.0 21.7 10.0 32.41

FO – HC 48 45.8 12.5 10.4 12.5 39.6 16.7 8.3 31.94

Demographic information obtained from questionnaire. Avg earnings include $7 show-up payment.

and were recruited at random via E-mail. Subjects were allowed to participate in at most

one session. Each session had either 24 or 36 subjects who were randomly matched into

groups of 12. The sessions consisted of 10 matches13 and subjects were randomly assigned

to a new group at the beginning of each match. Each match consisted of 15 periods and the

groups were held constant across periods. The experiment was programmed and conducted

using the z-Tree software package (Fischbacher 2007). Screenshots of the experiment can

be seen in Figure 3.3. At the end of the session, each subject’s risk preference was elicited

using the Eckel & Grossman (2008) method and the subjects were asked to complete a short

questionnaire. Subjects received $1.00 for every 50 units of experimental currency earned

during the session and were given a lump sum payment ($2.00 for low cost and $4.50 for high

cost) at the beginning of the session to prevent bankruptcy. Additionally, subjects received

a $7.00 show-up payment and could earn between $0.00 and $14.00 in the risk preference

elicitation, depending on that subject’s choice of lottery and the outcome of the lottery. In

total, subjects took home an average of approximately $33.00 for 2 hours of participation

(Table 3.1).

13One session of full observation with low cost was stopped a match early due to the cumulative effects of a
slight, unanticipated, software lag at the end of each round that prevented all matches from being completed
in the allotted time. We reduced the number of groups per full observation treatment to reduce the lag in
future sessions. This adjustment fixed the problem.
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Figure 3.3: Software Screenshots

(a) Decision Screen

(b) Results Screen

3.3.2 A Single Match

At the beginning of a match, each participant is randomly assigned a group and a color and

is shown an image of the initial (empty) network. The image (see Figure 3.3) contains 12

colored circles or “nodes;” one node corresponding to each participant in the group. The

color represent’s the subject’s experimental identity and is used instead of assigning each

subject an ID number. A participant’s own node is located at the center of her image
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surrounded by a ring consisting of the other 11 nodes. The order in which the nodes are

patterned remains fixed throughout the match, but this order is determined randomly for

each participant at the start of the match to avoid any position specific framing effect. Ties

within a participant’s observational range are depicted by a dark grey line connecting two

nodes, whereas ties outside of a participant’s observational range are not depicted. A match

consists of 15 rounds and the image is updated at the end of every round to display all

visible changes in the network. Participants are paid for every round, rather than the end

network, to ensure that all decisions are incentivized.14 The participants are shown the

round number, the match number, their most recent earnings, their cumulative earnings,

and a match specific history at all times throughout the match.

3.3.3 A Single Round

At the beginning of a round, each participant is randomly paired with one other participant

in her group. These pairings are restricted to be non-overlapping and so there are 6 distinct

pairs in each round.15 Participants are first shown the Decision Screen (Figure 3.3 (a)) and

have 15 seconds to decide whether or not to initiate (or maintain) a tie to their partner.

The participant’s partner is highlighted on the network image to aid in the decision-making

process. A participant indicates her choice by selecting yes or no in the decision prompt and

then pressing a submit button. The default option, which is initially selected and which is

submitted on this participant’s behalf if time runs out, is set so as to maintain the status

quo. In the vast majority of cases (98%), the submit button was pressed before time ran out

and so this design element did not substantively affect our results. After all decisions are

14These incentives are particularly relevant for decisions that involve jockeying for position and/or decisions
that will change the visible portion of the network.

15The main difference between our inertia process and the inertia process of Jackson & Watts (2002) is
that we allow six pairs to evaluate their relationship at a time rather than one pair at a time. Allowing six
pairs to evaluate their relationship at a time substantially increases the speed of convergence, allowing us to
collect more data in the allotted time. This decision comes at the cost of introducing potential coordination
problems. However, this will only affect the path taken to the equilibrium networks rather than the set of
equilibrium networks itself.
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submitted (or after time runs out), all participants are then shown the result screen (Figure

3.3 (b)), in which they learn the outcome of their decision, their payoff for the round, and

are shown the visible portion of the resultant network. Participant i’s payoff for network g

is given by

ui(g) = 1× (# of direct ties)− c× (# of direct ties + # of unsuccessful tie attempts) .

Thus a participant pays the cost of any tie attempt she makes, whether or not it is successful,

as well as the cost of any direct tie she formed in a prior round, whether or not she was

able to change that tie in this round. This payment scheme matches the one used in the

Connections Model (Jackson & Wolinsky 1996; no decay of benefits) and in McBride (2006b).

3.3.4 Treatment Variables

One first treatment variable is the level of observation. The participants either experience full

observation or neighbor observation depending on the session. Under full observation, each

participant can see the ties of every individual in her group, whether she is connected to that

individual or not. This is the level of observation that has been used in prior experimental

analyses, albeit with different control variables (e.g., Falk & Kosfeld 2012, Callander & Plott

2005, Berninghaus, Ehrhart & Ott 2006, Goeree et al. 2009, Pantz 2006, Mantovani et al.

2013, Carrillo & Gaduh 2012). Under neighbor observation (called 2-link observation in

McBride 2006a), each participant sees only her direct ties and the ties of her neighbors.

Ties beyond this distance are not displayed. In addition, a participant will not see the ties

of any other participant that is not in her component. Individuals that are far away in

one’s own component are indistinguishable from individuals in a separate component and

no information is provided as to the size of this component. Participants do, however, learn

their own payoff, and thus can infer how many individuals are in their own component.
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Our other treatment variable is the cost of forming ties. The participants either experience

low cost or high cost depending on the session. Under low cost, an individual’s cost of

initiating (or maintaining) a direct tie is c = 0.7. Because the benefit of adding a person

exceeds the cost of adding a person in this treatment, the myopic best response is to add a

tie to any individual who is known not to be in the same component. Under high cost, an

individual’s cost of initiating (or maintaining) a direct tie is c = 1.5. Because the benefit of

adding a person is less than the cost of adding a person in this treatment, the myopic best

response to never initiate (or maintain) ties to isolated individuals (or stems).

3.4 Hypotheses

Given these parameters, we formulate the following testable hypotheses based upon the

predictions from Section 3.2.

3.4.1 Convergence

1. Holding the observation level fixed, the frequency of convergence is higher under low

cost than under high cost.

2. Holding the cost fixed, the frequency of convergence is higher under neighbor observa-

tion than under full observation.

3.4.2 Efficiency

3. Holding the observation level fixed, the average efficiency is higher under low cost than

under high cost.
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4. Holding the cost fixed, the frequency of cycles is higher under neighbor observation

than under full observation.

5. Holding the cost fixed, stems are dropped more frequently under full observation than

under neighbor observation.

6. Holding the observation level fixed, stems are dropped more frequently under high cost

than under low cost.

7. A higher degree of risk aversion is associated with a lower likelihood of being in a stem

position.

3.5 Results

Our unit of observation for hypothesis tests is a single match. When the relevant data is

generated by period, we compute match level averages. Because we match the same 24-36

participants repeatedly into random groups of 12 and provide regular feedback, our data

could feasibly depend on the participants, group, and match. For all participant level hy-

potheses, we correct the standard-errors for two-way clustering at the participant and group

level (Cameron, Gelbach & Miller 2011, Thompson 2011; compared to other approaches in

Peterson 2009) and include indicator variables to control for the match. For all group level

hypotheses, we assume in the main discussion that the observations do not depend on the

participants or match. We then relax this assumption in Table B.3 and find that the p-values

are practically identical, if not smaller. This is not surprising in our setting, because the

large group size, random paired inertia, and required mutual consent to form ties limit the

idiosyncratic effect of individual participants on group outcomes. Furthermore, while we

do find significant trends in some group outcomes across matches (see Tables B.1 and B.2),

these trends do not generally depend on the treatment. In the one case where the trend does
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depend on the treatment, our standard errors are biased upward, if anything.

For each match, we record whether the network converged, the efficiency of the convergent

networks, and the end of match efficiency of the non-convergent networks. As was first

noted by Callander & Plott (2005), measuring convergence in network formation experiments

involves “trading off empirical certainty with experimental constraints” such as boredom

and end of match effects (p. 1478). A stricter measure has the advantage of reducing the

occurrence of false positives, where a non-convergent network is categorized as convergent,

but it comes at the cost of increasing the likelihood of false negatives, where a convergent

network is categorized as non-convergent due to non-strategic changes that may occur after

a time of stationarity. For this reason, we consider a network to have converged if it remains

unchanged for 5 consecutive rounds. This measure is relatively strict as 5 rounds represents

1/3 of the total match and requires between 30 and 60 independent decisions to not change

the network. We compute the efficiency of a network by dividing the aggregate group payoff

by the maximum possible group payoff (116.6 with low cost and 99 with high cost). This

represents a measure of both absolute and relative efficiency as the aggregate group payoff

of the empty network is 0. To allow for closer comparison to the convergent networks, we

consider the efficiency of a non-convergent network to be its average efficiency over the last

5 rounds of the match.

At the end of the session, we measure the participants’ risk preferences using the Eckel &

Grossman (2008) method. A participant is given the choice between 5 lotteries and this

choice maps to a range of possible risk coefficients under the assumption of constant relative

risk aversion (the range of possible ρ is reported in parenthesis).16 The lotteries are: $4

with probability 100% (2.63 < ρ ), $3 with probability 50% or $7 with probability 50% (0.90

< ρ < 2.63), $2 with probability 50% or $10 with probability 50% (0.53 < ρ < 0.90), $1 with

16The CRRA utility function is given by U(m) = m(1−ρ)/(1 − ρ), where m is money and ρ is the risk
aversion parameter. ρ = 0 corresponds to risk neutral, ρ > 0 corresponds to risk averse (greater values
indicate more severe risk aversion), and ρ < 0 corresponds to risk seeking (lesser values indicate more severe
risk seeking).
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probability 50% or $13 with probability 50% (0.00 < ρ < 0.53), and $0 with probability 50%

or $14 with probability 50% ( ρ < 0.00). Here we list these lotteries from most risk averse to

least risk averse, but the order of the lotteries was randomly permuted for each participant

to avoid any order effect.

We present our results, ordered by hypothesis, below. These results are summarized in Table

B.3.

3.5.1 Convergence

In total, 83 out of 197 networks converged. Our convergence results, broken down by treat-

ment, are shown in Table 3.2. Figure 3.4 shows the median number of network changes by

Table 3.2: Frequency of Convergence by Treatment

Neighbor Observation Full Observation
Low Cost 50.0% (25/50) 42.6% (20/47)
High Cost 23.3% (14/60) 60.0% (24/40)

period for each treatment. The typical network converges in period 7 for Neighbor Obser-

vation - Low Cost, in period 10 for Full Observation - Low Cost, and in period 5 for Full

Observation - High Cost. The typical network for Neighbor Observation - Full Cost does

not converge. To test for a match level trend in the frequency of convergence, we estimate

a pooled logistic regression of the form

Pr(convergei = 1) = logit−1(Ti~α + βmatchi + matchiTi~γ),

where Ti is a vector of treatment dummy variables and matchi is a linear trend. We then

compute the average marginal effect for each treatment. On average there was a 5.5%

increase in the frequency of convergence between matches in the Neighbor Observation -

Low Cost treatment, a 3.2% increase in the Neighbor Observation - High Cost treatment,
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Figure 3.4: Median Number of Network Changes by Period
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a 2.8% increase in the Full Observation - Low Cost treatment, and a 5.0% increase in the

Full Observation - High Cost treatment. We cannot reject the null hypothesis that these

trends are jointly equal (p-value 0.760).Overall, there was a 4.0% increase in the frequency

of convergence between matches, significant at the 0.01 level.

Hypothesis 1: Holding the observation level fixed, the frequency of convergence is higher

under low cost than under high cost.

We test the null hypothesis that the frequency of convergence under low cost is less than or

equal to the frequency of convergence under high cost using Barnard’s Exact Test. We reject

this hypothesis at the 0.01 level for neighbor observation but cannot reject this hypothesis for

full observation (p-value 0.938). For neighbor observation, networks were significantly more

likely to converge with low cost (50.0%) than with high cost (23.3%) but for full observation
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there was no statistically significant difference in convergence. We interpret this as weakly

confirming Hypothesis 1. The existence of (near) efficient (C)PS networks under low cost

does seem to increase the likelihood of convergence, but this is clearly not capturing the full

picture. We do not find the expected effect for full observation and, if anything, the evidence

seems to point towards less convergence with low cost than high cost (42.6% vs. 60.0%).

Hypothesis 2: Holding the cost fixed, the frequency of convergence is higher under neighbor

observation than under full observation.

We test the null hypothesis that the frequency of convergence under neighbor observation

is less than or equal to the frequency of convergence under full observation using Barnard’s

Exact Test. We cannot reject this hypothesis under low cost (p-value 0.279) or high cost

(p-value > 0.999). For high cost, networks were significantly less likely to converge with

neighbor observation (23.3%) than with full observation (60.0%) and for low cost there was

no statistically significant difference in convergence (50.0% vs. 42.6%). We interpret this

as rejecting Hypothesis 2. The existence of CPS networks that are not PS networks is not

sufficient to ensure a higher frequency of convergence under neighbor observation.

3.5.2 Efficiency

We record the final efficiency of each network pairing. To allow for direct comparisons

between convergent networks (C) and non-convergent networks (NC), we consider the final

efficiency of a non-convergent network to be its average efficiency over the last 5 periods.

Our efficiency results, broken down by treatment, are shown in Table 3.3 (sample size in

parentheses). Our primary hypotheses do not explicitly differentiate between convergent

and non-convergent networks, but it is clear from Table 3.3 that convergent networks are

more efficient. We reject the null hypothesis of equal medians (Mann-Whitney U Test) at
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Table 3.3: Median Efficiency by Treatment

Neighbor Observation Full Observation
Low Cost 93.2% (50) 89.5% (38*)
C | NC 97.6% (25) | 88.4% (25) 99.4% (16) | 84.4% (22)

High Cost 80.4% (60) 75.8% (40)
C | NC 80.8% (14) | 78.0% (46) 88.9% (24) | 55.3% (16)

*Excludes 9 networks containing a subject who never connected.

the 0.05 level for Neighbor Observation - High Cost and at the 0.01 level for the other three

treatments.

When we instead plot the median efficiency by period, as shown in figure 3.5, we see that

efficiency for the typical network increases over time and then eventually plateaus, with a

slight efficiency dropoff at the end for the high cost treatments. To test for a match level

Figure 3.5: Median Efficiency by Period
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trend in the final efficiency of the network, we estimate a pooled regression of the form

efficiencyi = Ti~α + βmatchi + matchiTi~γ,

where Ti is a vector of treatment dummy variables and matchi is a linear trend. We then

compute the average marginal effect for each treatment. On average there was a 0.6%

decrease in efficiency between matches in the Neighbor Observation - Low Cost treatment,

a 0.7% decrease in the Neighbor Observation - High Cost treatment, a 0.9% increase in the

Full Observation - Low Cost treatment, and a 3.7% increase in the Full Observation - High

Cost treatment. We reject the null hypothesis that these trends are jointly equal at the

0.01 level, the trend for Full Observation - High Cost is significantly different from the other

treatments and zero. The overall trend for the remaining three treatments (0.2% decrease)

is not significantly different from zero (p-value 0.537).

Hypothesis 3: Holding the observation level fixed, the average efficiency is higher under low

cost than under high cost.

We test the null hypothesis that the efficiency under low cost is less than or equal to the

efficiency under high cost using the Mann-Whitney U Test. We reject this hypothesis at

the 0.01 level for both neighbor observation and full observation.17 For both observation

levels, median efficiency is greater with low cost than with high cost (93.2% vs. 80.4%

for neighbor observation and 89.5% vs 75.8% for full observation). We interpret this as

confirming Hypothesis 3. The stronger incentives to maintain connectivity with low cost do

seem to yield higher average efficiencies.

In total, 33/83 convergent networks and 69/114 non-convergent networks had at least one

cycle. We further break this down by treatment in Table 3.4. To test for a match level trend

17Controlling for the different match level trends under full observation and conducting a Wald test does
not change the significance level. The p-value drops from 0.008 to < 0.001.
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Table 3.4: Frequency of Cycles by Treatment

Neighbor Observation Full Observation
Low Cost 72.0% (50) 40.4% (47)
C | NC 60.0% (25) | 84.0% (25) 30.0% (20) | 48.1% (27)

High Cost 61.7% (60) 25.0% (40)
C | NC 57.1% (14) | 63.0% (46) 16.7% (24) | 37.5% (16)

in the frequency of cycles, we estimate a pooled logistic regression of the form

Pr(cyclei = 1) = logit−1(Ti~α + βmatchi + matchiTi~γ),

where Ti is a vector of treatment dummy variables and matchi is a linear trend. We then

compute the average marginal effect for each treatment. On average there was a 5.6%

decrease in the frequency of cycles between matches in the Neighbor Observation - Low

Cost treatment, a 8.2% decrease in the Neighbor Observation - High Cost treatment, a

8.6% decrease in the Full Observation - Low Cost treatment, and a 4.2% decrease in the

Full Observation - High Cost treatment. We cannot reject the null hypothesis that these

trends are jointly equal (p-value 0.189).Overall, there was a 6.9% decrease in the frequency

of convergence between matches, significant at the 0.01 level.

Hypothesis 4: Holding the cost fixed, the frequency of cycles is higher under neighbor

observation than under full observation.

We test the null hypothesis that the frequency of cycles under neighbor observation is less

than or equal to the frequency of cycles under full observation using Barnard’s Exact Test.

We reject this hypothesis at the 0.01 level for both low cost and high cost. For both cost

environments, cycles were significantly more likely to occur in convergent networks with

neighbor observation than with full observation (60.0% vs. 30.0% for low cost and 57.1%

vs 16.7% for high cost). We interpret this as confirming Hypothesis 4. Nearly 60.0% of

convergent networks had cycles with neighbor observation, but only Only 15.4% (6/39)
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of these networks had visible cycles. Thus the lack of full observation does increase the

likelihood with which inefficient cycles form.

Jockeying for position may result in periodic disconnection; particularly when a stem is

paired with its neighbor. For each individual and match, we record the number of times the

individual was paired with her own stem and the number of times the individual elected to

remove the tie. From this we compute this individual’s frequency of stem removal for the

match. The overall frequency of stem removal by treatment is shown in Table 3.5.

Table 3.5: Frequency of Stem Removal by Treatment

Neighbor Observation Full Observation
Low Cost 27.3% (65/238) 23.9% (62/259)
High Cost 47.5% (135/284) 34.6% (63/182)

Hypothesis 5: Holding the cost fixed, stems are dropped more frequently under full

observation than under neighbor observation.

To test the null hypothesis that the frequency of stem removal under neighbor observation is

greater than or equal to the frequency of stem removal under full observation, we we estimate

a regression of the form

droppedstemsi = Mi~α + βneighbori

for each cost setting, where Mi is a vector of match dummy variables and neighbori equals 1

for neighbor observation, 0 otherwise. We then conduct a t-test of whether β is greater than

or equal to 0, correcting for two-way clustering at the group and participant levels. We cannot

reject this hypothesis under low cost (p-value 0.666) or high cost (p-value 0.914). For high

cost, stems were significantly more likely to be dropped with neighbor observation (47.5%)

than with full observation (34.6%) but for low cost there was no statistically significant
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difference in stem removal (27.3% vs 23.9%). We interpret this as rejecting Hypothesis 5.

Stem actors are more likely to be dropped under neighbor observation even though it may

be harder for these actors to reconnect.

In an effort to better understand this rejection, we conducted a follow-up analysis. Our

hypothesis was premised on the notion that reconnection would be more difficult under

neighbor observation than full observation due to uncertainty about one’s own connectivity

to an unobserved actor; however, an unobserved actor may also be viewed more favorably

than an observed isolate when actors have optimistic beliefs (i.e., that the actors outside

one’s component are connected, not isolated). This effect is especially large in early periods,

when components are much smaller than the maximum of 12, and with high cost, where

connecting to an isolated actor is myopically detrimental.

We do not elicit the beliefs of our subjects, and so we cannot definitively show that optimistic

beliefs are the cause of this rejection. However, there are several checks that we can conduct

to assess the plausibility of this explanation. First, we note that the networks we observe

under neighbor sight are more consistent with optimistic beliefs than pessimistic beliefs. Only

1/40 convergent networks have less than 10 actors in the maximal component. Further, only

2/71 non-convergent networks had less than 10 actors in the maximal component throughout

the last 5 periods. If actors held pessimistic beliefs, we would expect more instances where

the maximal component had 8 or 9 actors. Second, we note that under neighbor observation,

a much larger percentage of stem removal occurs in the early rounds, before network efficiency

plateaus (44.6% vs 27.4% for low cost, and 31.1% vs 14.3% for high cost). When we compare

the distribution of stem removals by period, we reject the null hypothesis of equal medians

at the 0.05 level for high cost. We cannot reject this hypothesis for low cost (p-value 0.24).

This evidence points (weakly) towards a higher percentage of jockeying in the early rounds

for neighbor observation than full observation, which is consistent with the incentives of

far-sighted actors when beliefs are generally optimistic.
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Hypothesis 6: Holding the observation level fixed, stems are dropped more frequently under

high cost than under low cost.

To test the null hypothesis that the frequency of stem removal under low cost is greater than

or equal to the frequency of stem removal under high cost, we we estimate a regression of

the form

droppedstemsi = Mi~α + βlowcosti

for each observation level, where Mi is a vector of match dummy variables and lowcosti equals

1 for low cost, 0 otherwise. We then conduct a t-test of whether β is greater than or equal

to 0, correcting for two-way clustering at the group and participant levels. We reject this

hypothesis at the 0.01 level under neighbor observation and at the 0.05 level under full

observation. For both observation levels, stems are more likely to be dropped with high cost

than with low cost (47.5% vs. 27.3% for neighbor observation and 34.6% vs 23.9% for full

observation). We interpret this as confirming Hypothesis 6. Actors do tend to remove ties

whose cost exceeds the immediate benefit.

An individual’s chosen position in the network may also depend on risk aversion. We measure

each subject’s risk aversion using the Eckel & Grossman (2008) method and separate these

subjects into 5 categories based on the lotteries chosen. For each individual and match,

we record the number of rounds the individual spent in the stem position. From this we

compute this individual’s fraction of time spent in the stem position for the match. For the

purpose of this analysis, we exclude the first 5 periods, because networks do not typically

begin to stabilize until round 6. The overall fraction of time spent in the stem position by

risk category is shown in Table 3.6.
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Table 3.6: Fraction of Time Spent in Stem Position by Risk Category

ρ < 0.00 33.8%

0.00 < ρ < 0.53 33.0%

0.53 < ρ < 0.90 34.5%

0.90 < ρ < 2.63 29.0%

2.63 < ρ 30.2%

Hypothesis 7: A higher degree of risk aversion is associated with a lower likelihood of being

in a stem position.

To test the null hypothesis of equal proportions across risk categories against the alternative

of different proportions, we first estimate a pooled regression of the form

droppedstemsi = Mi~α + Ri
~β,

where Mi is a vector of match dummy variables and Ri is a vector of risk category dummy

variables (one category omitted). We then conduct an F-test of whether the coefficients in ~β

are jointly equal to 0, correcting for two-way clustering at the group and participant levels.

We cannot reject this hypothesis (p-value 0.456). While time spent in the stem position does

follow the predicted pattern across risk categories, the difference across categories is neither

statistically or economically significant. The evidence does not generally support Hypothesis

7. The risk of being dropped from the network does not seem to be a major factor in each

actor’s decision about where to locate in the network.
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3.5.3 Typical Networks

Figure 3.6: Typical Network by Treatment

(a) Neighbor Observation - Low Cost (b) Full Observation - Low Cost

(c) Neighbor Observation - High Cost (d) Full Observation - High Cost

Realized networks clearly differ in many key characteristics, yet it is instructive to iden-

tify what we can be considered typical for each treatment condition. Figures 3.4 and 3.5

characterize the median behavior of the network formation process by treatment. We can

infer from these analyses when the median network converges (if at all) and at what level

of efficiency. These are just two of many dimensions on which networks can be compared;

other dimensions include: number of redundant ties, number of cycles, size of cycles, and

size of maximal component. To better understand the the properties of the typical networks

in each treatment, we compute the median values for each of these dimensions and then find

the one realized network from each treatment that most closely matches the median across
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dimensions. Visuals of these networks are shown in Figure 3.6. Each network converged

within 1 period of the median for that treatment, has an efficiency within a few percentage

points of the median, and exactly matches the median in all other dimensions. In these

visuals, created using the software package UCINET,18 actors are denoted by grey squares

and ties are denoted by solid black lines. When the network did not converge, we present

a visual of that network over the last 5 periods. Ties that were added after period 11 are

colored grey, and ties that were removed before period 15 are denoted by grey dashed lines.

The typical network for Neighbor Observation - Low Cost converges to a connected network

with one hidden cycle/redundant tie (Figure 3.6(a)), the typical network for Neighbor Ob-

servation - High Cost does not converge and has a component of size 11 (one isolate) with

one cycle/redundant tie (Figure 3.6(c)), and the typical networks for both Full Observation

treatments converge to a component of size 11 (one isolate) with no cycles/redundant ties

(Figures 3.6(b) and 3.6(d)).

3.6 Conclusion

We present the first experimental study of network formation when actors have limited

observation of the network. Our 2x2 experiment design exogenously varies two treatment

variables: the cost of forming links and the level of network observation. Observed behavior

is largely, but not always, consistent with our predictions. Convergence is more likely with

low link cost than high link cost, but it is also less likely with neighbor observation than

with full observation. Efficiency is higher under low cost as expected, with more cycles

observed under neighbor observation, and more stems dropped with full observation. Stems

are removed more often under neighbor observation and high cost, and we do not find a

significant relationship between risk aversion and the stem position.

18Borgatti, S.P., Everett, M.G. and Freeman, L.C. 2002. Ucinet for Windows: Software for Social Network
Analysis. Harvard, MA: Analytic Technologies.
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We also find strong evidence of far-sighted behavior, a double-edged feature in this setting.

Far-sighted behavior leads to the rapid formation of connected or nearly connected networks,

generates large utility gains. Moreover, the network often converges to a network that

is not Pairwise Farsightedly Stable, again to the benefit of actors. However, far-sighted

behavior also leads to jockeying for advantageous positions in the networks, a behavior

which leads to short-run utility losses as links are severed and reformed. The frequency

and characteristic of jockeying appears to be different under neighbor observation than full

observation. While there is a higher frequency of inefficient, redundant links (cycles) under

neighbor observation, there is also a lower frequency of inefficient jockeying, and this leads,

surprisingly, to higher average utilities under neighbor observation. When jockeying occurs

under neighbor observation, it appears relatively more often in earlier rounds, unlike under

full observation, in which case it is later rounds. This may be evidence of optimistic beliefs.

Future work has many avenues to explore. The incentives to form and sever links vary

widely across network settings, and additional work is needed to determine how many of our

findings generalize. That the location of a subject in the network may depend on her risk

preferences also deserves closer examination, especially in network settings where network

position is more consequential for welfare than in our setting. Finally, future theoretical and

experimental work can identify just how much network observation is enough to mimic full

information, and can even examine the actors’ incentives to collect information, perhaps at

a cost, about others links. We expect this work to provide even more insights into the role

limited observation plays in network formation.
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Chapter 4

The Origin of the State as a

Stationary Bandit

In this chapter, I develop a model of the origin of the state. Starting from an anarchic

environment, where property is insecure and must be defended, I show how a primitive

state can emerge out of anarchy. The coalition in power is determined endogenously, and

the emergent order can resemble autocracy, oligarchy or meritocracy, depending on the

initial distribution of violence capacities. I find that aggregate production increases under a

cooperative pact, and that when the coalition in power is predatory, producers are often, but

not always, better off in the emergent order than under anarchy. The existence of a powerful

coalition that is able to secure payoffs beyond its productive capacity cannot be ruled out,

even when individuals are ex ante symmetric.
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4.1 Introduction

In a world of roving banditry there is little or no incentive for anyone to produce

or accumulate anything that may be stolen and, thus, little for bandits to steal.

Bandit rationality, accordingly, induces the bandit leader to seize a given domain,

to make himself the ruler of that domain, and to provide a peaceful order and

other public goods for its inhabitants, thereby obtaining more in tax theft than

he could have obtained from migratory plunder. – Olson (1993)

How did the state emerge out of anarchy? This age-old question has puzzled philosophers,

political scientists, and economists alike for centuries. Olson’s (1993, 2000) seminal theory

that the state originated from a stationary bandit, who tempers her theft in the short-run to

preserve long-run production incentives, provides an intriguing starting point to study the

origin of the state. In particular, the key problem that society must overcome to achieve

order in Olson’s framework has direct analogs to other prominent theories such as Nozick

(1977) and North, Wallis & Weingast (2009). In all of these theories, order is ultimately

seen a solution to the problem of endemic conflict. Where these theories differ is in the

precise definition of conflict, whether that be theft (Olson 1993), violence (North et al. 2009)

or infringement on natural rights (Nozick 1977), and in the specifics of how the problem

is solved. Olson and North et al. posit that it is powerful individuals (i.e., the would be

conflict initiators) who organize to solve the conflict, whereas Nozick posits that it is the

rest of society (i.e., the would be victims) who organize.

In this chapter, I show that, starting with the primitive of a distribution of violence ca-

pacities and a simple production economy, many of the natural states that have emerged

throughout recorded history (see e.g., Fukuyama 2011, for an overview) can be explained

with a framework such as Olson’s or North et al.’s and cannot be explained with a frame-
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work such as Nozick’s.1 One possible explanation for this discrepancy is that natural law

theory (e.g., Grotius 1625, Pufendorf 1672, Hume 1739, Locke 1689) relies on consent (tacit

or otherwise) to justify the initial social contract, which, although not typically addressed,

is consistent with the idea that concessions might need to be made to powerful individuals

when entering into the social contract.2 Thus, a strict reliance on Locke’s “workmanship

model” of property as is done by Nozick can lead to conclusions that are not generalizable.

If the distribution of violence capacities in society is relatively asymmetric, then concessions

might need be made to stronger individuals in the initial social contract.3 This can lead

to the creation and persistence of a powerful coalition that is able to secure supranormal

profits beyond its productive capacity. In Olson’s framework this is the stationary bandit,

and in North et al.’s framework this is the political elite in a limited-access order. In this

chapter, I do not find conditions where a pure meritocracy (and thus possibly democracy)

could emerge out of anarchy. Thus, these forms of government might require additional

political infrastructure to be viable (for a thorough analysis of transition to democracy see

e.g., Acemoglu & Robinson 2009).

I develop a model of the origin of the state as a stationary bandit, in the spirit of Olson (1993).

Starting from an anarchic environment in which property is insecure and must be defended,

I assess the potential cooperative pacts that might emerge in equilibrium.4 The model

presented in this chapter differs from prior research on predatory states (e.g., Grossman

& Noh 1994, McGuire & Olson 1996, Moselle & Polak 2001, Robinson 2001, Skaperdas

1In Nozick’s defense, his goal was to show how a legitimate government could emerge out of anarchy
and not necessarily to describe how a government would emerge out of anarchy. The main assumption of
Nozick’s that is violated by this treatment of the origin of the state is the assumption of moral agents. Here,
I instead assume that agents only seek to maximize their own economic payoff.

2See Appendix C.1 for a detailed discussion.
3Experiments on the endogenous formation of institutions have shown that even when participants are

equally adept at taking, property will not necessarily be respected (e.g., Kimbrough, Smith & Wilson 2010,
Wilson, Jaworski, Schurter & Smyth 2012). However, Wilson et al. (2012) shows that under some conditions
a respect for property might emerge out of social custom.

4While these pacts are modeled explicitly, they need not be the result of conscious design. For example,
Sugden (2004) shows how these sorts of cooperative norms might emerge through long run evolutionary
processes.
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2014, Konrad & Skaperdas 2012) in two key ways. Firstly, the prior work exogenously

assumes the existence of a ruler, whereas the ruler(s) are determined endogenously in my

model. By requiring that the ruling coalition emerge out of anarchy, I can more accurately

capture the constraints faced by the ruler in any cooperative agreement. Typically, even an

absolute monarch needs the support of her fellow elites to retain power, and it is difficult to

capture such constraints when abstracting away from the process by which a ruler is selected.

Myerson (2008) finds that when a ruler is subject to constraints, she may be able to make

more credible promises than an unconstrained ruler could. Also, by restricting attention

to coalitions of bandits that could emerge out of anarchy, I am able to draw comparisons

between the structure of society in the emergent order and well known forms of government

such as autocracy, oligarchy, and meritocracy.5 Such comparisons are difficult to make when

the structure of society is taken as given. Secondly, the prior work assumes symmetric

agents (with the possible exception of the ruler), whereas I allow for a very general form

of asymmetry between agents. By allowing the distribution of violence capacities to be

asymmetric I can consider many cases that have not yet been studied, in addition to the

cases studied in prior work. This model uses similar production and defense technologies

to Konrad & Skaperdas (2012) and Skaperdas (2014), but I also explicitly model conflict

between (possibly asymmetric) bandits under anarchy and this feature is not present in

their model.

In the interest of simplicity, I too have made many abstractions, and so this work should be

viewed as a complement rather than a supplement to the prior work on predatory states.

I do not, for example, consider the case of a finite and endogenous time horizon, as do

Grossman & Noh (1994), nor do I consider collective protection technologies, as do Konrad

5I use the term “meritocracy” to describe an order in which property rights are respected and each
individual keeps the fruits of her own labor, less perhaps a small tax to support various public goods such as
defense. In a meritocracy, no party is able to secure supranormal profits through the use of force. I prefer to
use the term “meritocracy” rather than a term such as “democracy” because it does not have the additional
context of a voting system, which is beyond the scope of this chapter.
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& Skaperdas (2012) and Skaperdas (2014).6 The public goods considered in this analysis

are primarily respect for property and resistance to banditry. I do not consider productivity

enhancing public goods, as is done in other studies (e.g., Grossman & Noh 1994, McGuire

& Olson 1996, Moselle & Polak 2001, Robinson 2001) with mixed results for the welfare of

producers.

In addition to the fundamental importance of this topic to political science and philosophy,

a better understanding of the process of state formation can be applied to many modern day

economic phenomena. In particular, the incentives faced by economic agents in an anarchic

environment are similar to the incentives faced by economic agents in states that lack the

economic and political institutions to protect property and/or limit the use of coercive force.

For example, the observed behavior of urban squatters in Peru matches the predicted behav-

ior of producers under anarchy in this model. Field (2007) finds that prior to an intervention

by the Peruvian government in 1996 that assigned property rights to these squatters, they

spent an average of 13.4 hours per week defending their residences. Also, the behavior of lo-

cal government officials in Uganda when administering public expenditures is not unlike the

behavior of bandits in this model. Reinikka & Svensson (2004) find that in the mid-1990s,

Ugandan schools received only 13% of the grant money that was allocated to education by the

government. The majority of the grant was instead captured by local government officials.

Easterly (2001) details the many well-intentioned, but ultimately unsuccessful aid attempts

by the World Bank over the years at spurring growth in developing countries. A recurring

theme in the unsuccessful aid attempts is an incomplete understanding of the underlying

incentives of the elite. Thus, an improved understanding of the incentives and constraints

that led to the initial formation of the state will also help to improve our understanding of

developing countries and the feasibility of various development aid interventions.

6Konrad & Skaperdas (2012) and Skaperdas (2014) find that while there are gains to producers organizing
for collective protection, these forms of governance do not fare well against warlords and predatory states.
This model shares the feature that “offense trumps defense.” For an alternative analysis of state formation
in which “defense trumps offense” see e.g., Dow & Reed (2013).
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4.2 Static Model

The model society consists of N ≥ 2 infinitely lived, risk neutral agents, indexed by (i =

1, 2, ..., N). Each agent i is endowed with a violence capacity θi ∈ R+. For analytic con-

venience, I index the agents in order of violence capacity such that agent 1 has the largest

violence capacity and agent N has the smallest violence capacity. In addition, I normalize the

set of violence capacities θ = {θ1, θ2, ..., θN} such that
N∑
j=1

θj = 1. I refer to this normalized

set θ as the distribution of violence capacities. This distribution can range from the uniform

distribution, in which all agents are equally capable of violence, to a degenerate distribution,

in which one agent has all of the violence capacity. Each agent knows the entire distribution

of violence capacities and knows which violence capacity belongs to whom. Let

p(gi, g−i) =
θigi

θigi +
∑
j 6=i

θjgj
, (4.1)

denote agent i’s probability of winning an N player asymmetric lottery contest (e.g., Grad-

stein 1995, Stein 2002), where gi is the effort of the ith agent and g−i is the effort of all other

agents. Then θi can be interpreted as agent i’s ex ante probability of winning the contest.

Agents have one inalienable unit of time to divide between labor, l, defense, x, and expro-

priation, g. Each agent i has access to the same production technology F (li) that converts

labor into output, with maximum feasible production F (1) = 1. In this anarchic environ-

ment, output is not secure and only a fraction α(xi), 0 ≤ α(·) ≤ 1, can be successfully

defended from theft.7 The remaining fraction, 1 − α(xi), is insecure. I assume F (0) = 0,

F ′(l) > 0, F ′′(l) ≤ 0, α(0) = 0, α(1) = 1, α′(x) > 0 and α′′(x) ≤ 0. In keeping with

the banditry motivation, I also assume labor and expropriation are incompatible activities.

Labor requires settling down and working the land, whereas expropriation requires traveling

7While I opt to leave α(·) as a general function, common specifications in related work include linear
returns to defensive effort, α(xi) = xi (e.g., Skaperdas 2014), and a generalized lottery contest success
function, α(xi, g) = xi

xi+γg
for some γ > 0 (e.g., (e.g., Gonzalez 2007).
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from farm to farm in order to take insecure output.8 Thus agents may engage in labor or

expropriation, but never both. The agents can be naturally divided into two groups: agents

who spend time on labor, henceforth referred to as producers, and agents who spend time

on expropriation, henceforth referred to as bandits. Let P denote the set of producers and

B denote the set of bandits. Then N = |P |+ |B|.

The returns to expropriation are determined through an N player asymmetric lottery contest

with prize

V =
∑
i∈P

[(1− α(xi))F (li)] , (4.2)

equal to the sum of all insecure output. When B 6= ∅, agent i’s probability of winning the

prize (or equivalently, her share of the loot) is given by (4.1). When, B = ∅ then each

producer retains the insecure portion of her output.

4.2.1 Summary of Static Model

Ex Ante: Each agent i is endowed with a violence capacity θi and one inalienable unit of

time.

Ad Interim: Agents simultaneously choose l, x, g such that li + xi + gi ≤ 1 and either

li = 0 or gi = 0 for all i. V , B, and P are determined.

Ex Post: If B 6= ∅, the insecure output is taken and agents compete in an asymmetric

lottery contest with prize V . Each agent i’s contest effort is given by gi. Otherwise,

each producer retains the insecure portion of her output.

8I focus primarily on agrarian societies as the sedentary nature of farmers magnifies the social dilemma
presented by a lack of property rights. Unlike a hunter or a shepherd, there are high costs for a farmer to
relocate, and so it is more likely that a farmer would be forced to interact with the same bandit repeat-
edly in the long run. Anthropological evidence suggests that early agricultural societies made much larger
investments in defense than did hunter gather societies (see e.g., Seabright 2008).
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4.2.2 Anarchic Equilibrium

I first consider the static, non-cooperative Nash equilibrium, henceforth referred to as the

anarchic equilibrium. This equilibrium consists of a vector of choices si = (l̂i, x̂i, ĝi),∀i, such

that no agent i has an incentive to unilaterally deviate given the actions of others.

The equilibrium choices completely determine the equilibrium P , B, and V , denoted P̂ , B̂

and V̂ , as well as the equilibrium payoff to producers, ΠA
P , and the equilibrium payoff to

each bandit i ∈ B̂, ΠA
B,i.

Producers maximize the payoff ΠP (l, x) = α(x)F (l) such that l + x ≤ 1.9 The earlier

conditions on F (·) and α(·) are sufficient to ensure a unique optimum. Thus the anarchic

equilibrium payoff to producers is given by

ΠA
P (l̂) = α(1− l̂)F (l̂). (4.3)

This decision does not depend on the number of bandits |B|, and so (4.3) also represents the

opportunity cost of banditry.10

Bandits maximize the payoff ΠB,i(gi, g−i) = p(gi, g−i)V . The above constraints on l, x , and

g, imply ĝi = 1,∀i ∈ B. Thus, each bandit’s ex post probability of winning the contest is

given by

p(ĝi, ĝ−i) =
θi∑

j∈B
θj

(4.4)

9I do not consider the case where B̂ = ∅ as this will never be an equilibrium outcome for N sufficiently
large (it requires V̂ ≤ 2). In the case where a(xi) = xi, N ≥ 2 will suffice.

10The fraction of output that can be secured from theft may, in practice, depend on the number of bandits
|B|. However, the number of bandits is fixed local to a particular equilibrium and so this added generality
does not meaningfully affect the results. Thus, I maintain the independence assumption for the sake of
simplicity. This observation does highlight that caution should be excercised when making comparisons
across equilibria in settings where the independence assumption is implausible.
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and the anarchic equilibrium payoff to bandit i is given by

ΠA
B,i(ĝi, ĝ−i) = p(ĝi, ĝ−i)V̂ =

θi∑
j∈B̂

θj

∣∣∣P̂ ∣∣∣ (1− α(x̂))F (l̂). (4.5)

This payoff structure is similar to the one analyzed in Gradstein (1995) and Stein (2002),

with the main departures being the endogeneity of the prize V and the additional constraints

on expropriative effort. When an agent forgoes production and enters into the contest among

bandits, she not only incurs an opportunity cost of ΠA
P , but she also reduces the prize for

all bandits by (1− α(x̂))F (l̂). This has several implications for the sets B̂ that can arise in

equilibrium.

Proposition 4.1. Let B denote the set of all possible equilibrium B̂ for a given set of

parameters. Then the following claims are true:

i For all B̂ ∈ B, i ∈ B̂, ΠA
B,i ≥ ΠA

P .

ii There exists a B̂ ∈ B, such that B̂ consists of the
∣∣∣B̂∣∣∣ agents with the most violence

capacity. This set, denoted B̂viol, is unique up to a permutation of identities for agents

with identical violence capacities.

iii For some values of the parameters, there exist B̂ ∈ B such that B̂ 6= B̂viol.

Proof. (i) Suppose i ∈ B̂ and ΠA
B,i < ΠA

P . Then agent i could profitably deviate to production

by choosing (l̂, x̂, 0) which implies i /∈ B̂. Thus ΠA
B,i ≥ ΠA

P .

(ii) Suppose not. Pick some B̂ ∈ B such that B̂ does not consist of the
∣∣∣B̂∣∣∣ agents with

the most violence capacity. Then, by definition, there exists at least one agent i ∈ B̂

with less violence capacity than some agent j /∈ B̂ and by Proposition 4.1 (i), ΠA
B,i ≥ ΠA

P .

Furthermore, we can see from (4.5) that ΠA
B,i is strictly increasing in θi. Pick the agent

j /∈ B̂ with the most violence capacity. By assumption, θj > θi. This implies that if agent j
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were to replace agent i in the set of bandits (i.e., if B = B̂ ∪ {j}\{i}), agent j would also

receive a payoff greater than ΠA
P (i.e., ΠA

B,j > ΠA
P ). As agent j does not have an incentive to

deviate from B = B̂ ∪ {j}\{i}, either B = B̂ ∪ {j}\{i} ∈ B or some other agent wants to

switch to production. Suppose some other agent k wants to switch to production. Then k

must be receiving a payoff below ΠA
P which implies θk < θj. Once k switches to production,

either B̂ ∪ {j}\{i, k} ∈ B, or some agent l ∈ B̂ ∪ {j}\{i, k} (θl < θj) also wants to switch

to production, or some agent m /∈ B̂ ∪ {j}\{i, k} wants to switch to banditry (θm < θj as j

was the agent with the most violence capacity not already in the set B̂). Regardless of the

precise response to the original switch to B = B̂ ∪ {j}\{i}, this response will only involve

adding and removing agents with less violence capacity than j and thus it will never be a

best response for j to switch back to production in this chain of events. Eventually the

process will settle on some B̂′ ∈ B that contains j. Either B̂′ consists of the
∣∣∣B̂′∣∣∣ agents with

the most violence capacity or not. But if not, then by similar logic we can replace at least

one agent in B̂′ with some agent not in B̂′ that has more violence capacity and again we will

arrive at some new equilibrium B̂′′ ∈ B that contains both j and this new agent. However

many times this process must be repeated, eventually we will arrive at some equilibrium in

B that consists of the agents with the most violence capacity, which contradicts our original

assumption.

(iii) For example, when N = 3, θ1 > θ2 = θ3, F (l̂) = 1/2, and α(x̂) = 1/3, there exists an

equilibrium such that B̂ = {2, 3}. Here B̂ 6= B̂viol because 1 /∈ B.

Part (i) of Proposition 4.1 states that all bandits receive a weakly greater payoff than produc-

ers, part (ii) states that an equilibrium exists where the strongest agents all choose banditry,

and part (iii) states that this need not be the unique equilibrium. This multiplicity of equi-

libria presents an equilibrium selection problem. Of the many possible equilibria that exist

for a given set of parameters, we would like to know which equilibrium is the most plau-

sible prediction of behavior. As detailed in Proposition 4.2 below, an equilibrium where
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the strongest agents choose banditry has several notable properties that make it a plausible

candidate. Before stating the proposition, I outline the thought process behind this claim in

Section 4.2.3.

4.2.3 Evolutionary Model of Role Selection

The model does not, in general, yield a unique anarchic equilibrium. This presents a natural

coordination problem. An agent might be a bandit in one equilibrium and a producer

in another. Even when every agent intends to play some equilibrium strategy, without a

mechanism to coordinate actions there is no guarantee that the realized strategy profile

will correspond with one of the equilibria. In addition, different agents may prefer different

equilibria due to the adversarial nature of the interaction, and so there is no clear focal

equilibrium. Thus, we should not necessarily expect the agents to immediately coordinate on

an anarchic equilibrium. However, if roles were not consciously selected and instead evolved

over time, the evolutionary process might naturally gravitate toward certain equilibria. In

this section, I present an evolutionary model of role selection to assess the properties of

various equilibria in the static model.

Consider a population of N agents (i = 1, 2, ..., N), interacting over an infinite number of

discrete periods (t = 0, 1, 2, ...). Each agent i has violence capacity θi.

Agents play one of two strategies, p or b. The payoff to strategy p is ΠA
P , given by (4.3),

and the payoff to strategy b is ΠA
B,i, given by (4.5), where B is the set of agents currently

choosing strategy b and P is the set of agents currently choosing strategy p. In period t = 0,

each agent plays some initial strategy. In all future periods, one agent is selected at random

and given the opportunity to revise her strategy. I assume that agents revise their strategies

89



according to the logit choice protocol, given by

ρij =
exp(η−1πj)

exp(η−1πp) + exp(η−1πb)
, (4.6)

where ρij is the likelihood of a revision from strategy i to strategy j, i, j ∈ {p, b}, πi is the

payoff to strategy i, and η is the noise level.

Under this protocol, agents myopically best respond to the strategies being played by the rest

of the population with some possibility of error (parameterized by η > 0). Each strategy has

a positive probability of being played, but costly errors are penalized. Thus, a best response

is always the most likely revision, and the likelihood of a non-best response is decreasing in

the cost (in terms of forgone payoff) of the error. As η → 0, this revision protocol approaches

a pure best response protocol.

This game admits an irreducible Markov process yielding a stationary distribution µ, where

µs is the proportion of the time that strategy profile s ∈ S is played in the long run. As

η → 0 and t → ∞, the proportion of the time spent in each state s by the evolutionary

process approaches µs. A state s is termed stochastically stable if µs > 0, i.e., if the strategy

profile is played positive proportion of the time in the long run (Foster & Young 1990). By

proposition 4.2 below, the anarchic equilibrium where B = B̂viol is the unique stochastically

stable state (i.e., µB=B̂viol
= 1). Thus the evolutionary process to spends almost all of the

time in this equilibrium as η → 0 and t→∞ (Young 1998).

Proposition 4.2. B̂viol has the following properties:

i
∣∣∣B̂viol

∣∣∣ ≤ ∣∣∣B̂∣∣∣ for all B̂ ∈ B.

ii B̂viol is the unique stochastically stable state in the evolutionary game of role selection.

Proof. (i) By Proposition 4.1 (i) All agents i ∈ B̂viol earn a payoff greater than or equal to
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ΠA
P . Furthermore, by definition, B̂viol consists of the

∣∣∣B̂viol

∣∣∣ agents with the most violence

capacity. Construct a new set B such that |B| <
∣∣∣B̂viol

∣∣∣ and such that B consists of the

|B| agents with the most violence capacity. Then B ⊂ B̂viol and any agent i ∈ B̂viol, i /∈ B

would earn a payoff greater than or equal to ΠA
P by joining B (otherwise B̂viol could not be

an equilibrium set). Thus,agent i earns a payoff greater than or equal to ΠA
P by joining even

most capable set of bandits of size |B| <
∣∣∣B̂viol

∣∣∣, which implies that this agent would earn a

payoff greater than or equal to ΠA
P for by joining any set of size |B| <

∣∣∣B̂viol

∣∣∣. This implies

B /∈ B. Therefore, there does not exist a B̂ ∈ B such that
∣∣∣B̂viol

∣∣∣ > ∣∣∣B̂∣∣∣.
(ii) Consider a transition from some equilibrium B̂ ∈ B�B̂viol to B̂viol. Under the logit

choice protocol, the cost of an action is the absolute difference in payoff between this action

and the best response to the population strategy profile. Note that the cost of a relatively

strong agent choosing banditry when production is a best response is less than the cost of a

relatively weak agent choosing banditry when production is a best response. Also note that

the cost of a relatively strong agent choosing production when banditry is a best response

is greater than the cost of a relatively weak agent choosing production when banditry is a

best response. This follows from the payoff to banditry, given by (4.5), which is strictly

increasing in θi. Recall that the basin of attraction of a particular equilibrium is the set

of strategy profiles that can reach the equilibrium through a sequence of individual best

responses. The radius of this basin of attraction is the minimum cost route required to

escape the basin of attraction and the coradius of this basin of attraction is the maximum

over all other equilibrium states of the minimum cost route required to reach the basin of

attraction. A transition from some B̂ into B̂viol involves adding relatively strong agents to

the set of bandits and taking away relatively weak agents, whereas a transition out of B̂viol

into some B̂ involves adding relatively weak agents to the set of bandits and taking away

relatively strong agents. Therefore the radius of a transition from B̂ into B̂viol is necessarily

less than the radius of a transition out of B̂viol into B̂ for all B̂ ∈ B�B̂viol, which implies
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that the radius of B̂viol is greater than the coradius of B̂viol.
11 By Alos-Ferrer & Netzer

(2010) Proposition 3, this implies that B̂viol is the unique stochastically stable state of the

evolutionary process.

Part (i) of Proposition 4.2 states that B̂viol has the smallest number of bandits (or equiv-

alently, the most producers) out of all possible equilibrium B̂. Part (ii) states that, in the

long run, the set B̂viol will emerge as the steady state of an evolutionary process whereby

bandit and producer roles are selected repeatedly over time. Thus starting from any initial

condition, if agents are less likely to make very costly errors than minor errors, we should

expect B̂viol to emerge as the equilibrium set of bandits.

Proposition 4.2 suggest that an equilibrium where the strongest agents choose banditry has

several advantages over equilibria that do not. Firstly, by Proposition 4.2 (i), these equilibria

have the highest aggregate production in the class of all anarchic equilibria. Thus, equilibria

in which bandits are relatively weak are less socially efficient than equilibria in which bandits

are relatively strong. Secondly, evolutionary processes are more likely to select equilibria

where strong agents choose banditry. The accidental entry of a strong bandit into a weak

bandit equilibrium is much more costly for the weak bandits than for the strong bandit. Thus,

weak bandit equilibria are not particularly robust to random perturbations, whereas strong

bandit equilibria are more resilient. If society spent some time in an anarchic environment

before coordinating on a cooperative outcome, we might expect the bandits to be relatively

strong compared to producers in the emergent steady state.

11The obvious exception to this statement is when B̂viol itself is not unique (then its radius would equal
its coradius), but as these equilibria are identical up to a permutation of identities for agents with identical
violence capacities I group these equilibria into the same equivalence class.
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4.3 Dynamic Model

Section 4.2 considered anarchy as a static non-cooperative baseline. While the equilibrium

where the strongest agents choose banditry stood out as a plausible prediction of play, this

equilibrium is by no means ideal. Society can feasibly produce N and instead produces

(N − |B̂|)F (l̂) under anarchy. Not every member of society contributes to production, and

those members that do contribute spend a fraction of their time on non-productive defensive

effort. In this fixed environment, where the same individuals encounter each other repeatedly,

there may be substantial gains from cooperation. Bandits in particular, whose payoffs are

proportional to the sum of all insecure output, could benefit from contracting with the

producers to ensure that producer efforts are spent on production rather than defense. By

agreeing not to take all the insecure output, bandits enable the producers to spend more time

on production, thus increasing the size of the economic rent accruing to the bandits.12 This

is the critical observation behind Olson’s (1993) stationary bandit hypothesis. Furthermore,

the bandits might also benefit from cooperating with one another if this were to enable a

subset of the bandits to become producers.

Consider the following adaptation of the static model defined in Section 4.2. The static game

of production, defense, and expropriation is now infinitely repeated (t = 0, 1, 2, ...). Agents

share a common discount factor δ ∈ (0, 1) and seek to maximize the discounted sum of all

future payoffs, given by

Πi =
∞∑
t=0

δtΠi,t. (4.7)

I assume that agents can freely and costlessly transfer payoffs at the end of each period (after

actions are observed), where τ ji,t denotes the transfer made from agent i to agent j in period

12Here I am implicitly assuming that the bandits can fully observe the effort of the producers. Mayshar,
Moav & Neeman (2012) show that when the effort of producers is less transparent, this limits the extent to
which bandits can capture the surplus from production.
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t. Thus the payoff for a producer in period t is given by

ΠP,i,t = α(xi,t)F (li,t)−
∑
j 6=i

τ ji,t +
∑
k 6=i

τ ik,t (4.8)

and the payoff for a bandit in period t is given by

ΠB,i,t = p(gi,t, g−i,t)Vt −
∑
j 6=i

τ ji,t +
∑
k 6=i

τ ik,t. (4.9)

Transfers are assumed to be voluntary and non-negative, and any promise of future transfers

can be reneged upon.

4.3.1 Summary of Dynamic Model Period

Ex Ante: Each agent i is endowed with a violence capacity θi and one inalienable unit of

time.

Ad Interim: Agents simultaneously choose lt, xt, gt such that li,t +xi,t + gi,t ≤ 1 and either

li,t = 0 or gi,t = 0 for all i. Vt, Bt, and Pt are determined. Each agent i also chooses a

set of transfers {τ ji,t}j 6=i to make at the end of the period.

Ex Post: If Bt 6= ∅, the insecure output is taken and agents compete in an asymmetric

lottery contest with prize Vt. Each agent i’s contest effort is given by gi,t. Otherwise,

each producer retains the insecure portion of her output.

In the analysis that follows, I consider only subgame perfect equilibria, i.e., the class of

equilibria in which for all periods t = 0, 1, 2, .., the strategy profile played from period

t onward is also an equilibrium of the subgame that begins in period t. This equilibrium

refinement ensures that the strategies utilized are time consistent. That is, no agent wants to

revise her strategy profile any in period t 6= 0, given the strategy profiles of the other agents.
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Furthermore, I restrict attention to equilibria that satisfy the property of role stationarity.

Definition 4.1. An equilibrium of the dynamic model satisfies “role stationarity” if and

only if B̂t = B̂s = B̂ and P̂t = P̂s = P̂ for all periods t and s (t, s ∈ {0, 1, 2, ...}).

This restriction ensures that each agent has a well defined role, producer or bandit, along the

equilibrium path that does not vary over time and thus that the emergent order resembles

some form of steady state. However, this restriction does not prevent an agent from switching

roles off the equilibrium path (e.g., to deviate from the cooperative equilibrium strategy or

to enforce a punishment strategy).

4.3.2 Feasible Payoffs

To characterize the set of feasible cooperative equilibria, it is useful to first consider the

range of payoffs that can be supported in equilibrium. In the first best case, all N agents

choose l = 1, resulting in maximum feasible production N . The equilibrium payoffs are then

achieved through a vector of transfers τi,t = (τ 1
i,t, τ

2
i,t, ..., τ

N
i,t) for all i, t such that the net

payoff to each agent is the agreed upon equilibrium payoff. These payoffs are characterized

in Proposition 4.3 below. Before stating the proposition, I outline the credible punishment

strategies that could be used to enforce such an equilibrium.

Recall that each agent’s minimax payoff, i.e. the maximum payoff that an agent could secure

if all other agents chose a strategy profile intended to minimize this agent’s payoff, is given

by ΠA
P . Even if all other agents choose banditry, this agent could secure ΠA

P by choosing

the optimum level of labor and defense under anarchy. Furthermore, even the agent with

the highest violence capacity could not do better by switching to banditry as this would

result in V = 0 and thus ΠB = 0. However, all other agents choosing banditry is not a

credible punishment. Namely, to enforce cooperation through non-equilibrium actions, the
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punishment strategy must be agent-specific. If all other agents were to choose banditry,

they would punish the intended agent, but they would punish themselves even more in the

process. For an agent-specific punishment strategy to exist, there must exist an action profile

such that agent i’s payoff is below ΠA
i , and all other agents either (1) receive a payoff

greater than ΠA
i or (2) are unaffected by the punishment. It is easy to see that no agent’s

payoff can be reduced below ΠA
P because any agent can guarantee herself this payoff with the

appropriate action. A punishment for agent i ∈ B̂ cannot involve alternative choices of l and

x by a producer because this would reduce the producer’s payoff below ΠA
P without reducing

agent i’s payoff below ΠA
P . It also cannot involve the removal of any agents j 6= i from B

because these agents, who were receiving ΠA
i,B > ΠA

P , would now receive ΠA
P . Thus, payoffs

below ΠA
B,i for agent i ∈ B̂viol can only be supported if there exists a B̂ ∈ B such that i /∈ B̂

and, for all j 6= i ∈ B̂viol, j ∈ B̂. In other words, the only possible agent-specific punishment

strategy for player i is reversion to some other equilibrium that excludes i and only i from

the set of bandits. Because this class of punishment strategy does not, in general, exist, I

assume that the lower bound for payoffs is ΠA
i in the remaining analysis.13

Proposition 4.3. For δ sufficiently large, any vector of payoffs Πt = (Π1,t,Π2,t, ...,ΠN,t)

such that Πi,t ∈ (ΠA
i , N −

∑
j 6=i ΠA

j ) for all i and
∑N

i=1 Πi,t ≤ N can be supported in a

cooperative equilibrium.

Proof. First note that ΠA
i is agent i’s payoff under anarchy, and so, for δ sufficiently high,

any payoff greater than this for agent i can be supported in a cooperative equilibrium by

the threat of reversion to the anarchic equilibrium. The upper bound on individual payoffs

and the total aggregate payoff are pinned down by the maximum feasible output N . As

every agent must receive a payoff greater than ΠA
i and N is the maximum feasible output,

every agent i must receive less than N −
∑

j 6=i ΠA
j and all agents collectively cannot receive

13Typical results that prove the existence of agent-specific punishment strategies for the case of non-
equivalent utilities (e.g., Abreu, Dutta & Smith 1994) do not hold here due to non-convexity of the action
space.

96



a payoff greater than N .

By Proposition 4.3, we can see that, for δ sufficiently high, any division of aggregate output

that guarantees each agent a payoff greater than ΠA
i can be supported in a cooperative

equilibrium. This result is weaker than a typical “folk theorem,” as bandits must receive a

payoff higher than their minimax payoff, ΠA
P , even as δ → 1. Payoffs below ΠA

i for agent i can

not, in general, be supported due to the possible non-existence of agent-specific punishment

strategies.

The above result pins down the threat points for a cooperative outcome when agents are

sufficiently patient. Aggregate output is N in each period and all agents are guaranteed

at least their anarchic equilibrium payoff. The remaining surplus, N − (N − |B̂viol|)F (l̂),

is somehow divided between the agents. When bandits hold all the bargaining power as

is typically assumed in the literature on predatory states (e.g., Grossman & Noh 1994,

McGuire & Olson 1996, Moselle & Polak 2001, Robinson 2001, Skaperdas 2014, Konrad &

Skaperdas 2012), the producers are no better off than they were under anarchy. Thus, while

the model supports Olson’s (1993) stationary bandit hypothesis that a bandit would have

an incentive to reach a long-run cooperative agreement with the producers, the producers

are not necessarily beneficiaries of the arrangement.

The more interesting case is when patience is limited. In this case, each agent must be

guaranteed a strictly greater payoff than ΠA
i . The cooperative payoff for agent i, denoted by

ΠC
i , is bounded below by the payoff from a one shot deviation to banditry, denoted by ΠD

i ,

followed by a reversion to the anarchic equilibrium. More formally,

ΠC
i ≥ (1− δ)ΠD

i + δΠA
i . (4.10)

It is easy to see that the lower bound for ΠC
i approaches ΠA

i only as δ → 1, otherwise

the agents must be paid a premium to ensure long-run cooperation. In addition to δ, this
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premium depends on ΠD
i which may be influenced by the precise nature of the cooperative

pact chosen. This avenue is explored further in Section 4.3.3.

In the following sections, I will distinguish between the coalition in power and the rest of

society. The coalition in power in my model is analogous to the principal in a principal-

agent model, with the caveat that the coalition may consist of multiple individuals working

collectively toward the same goal. While the theory is silent as to the relative bargaining

power of each agent in the society, it is typical to assume in the literature on predatory states

(e.g., Grossman & Noh 1994, McGuire & Olson 1996, Moselle & Polak 2001, Robinson 2001,

Skaperdas 2014, Konrad & Skaperdas 2012) that the state is the principal who sets the

terms of the cooperative arrangement, holds all the bargaining power, and can extract any

surplus beyond the minimum required to ensure cooperation.14 Thus, in keeping with Olson’s

(1993) stationary bandit hypothesis, in which the bandit settles down and becomes the de

facto government, it is natural to assume that the coalition in power is the equilibrium set of

bandits B̂viol that is predicted to emerge through long run evolutionary processes. I assume

that the coalition in power acts as a single decision maker, and divides the surplus from

cooperation according to some sharing rule that satisfies each members individual rationality

constraint (4.10).

4.3.3 Deterring Banditry

A key result from Section 4.3.2 is that when patience is limited, each agent i must be paid a

premium above ΠA
i to deter one-shot deviations to banditry. When δ is relatively low, this

premium can be substantial. For example, when society is at the production possibilities

frontier, ΠC
i ≥ (1− δ)(N − 1) + δΠA

i for all i. This is because, at the production possibilities

14To quote Oppenheimer (1908, p. 32): “The moment when first the conqueror spared his victim in order
permanently to exploit him in productive work was of incomparable historical importance. It gave birth to
the nation and State, to right and the higher economics, with all the developments and ramifications which
have grown and which will hereafter grow out of them.”
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frontier, B = ∅ and V = N , and so any agent who deviates to banditry would be uncontested

in taking all of society’s insecure output. Even if the coalition in power were willing to pay

this premium, it may not be feasible to do so. In particular, when the inequality

δ <
ΠD − 1

ΠD − ΠA
P

(4.11)

holds, the required aggregate payoff to ensure cooperation exceeds the maximum feasible

output of society. In the case where ΠA
P = 0 and B = ∅, this would be problematic for any

δ < (N − 2)/(N − 1), and in the case where ΠA
P > 0 this would be problematic for an even

larger range of δ.

Even when it is feasible to pay all agents to cooperate at the production possibilities frontier,

the coalition in power may not find it optimal to produce N units of output. Instead, the

coalition seeks to maximize the remaining surplus after giving each other agent the minimum

payoff required to ensure cooperation. This surplus is not necessarily maximized when all

agents choose production, because the one-shot deviation payoff ΠD
i for agent i depends on

the relative strength of the agents in B. By having a subset of the agents choose a positive

level of expropriative effort gt, the coalition can lower each agent’s one-shot deviation payoff,

and thus lower the minimum ΠC
i required to ensure cooperation.15 As all members of the

coalition in power are, in a sense, bandits, the notion that some members of the coalition

might choose a positive level of expropriative effort as part of a cooperative equilibrium

requires additional terminology. I henceforth refer to these individuals as guards.

Definition 4.2. A “guard” is any member of the coalition in power that forgoes production

and instead chooses a positive level of expropriative effort as part of a cooperative equilibrium.

Guards compete in an asymmetric lottery contest with prize V , as does a bandit under

15It is important to note that the presence of agents choosing positive levels of expropriative effort does
not mean that society reverts back to anarchy. Instead, the effort of these agents can be thought of as a
deterrent to banditry. The cooperative payoffs are still acheived through the transfers τi,t.
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anarchy, but are typically required to transfer back a portion of this insecure output as part

of the cooperative pact to maintain the incentives for producers to cooperate.

Proposition 4.4. Let G denote the set of guards in a cooperative equilibrium, and let G∗

denote the coalition in power’s most preferred set of guards. Then the following claims are

true:

i G∗ consists of the |G∗| agents with the most violence capacity.

ii |G∗| is non-increasing in δ.

Proof. (i) Strong guards provide a greater reduction in the required ΠC
i than weak guards

for the same cost of 1 forgone unit of output. Therefore, the surplus accruing to the coalition

in power will only be maximized when G consists of the |G| agents with the most violence

capacity.

(ii) An increase in δ uniformly decreases the minimum ΠC
i required to ensure cooperation for

any given G. This, in turn, decreases the marginal contribution to the surplus of all i ∈ G.

Whenever a guard’s marginal contribution falls below 1, the coalition in power would prefer

for this guard to switch to production, thus decreasing |G∗|.

Part (i) of Proposition 4.4 states that, all else equal, stronger guards are preferred to weaker

guards, because a strong guard has a greater discouragement effect on banditry than a weak

guard. Part (ii) states that the optimal number of guards depends monotonically on δ. In

general, higher δ requires less guards.

Proposition 4.4 suggests that the optimal set of guards G∗ can be found using the following

iterative process. Starting from the production possibilities frontier, the coalition in power

compares its surplus under G = ∅ to its surplus under G = {1}. If the latter surplus is

higher, then agent 1 is added to G. Then the surplus under G = {1} is compared to the
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surplus under G = {1, 2}. If the latter surplus is higher, then agent 2 is added to G, etc.

This process continues until adding an agent would reduce the surplus. G∗ is the former set

in this last comparison.

The possibility of the coalition in power choosing G∗ 6= ∅ is particularly notable because,

in addition to maintaining internal order and discouraging deviations from the cooperative

equilibrium, guards provide society with a natural resistance to the external threat of roving

bandits. Such an external threat is not explicitly modeled here, but the logic is as follows:

suppose some new agent j /∈ {1, 2, ..., N} with violence capacity θj were to enter the society

unexpectedly for one period and resort to banditry. This agent’s payoff ΠB,j = p(gj, g−j)V

is decreasing in |G|, as each agent i ∈ G decreases p(gj, g−j) and the corresponding share of

the insecure output that bandit j could secure. Thus the coalition in power, acting in its

own self-interest, ultimately may provide its citizens with protection against roving bandits

as Olson (1993) hypothesized. When the threat of roving bandits is explicitly incorporated

into the model, the coalition may even increase |G∗| beyond the optimal size discussed here

to further discourage entry by roving bandits.

4.3.4 The Limits of Cooperation

When δ is very low, the coalition must continue to expand G to ensure that a cooperative

outcome can be reached. In some cases, G∗ may even be a superset of B̂viol. Recall that

even the weakest agent in B̂viol is able to secure payoff above ΠA
P by choosing banditry under

anarchy. When the output per producer increases from α(x̂)F (l̂) to 1, it is possible that

some agents i ∈ P̂ , who under anarchy can do no better than ΠA
P , will now be able to secure

a payoff above ΠA
P by making a one-shot deviation to banditry. Thus, the most extreme

case in which cooperation can be maintained is when |G| is increased to the point that no

agent remaining in P could profitably deviate to banditry, denoted Gmax. In the limit, no
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cooperative outcome is feasible, as eventually δ drops below the threshold where the guards

are still willing to make transfers τi,t to the producers, but this limiting case is no longer

consistent with Olson’s (1993) conception of the stationary bandit, and instead approaches

the case of a roving bandit. Thus, it seems that in general, under the conditions that Olson

(1993) had in mind, some form of cooperation is sustainable.

4.3.5 Extreme Distributions of Violence Capacities

It is clear from the preceding analysis that the distribution of violence capacities plays an

important role in determining the division of resources in a cooperative equilibrium. In this

section, I consider two polar distributions of violence capacities, uniform and degenerate,

and compare the relative payoffs of bandits and producers in the cooperative equilibria. In

particular, I only consider the case of limited patience because the cooperative payoffs are

invariant to the distribution of violence capacities when δ → 1.

First, consider the degenerate case in which one agent has all the violence capacity and the

others have none (i.e., θ1 = 1, and θi = 0 for all i > 1). For N sufficiently large, there is

a unique non-cooperative equilibrium where agent 1 chooses banditry (B̂ = {1}) and the

remaining agents choose production. Agent 1 receives a payoff of (N − 1)(1−α(x̂))F (l̂) and

all other agents receive a payoff of ΠA
P = α(x̂)F (l̂). To find the cooperative equilibrium,

it is useful to note that, when 1 ∈ G, the payoff from producer i defecting is 0 because

this agent will not be able to expropriate any of the insecure output. Thus, it is easy to

see that G∗ = {1} for all but the highest of discount factors (i.e., the case where δ = 1).

Choosing G ⊃ {1} is never optimal because the marginal contribution of any other guard to

the bandit’s surplus is 0. Therefore, when G∗ = {1}, the minimum payoff required to ensure

cooperation is ΠA
P for all i 6= 1. In this case, the lone bandit can secure all the benefits

from cooperation, the producers are no better off in the cooperative equilibrium, and the
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emergent order resembles autocracy.

Next, consider the case of a uniform distribution of violence capacities in which all agents are

equally adept at violence. The non-cooperative equilibrium is unique up to a permutation

of identities and includes |B̂| bandits and N − |B̂| producers. The number of bandits and

producers depends on the specification of α(·) and F (·). For example, in the linear case

analyzed by Skaperdas (2014), where α(x) = x and F (l) = l, |B̂| = bN/2c and |P̂ | = dN/2e.

In general, when the distribution of violence capacities is uniform, ΠA
B = ΠA

P whenever

possible. If ΠA
B > ΠA

P it is only because |B̂| and |P̂ | are restricted to integer values. The

equality will hold as N → ∞, and will hold approximately for any large N . Suppose

ΠA
B = ΠA

P . In a cooperative equilibrium, G∗ could range from ∅ to Gmax, depending on the

value of δ. When G = Gmax, by definition the minimum required ΠC
i to ensure cooperation

is ΠA
P because no agent can profitably deviate to banditry. But G = Gmax implies that

the cooperation payoffs for guards are as close as possible to the cooperation payoff for

producers. Thus, whenever possible, G = Gmax will result in ΠG = ΠC = ΠA
P , effectively

driving the surplus accruing to the coalition in power down to 0. Therefore, G∗ ⊂ Gmax,

necessarily implies that the surplus accruing to the coalition in power is greater than 0.

This implies that the coalition in power, which faces the same cooperation constraint as the

producers, will receive strictly higher payoffs than the producers when the coalition holds

the bargaining power. Thus, even in the the case of uniform violence capacities, we would

expect the existence of a privileged elite in the emergent order unless the producers were

able to collectively organize to secure a share of the rents. However, the emergent order

in this case will still be relatively meritocratic compared to the orders that emerge under

more extreme distributions of violence capacities. Producers are better off in the cooperative

equilibrium than under anarchy for most values of δ, and the rents accruing to the coalition

in power are relatively small.

103



4.4 Implications

Section 4.2 developed a model in which property is insecure and must be protected. In the

non-cooperative case, we saw that property is not respected in equilibrium and that instead

a subset of society resorts to banditry, taking as much as possible from the producers. We

also saw that in this non-cooperative case, producers do not produce the maximum feasible

output because they must spend time defending this output from bandits. However, as

detailed in Section 4.3, when society is engaged in a long-run interaction (i.e., when bandits

are “stationary”), we saw that it could benefit from a cooperative pact. This pact includes

a primitive respect for property rights, in which each producer is entitled to keep a fraction

of her insecure output. This fraction may depend, in part, on her potential payoff from

breaking the pact. While this pact primarily benefits the strongest members of society, even

would be producers benefit when patience is limited and a payoff premium is required to

ensure cooperation. In addition to providing a primitive respect for property rights, the

coalition in power may naturally increase society’s resistance to the threat of roving bandits

through the use of guards.

Starting from the primitive of a distribution of violence capacities and a simple production

economy, we see how a natural state might develop out of anarchy. The orders that emerge

from this framework mimic many key features of the primordial government envisioned by

Olson (1993) and the limited access order described by North et al. (2009), lending credence

to the idea that government may have emerged as a solution to violent conflict. This chapter

adds to the literature on predatory states (e.g., Grossman & Noh 1994, McGuire & Olson

1996, Moselle & Polak 2001, Robinson 2001, Skaperdas 2014, Konrad & Skaperdas 2012) in

several key ways. Firstly, in this model, the structure of the coalition in power is endoge-

nously determined rather than exogenously assumed. This necessarily yields insights into

the constraints faced by the ruler that are difficult to capture when the relationship between

ruler and subject is taken as given. Secondly, by allowing the agents to be asymmetric, I am
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able to study broader class of social orders than when constrained to the symmetric case.

One key finding is that differences in the distribution of violence capacities help to determine

whether the order that emerges is relatively meritocratic, as typically assumed by propo-

nents of the workmanship model of property (e.g., Locke 1689, Nozick 1977), or relatively

oligarchic, as we see in limited access orders (e.g. Olson 1993, North et al. 2009). In extreme

cases, even autocracy can emerge. However, given any distribution of violence capacities,

there exists the potential for a privileged elite, earning supranormal payoffs, to form. Other

forms of government such as pure meritocracy are not predicted to emerge in equilibrium.

Thus this model provides support for theories that view various forms of non-democracy as

a necessary precursor to democracy (e.g., Acemoglu & Robinson 2009, North et al. 2009,

Fukuyama 2011). While this model helps to explain the origin of the natural state, how this

state transitions to other forms of government remains an open question for future research.
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Chapter 5

Conclusion

The studies described in Chapters 2, 3, and 4 collectively and individually contribute to our

understanding of human behavior in large group interactions, but these studies are only the

starting point for a larger research agenda.

Recent innovations in the penny auction industry have yielded new auction mechanisms

that attempt to better exploit behavioral biases. Studying these mechanisms would not only

further our understanding of penny auctions, but also our understanding of human behavior

in general.

There remain many open questions about the role that limited observation plays in network

formation. Further research could study whether the findings from Chapter 3 generalize to

other network formation settings, such as unilateral connections, one-way flow networks, and

limited information about the gains from connection.

The model of the origin of the state described in Chapter 4 generates empirically testable

predictions. In particular, virtual world experiments provide a promising tool to better

understand the ecological process by which social order could be achieved in a stateless
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environment. The model also helps to inform our understanding of the dynamics of state

formation and the potential problems that can arise when a state-building intervention cre-

ates a power vacuum.
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Appendix A

Supplement to Chapter 2

A.1 Screenshots

Figure A.1: Screenshots

(a) Start Screen
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(b) Decision Screen

(c) High Bidder
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(d) Results Screen

A.2 Instructions

SCREEN 1:

Welcome to this experiment at UC-Irvine. Thank you for participating.

You are about to participate in a study of decision-making, and you will be paid for your

participation in cash, privately at the end of this session. What you earn depends partly on

your decisions and partly on chance.

Please turn off your cell phone.

The entire session consists of multiple practice rounds and real rounds. You will be paid for

the real rounds only. The practice rounds are only for you to familiarize yourself with the

decision-making environment.

All rounds will take place through the computer terminals. It is important that you do not

communicate with any other participants during the session.
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When you are ready, please click continue to go to the instructions.

SCREEN 2:

Over the course of this session, you will be participating in a series of auctions along with

several other participants. Participants are randomly matched at the start of each auction,

so the other participants may not be the same across auctions. There will be 8 auctions and

1 practice auction in total.

In each auction, you have the opportunity to bid on a commodity with known common

value. That is, you and all other participants know the value, and this value is the same for

all participants. The common value and number of participants will be displayed on your

screen throughout the auction.

At the end of an auction, the high bidder immediately receives the dollar value of the

commodity and then pays the end auction price. The resulting profit for the high bidder is

given by the following formula:

Profit = Common Value - End Auction Price

Any profits you earn will be added to your bank account and any costs you incur will be taken

from it. The starting balance in your bank account for each auction is $1.50. The balance in

your bank account at the end of an auction does NOT carry over to future auctions. Instead,

at the end of an auction you will earn $1.00 for each $1.00 in your bank account.

SCREEN 3:

A sample decision screen is shown below. The countdown timer near the “BID” button

would normally be counting down to zero, and the screen would end when it reaches zero.

In this example the common value of the commodity is $2.00 and there are 5 participants

(including yourself).
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Please press the “BID” button to continue this example.

SCREEN 4:

A sample results screen is shown below. The countdown timer to the top right of the screen

would normally be counting down to zero, and the screen would end when it reaches zero.

In this example you placed a bid and became the current high bidder. This information is

displayed in the center box on the screen. Note how the current auction price has increased

by $0.10 and your bank account has decreased by $0.15 as described previously.

Please press the “Continue” button to continue this example.

SCREEN 5:

It is the decision screen once again, but now you are the high bidder. Since the high bidder

does not participate in the decision screen, the “BID” button is not available to you. If bids

are placed in this round, the auction will continue and you will participate in next round’s

decision screen. If no bids are placed, the auction will end and you will immediately receive

the dollar value of the commodity and then pay the current auction price.

Please press the “Continue” button to proceed.

SCREEN 6:

Click continue to participate in 1 practice auction. After completing the practice auction,

you will participate in 8 real auctions.

You will begin the session with $2.00 in earnings. During the session, any gains you make

will be added to your earnings and any losses you incur will be deducted from your earnings.
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A.3 Theory

A.3.1 Equilibrium Concept

To simplify notation, define c = C/ε, pt = (Pt − P0)/ε, and π = (Π− P0)/ε. Let m denote

the number of non-leading participants, q(pt) denote the probability of a non-leader bidding

at price pt, V (pt) denote the continuation value of the auction for a non-leader at price pt,

and V ∗(pt) denote the continuation value of the auction for the high bidder at price pt. Then

the risk neutral symmetric Markov perfect equilibrium is recursively characterized by (A.1)

and (A.2).

V (pt) = max


∑m−1

k=0

[(
m−1
k

)
q(pt)

k(1− q(pt))m−1−k
(

V ∗(pt+k+1)+kV (pt+k+1)
k+1

)]
− c,∑m−1

k=1

[(
m−1
k

)
q(pt)

k(1− q(pt))m−1−kV (pt + k)
]

 , (A.1)

V ∗(pt) = (1− q(pt))m(π − pt) +
m∑
k=1

[(
m

k

)
q(pt)

k(1− q(pt))m−kV (pt + k)

]
(A.2)

Denote the first and second arguments of the max function by A and B respectively. Argu-

ment A is the expected continuation value of bidding with certainty given the bid probabil-

ities of others. Argument B is the expected continuation value of not bidding given the bid

probabilities of others. For q(pt) to be a part of the equilibrium bidding strategy it must

satisfy one of 3 conditions:

1. q(pt) = 1 and A ≥ B

2. q(pt) = 0 and A ≤ B
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3. q(pt) ∈ (0, 1) and A = B

This equilibrium is not in general unique and so there may be multiple q(pt) which satisfy

one of these conditions for a given pt. By utilizing the fact that V (pt) = 0 for π− pt < 0 this

system can be solved numerically using backwards induction.

A.3.2 Proof of Theorem 2.1

Proof of Theorem 2.1 (i):

Start with the following theorem from Hinnosaar (2010):

Theorem A.1. (Hinnosaar 2010) Let E(R) denote the expected auction revenue conditional

on sale in the symmetric risk neutral equilibrium characterized by (A.1) and (A.2). Then

E(R) has the following properties:

i E(R) ≤ Π

ii if q(p) < 1,∀p, then E(R) = Π

iii for some values of the auction parameters E(R) < Π

The proof of Theorem A.1 does not require the symmetry assumption and instead makes

use of the fact that V (p) = 0 for q(p) ∈ [0, 1). This leads to the following generalization of

Hinnosaar (2010):

Corollary A.1. In any asymmetric risk neutral equilibrium characterized by (A.1) and

(A.2), the expected auction revenue conditional on sale E(R) has the following properties:

i E(R) ≤ Π
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ii if qi(p) < 1,∀i, p, then E(R) = Π

iii for some values of the auction parameters E(R) < Π

Proof. Any strategy combination qi(p) < 1,∀p assigns a positive probability to participant i

never bidding. This strategy will yield 0 with certainty. Because a participant will only use

a mixed strategy when she indifferent between her strategy choices, when qi(p) ∈ (0, 1) this

strategy must yield 0 in expectation. Thus, Vi(0) = 0. When qi(p) < 1, ∀i, p, Vi(0) = 0,∀i.

This implies that E(R) = Π when qi(p) < 1, ∀i, p. Because qi(p) = 1 only when Vi(p) > 0, it

follows that E(R) ≤ Π and that E(R) < Π in equilibria which involve a participant bidding

with certainty.

Theorem 2.1(i) follows from Corollary A.1 (i).

Proof of Theorem 2.1 (ii):

When restricting attention to Markov perfect equilibria, the condition E(R) = Π cannot in

general be satisfied. Consider the case where m = 2, the symmetric bid function q(pt) = 1 for

some t, and suppose that q(pt) = 1 is the only symmetric strategy that satisfies conditions

1-3 above. Suppose the symmetry restriction is dropped, and that participant i deviates to

qi(pt) 6= 1. Participant −i’s best response is still q−i(pt) = 1 as V−i(pt) > 0 for all strategies

qi(pt). But by similar logic, when q−i(pt) = 1, participant i’s best response is qi(pt) = 1.

Thus no symmetric or asymmetric strategy exists in this case such that qi(p) < 1,∀i, p.

When the Markov perfect and subgame perfect restrictions are removed, it is easy to see

that equilibria exist such that E(R) = Π for an arbitrary (n, π, c, ε). Pick any strategy set s

such that the expected continuation value for all players at time zero equals zero and such

that E(R) = Π. Now define the strategy s∗i which is: play strategy si until some player
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j 6= i deviates from sj and then bid with probability 1 until π − pt ≤ 0. The strategy set s∗

constitutes a Nash equilibrium where E(R) = Π.

A.4 Supplemental Figures

Table A.1: Primary Hypothesis Tests

Statistic 3

(1)  H1: Revenue ≤ 2
Ha: Revenue > 2

Entire Session

Discrete Student t (p-value) 0.140

[df] 7

Continuous Student t (p-value) 0.046

[df] 7

Predicted Revenue: Last Period

Discrete Student t (p-value) 1.0000 0.011 0.093

[df] 7 7 7

Continuous Student t (p-value) 0.1557 0.087 0.057

[df] 7 7 19

(2)  H2: Revenue Discrete = Revenue Continuous
Ha: Revenue Discrete ≠ Revenue Continuous

Student t (p-value) 0.680

[df] 15

(3)  H0: Bids/Auction Risk Averse = Bids/Auction Risk Neutral = Bids/Auction Risk Seeking

H3: Unequal Populations

Joint Test Kruskal-Wallis (p-value) 0.022
[df] 2

H0a: Risk Averse ≥ Risk Neutral Mann-Whitney U (p-value) 0.004

H3a: Risk Averse < Risk Neutral [df] 1

H0b: Risk Neutral ≥ Risk Seeking Mann-Whitney U (p-value) 0.936

H3b: Risk Neutral < Risk Seeking [df] 1

n/a

0.507

43

0.428
2

n/a

Notes:  Bold denotes hyptheses that are predicted to be true. All t-tests are computed using clustered standard errors. 
Session 1 and Session 2 results are seperated by "|" when applicable.

15

0.000

15

0.000

5

Number of Participants
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Table A.2: Additional Hypothesis Tests

H0: Revenue Session 1 = Revenue Session 2
Ha: Revenue Session 1 ≠ Revenue Session 2

Discrete Student t (p-value)

[df]

Continuous Student t (p-value)

[df]

H0: Revenue 3 Participants = Revenue 5 Participants

Ha: Revenue 3 Participants ≠ Revenue 5 Participants

Discrete Student t (p-value)

[df]

Continuous Student t (p-value)

[df]

H0: Revenue Trend = 0

Ha: Revenue Trend ≠ 0

Discrete3 Student t (p-value)

[df]

Discrete5 Student t (p-value) 0.006 0.588

[df] 7 7

Continuous3 Student t (p-value)

[df]

Continuous5 Student t (p-value) 0.039 0.078

[df] 7 19

Notes:  Bold denotes hyptheses that are predicted to be true. All t-tests are computed 
using clustered standard errors. Session 1 and Session 2 results are seperated by "|" when 
applicable.

0.838

15

0.782

15

0.007

23

0.632

35

0.014

7

0.071

7

Table A.3: Average Unique Visitors Per Month (in Thousands)

Year Industry
Quibids Beezid Swoopo Dealdash Pennygrab Orangebidz Madbid Bidcactus Happybidday Other Total Ebay

2010 0.0 13.8 30.9 1.4 0.0 0.0 11.6 0.0 0.0 6.8 64.4 71953.3
2011 19.0 71.0 22.4 10.8 0.4 2.5 1.2 3.5 0.0 15.2 146.0 51663.5
2012 688.7 324.2 0.0 18.2 5.5 14.1 0.8 15.4 6.9 19.9 1093.6 89552.0

Pay‐to‐Bid Auction Website

Note: Data collected from SEMrush.com in April 2013. Unique visitors = google organic traffic/(% organic traffic from google * % organic traffic). Percentages were 
interpolated from the industry average when missing. "Other" category consists of Bidstick, Bidray, Bidhere, Bidfun, Bigdeal, Haggle, Skoreit, Oohilove, For10cents, and 
Zerobid.
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Appendix B

Supplement to Chapter 3

Table B.1: Trend in Group Outcomes (Match)

Dependent Variable
Treatment Convergence Efficiency Cycles

(%) (%) (%)

Neighbor Observation - Low Cost
Average Marginal Effect 5.5 -0.6 -5.6

Standard Error (1.9) (0.8) (1.8)
p-value 0.005 0.437 0.002

Neighbor Observation - High Cost
Average Marginal Effect 3.2 -0.7 -8.2

Standard Error (1.8) (0.7) (1.1)
p-value 0.075 0.308 < 0.001

Full Observation - Low Cost
Average Marginal Effect 2.8 0.9 -8.6

Standard Error (2.5) (0.9) (1.1)
p-value 0.271 0.311 < 0.001

Full Observation - High Cost
Average Marginal Effect 5.0 3.7 -4.2

Standard Error (2.2) (0.8) (2.2)
p-value 0.026 < 0.001 0.055

Hypothesis Test Wald statistic (p-value)
HL: Trends Jointly Equal
HLa: Different Trends 0.756 < 0.001 0.189
Note: Bold denotes hypothesis predicted to be true.
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Table B.2: Paired Comparisons: Trend in Group Outcomes (Match)

Comparison Bonferroni Adjusted p-value

EfficiencyNO-LC = EfficiencyNO-HC > 0.999
EfficiencyNO-LC = EfficiencyFO-LC > 0.999
EfficiencyNO-LC = EfficiencyFO-HC < 0.001
EfficiencyNO-HC = EfficiencyFO-LC 0.925
EfficiencyNO-HC = EfficiencyFO-HC < 0.001
EfficiencyFO-LC = EfficiencyFO-HC 0.141

Table B.3: Primary Hypothesis Tests

Hypothesis Test Statistic (p-value)
H1: ConvergenceLC ≤ ConvergenceHC Observation Level
H1a: ConvergenceLC > ConvergenceHC Neighbor Full

Barnard’s Exact 0.002 0.938
Logistic Regression: Group Convergence t-test 0.001 0.939
H2: ConvergenceNO ≤ ConvergenceFO Tie Cost
H2a: ConvergenceNO > ConvergenceFO Low High

Barnard’s Exact 0.279 > 0.999
Logistic Regression: Group Convergence t-test 0.264 > 0.999
H3: EfficiencyLC ≤ EfficiencyHC Observation Level
H3a: EfficiencyLC > EfficiencyHC Neighbor Full*

Mann-Whitney U < 0.001 0.008
Regression: Individual Share of Group Efficiency t-test < 0.001 < 0.001
H4: CyclesNO ≤ CyclesFO Tie Cost
H4a: CyclesNO > CyclesFO Low High

Barnard’s Exact 0.001 < 0.001
Logistic Regression: Group Cycles t-test < 0.001 < 0.001
H5: Drop StemNO ≥ Drop StemFO Tie Cost
H5a: Drop StemNO < Drop StemFO Low High
Regression: Dropped Stems (Match Proportion) t-test 0.666 0.914
H6: Drop StemLC ≥ Drop StemHC Observation Level
H6a: Drop StemLC < Drop StemHC Neighbor Full
Regression: Dropped Stems (Match Proportion) t-test 0.001 0.014
H7: Time as Stem Equal by Risk Category Pooled Data
H7a: Different Proportions
Regression: Time as Stem (Match Proportion) F-test 0.456
Note: Bold denotes hypotheses predicted to be true. All regressions utilize subject level data with standard errors

two-way clustered at the group and subject level. Regressions also include controls for the match number.

*Excludes 9 networks containing a subject who never connected. Including these networks changes p-values

to 0.017 and 0.003. The treatment of this subject does not qualitatively affect the result of any hypothesis test.
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B.1 Instructions

Text enclosed in square brackets, e.g., [string1/string2], depends on the treatment.

SCREEN 1:

Welcome to this experiment at UC Irvine. Thank you for participating.

You are about to participate in a study of decision-making, and you will be paid for your

participation in cash, privately at the end of this session. What you earn depends partly on

your decisions and partly on chance.

Please turn off your cell phone.

The first part of this experiment consists of 10 matches with 15 rounds per match. You will

be paid according to the outcome of each round and you will receive the sum of all your

individual round earnings, in addition to the show up fee and your earnings in the second

part, at the end of the experiment. You will receive further instruction when the second part

of the experiment begins.

All rounds will take place through the computer terminals. It is important that you do not

talk with any other participants during the session.

When you are ready, please click “Continue” to go to the instructions.

SCREEN 2:

In each match, you will be randomly grouped with 11 other participants. The participants

that you are grouped with will stay the same for the 15 rounds in this match, but you will

be randomly grouped with a new set of participants at the start of the next match. Each

participant will be assigned a color and will retain this color throughout the match.
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During each match, you and the other participants will form a network. In each round, you

will be presented with a [partial view of the network/complete view of the network]. At the

start of the first round, the network has no connections. In all following rounds, you will be

shown [part/all] of the network formed at the end of the prior period.

The network consists of 12 colored circles, each representing a participant in your group,

which may or may not be connected via lines (we refer to these lines as “links”). Participants

are either directly linked, denoted by a line connecting two participants, or not directly linked,

denoted by the absence of a line.

Please press “Continue” to proceed.

SCREEN 3:

After observing [part/all] of the network, each participant is then randomly paired with

another participant in the network and given the opportunity to change his or her link

status with that participant. If you already have a link with that participant, you can

maintain that link or remove that link. If you do not have a link with that participant, you

can initiate a link to that participant or not initiate a link. Your link status with all other

participants stays the same. Links that have already been initiated are maintained.

NOTE: Links are initiated and maintained bilaterally, meaning that a link is initiated or

maintained only if BOTH participants choose to do so. If one of the participants does not

want the link then it will not form.

You will have 15 seconds per round to make your decision, and you must press the “Continue”

button before time runs out for your decision to be recorded. If you do not press “Continue,”

then the computer will assume you do not want to make any changes to the network that

formed last period. Please press “Continue” to proceed.

SCREEN 4:
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We say that two participants are “indirectly linked” if these participants are not directly

linked but are connected through a series of links with other participants.

In each round you will [only see your own links and the links of participants that you are

directly linked to/be shown the links of every participant].

Your payoff for each round will be 1 point for every participant you are either directly or

indirectly linked to minus [0.7/1.5] points for every participant that you have attempted to

initiate or maintain a link to. Note that you will pay this cost even if your link attempt is

not successful.

EXAMPLE 1: If A and B are both directly linked to each other and no-one else, each receives

1 point for being linked to one other participant and pays a cost of [0.7/1.5] for having one

direct link. The resulting payoff is [0.3/-0.5].

EXAMPLE 2: If A and B are both directly linked to C and no-one else, then A and B both

receive 2 points for being linked to two other participants and pay a cost of [0.7/1.5] for

having one direct link. The resulting payoff is [1.3/0.5].

NOTE: You will receive a payoff and pay the cost of all your direct links (including those

links to participants with whom you were not paired) in every round. [You receive 1 point

for every participant you are linked to even if you cannot see how you are linked to that

participant./ ] Please press “Continue” to view an example.

SCREEN 5:

Below is a sample network. You are red and have exactly one link. This link is to yellow,

and you can see that yellow is linked to lime. [There may be other links in the network that

you cannot see./ ] At the bottom of the screen, there is a box around yellow denoting that

in this round you must choose whether to change your link status with yellow. If you were

paired with blue, then the box would be around blue.
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In this example, you can maintain the link with yellow or remove it. Please select “No” to

remove the link and then press “Continue.”

SCREEN 6:

You are no longer linked to yellow because you chose not to maintain this link. [Assuming

no other participant has changed their link status and that there were no other links you

couldn’t see in the network, the new network is shown to the left below. Your view of the

new network is shown to the right below. Notice that you no longer see the link between

yellow and lime because you are no longer linked to yellow./Assuming no other participant

has changed their link status, the new network is shown below.]

Please press “Continue” to proceed.

SCREEN 7:

This is an example of what your decision screen will look like at the start of the first round.

In this example, you are red and you are paired with yellow. You will ordinarily have 15

seconds to make a decision on this screen.

SCREEN 8:

The first of the 10 matches will now begin. Each match has 15 rounds and you will be paid

for each round. You will be paid $0.02 for each point you earn during the session.

You will also receive [$2.00/$4.50] at the beginning of the first match.

REMINDER: You will only have 15 seconds each round on the decision screen. You must

press “Continue” before time runs out for your link decision to be recorded.

You will receive 1 point for each participant you are directly or indirectly linked to and you

will pay a cost of [0.7/1.5] points for each link attempt you initiate or maintain. You pay

the cost to maintain a link even if you were not able to change the status of that link in this
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round. You do not pay the cost for link attempts that failed in a prior round.

You will start with no links in the first round of each match. In future rounds, you will start

with the links you had in the prior round.

In each round you will [only see your own links and your neighbors’ links, but you will still

receive points if you are indirectly linked to a participant that you cannot see./be shown the

links of every participant, regardless of whether or not you are linked to that participant.]

Please press “Continue” to start the experiment.
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Appendix C

Supplement to Chapter 4

C.1 Implication of Asymmetric Violence Capacities for

Natural Law

In Section 4.1 I claimed that natural law theory was consistent with the idea that concessions

might need to be made to powerful individuals when entering into the social contract. Here I

provide several quotations (emphasis added) from prominent natural law theorists to support

this claim.

As soon as community ownership was abandoned, and as yet no division had

been made, it is to be supposed that all agreed, that whatever each had taken

possession of should be his property. – Grotius

There was need of an external act or seizure, and for this to produce a moral effect,

that is, an obligation on the part of others to refrain from a thing already seized

by someone else, an antecedent pact was required and an express pact, indeed,
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when several men divided among themselves things open to all. – Pufendorf

The possession of all external goods is changeable and uncertain; which is one

of the most considerable impediments to the establishment of society, and is the

reason why, by universal agreement, express or tacit, men restrain themselves by

what we now call the rules of justice and equity. – Hume

Since Gold and Silver, being little useful to the Life of Man in proportion to Food,

Rayment, and Carriage, has its value only from the consent of Men, whereof

Labour yet makes, in great part, the measure,it is plain, that Men have agreed

to disproportionate and unequal Possession of the Earth. – Locke

As the above quotes illustrate, universal consent to respect property is pre-supposed by nat-

ural law theorists, but, as is demonstrated in Sections 4.2 and 4.3, it may not be individually

rational for a relatively strong agent in an asymmetric society to agree to these terms un-

conditionally. Namely, if the strong agent can receive a higher payoff under anarchy than

she would in a cooperative pact to respect property, we would not expect her to consent

to this pact. Concessions might need to be made in the interest of establishing order that

lead to ex post asymmetries between payoffs. Thus, Locke’s workmanship model of property,

whereby each individual keeps the fruits of her own labor, should only apply after individual

rationality constraints have been met. To presuppose that the workmanship model alone is

sufficient to establish order, as does Nozick, is to implicitly assume that relative strengths

are approximately equal ex ante.
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