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ABSTRACT OF THE DISSERTATION 

On Electrical Current in Nanostructured Electrochemical Cells 

by 

Hidenori Yamada 

Doctor of Philosophy in Electrical Engineering (Applied Physics) 

University of California San Diego, 2019 

Professor Prabhakar R. Bandaru, Chair 

Professor Peter M. Asbeck, Co-Chair 

 

 An electrochemical cell is an energy storage device that involves both electrons and ions 

as part of the storage mechanism.  In this work, we investigate the use of nanostructures on the 

electrodes of the cell to increase the active surface area, and the consequent quantum effects 

introduced to the cell.  With regards to capacitive storage, we predict quantum capacitance will 

affect the storage capacity of electrons on the electrode, and limit the increase in total capacitance 

of the device from scaling with the increase in active surface area.  Furthermore, we predict 

geometric effects will affect the screening ability of ions in the electrolyte, allowing device current 

during charge/discharge cycles to be higher than for a flat electrode.  With regards to battery-like 

storage, we predict the density of states of the electrode will affect the device current, possibly 

increasing device currents for higher overpotentials compared to a flat electrode battery.  This last 
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prediction is based on treatment of the redox reaction process as a tunneling process between 

electron and ion, akin to a recombination process between electron and hole in a solid state device 

such as a reverse biased diode. 
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INTRODUCTION 
 

 In this work, I analyze the inner workings of an electrochemical cell through principles of 

electron transport from solid state physics, adapted to both electrons in solid and ions in liquid.  

These same principles were used by Shockley and Bardeen to make sense of the point-contact 

transistor and began an entire industry based on the design of more optimized transistors such as 

the bipolar junction transistor and the field effect transistor.  My goal with this work is to make 

the design principles of the electrochemical cell more accessible to the scientific community.  This 

goes beyond empirical fitting, instead assigning elements of solid state physics (density of states), 

device physics (energy band diagrams), electromagnetism (screening), statistical physics (Fermi-

Dirac & Boltzmann distribution), and quantum physics (electron transport) to the cell.  As a result, 

this work required a deep understanding of both applied physics and electron devices, an approach 

distinct from the standard approach in electrochemistry.  I developed a methodology by drawing 

heavy inspiration from Shockley and Bardeen and adapting it to a solid-to-liquid interface by 

treating ions as vehicles for electrons.  My hope is that this treatment becomes a successful 

integration of electrochemistry, solid state physics, device physics, and electromagnetism, and that 

I was able to take the first step towards this ambitious view.  I believe this approach results in 

research with high originality, and would like to continue this style throughout my professional 

career. 
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1. Limits to the magnitude of capacitance in carbon nanotube array 
electrode based electrochemical capacitors 

 

 Electrochemical energy storage may be broadly classified as encompassing either batteries 

or electrochemical capacitors (ECs). While the former category incorporates devices with high 

energy density (~ 100 Wh/kg) and relatively low power density (~ 1 kW/kg), the latter comprises 

media with opposite attributes, i.e., relatively lower energy density (~ 10 Wh/kg) and higher power 

density (~10 kW/kg)1,2. The overarching imperative is then to devise intermediate ECs, combining 

the best of both energy and power densities. Moreover, characteristics such as a high cycle life, 

i.e. the capability of rapid charging and discharging, for millions of cycles must be incorporated. 

 

 

Figure 1-1. A schematic of electrode configuration in an electrochemical capacitor, zoomed into a section of the 
CNT array. CQ and Cdl in series represented within a single CNT. As the surface area for the CNT electrode (in red) 
is much higher than that of the counter electrode (in green), the capacitance of the former is much more significant. 
 

 Much EC work has focused on charge storage in a double layer comprised of the electrode 

charge and electrolyte charge of opposite polarity – Figure 1. The double layer capacitance/unit 

area (Cdl) is directly proportional to the dielectric constant (=rwhere is the permittivity of 
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free space and is equal to 8.854·10-12 F/m and ris the relative permittivity, e.g., ~ 80 for water) 

and inversely proportional to the charge separation distance between the positive (+) and negative 

(-) charges.  Cdl is further constituted of a Helmholtz capacitance, where distances are of the order 

of the electrolyte ionic diameters, as well as a diffusive capacitance, with mean distances of the 

order of the Debye length3 (
IzeN

Tk
d

A

B
2)(2


 ~ 9.78

I

1
 nm) where kB (=1.38·10-23 J/K) is the 

Boltzmann constant, T  is the absolute temperature (K), NA (= 6.02 · 1023 atoms/mole) is the 

Avogadro number,  (ze)  is the net charge with e as the elementary electronic charge (=1.6·10-19 

C), and I (in moles/m3) is the electrolyte concentration.  For an aqueous electrolyte (@ 1 M 

concentration), Cdl could then potentially be of the order of 250 F/cm2. The utilization of a high 

surface area electrode substrate, e.g., carbon nanotubes (CNTs), where the total surface area would 

be much larger4 than the projected area would also be beneficial. However, the values reported in 

literature are typically an order of magnitude lower5, and this has been tentatively ascribed to 

incomplete/inadequate utilization of the surface area6.  A substantial addition to the total 

capacitance (Ctot) through the utilization of parallel redox capacitance/pseudocapacitance (Cp), 

which mimics battery like behavior7, could also be obtained in ECs as discussed in a previous 

study8,9. It was found that ion irradiation, facilitated through plasma processing, increased the 

observed Ctot. However, details of the underlying mechanisms were not specified. In this article, 

we propose a possible mechanism through detailed comparison with experiment and seek to 

understand the limits of capacitance that may be manifested with a given CNT configuration. The 

underlying principles may be adapted to other nanostructure and device types as well. 
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Figure 1-2. (a) Representation of CNT DoS and electrolyte DoS (as columns) along with their respective Fermi 
energies (EF) at equilibrium, with no applied voltage (∆V = 0) - top figure, and with a non-zero applied voltage (∆V ≠ 
0) - bottom figure. The applied ∆V causes a differential change in the EF (of ∆EF) and is partitioned between the CNT 
electrode (as ∆VQ) and the bulk electrolyte (∆VE). While ∆VQ would be associated with the CQ, the ∆VE is related to 
the Cdl. (b) The quantum capacitance (CQ) as a function of EF in a MWCNT with 15 walls. The initially flat CQ is 
caused by the metallic CNT walls. The staircase like structure arises from the contributions of successive sub-bands 
to the DoS. 
 

 We considered quantum capacitance (CQ), which is relevant when nanostructures such as 

CNTs, with a finite density of states (DoS) D(E), as depicted in Figure 2. The increase (/decrease) 

of the Fermi energy (EF) of the CNTs could be significant, relative to the bulk electrolyte, when 

charge carriers of a single type, e.g., electrons of magnitude dQ (= e·dn), are added (/removed) 

due to an applied voltage change (dV)10. An effective capacitance could therefore be defined for a 

given electrode, considering the DoS at the EF, as follows:  
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 )(
1

2
F

F

Q EDe
dE

e

edn

dV

dQ
C    .

 

 (1)  

 

 We model the net device capacitance in Figure 1 as a series combination of Cdl and CQ. If, 

as hypothesized8,11, the role of ion irradiation ( e.g., through plasma processing) was to introduce 

fixed charges, then CQ increases significantly with increasing processing time. The series 

combination of CQ and Cdl would allow an increase in Ctot consistent with the experiment as can 

be understood through: 

 

 
Qdltot CCC

111
   . (2) 

 

 It should be pointed out that our work focuses on correlating the capacitance contributions 

from MWNTs (with concentric nanotubes of gradually decreasing perimeters) while previous 

works, e.g., by Fang, et al12 and Xia, et al13, are on graphene sheets or nanoribbons, the latter of 

which have sub-bands due to the finite width and become graphene sheets in the infinite width 

limit. The CQ of for nanoribbons and graphene was discussed in Ref. 12 for MOSFET (metal oxide 

semiconductor field effect transistor)-like devices. While they discussed the series addition of the 

gate oxide capacitance and the CQ, we discuss the series addition of the double layer capacitance 

(Cdl) with the CQ, as appropriate for an electrochemical capacitor. The maximum carrier 

concentration (n) studied in Ref. 12 was less than 2·1012/cm2 with concomitant CQ values of the 

order of 10 F/cm2, which seem to be comparable with the values calculated in this article. In Ref. 

13, they fabricated experimental MOSFET-like devices using a graphene sheet and analyzed their 
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data. Accordingly, there was no need to consider sub-band contributions, but for our purposes, 

counting contributions of several tens of all relevant sub-bands is critical and that is what will be 

performed below. 

 We modeled multi-walled CNT (MWCNT) characteristics, in accordance with previous 

experiments which used such ensembles (with average individual MWCNT diameter of 20 nm and 

spacing 200 nm on a 5 mm × 5 mm Si substrates) as electrodes8,11. We calculated the DoS of a 

constituent wall in a MWCNT, following previous methodology10,14, modeled as a rolled graphene 

sheet (infinite in the y-direction and both periodic and finite in the orthogonal x-direction). It was 

assumed that the walls are independent of each other15, with the implication that the total DoS can 

be obtained as the sum of the DoS for each constituent wall. We considered zigzag CNTs 

(involving rolling of the graphene sheet in the x- direction), as this category encompasses both 

semiconducting and metallic CNTs16.  As we consider relatively large diameter CNTs11, the details 

as to how graphene is rolled to yield CNTs, i.e., whether zigzag or armchair or chiral17, will not 

influence the CQ. The exact dispersion relation for a graphene sheet, through the tight-binding 

approximation10,18 is 

 

   





























2
cos4

2
cos

2

3
cos41, 2

1
xxy

yx

akakak
kkE     . (3) 

 

In (3),  a = 3 a0 where a0 (= 0.142 nm) is the C- C bond length and the overlap integral 1 = 2.9 

eV15. The 20 nm MWCNT with 15 walls was approximately indexed through [N, 0] (with N = 250 

for the outermost wall and decreasing by 10 for each successive inner wall) and was effectively 

one dimensional since 
Na

q
k nx

2
,   (q: sub-band index), while ky is continuous. The DoS for a 
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single sub-band is then 
dE

dky

2
4

 with kxn held constant, and the 4 in the numerator accounted for 

the electron spin degeneracy and the positive/negative ky. 

 Since CQ is a function of EF from (1), we needed to estimate an appropriate value for EF. 

In a graphene sheet with no impurities, each carbon atom provides one electron to the pz orbital, 

yielding semi-metallic behavior and implying19 an EF = 0 eV, and zero carrier density (n) at T = 0 

K. However, n could range around 4.6 · 1012 cm-2, corresponding to the two-dimensional carrier 

density interpolated from the experimental value for bulk graphite1 of 1019 cm-3, i.e., through 

(1019)2/3. With variability in n, e.g., due to defects13, etc., attempting an exact EF would yield 

imprecise values, and it could then be appropriate to estimate n by approximating the CNTs as 

sheets of graphene and calculating the DoS, as was done here. The n of 4.6·1012/cm2 is then only 

posited as a representative number for the purpose of illustrating the concepts. The actual n in any 

sample could either be below or above20 this number with a corresponding decrease/increase in 

the CQ. 

 From the total carrier concentration at the Fermi energy,      dEEfEDEn F 



0

. The f(E) 

is the Fermi-Dirac function and was approximated as a step function in our calculations, as the 

difference between the value of f(E) with a finite temperature (T=300 K) and with T = 0 K was at 

most 5 %. The EF values were found to range around 278 meV (with n = 4.6 · 1012 cm-2). 

Computing EF (kx,n, ky) from (3), and then CQ(kx,n, ky) from (1), pairs of EF and CQ for all sub-bands 

kx,n over the Brillouin zone for ky are plotted in Figure 2 (b). CQ (EF) is constant initially due to the 

metallic CNTs, up to ~ EF = 50 meV, due to the constituent metallic NTs with finite and constant 

DoS, where CQ does not increase as there is no sub-band contribution from the NTs. The staircase 

like structure in the variation results from the contribution of successive sub-bands to the DoS. At 
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EF = 278 meV we estimate, in units of capacitance per NT length, CQ = 48 fF/m. The linearity in 

the plot justifies starting with the graphene EF-k relation to estimate the EF of the CNT from n. 

We next consider the two major components, which add in series, of the Cdl: (i) a Helmholtz 

capacitance (CH) due to a Coulombic attraction, and (ii) a Gouy-Chapman (CGC) capacitance due 

to the diffusive distribution of ions in the electrolyte3. An area average CH can be computed from 

a spatial separation corresponding to the ionic radius11 (e.g., r ~ 0.278 nm for  K+ ions in 

K3Fe(CN)6) and is equal to r. The CGC is estimated from the voltage drop () across the diffusive 

region (which is of the order of the Debye length, d) and is equal to (d) cosh (ekBT). 

Consequently,  

 

   .

 (4) 

 

At smaller → the Cdl → CGC, atkBT) the CH and CG are comparable, and at a larger 

kBT), the Cdl → CH. With a range of from zero to 278 mV (corresponding to the EF), we 

estimate from (4), a range of Cdl for an electrolyte concentration, I (in moles/m3), from ~ 7.3 I

F/cm2 to ~ 255 F/cm2.  In order to compare to the one-dimensional quantum capacitance CQ 

estimated above, we convert the units of Cdl by multiplying by 2r, where r = 10 nm is the outer 

MWCNT wall radius. The corresponding range is then from 4.6 I  fF/m to 160 fF/m. For a 

given I, say 3 mM as in the experiments (see Table V of Ref. 11), the Cdl is calculated to be 7.9 

fF/m. With CQ = 48 fF/m, this results in a Ctot ~6.8 fF/m. Generally, the electrostatic interaction 
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between surfaces of different geometries decays with a characteristic decay length equal to the 

Debye length21. Equivalent capacitances are then obtained for the planar/cylindrical cases. 

 

 

Figure 1-3. Comparison of experimentally measured capacitance (see Ref. 11) in ■ with numerical estimates (red 
lines) of CQ, as a function of electrolyte concentration, I. A value of CQ = 80 F/cm2 corresponds to the theoretically 
predicted CQ = 48 fF/m. The match is strongest for low I with low CQ and for high I with high CQ.  
 

 The capacitance per projected electrode area is the product of the obtained Ctot, the average 

CNT length, L (= 100 m), the estimated CNT density on the substrate,  (~ 2.5·109 cm-2), and the 

projected surface area of the electrode, A (~ 0.25 cm2) yielding an expected capacitance value per 

projected area of ~ 1700 F/cm2. Dividing this value by the weight of the CNTs (~ 40 g), the 

capacitance values, in F/g, were computed and are shown in comparison to the experimental values 

(details have been previously reported8,11) in Figure 3. The figure then indicates the relative 

magnitudes of CQ relevant to the measured capacitances and indicates a variable CQ, being more 

significant (for a series combination of Cdl and CQ) at lower electrolyte concentrations when the 

CNT is sufficiently isolated so that its DoS is small. We generally observe from the figure that 

while higher electrolyte concentrations may be adequately modeled through the use of Cdl alone, 
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lower concentrations need CQ as well. CQ is significant when the CNT is sufficiently isolated so 

that its DoS is small. As I increases, charge transfer between CNT and electrolyte may be more 

likely, reducing isolation and increasing the CNT DoS effectively so that CQ increases and 

becomes insignificant, as per equation (2).  

 Several insights are obtained through our analyses. For example, the magnitudes of both 

CQ and Cdl are comparable and suggest an explanation for the considerable (up to 300 %) increase 

in Ctot when the CNT constituted electrodes are subject to argon plasma processing8,11. Such 

exposure was hypothesized to introduce charged acceptor like defects into the NT’s carbon lattice, 

through argon abstracting electronic charge from the carbon bonds. Much like surface states in 

semiconductors22, the fixed charges in the CNT lattice are immobile, and do not respond to applied 

voltage and would not contribute directly to the Cdl. However, the added charge density (which 

would be proportional to the exposure time) affects the Fermi energy and enhances CQ. A higher 

CQ closer to Cdl enhances the maximum Ctot that could be obtained from a given system. We can 

also conclude that the limits to the magnitude of the capacitance that can be obtained from CNT 

or nanostructure based electrochemical capacitors is a function of the series combination of both 

the electrostatic/double layer capacitance as well as the quantum capacitance. In a situation where 

both are comparable, one would need to increase the CQ, say through varying the charge density 

and maximize the total capacitance. 
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2. Enhanced electrical current densities in electrochemical systems 
through the use of nanostructured electrodes 

 

 An important problem in modern day science and technology, related to energy capacity, 

concerns both increasing the amount of stored electrical charge as well as enhancing the rate at 

which the charge could be taken up or released. In this regard, fuel cells or batteries2 have been 

acknowledged to be prototypes for high energy concomitant with low power capabilities, brought 

about by charge storage in the bulk and diffusion related limitations, respectively. Alternately, 

electrical capacitors have contrary attributes, i.e., through being recognized as low energy and high 

power devices, mediated through the charge being located at/close to the surface. It then seems to 

be clear that obtaining both high energy and power could be facilitated through electrochemical 

reactions that are not diffusion limited. As diffusion is essentially a bulk or volume based 

phenomena3, alternate mechanisms for charge storage mainly operate through increasing the 

effective surface area, e.g., through either enhancing the number of charge storage sites on the 

surface4, or through using thin layer electrochemical models5 where all the charge is stored in the 

intervening electrolyte between closely spaced structures and diffusion is unnecessary for reactions 

on the surface.  

 It is then understood that the essential elements underlying charge storage and transfer 

involve the interaction of ions in the electrolyte with the electrode through either diffusion to the 

surface and subsequent electrochemical reaction or the latter alone (as in the thin layer case), under 

the influences of forces6 due to a concentration gradient or electric field, respectively. In this paper, 

we seek to re-examine the fundamentals of charge transfer in terms of electric field induced ion 

drift from the bulk of the electrolyte. We intend to show that such drift currents would dominate 

the diffusion currents in the bulk. The resulting new equation is consistent with the conventional 
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equation derived from the completely different regime of diffusion current at the electrode surface. 

In comparison to experiment, we find that the drift-based equation can explain a broader spectrum 

of data. 

 

 

Figure 2-1. (a) Schematic representation of the charge density , with electrode charge Qm and electrolyte ion Qion. 
L is the total device length. (b) The electric field E, with double-layer field Edl and electrolyte field Eel. E is symmetric, 
and L’ is the length excluding the double-layers. (c) The electric potential V, with double-layer potential 2Vdl and 
electrolyte potential Vel. The counter electrode is assigned a reference potential of zero. 
 

 We consider an electrode with a net charge density per unit volume Qm in contact with an 

electrolyte of total charge density Qion, as in Figure 1(a). While the formation of an electrical 

double layer5 on the surface of an electrode, due to charge compensation or screening from the 

electrolyte, is reasonably well understood, the spatial distribution of the ions may be complex. We 
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examine a simplified version where the ions do not perfectly screen the electrode charge, i.e. Qion 

< Qm, and a one-dimensional charge variation. We assign the spacing between the electrodes to be 

L, and that between the edges of the double layers to be L’, implying that the thickness of the 

double layer tdl on an electrode would be, on average, equal to (L – L’)/2 where 2tdl << L.  

 The variation in electric field E in the device (0 < x < L) in both the double layer Edl and 

the electrolyte Eel, as in Figure 1(b), can be obtained from E 

0

x

 dx , with  as the respective 

charge density (= Qm or Qion) and  being the equivalent and uniform dielectric permittivity7. 

When Qion is only slightly smaller than Qm, Edl would be significantly larger than Eel. Further 

spatial integration leads to the potential profile V (x)  - E dx
L

x

 , with the potential of the counter 

electrode set to a reference value of zero as in Figure 1(c). Consistent with Edl > Eel, the voltage 

across the double layer Vdl would be significantly larger than that across the electrolyte Vel.  It is 

to be noted that the applied voltage across the electrodes/device is Vapp = 2Vdl + Vel. 

 As the charge distribution in the double layer is related to the electrolyte ion radius and to 

thermal fluctuations, it occurs over spatial scales typically several orders of magnitude smaller 

than the device length, so there is no appreciable difference between representing the double layer 

to be of a finite width vs. that of a sharply peaked distribution for the purposes of partitioning Vapp. 

Nonetheless, the shape of Qion in Figure 1(a) reflects the fixed electrical double layer closer to the 

electrode – reckoned with respect to the outer Helmholtz plane, and the adjacent diffuse double 

layer with an exponential decay in the ion concentration5.  

 We define as a measure of the screening strength8 of the electrode charge through 
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  
Vel

Vapp

  .
 (1) 

 

Considering that Vapp   2tdlEdl + L’Eel, Vel   L’Eel, Edl = Qm/, and Eel = (Qm - Qion)/, we can also 

derive 

 

 
Qion

Qm

1-
2tdl

L '


1-

  .
 

(2) 

 

In this form, with  = 0, Qion/Qm = 1, meaning that the double layer holds exactly as much charge 

as the electrode and we have perfect screening; there would no driving force for an electrochemical 

redox (reduction-oxidation) reaction in this case. With = L’/L, Qion/Qm = 0, meaning that there is 

no screening whatsoever of the electric field from the double-layer to the bulk electrolyte.  Note 

that  cannot be equal to 1 in this formulation.  

 We now study the behavior of ions in the electrolyte under the influence of Eel, which 

induces a drift velocity elEx  , with  being the ion mobility. Then the electrical current density 

is  xCNqJ A   with q = ne, where n is the charge per ion, e is the elementary electronic charge, 

C is the bulk electrolyte molar concentration, and NA is the Avogadro constant. We regard a typical 

experiment in electrochemistry, e.g., cyclic voltammetry (CV) which can determine the complete 

electrochemical behavior of a system5 and is often used to monitor the nature and reversibility of 

the cathodic and anodic reactions in an electrolyte9,10. CV involves a linear sweep of Vapp, 

recording the net electrical current through the electrodes. The rate of change of the voltage, known 

as the scan rate  = dVapp/dt, can be related to Eel using Eqn. (1) by 
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 

xdtdx

dtdV

dx

Vd

dx

dV
E appappel

el 




   . (3)  

 

It is assumed that  is spatially independent, since neither Vel nor Vdl are spatially dependent.  Then, 

x
Ex el 


   so that x . This new x  is converted into J through  J  q(CNA ) x . Further 

bookkeeping through the Einstein relation 
Tk

qD

B

  and the equality 
Tk

nq

Tk

e

RT

F

BB

 , where 

D is the diffusion coefficient, kB is the Boltzmann constant, T is the temperature, F is the Faraday 

constant, and R is the gas constant, yields 

   

 2

3
3 n

RT

D
FCJ

    .  (4) 

 

 Such a form for the current density has been previously established through invoking 

elaborate semi-infinite diffusion based techniques and cited in literature5,11,12 as the Randles-

 Se

vcik  (R-S) equation 2

3
3 n

RT

D
FCaJ


  with a being a numerical constant. This equation is 

defined by mapping the redox reaction current to a diffusion current anchored to the electrode 

surface. The device operates in a closed circuit, so the currents thus defined at one surface are 

related to the currents at the opposing surface. It is possible to find an analytical integral equation 

for device current as a function of time i(t), after which the normalized current may be numerically 

plotted as a function of t. The normalized peak current5 is a = 0.4463; the corresponding peak 

current density is hereby defined as Jpeak. Therefore, there is no empirical parameter involved in a. 
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Figure 2-2. Comparing voltage profiles at times t and t + t, the increase in Vapp is always greater than that for Vel. 
In general, a faster scan rate  allows for a larger value of  and thus Vel due to weaker screening. 
 

 We have now shown that electric field induced drift in the bulk electrolyte could yield a 

similar form for J, reinforcing the deep connection between drift and diffusion. Assuming an 

equivalence of our derived relation Eqn. (4) with the R-S equation, we can now assign a physical 

significance for the constant a,  

 

   (proposed drift model) = a (R-S equation)  .  (5) 

 

For example, a match of the R-S equation’s a coefficient in Jpeak of 0.4463 with   leads to  ~ 

0.2. In general, a larger value of  corresponds to a larger value of Vel, though it is limited by Vapp 
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as in Figure 2. Equivalently, J increases if screening can be weakened without affecting the other 

factors in Eqn. (4). 

 The imperfect screening of Qm by Qion causes Vel to be a fraction of Vapp. At larger  the 

screening is further weakened since the ions cannot respond to the quicker change in Vapp, resulting 

in a larger value of Eel and a larger ionic current density. Generally, the electric field induced drift 

current density Jdrift may be assumed to be dominant over the diffusion current density Jdiff from 

the bulk electrolyte, i.e. outside the double layer. This can be understood by taking the ratio of

Jdrift  q(CNA ) dVel

dx
 q(CNA )

Vapp

L '
to Jdiff  qD

d(CNA )

dx
 q

kBT

q
 CNA

L '
, which is equal to 

qTk

V

B

app . At T = 300 K, by assuming a typical experimental input of Vapp = 1 V, kBT/q ~ 26/n mV, 

so we have Jdrift/Jdiff ~ 40/n. For such electrolytes as K3Fe(CN)6, n = 1 for the positive ions and 3 

for the negative ions. If ~ 0.25, as indicated and also justified later in the paper, then Jdrift/Jdiff = 

10/n >> 1. As a result, for the assumed bias conditions, basing the total current on drift current is 

appropriate. The above formulations and conclusions apply to both positive and negative ions, 

albeit with different  and n. 
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Figure 2-3. Current density J as a function of the product of the K3Fe(CN)6 molar concentration C and the square 

root of scan rate  . Data from Ref. 8 by Hoefer and Bandaru. Flat Pt and nanostructured carbon nanotube (CNT) 
electrode data are compared to the drift model in Eqn. (4). 
 

 Comparison of our drift model to experimental current densities was used for additional 

insight into the nature and variation of . J vs. C   is plotted from experimental data for both flat 

Pt electrodes and for nanostructured CNT electrodes in Figure 3. Empirically, J = 0.674 C   for 

Pt and J = 0.786 C   for CNT. Assuming the same diffusion coefficient D = 6.8   10-6 cm2/s 

for both positive and negative ions5 and using F = 96487 C/mol, R = 8.31 J/mol K, and T = 300 

K, from Eqn. (4) we have 
RT

D
F 3  = 1.56 













sVmM

cmmA 2

. Therefore, J =  1.56 C   for both 

Pt and CNT. For Pt,  ~ 0.4327 and thus  ~ 0.2, in close accord to the theoretical R-S value of 

a = 0.4463 as in Eqn. (5). However, for CNT,  ~ 0.5045 and thus  ~ 0.25. The experimental 

procedures as well as the relevant parameters and data for the fitting were taken from papers by 
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Hoefer, et al4,13. The precision to four significant figures is in keeping with the coefficient of the 

R-S equation. The CNT electrode consists of CNTs with average length, diameter, and separation4 

of 25 ± 4 μm, 20 ± 5 nm and 150 ± 50 nm.  

 A greater value of  ~ 0.25 for CNT compared  ~ 0.2 for Pt indicates that the screening of 

the electrode has been weakened, allowing a larger electric field in the electrolyte. The consequent 

larger magnitude of Eel and Jdrift could account for the larger current densities of Figure 3 for the 

nanostructured electrodes. It is to be noted from the figure suggests that the slopes of the current 

(I) – concentration-scan rate product (C  ) might be different for two experiments, i.e., for Pt 

electrodes computed using the traditional models and for CNT electrodes analyzed through the 

newer formulation. The close spacing of the CNTs could result in a relative starvation of the 

screening ions from the electrolyte yielding a greater value of , and suggests design methodologies 

to further increase electrical current densities. 

 In summary, we have indicated the principles through which the net current density of 

electrochemical devices can be analyzed by ionic drift current from the bulk electrolyte. A metric 

, related to the ratio of the potential drop in the electrolyte to that of the applied voltage, has been 

introduced through which the current density increase, in terms of  , may be parameterized. A 

preliminary comparison between flat electrodes and nanostructured electrodes seems to indicate 

larger current densities for the latter, which can be explained more readily through  . However, 

reduced electric field screening is fundamental to the improved electrical current densities and 

there is no obvious relation to the micro-/nano-structure of the electrode. Further optimization 

electrochemical devices considering such principles and based on the fact that the theoretical upper 

limit for   approaches 1, would be worthy of continued study. 
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3. Electrochemical kinetics and dimensional considerations, at the 
nanoscale 

 

 A critical understanding of the thermodynamics and kinetics inherent to electrochemical 

reactions is necessary for scientific insights into charge transfer14 as well as in applications ranging 

from biochemical reactions15 to charge storage in capacitors16,17 and batteries2. While the 

foundational attributes have almost always been reckoned in terms of one-electron based charge 

transfer5,10, much of the theoretical and experimental analysis has only obliquely referred to the 

considerations of dimensionality. Consequently, three-dimensional electrode characteristics and 

classical thermodynamics have been implicitly assumed in heterogeneous electron transfer 

kinetics, encompassing the widely used Butler-Volmer (BV) formulations and the subsequent 

Marcus18,19 – Hush20 interpretations. In this regard, Arrhenius based activation theory, leading to 

the BV approaches, has been used for over a century, and extensively documented in standard 

electrochemistry textbooks5,12. In the BV case, the rate constant (KBV), considering that for the 

forward reaction rate (KF) and for the backward reaction (KB), is 

 

 𝐾஻௏ = 𝐾ி +  𝐾஻ =  𝐾௢𝑒𝑥𝑝 ቂ
ఈ௘ఎ

௞ಳ்
ቃ + 𝐾௢𝑒𝑥𝑝 ቂ−

(ଵିఈ)௘ఎ

௞ಳ்
ቃ  .  (1) 

 

In Eqn. (1),  is the electron transfer coefficient and  refers to the overpotential (= V - Vo), with 

V as the applied voltage and Vo as the standard redox potential. e is the elementary unit of electronic 

charge, kB is the Boltzmann constant, and T is the temperature. While simple to use, in principle, 

such an approach does not yield substantial insight into the type and involvement of the specific 

constituents (redox species as well as the electrode) and  is phenomenologically determined. The 
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Marcus-Hush (MH) theory then seeks to better understand the rationale for Ko and  through a 

more detailed consideration21 of the reorganization dynamics of the solvent and the redox species 

vis-à-vis the electrochemical reactions and the electrolyte (through the macroscopic dielectric 

constant).  

 

 

Figure 3-1. (a) Gibbs free energy (G) - reaction coordinate (q) curves for the oxidized (O) and reduced (R) species 
in an electrochemical redox reaction, of the type: O + e- R. The free energy of reaction (Go), and the free energy 

of activation (Ga) are indicated, for several applied voltages (η) and resulting R species configurations. (b) For low-
dimensional structures, variation in the density of states (DOS) accessible for electron transfer, as in the lowering of 
the DOS for a one-dimensional system, would yield equivalent behavior. (c) The operating points corresponding to 
the various R curves in (i) and (ii) represented in the normalized rate constant (K/Kη=0)-η plot. 

 

 We first briefly review the salient features of the MH kinetics approach and its extension 

by Chidsey22. Consequently, we consider typical18,19 Gibbs free energy (G) – reaction coordinate 

(q) curves: Fig. 1. Typically, the reaction coordinate has been broadly interpreted23, and may refer 

to the distance24, in a multi-dimensional extensive variable sense (e.g., the change of bond length, 

electrical charge, etc.), between the oxidized (O) and reduced (R) species in an electrochemical 
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redox reaction, of the type: O + e-  R. While the progressive lowering of the minimum energy 

of the R parabola (e.g., through increasing the ) always decreases the free energy of reaction Go, 

the free energy of activation Ga initially decreases, reaching zero when the R parabola passes 

through the minimum of the O parabola, and subsequently increases, due to a shift of the R free 

energy curves to the left hand side of the O parabola: Fig. 1(a). The concomitant increase and 

decrease of the electrochemical reaction rate constant KMH, i.e., as represented in Eqn. (2), with v 

as the attempt frequency, reaches a maximum when Ga = 0. 

 

 𝐾ெு =  𝑣𝑒𝑥𝑝 ቂ−
୼ீೌ

௞ಳ்
ቃ = 𝑣𝑒𝑥𝑝 ቂ−

(ఒ∓௘ఎ)మ

ସఒ௞ಳ்
ቃ   . (2) 

 

 Such a non-intuitive increase and subsequent decrease of the reaction rate with increasing 

driving force (i.e., ) constitutes the essence of the inverted region, particular to the Marcus-Hush 

theory. Such a notion on the maximum of a rate constant has been experimentally confirmed25, 

e.g., in intramolecular reactions, concerning molecules with bridged donor – acceptor units26. It 

may also be derived that 25, , with as the reorganization energy  - which is 

related to the energy required for both the internal (e.g., due to the bond configuration changes) 

and the external (e.g., in the rearrangement of the solvation shell, surrounding electrolyte,  etc.) 

configurational changes. Subsequently, it is evident that a zero Ga would imply that the peak of 

the KMH is at a value of - Go.  

 

  
Ga 


4

1
Go






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Figure 3-2. The Chidsey formulation for the rate constant in Eqn. (3) can be interpreted as indicating the relative 
overlap between the Fermi-Dirac distribution function fFD (E) – on the left, and the Gaussian curve – on the right, 
corresponding to the MH models. The DOS was considered to be constant. In the figure, x = (E-EF)/kBT, is the 
reorganization energy and  is the overpotential. 
 

 However, such a theory seemed to be incompatible with the notion of long distance 

interfacial electron transfer where the rate constant decreases exponentially with increased donor-

acceptor separation distances 27 as considered through the seminal work of Chidsey22. 

Additionally, the experimental observation, in certain metal electrode based electrochemical 

ensembles of the saturation of the electrochemical current with increasing , prompted the 

consideration of a continuum of energy level states. The consequently derived rate constant KMHC, 

considering energy level occupancy through the Fermi-Dirac distribution fFD, and the explicit 

introduction of a constant metallic electronic density of states (DOS) (= ), was of the form22 

 

 𝐾ெு஼ =  𝑣(𝜌𝑘஻𝑇) ∫
ଵ

ଵାୣ୶୮(௫)

ஶ
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𝑒𝑥𝑝 ൬−

௞ಳ்
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ቂ𝑥 −
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௞ಳ்
 ቃ

ଶ

൰ 𝑑𝑥 (3) 
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The variable  refers to the normalized energy of a relevant participating level (E), e.g., 

in the electrode, relative to the Fermi energy (EF) and the negative sign is used for  > 0. The 

integration limits may be narrowed down to either the negative interval (-∞, 0] or the positive 

interval [0, ∞), if fFD (E) can be approximated by a step function, which would be applicable when 

 exceeds 26 mV (=kBT/e). The MHC relation, indicated in Eqn. (3), may also be interpreted as 

related to the area of overlap between the fFD and an Arrhenius based rate law: Fig. 2. This figure 

indicates that at low , BV theory may be adequate to model the electrochemical kinetics while 

increasing  leads to overlap and the Chidsey extension. However, at | = /eand beyond, the 

electrical current starts to decrease, and saturation may be expected when | is significantly larger 

compared to the /e The constant height of the step function results from an assumption of a 

constant DOS. 

 The MHC relation seems to yield excellent agreement with the experimental observation 

of the rate constant, which tends to a constant value at larger electrode overpotential. It is to be 

noted that the rate constants, e.g., the KMHC are typically obtained through chronoamperometry 

(CA) experiments, through the electrical current I decay with time t (in response to a step-voltage 

change) of the form: I=Io exp (-KMHCt). However, even in such molecular systems, the Chidsey 

modification to the Marcus-Hush theory adopts an intrinsically continuum point of view, through 

assuming a constant .  

 In this paper, through considering the DOS of the electrode to be a distribution over energy 

instead of a constant value, we broadly aim to extend the utility of the Marcus-Hush-Chidsey 

(MHC) kinetics to a larger class of materials and situations. While constant DOS can explain K-η 

trends for macroscale electrodes, the limited carrier density for nanoscale electrodes causes 

 
x 

E - EF

k
B
T
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unexpected behavior for K at higher values of η. For instance, we observe in zero-dimensional (0-

D) or one-dimensional (1-D) nanostructured electrodes, electrical current oscillations as a function 

of the , corresponding to the gradual population (and de-population) of each successive sub-band. 

We posit that the consideration of a variable/non-constant DOS leads to a deeper appreciation of 

the MHC formulations and may yield tests of dimensional character and concomitant contribution 

to electrochemical systems. 

 First, we reinterpret the classical free energy – reaction coordinate curves depicted in Fig. 

1(a) in the context of lower dimensional structures. The initial decrease in Ga followed by a 

subsequent increase, can be related by analogy to the availability and subsequent lack in the 

number of energy levels (related to the DOS) accessible for electron transfer. Such a modulation 

is apparent in the DOS of one-dimensional nanostructures28, with increasing carrier concentration 

and change of the EF, and may be induced through appropriate . We have then observed that such 

non-constant DOS yields novel electrical current – voltage response in related electrochemical 

systems. Fig. 1(b) indicates the correspondence for lower dimensional systems where the 

decreasing DOS at higher energy may be taken analogous to the increasing . Indeed, saturation 

of the electrical current/rate constant curves may be indicative of the limit of a finite DOS. 
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Figure 3-3. The variation of the normalized reaction rate constants, K, as a function of electrochemical kinetics, i.e., 
corresponding to Butler – Volmer: BV, Marcus-Hush: MH, Marcus-Hush-Poisson: MH-P, or Marcus-Hush-Chidsey: 
MHC, models - with the overpotential . The K values have been normalized to their minimum values in each case. 
The experimental values were adapted from Miller, et al. 26, Chidsey 22, and Bai,  et al, 29. 
 

 The consequent plots of the respective normalized K value variation, through Eqns. (1), 

(2), and (3), with the  (corresponding to BV, MH, or MHC kinetics) are indicated in Fig. 3. From 

CA related experiments and I=Io exp (-KMHCt), such characteristics may be considered equivalent 

to electrical current I- plots.  The figure also indicates a re-plotting of experimental data 

previously obtained, and were selected with the rationale that they represented three diverse 

situations, where nonlinear variation of the rate constant with was observed, i.e., (1) an inverted 

region of the rate constant, per M-H kinetics: Miller, et al26, (2) an initial linear variation followed 

by a saturation of the rate constant, marking the MHC mechanisms:  Chidsey22, and (3) rate 

constant variation corresponding to electron transfer across solid-solid interfaces typical to carbon 

coated LixFePO4 crystals: Bai, et al29. Briefly, the data from Miller, et al26, were obtained through 

pulse radiolysis experiments on A-Sp-B type (where, A: a molecular group with -electron 

network, Sp: a rigid saturated hydrocarbon spacer, and B: 4-biphenylyl) compounds dissolved in 

either 2-methylytetrahydrofuran (MTHF) or isooctane solvent. The spacer served as a basis to 
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probe inter-molecular electron transfer as a function of its length. The solutions were subject to a 

30 ps pulse of solvated electrons and the survival probability of the electrons (measured through 

the ratio of the absorbance of the solution to that of the solvent alone30,31) was estimated. The rate 

constant was related to the probability, and correlated to the distance over which the electron 

transfer was effective30. A self-assembled alkane thiol monolayer served as a spacer between a 

ferrocene moiety undergoing a redox reaction and an Au (111) surface, in the experiments by 

Chidsey22. The rate constant, in this case, was monitored through chronoamperometry, through the 

decay of the electron transfer current in response to an applied potential/voltage step, as previously 

discussed. In the experiments of Bai, et al29, the rate constants were again extracted through the 

variation of the transient current with respect to a voltage step, the relative magnitude of which 

was proportional to the overpotential. The current itself was convoluted from the extent of the 

phase transformation of LiFePO4 particles. It is to be noted that while the BV kinetics indicates a 

linear variation (on the semi-log plot) with , the MH model exhibits a peak as a function of the 

. It is also relevant to note that the experimental curves were also fit through employing Poisson 

statistics 30 assuming homogeneous charge transfer, with a net λ  (= 1.2 eV) constituted from (i) an 

external solvation energy λs = 0.75 eV, and (ii) an internal vibrational energy component λv = 0.45 

eV. The incorporation of Poisson (cf., Gaussian distribution) statistics also yields an inversion of 

the K, while avoiding the steeper drop-off of the MH curve, and was considered 26 the best fit to 

certain chronoamperometric data. 
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Figure 3-4. The variation of the normalized KMHC-DOS based reaction rate constants with η - obtained from Eqn. (4), 
for electrodes with DOS ~ Ea. The exponent a, indicated in the figure, is a function of the electrode dimensionality 
(i.e., a = ½ for a three-dimensional semiconductor; a = 0 or 1, for a two-dimensional system, a = - ½ for a one-
dimensional system) and is Delta-function like for zero-dimensional systems, such as quantum dots. The case of a = 
½ involves a bandgap, which causes the Kη=0 to be smaller than that for the other cases. Generally, a reduction of the 
K corresponds to a decreasing DOS with energy.  
 

 We now consider the influence of a variable DOS on the K variation with . The number 

of electrons available for the redox reaction, 𝑛 =  ∫ 𝑓ி஽(𝐸 − 𝐸ி) 𝐷𝑂𝑆 (𝐸 − 𝐸஼)𝑑𝐸
ஶ

ா಴
, where Ec is 

the energy at the bottom of the conduction band. We concomitantly introduce a new DOS based 

reaction rate constant KMHC-DOS, considering the influence of the energy levels, through 
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The integration may again be either over the negative interval (- ∞, 0] or the positive interval [0, 

∞), as previously discussed. In a limiting case corresponding to Eqn. (3), the DOS would be a 

constant (e.g., ), reverting to the original Chidsey formulation22. In the subsequent treatment, the 

Ec was taken as reference energy and set to zero. Such a formulation involving the energy variation 
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of the DOS28 as a function of the dimensionality, D (e.g., DOS3D ~ constant or ~ E1/2 – for a 

semiconductor, DOS2D ~ E0, DOS1D ~ E-1/2, DOS0D ~ Dirac delta function like) also allows for a 

variable height of the step function, depicted on the left hand side of Fig. 2. The resulting KMHC-

DOS- curves, as a function of the dimensionality dependent DOS are indicated in Fig. 4. In addition 

to the parabolic E-k vector dispersion, we have also incorporated a linear E-k dispersion as seems 

to be necessary to describe the characteristics of graphene32 and related 2D materials33,34.  

 The respective influences of the dimensionality and the dispersion are clearly evident. 

While the traditional MHC based formulations assumed a constant DOS, particular to bulk-

like/three-dimensional (3D) metallic electrodes, the energy variation of the DOS in lower 

dimensional systems yields rich and involved behavior. For instance, the behavior of a two-

dimensional (2D) material with parabolic energy dispersion, e.g., involving a quantum well, is 

seen to differ compared to one with linear energy dispersion, e.g., graphene. In the latter case, an 

increasing DOS with electron kinetic energy is responsible for the observed variation. The situation 

for a one-dimensional (1D) material, e.g., a carbon nanotube (CNT), constituted electrode - with 

parabolic energy dispersion along the long-axis and quantization along the two perpendicular 

directions and a decreasing DOS vis-à-vis energy - corresponds to inversion in the K- curves at a 

sufficiently large , as posited in the original MH formulations. In one-dimensional systems, the 

initial increase of the DOS upon the EF reaching the band edge and the subsequent E-1/2 induced 

decrease yields a corresponding modulation of the K and the electrical currents. 
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Figure 3-5. (a) The predicted variation of the reaction rate constants with η for a [10,0] and [9,0] single-wall CNT 
with λ = 0.25 eV. The respective DOS (E) variation, for the (b) [10,0], and (c) [9,0] single-wall CNT are indicated. 
The modulations in the rate constants are due to the successive population and de-population of sub-bands in the 
nanostructure. EF was taken to be zero in these simulations. 
 

 We then predict the occurrence of oscillations in the K/Kη=0 -  curves in one-dimensional 

nanostructures as a function of chirality in Fig. 5. As is well known 35, the specific nature of 

wrapping of a constituent graphene sheet, through the chirality index [m, n], dictates whether the 

resulting CNT is metallic/semiconducting. We depict the corresponding DOS for a semiconducting 

[10,0] nanotube and a metallic [9,0] nanotube: Figures 5(b) and (c), respectively. While K 

oscillations are particularly pronounced in the former, they are less so in the latter case. The 

underlying reason may be related to the smaller (/larger) separation of the energy sub-bands, 

respectively. Moreover, the oscillations in the semiconducting and the metallic cases occur at 

different voltages, corresponding to the DOS variation. 

 



37 
 

 

Figure 3-6. The K/Kη=0 variations for a (a) [9,0] CNT (carbon nanotube), and (b) [10,0] CNT, as a function of the 
, indicates the competing effects of the classical reorganization energy () and the sub-band energy separation (), 
with respect to the influence of the DOS. The bandgap for the [10,0] CNT actually causes K/Kto decrease with 
increasing λ, in contrast to the [9,0] CNT. 

 

 We also noted that the width of the energy sub-bands (E) in the electrode considered on 

the horizontal axis of DOS (E), with respect to  - typically electrode adjacent (e.g., electrolyte) 

side would be another important variable in interpretation of the K- modulations. Generally,  E 

is indicative of the energy level spacing and inversely related to the size of the nanoscale electrode, 

e.g., in a one-dimensional CNT of diameter d, the equivalent  would be proportional to 1/d2. 

The magnitude of the , as necessary to proceed from an O states to an R state (as in O + e-  

R), cf., Fig. 1, can be considered analogous to an energy level width. When E is larger (/smaller) 
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compared to the , the interaction of the electrode energy levels (and relevant electron 

exchange/redox interactions) with respect to the electrolyte would be more (/less) sharply defined 

and yield an oscillatory (/smooth) K- variation. A small  implies that the nuclear reconfiguration 

and the coordinating solvent interactions 36 accompanying the redox reaction is negligible. At a 

large enough E, a continuous electronic distribution/DOS may be assumed yielding smooth 

MHC kinetics, with an increase of the K up to  ~ e, and subsequent saturation of the K. The 

discussed K- variation as related to the / ratio is indicated in Fig. 6.  As it was recently 

indicated that a  of ~ 0.2 eV seemed to be effective for modeling MHC based charge transfer 

kinetics at LiFePO4 battery electrode interfaces29, such modulations could be experimentally 

probed. Additionally, the K/K increases with  for a [9,0] CNT, as was previously indicated21, 

but shows the opposite variation in a [10,0] CNT. The bandgap in the semiconducting [10,0] CNT 

causes the Kη=0 value to be smaller than that for the metallic [9,0] CNT; such an effect is stronger 

for smaller λ, cf. Fig. 2. We further note that the net DOS relevant to the carriers participating in 

the electrochemical/redox reaction should be considered. Consequently, if the charge carriers from 

the surface states (e.g., with energy levels inside the bandgap) are involved in the kinetics, then 

the local DOS may need to be considered. The rate constant would be increased at low due to 

the surface states and the addition of the LDOS.  For high η, because the surface state contribution 

is generally much smaller than the conduction/valence band contribution, the k trend is not 

expected to change. 

 In summary, we have shown that considering the specific nature of the DOS, as would be 

necessary in nanostructured materials, leads to a modification of the expected MHC electro- 

kinetics. We have predicted, most notably, the occurrence of oscillations of the rate constant and 

the concomitant electrical current in semiconducting nanotubes, the experimental verification of 
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which would be a significant test of the nature of electrical conductivity as well as dimensionality. 

The implications of our study would be relevant to the use of nanostructured electrodes in 

electrochemical storage systems where such electrical current modulations would impact energy 

and power delivery.  
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4. Electron tunneling in nanoscale electrodes for battery applications 
 

 The use of nanostructured materials as electrodes in energy storage devices37, such as 

batteries and electrochemical capacitors17, is typically based on considerations related to a large 

ratio of the surface area to the volume. An optimal packing of the nanostructures, spanning scales 

and dimensionality, is necessary to ensure both a large mass-based as well as volume-based energy 

density, as well as the seamless passage of a large magnitude of concomitant electrical current. 

Considering the relevance of multi-dimensional current passage, careful attention needs to be paid 

to the relevant mode of charge transfer both within the electrode, as well as from the electrode to 

an electrolyte. Generally, electron/carrier transfer occurs when filled states on one side and empty 

states on the other are aligned38. Such an alignment is shifted by an applied voltage difference, i.e., 

the overpotential, between the electrode and electrolyte.  The relationship is reversible, and may 

be observed experimentally through techniques such as chronoamperometry22,39,40. While a theory 

of electron transfer has been posited based on perturbation theory36, such formulations typically 

consider a constant density of states41 (DOS) in the electrode and a continuum of energy states in 

the electrolyte38. However, in nanostructures, the DOS is highly variable, e.g., as related to the 

quantum capacitance CQ
16 in  single-layer graphene32, and non-smooth variations/oscillations of 

the electrochemical rate constant were predicted in one-dimensional carbon nanotubes, due to 

chirality dependent DOS41. It is the aim of this paper to clarify such foundational aspects, probe 

alternate viewpoints, and interpret experimental results. 

 Conventional models, e.g. Butler-Volmer (BV)39, Marcus-Hush (MH)18,42,43, or Marcus-

Hush-Chidsey (MHC)21,22 kinetics, express traditional electrode battery operation through 

chemical reaction dynamics, which is chiefly considered through the reaction rate constant k (1/s). 

These models employ phenomenological constants to relate to the underlying electrochemical 
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processes. This approach is well suited for traditional electrode materials but may not be 

appropriate for nanomaterials. For instance, in the BV model, α and β are electron transfer 

coefficients for the chemical reaction (backward and forward, respectively), where I = I0 (e-αη + 

eβη) and α + β = 1, where η is the overpotential. They represent the ease of reducing the potential 

barrier for the backward and forward chemical reaction, respectively. In the MH/MHC models, 

the reorganization energy  (eV) is taken as a measure of the configurational change related to the 

species undergoing the redox (oxidation or reduction) reaction. The Chidsey formalism22 considers 

electron occupancy by invoking the Fermi-Dirac distribution, i.e., with f(E) = 1/(exp[(E-EF)/kBT] 

+ 1), with electron energy E, Fermi energy EF, and thermal energy kBT. For metallic electrodes, 

implicitly assuming constant DOS  (1/eV) is reasonable. Under this assumption, k saturates when 

|η| > λ/e, where e is the elementary charge. 

 However, such an assumption may be unsuitable for nanostructured electrodes. Recent 

experimental k-η characteristics for single-layer graphene (SLG) electrodes21,40 do not saturate, 

and instead monotonically increase with η. A better understanding of such aspects is achieved 

below by introducing an energy-dependent DOS. The details of this new theory will be presented 

elsewhere44. 

 We first consider the relation between the k and an observed electrical current I (A) to 

reconcile the experimental data with the energy-dependent DOS theory. k is the net chemical 

reaction rate for a redox reaction involving oxidized O and reduced R ion species as in O + e- ⇌ R, 

and is often experimentally determined22,39,40 as a time decay constant. For such a reaction, 

 

 𝐼 = 𝐹𝐴ൣ𝑘௙𝐶ை − 𝑘௕𝐶ோ൧  , (1a) 
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where CO and CR (mol/m2) are the molar concentrations of the O and R species, respectively, and 

kf and kb (1/s) are the forward and backward reaction rate constants, respectively. F (C/mol) is the 

Faraday constant, and A (m2) is the electrode-electrolyte contact surface area. For the 

determination of kf or kb alone, large negative or positive η is used, whereby Eqn. (1a) reduces to 

 

 𝐼 = 𝑒𝑛ଶ஽𝐴𝑘  , (1b) 

 

where n2D (1/m2) is the area density of the relevant ion species and k = kf or kb. The nanostructured 

experimental data may thus be written equivalently in terms of k or I. 

 When considering charge transfer through electron transport, I is defined as 

 

 𝐼 = 𝑒𝐴𝑛𝑣  , (2a) 

 

where n (1/m3) is the electron carrier density and v (m/s) is the electron velocity. The shift from k 

to v allows us to discuss spatial coordinates. However, such a specific form is relevant for current 

flow through a homogeneous material. I from the electrode to the electrolyte (or vice versa) may 

be broadly described through an equation of the form 

 

 𝐼 = 𝑒𝐴𝑛𝑣𝛩  , (2b) 

 

with Θ as the tunneling probability of the electrons participating in the redox reaction45,46. 
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 Considering Eqn. (2b) in more depth, it is necessary to use both f(E) and the DOS for both 

the electrode and the electrolyte to determine A, n, and v, as well as the coefficient from Fermi’s 

Golden Rule to determine v and Θ47–50. Consequently,  

 

 𝐼௟௧ = 𝑒 ∫[𝑓௘௟ௗ × 𝐴ℓ𝐷ଷ஽]
ଶగ

ℏ
𝑀ଶ[(1 − 𝑓௥ௗ௫) × 𝜌]𝑑𝐸  , (3a) 

 𝐼௥௧ = 𝑒 ∫[(1 − 𝑓௘௟ௗ) × 𝐴ℓ𝐷ଷ஽]
ଶగ

ℏ
𝑀ଶ[𝑓௥ௗ௫ × 𝜌]𝑑𝐸  . (3b) 

 

Here, Ilt represents left-going current (right-going electrons) and Irt represents right-going current 

(left-going electrons). The equation explicitly considers the electrode DOS D(E) (1/(eV m3)) and 

occupancy probability feld (E) with Fermi energy EF, and the electrolyte DOS (integrated over 

volume) ρ(E) (1/eV) and occupancy probability frdx(E) with redox energy Erdx. Depending on the 

dimensionality of D, a spatial normalization representing the active electrode region is multiplied, 

e.g. a volume Aℓ (3D), an area A (2D), a length ℓ (1D), or nothing (0D), such that the normalization 

times D has units of 1/eV. ħ (eV s) is the Planck constant, and the matrix element of interaction M 

(eV) couples the electrode and electrolyte energy levels, smaller in magnitude compared to the 

level broadening, and hence considered to be relatively energy independent51. The electrolyte 

properties and matrix element together represent the Fermi’s Golden Rule, which describes 

electron transfer rate. Moreover, for the occupancy probability distribution, the Fermi-Dirac 

distribution was considered over the Boltzmann distribution for both electrode and electrolyte to 

represent the occupancy of the states, and implicitly considers electron – electrolyte interactions.  

Typically, ρ may be considered through a Gaussian:  )4/()(exp)( 2
0 TkEE B - . The E 

is related to the deviation of a redox species electron energy from the most probable energy, 

corresponding to say, that for reduction (red) or oxidation (ox), i.e., E = Ered (= Ered – Ered
o) or 



48 
 

E = Eox (= Eox – Eox
o).  The electrolyte DOS is represented through two peaks for the red and 

ox levels, which may be correlated to electron affinity and ionization energy, with a range of 

energies and corresponding states.  Moreover, the possibility of a solid electrolyte may be easily 

understood through considering the ρ of a solid as well as replacing Erdx with another EF, distinct 

from the electrode’s EF. It is then interesting to note that the electrolyte dimensionality may need 

to be considered in the performance of a related device, e.g., a solid-state battery. For instance, a 

confined two-dimensional electrolyte may yield significantly enhanced power due to a step-like 

onset of the electrical current with increased voltage28. 

 

 

Figure 4-1. (a) The consideration of electrode dimensionality of nanoscale electrodes, together with electrode-
electrolyte interactions in a typical electrochemical system (e.g., a battery or capacitor), yields novel electrokinetics. 
α and β are electron transfer coefficients for the voltage, most often used in the Butler-Volmer model; α + β = 1. The 
consequent electrical current I with respect to an overpotential η (with the standard redox potential as a reference) and 
normalized to Io, the current at η = 0, is due to the mutual overlap of the carrier density from the electrode with the 
electrolyte.  (b) The product (right) of the electrode Fermi-Dirac function feld(E) (left) and DOS D(E) (middle). D can 
be converted to units of eV-1 by multiplying electrode volume for a 3D material. (c) The product (right) of the reverse 
of the electrolyte Fermi-Dirac function 1-frdx(E) (left) and DOS ρ(E) (middle). (d) ln |I/I0|, represented by the 
convolution (right) of feld D (left) and (1-frdx) ρ (middle). 
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 It is to be noted that the use of a constant DOS for D is acceptable, so long as the applied 

voltage range is less than |EF – EC|: Figure 1. Here, the product of the respective f with the 

distribution of the O and the R species in the electrolyte – per Eqn. (3) yields an electrical current 

variation with η of the MHC type: Figure 1d, with a saturation at η > λ The electrical currents 

have been normalized to the equilibrium current value Io (the current at η = 0). If a constant DOS 

is assumed, the result is a curve consistent with the MHC theory. Furthermore, if λ is taken to an 

infinite limit, the result is a line consistent with the BV theory. 

 

 

Figure 4-2. A non-monotonic I(η)/I variation for (a) defect-free/pristine, and (b) defective/n-doped graphene. The 
variation closely follows the relevant DOS shape. A dip is observed in the latter case, when the Dirac point eventually 
aligns with the electrolyte DOS peak. 
 

 We investigate the implications of Eqn. (3) for other low-dimensional electrodes, where 

there would be considerable variation in the corresponding DOS. For example, in the case of single 

layer graphene (SLG) with D ~ E, and in contact with an electrolyte, we obtain a I(η)/I variation 
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indicated in Figure 2a for the defect-free/pristine case (EF = 0). The remarkable aspect here is that 

I does not saturate as in MHC kinetics but instead monotonically increases with  over a 

considerable range mimicking the DOS variation, and would be dictated only by the electrolyte 

stability limits52. Higher  values result in more graphene electrode states being continually 

aligned with the electrolyte. It is again assumed that f can be approximated by a step function - 

applicable when  exceeds 26 mV (=kBT/e). However, the inevitable presence of defects (e.g., 

structural wrinkles53,54, electron-hole puddles32,55,56, etc.) on graphene has been well documented 

and for such an unintentionally doped material, EF > 0 assuming n-type doping. In this case: Figure 

2b, there would be an initial monotonic variation with η followed by a dip in the I(η)/I  vs. ηplot, 

when the Dirac point eventually aligns with the electrolyte DOS peak, beyond which there would 

be an increase again. 
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Figure 4-3. Modeling the experimentally obtained reaction rate/electric current variation for (a) single layer 
graphene, using the formalism relevant to Eqn. (3), yields a more physical fit than BV kinetics as used by Ritzert, et 
al 57 – see inset. α = 0.08 and β = 0.12, which is in conflict with the free energy conservation restriction of α + β = 1. 
(b) Another independent confirmation of the necessity of DOS considerations from our own experiments40 with a 
finite DOS at the Dirac point.  
 

 While such interesting features in I need experimental confirmation, we have seen both in 

our own experiments and those in literature the need for explicitly considering the dimensionality 

relevant DOS. For instance, the oxidation and reduction kinetics of ferricyanide at SLG electrodes 

was fit to BV kinetics57 – see inset to Figure 3a. However, a more detailed analysis indicates 

unequal forward and backward electron transfer coefficients of 0.08 and 0.12 respectively, with a 

sum less than unity. However, a sum of unity is required36 from fundamental thermodynamic 

considerations related to microscopic reversibility58. Alternately, the use of Eqn. (3) for the 
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electrical current yields a much better fit: Figure 3a, compared to BV kinetics. Yet another 

independent confirmation of the necessity of DOS considerations is indicated by our own 

experiments40 on defective SLG with a finite DOS at the Dirac point, with the data and fit plotted 

in Figure 3b. 

 

 

Figure 4-4. A decrease in the electrical current I(η), with increasing ηis predicted in (a) one-dimensional structures, 
such as single-walled carbon nanotubes, and (b) in zero-dimensional quantum dots, due to a depletion of constituent 
electrical carriers. 
 

 The implications of considering the specific DOS of the electrode as well as the electrolyte 

were also extended to one-dimensional (e.g., carbon nanotubes) or zero-dimensional (e.g., 

quantum dot) based systems. From the aspect that I is an indicator of the integrated DOS variation, 

we see that for one-dimensional structures where D ~ E-1/2, that there is actually a reduction in the 

current with increasing η: Figure 4a, while a delta-function like DOS in quantum dots, with a finite 
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number of states yields a concomitant limited range of η over which a finite current may be 

obtained: Figure 4b. 

 In summary, electron tunneling, considering energy-dependent DOS of the electrode and 

the electrolyte, may be used to describe current flow in electrochemical systems deploying 

nanostructured electrodes. We have indicated the possibilities of unique signatures of electrical 

current variation that may be obtained in electrochemical systems through specific consideration 

of the DOS variations of nanoscale electrodes. The related formulations are interesting as they 

predict a non-monotonic variation, in distinct contrast to conventional BV and MHC kinetics, of 

the electrical current with increasing voltage. The derived equations are adaptable to systems with 

solid electrolytes and would enable estimates of the maximal current and expected efficiency. 
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5. Modulation of the electrostatic and quantum capacitances of few 
layered graphenes through plasma processing 

 

 A comprehensive understanding of the characteristics of graphene1 with regard to its 

unique electrical and structural attributes would be incomplete unless the inevitable presence of 

defects have been considered. While such imperfections may limit2 the realization of theoretically  

redicted characteristics, they may also be vital for uncovering new fundamental phenomena and 

related applications. Here we show that the charged defect generation, through argon ion based 

plasma processing, in few layer graphene (FLG) could be integral to the substantial enhancement 

of the electrical capacitance and be of potential use3 in electrochemical (EC) energy storage.4 By 

combining EC characterization techniques with detailed Raman spectroscopic analysis, we 

elucidate the contributions of plasma-induced defects to electrostatic and quantum capacitance. 

 The FLG-based structures were synthesized on Ni foil substrates through chemical vapor 

deposition and the detailed synthesis procedures have been outlined previously (in the Methods 

section of ref 5). The prepared FLGs (referred to hereafter, as “pristine”) were subsequently 

subjected to argon based plasma processing to intentionally6 induce charged defects. Argon was 

chosen because the constituent ionic species are limited7 to Ar+, implying relatively simple plasma 

chemistry.8 The plasma processing was carried out in a customized reactive ion etching chamber 

with an electrode bias (∼−100 V) and an ion density9 of the order of 1011 /cm3.  The applied 

electrical power (in watts), which would be proportional to the electric field between the electrodes 

in the chamber, was used as a parameter to tune the extent of Ar+ graphene interaction over a range 

of time. It was hypothesized, based on previous experimental evidence,10 that dangling bond rich11 
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edge plane defects could be created in the FLGs during Ar plasma exposure through the removal 

of carbon atoms,10 see Figure 1a. 

 

 

Figure 5-1. Artificial introduction of charged states in few layer graphenes. (a) Argon ion based plasma processing 
was used to purposefully create defects, such as dangling bond rich edge plane defects of the armchair or zigzag 
varieties, in few layer graphene (FLG) structures. (b) Enhanced plasma processing applied to the pristine sample, 
results in a substantial intensity enhancement of the D- and D′-peaks as seen in the Raman spectra (normalized to the 
G-peak). An increase in power, say to 50 W, may result in irreversible changes due to graphene removal. The plot of 
the Tuinstra−Koenig correlation length (La) obtained from the area integrated D- to G-peak intensity ratio is shown 
in the inset and indicates decreased crystallite size with increased plasma power. 

 

Considering that the formation energy of extended defects (∼1.1 eV for divacancy)2 is significantly 

smaller than point defects (∼7 eV), the creation of pores (or extended defects) in graphene with 

chiral edges (i.e., containing a combination of armchair: AC, and zigzag: ZZ, type edges) is 

expected. Subsequently, the structural attributes of the processed FLG films were analyzed through 

Raman spectroscopy to characterize the effects of plasma processing; see Figure 1b. The relative 

variation of the D-peak observed at ∼1350 cm−1 (which is disorder induced and originates from 

higher order electron−phonon scattering processes) with respect to the G-peak at ∼1580 cm−1 

(which arises due to normal first order scattering processes in graphene) was used as an initial 

metric.12 The normalization of the Raman peaks was done with respect to the G-peak, per 

convention. It was seen that while the pristine FLG has an AD/AG ratio close to zero (where A 
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refers to the net area integrated intensity of the respective peak), there was a substantial increase 

of the D-peak intensity with increasing Ar+ plasma exposure.13 The AD/AG ratio has often been 

used, through the Tuinstra-Koenig relation14,15 (typically adapted16 through AD/AG = 

(560/EL
4)(1/La), where EL is the input laser energy, in electron volts) as a measure of an effective 

crystallite size/correlation length (La) in nanographites; see inset Figure 1b. Concomitantly, the G’ 

peak feature at ∼2700 cm−1 (close to the second harmonic of the D-peak and characteristic of 

double/triple resonance processes in graphenes12) was also observed. It is well-known that the 

deconvolution of the G’-peak into either a single peak or multiple peaks is indicative of the state 

of the graphene, that is, the number as well as orientation of the layers in the FLGs.17 The decrease 

of the G’-peak intensity seen in Figure 1b concurs with the enhancement in D-peak intensity, due 

to the defects induced by high plasma processing power. 

 While the D-peak increase in the processed FLGs seems to record a net increase in defect 

content, it has also been indicated that this feature is typical to AC edges and not of ZZ edge type 

defects based on momentum conservation principles.18 An important attribute of ZZ defects is 

that they may be electrically active and could contribute to an enhanced density of states (DOS) 

near the Fermi energy (EF),19 much more than the AC type edge defects (which contribute less 

due to the two constituent carbon atoms belonging to different sublattices16). 

 In this context, a nanostructure characteristic that is DOS specific is the quantum 

capacitance,20,21 CQ, which is defined through (see Section I.a of Supporting Information) 

 𝐶ொ = 𝑒ଶ𝐷𝑂𝑆(𝐸ி) = 𝑒ଶට
ସ

గ

௡మವ

(ℏ௩ಷ)మ
  . (1) 

In the above relation, e is the unit of elementary electronic charge, n2D is the carrier density (in 

cm−2) of the 2D graphene, ℏ is the reduced Planck constant (= 1.05 × 10-34 Js), and vF is the Fermi 

velocity in m/s. We have previously shown22 through electrochemical characterization that the CQ 
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is in series with the nominal double-layer capacitance, Cdl, and could be inferred through the total 

measured capacitance Cmeas. However, for the six-layer FLG used in our studies (see Figure S2 in 

the Supporting Information), it may also be necessary to incorporate a space charge capacitance23 

CSC, which arises due to the screening of the electrolyte charge in the inner graphene layers by the 

outer graphene layers, and which would also be in series with Cdl (also see Section I.e of the 

Supporting Information). We consider the relevant length scale for the charge storage to be defined 

over an equivalent Thomas−Fermi screening length24 λTF with CSC given by 

 

 𝐶௦௖ =
ఢ

ఒ೅ಷ
= ට

ଶఢ௘మ௡

ாಷ
  . (2) 

 

ε is the dielectric permittivity (∼5.7ε0 for graphene6, where ε0 = 8.854 × 10-12 F/m) and n is the 

carrier density per unit volume in units of cm−3. Consequently, the individual contributions to the 

Cmeas would be manifested through 

 

 
ଵ

஼೘೐ೌೞ
=

ଵ

஼೏೗
+

ଵ

஼ೂ
+

ଵ

஼ೄ಴
  . (3) 

 

 For insight into CQ and CSC of plasma processed FLGs, we conducted cyclic voltammetry 

(CV) of FLG-based electrodes (as the working electrode in a three electrode setup) in an organic 

electrolyte consisting of 0.25 M tetrabutylammonium hexafluorophosphate (TBAHFP) dissolved 

in 1 M acetonitrile. The area enclosed by the CV curves divided by the voltage scan rate (ν) is 

directly related to the net charge and was used to estimate the Cmeas. The absence of peaks in the 

CV plots indicates the lack of redox reactions and faradaic capacitance (CF) contributions26. It was 
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seen that Cmeas increased substantially as a function of the Ar+ plasma power. The more than 

doubling of the Cmeas from 1.9 μF/cm2 (for the pristine sample) to 4.7 μF/cm2 (for the sample 

subject to 20 W plasma) is remarkable and suggests a novel means of substantially enhancing 

capacitance. 

 

 

Figure 5-2. Electrochemical characterization of argon plasma processed FLGs. (a) CV characterization of plasma 
processed FLG samples (in 0.25 M TBAHFP dissolved in a 1 M acetonitrile). The area enclosed by the CV curves 
was used to parametrize the Cmeas, which increases with plasma power (indicated on the figure). (b) A close to 3-fold 
enhancement in the Cmeas (left axis) and the aggregated contributions of the computed CSC and the CQ (right axis), i.e., 
1/Cgr = 1/CSC + 1/CQ, as a function of the plasma power. The Cgr is in series with the nominal double-layer capacitance 
and is related to the induced charged defect density. 

 

 While it is indicated in Figure 2b that increased power (for example, at and beyond 35 W) 

causes a reduction in the Cmeas, the decrease may be due to the strong lattice disruption and/or 

etching away of graphene as suggested through Raman spectra and optical microscopy. It was 

ensured that the Ni substrate was not involved in such estimates. We do not use the F/g metric for 

reporting the capacitance values as is often done in extant literature, as the specific surface area 

(in m2/g) is (a) not well-known, and (b) not easily measurable. Indeed, there have been a lot of 

exaggerations in literature through the use of the theoretical SSA. 
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Figure 5-3. Determination of the charge configurations and charge correlation length scales. (a) The energy 
dispersion of the G’-peak indicated a blue shift and was composed of individual variation of the deconvolved 2D1 and 
2D2 constituents. The laser energies, used for the Raman spectroscopy, are indicated on the individual plots. The 
relatively prominent left shoulder as well as the overall peak width (of ∼70 cm−1) seems to indicate a HOPG character 
to the processed FLGs. (b) The variation of the 2D1 and 2D2 peak frequency (ωG’) with Raman laser energy was fit to 
a straight line, as expressed through ωG’ = aEL + b with a related to the phonon velocity/Fermi velocity (vF) ratio and 
b indicative of the phonon frequency at the K-point of the Brillouin zone. A larger change in the a was seen for the 
2D1 peak and was used to infer a vF modulation due to plasma processing. The inset shows the variation of the 
computed vF with plasma power. (c) While the interlayer interaction in FLG has been implicated in a nonlinear energy 
dispersion, for example, a hyperbolic dispersion for bilayer graphene in the vicinity of the EF, a linear E−k energy 
dispersion relation could be considered34 for insight. The plasma processing introduced positive charges akin to p-
type doping into the FLG. The enhanced charge density increased the EF from ∼247 to ∼661 meV (at 20 W plasma 
power), which was reckoned with respect to E = 0 point, along with a reduced vF that was indicated by the decreased 
slope. (d) A charge correlation length, Ld (right axis), as deduced from the carrier density in the graphene sheet closest 
to the electrolyte, was smaller compared to the Tuinstra−Koenig correlation length, La (left axis), as deduced from 
Raman spectroscopy. 
 

 Using nominally identical electrolyte and experimental conditions and assuming that the 

Cdl would be a function only of the electrolyte concentration26, an increased current in the 

voltammogram while the shape remains nearly rectangular is characteristic of additional 

capacitance contributions from CSC and CQ. For calibration of the constituents of Cmeas, we used 

the bare Ni foil substrate, the CSC and CQ values of which would be effectively very large due to 
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its metallic nature. Cmeas would then be close to Cdl from Eqn. (3). A value for Cdl of around 20 

μF/cm2 was measured for polished Ni foil. It should be noted that any enhancement possibly due 

to the area increase brought about by, for example, a change in surface topography27 would only 

further minimize the Cdl contribution and not substantially alter the conclusions. The discrepancy 

between Cmeas (in FLG samples), as in Figure 2b, and Cdl (obtained from Ni foil experiments) could 

then be attributed to CSC and CQ of the FLG. We then proceeded to evaluate the relative partitioning 

of CSC and CQ from Eqns. (1) and (2). In addition to the knowledge of vF, n2D (for understanding 

the variation of CQ) and n (for CSC) and the related EF must be recognized and estimated. 

 The vF was noted using Raman spectroscopy through considering the dispersion of the G’-

peak frequency (ωG’) with laser energy (EL). Such a variation has previously been understood28 

in terms of a relation of the form: ωG’ = aEL + b, where a is the ratio29 of the respective phonon 

velocity, vph, to the vF near the K-point of the Brillouin zone. The b connotes the in-plane transverse 

optical phonon (iTO) frequency at the K-point with a larger value marking a hardening of the 

phonon mode frequency. The G’-peak, from Figure 1b could be adequately fitted through 

deconvolution into two peaks: Figure 3a, termed 2D1 (smaller energy/wavenumber peak) and 2D2 

(the higher wavenumber peak). The relatively prominent left shoulder to the peak as well as the 

overall peak width (of ∼70 cm−1) may be indicative of highly oriented pyrolytic graphite (HOPG)-

like character.30 By plotting the energy dispersions of the 2D1 and 2D2 peaks at three laser energies 

(1.96 eV, 633 nm; 2.41 eV, 514 nm; and 2.54 eV, 488 nm), as shown in Figure 3b, we obtained 

increasing a values for the 2D1 peak as a function of plasma processing power (enhanced by ∼16%; 

from ∼92 cm−1/eV for the pristine sample to ∼107 cm−1/eV for the 20 W processed sample) with 

a much smaller change for the 2D2 peak, from ∼86 cm−1/eV in the pristine sample to ∼88 cm−1/eV 

for the 20 W sample. Concomitantly, the b values for the 2D1 peak varied by ∼1% on the 
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application of plasma power, with a much smaller change for the 2D2 peak; see intercepts in Figure 

3b. Because of the small change of the b, we assumed a relative constancy of the vph and the origins 

of the change in a, for example, for the 2D1 peak, to be mostly from a change in the vF. With the 

pristine sample as a reference, the vF variation as a function of the plasma power was computed 

from the a (see Table 1) and has also been plotted in the inset to Figure 3b. The initially lowered 

vF was suggestive of positively charged defects/p-type doping due to the plasma processing.28 

 For obtaining the carrier concentrations to accommodate the partitioning into the various 

capacitances consistent with Eqns. (1)−(3), we numerically varied the n2D (i.e., = n2D,0) of the 

graphene layer closest to the electrolyte until the respective CSC and CQ were obtained and their 

sum in accordance with Eqn. (3) matched the Cmeas. This involved for the CQ in Eqn. (1) the net 

n2D calculated using the summation of the carrier densities for all the FLG constituent layers, that 

is, Σ (l = 0, N, n2D,l), where n2D,l is the carrier density in the lth layer, for the N + 1 layer FLG. In 

our experiments, N = 5. The n2D,l = n2D,0exp[-lx/λTF] with x being the distance between the layers 

of the FLG samples (see Section I.c and Figure S1 in the Supporting Information). The estimation 

of the λTF for Eqn. (2), also used an EF (= ℏvF(πn2D,0)1/2) − see Section I.b of the Supporting 

Information. The resultant variation of the series addition of the CSC and the CQ is indicated as Cgr 

and indicated in Figure 2b. 

 The estimated EF, showed a close to 3-fold enhancement from ∼247 meV (for the pristine 

sample) to ∼661 meV (with 20 W plasma power). The underlying cause of an enhanced CQ may 

then be ascribed to the decreasing EF (in the negative sense, as would be the case for effective p-

type doping) as schematically shown in Figure 3c. Generally, the effects of the Ar plasma treatment 

have been shown to be very reproducible, within the error bars represented by the data in Figure 

2b. However, on further plasma processing (e.g., the 35 and 50 W cases), while the vF appears to 
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increase, the EF diminishes. FLG fragmentation at such high powers, yielding negatively charged 

defects due to dominance of edge states, could be playing a role in such observations.28,31 

 Corresponding to the estimated n2D,0, we defined a charge correlation length, Ld = 

1/(n2D,0)1/2, which may be understood as the average distance between charges (that could have 

arisen due to Ar+ plasma induced defects) that contribute to the CQ as well as the CSC; also see 

Section II of the Supporting Information. Such a length scale should be compared to the more 

conventional Tuinstra−Koenig correlation length (La), discussed earlier in the context of Raman 

spectroscopy, where AD/AG ∼ 1/La. In Figure 3d the respective variation of the Ld (right axis) and 

the La (left axis) as a function of the plasma power has been plotted. Note that the La is undefined 

for the pristine sample due to the negligible D-peak intensity; see Figure 1b. While a steady 

decrease of the La due to reduced crystallinity is expected, it was noted that (a) the Ld was 

typically smaller compared to the La, and (b) a definitive Ld may be prescribed even for the pristine 

sample. We further interpret Ld through the hypothesis that charged defects that contribute to 

electrochemical characteristics may not correspond to an effective crystallite size, considered 

through La.  Instead, defects that are not diagnosed through Raman spectroscopy, e.g., ZZ edge 

states, may be relevant. An enhanced charged defect density would result in a lower Ld. 
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Figure 5-4. Tuning the capacitance of FLGs through hydrogen plasma treatment. (a) A pronounced 2-fold reduction 
of the capacitance was observed through CV characterization of H3

+ ion plasma exposed plasma processed samples. 
Such observations validate the hypothesis that hydrogen passivates the charged defect sites and reduces the 
capacitance tending toward the pristine state. A residual capacitance on hydrogen exposure may indicate that there 
may be some residual defects that resist passivation. (b) The decrease in the FLG defect density on hydrogen ion 
exposure was manifested in the Raman spectra through a decreased AD/AG ratio and an increase in the La. 

 

 Having shown that the measured capacitance may be increased substantially through 

plasma processing, we now indicate further methodologies for the control of the net FLG 

capacitance. With such an aim, the argon plasma processed FLGs were subsequently subject to a 

hydrogen plasma, which had been shown10 to be effective in passivating the number of dangling 

bonds and associated charged defect states. The influence of the charge contributing defects could 

then possibly be reduced with a concomitant decrease in the Cmeas. In a typical hydrogen plasma,32 

there is a large variety of hydrogen ions, e.g., H+, H2
+, H3

+, etc. and the processing conditions, 

mainly the gas pressure, must be regulated for the dominance of specific ions. Also, lower 

pressures may cause the hydrogen ions to induce additional defects.10 Considering such factors, 

we used a hydrogen gas pressure of 1 Torr with H3
+ as the predominant ion and obtained consistent 

and reproducible results. The hydrogen plasma power was set to be the same as that used for the 

initial Ar+ plasma processing. The resultant lowering of the Cmeas is indicated in Figure 4a and the 

concomitant Raman spectra are shown in Figure 4b. For the 20 W Ar+ plasma power processed 

sample, the H3
+ plasma was effective in halving the capacitance and reduced the D-peak intensity 
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as well. However, neither the Cmeas nor the Raman intensity return to that noted for the pristine 

sample suggesting that (i) the hydrogen plasma may not be completely effective, or (ii) that there 

may be some residual defects that resist passivation. It was also noted through preliminary X-ray 

photoelectron spectroscopy (XPS) measurements (see Section III of the Supporting Information) 

that there was little evidence of the contribution of the surface functional groups, for example, 

quinones,33 to the capacitance, as corroborated by a smooth CV scan; see Figure 2a. 

 In summary, we have indicated a methodology for both increasing and decreasing the 

electrochemical capacitance of FLG-based nanographites through a combination of argon and 

hydrogen-based plasma processing. In addition to the utility for charge storage, our work 

contributes to understanding and controlling the charge storage characteristics. The proposal of a 

new length scale, Ld, correlated to electrically active defects contributing to the capacitance, which 

is smaller than the conventional Tuinstra−Koenig correlation length determined through Raman 

spectroscopy, implies a distinction between electrical and structural length scales. 
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6. Dimensionality-dependent electrochemical kinetics at the single-
layer graphene-electrolyte interface 

 

 The all-surface characteristic of single-layer graphene (SLG) offers a remarkable paradigm 

for the exploration of novel physical and chemical phenomena. However, many of the related 

observations, for example, the half-integer quantum Hall effect,1 enhanced electrical and thermal 

conductivity2 due to reduced phase space,3,4 wrinkling,5 and so forth are mostly concerned with 

electromechanical attributes, while the chemical aspects unique to graphene are less distinctive. 

For instance, in many cases, it is unclear as to how a graphene sheet manifests clearly different 

electrochemical character compared to any other surface.6 Aspects related to hindered diffusion or 

selectivity may in many cases be attributed to the influence of defects7 or the underlying substrate.8 

Here, we report on an electrochemical characteristic unique to the two-dimensional nature of SLG, 

adding another facet to interpreting reaction rates in terms of dependence on the dimensionality of 

charge transport. 

 SLG was synthesized via chemical vapor deposition (CVD) on copper foil and 

subsequently transferred to a SiO2/p-Si substrate. The materials preparation related details have 

been previously reported9 and are also discussed briefly in the Materials and Methods section of 

the Supporting Information. The transferred SLG films were first characterized through Raman 

spectroscopy (inset to Figure 1A), from which the single-layer aspect was verified10 through the 

ratio of the intensities of the 2D- and the G-peak, that is, from an I2D/IG ratio of >2. The small D-

peak intensity, that is, with an ID/IG ratio of ∼0.05, is indicative10,11 of the relatively high quality 

of the SLG. Surface structure characterization through atomic force microscopy reveals distinct 

wrinkles (Figure 1A) that have characteristic modulations on the order of 10 nm. 
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Figure 6-1. (A) Atomic force microscopy image of a section of the SLG sample transferred onto a p-Si/SiO2 
substrate. The wrinkles on the sample surface corresponding to the line scan (white line) are displayed in the lower 
left inset. The Raman spectrum of the transferred SLG is indicated in the top right inset. (B) Schematic of the three-
electrode droplet electrochemical cell (actual experimental arrangement shown in the top right inset). The SLG WE, 
Pt wire CE, and a REF saturated calomel electrode are indicated. Images courtesy of Rajaram Narayanan. 
 

 Electrochemical characterization of the SLG was performed using a three-electrode setup 

under potentiostatic control. An annular electrical contact (see the discussion in the Supporting 

Information related to Figures S1 and S2) using silver epoxy was used to surround the SLG surface, 

which served as the working electrode (WE), while a platinum wire and a saturated calomel 

electrode were used as the counter electrode (CE) and a standard calomel electrode-based reference 

electrode (REF), respectively, Figure 1B. The supporting electrolyte was an aqueous solution of 1 

M KCl and was comprised of a 1 mM concentration (= C) redox couple, potassium ferri-

/ferrocyanide, K3Fe(CN)6
3−/K4Fe(CN)6

4−, to study the specific reduction and oxidation reactions, 

respectively. A droplet (∼100 μL) of electrolyte was cast onto the SLG over the area enclosed by 

the annular contact (silver epoxy). The contact was covered with Kapton tape to prevent exposure 

to electrolyte. We have ensured that the silver epoxy contacts do not have any influence on the 

observed results (see the discussion in the Supporting Information related to Figures S1, S2, S4, 

and S5, where the possible errors are considered in detail). 
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 The reduction and oxidation of the electroactive moieties at the SLG electrode/electrolyte 

interface, considering the oxidizing species, O (K3Fe(CN)3−), and the reducing species, R 

(K3Fe(CN)6
4−), is represented through 

 

 𝑂 + 𝑒ି ⇋ 𝑅  . (1) 

 

Here, kf and kb are the forward and backward heterogeneous reaction rate constants, respectively. 

Generally, kf (/kb) is proportional to the magnitude of the overpotential η (= V − V0’) with the 

applied potential V being negative (/positive) with respect to an equilibrium (formal) potential V0’. 

Because at equilibrium the reaction in eq 1 must obey the Nernst relation,12 we employ the relation 

kf/kb = θ  (=exp [Fη/RT], with F (= 96 487 C/mol) as the Faraday constant and R (= 8.3 J/mol·K) 

as the gas constant at a given temperature T). At any given V, an overall reaction rate constant k 

= kf + kb may also be defined. At equilibrium (i.e., at potential V0’), kf = kb = k0. It is to be noted 

that the kf and kb are the absolute values of the rate constants of electron transfer and are 

simultaneously operative at any stage of current flow (anodic/cathodic). We have consequently 

defined an overall rate constant, through k = kf + kb. 

 Cyclic voltammetry (CV) at a polished platinum electrode (of area 0.069 cm2) was used to 

determine the V0’ of the K3Fe(CN)6
3−/K3Fe(CN)6

4− redox couple (see the discussion in the 

Supporting Information related to Figure S3). Briefly, the potential (V) was scanned linearly with 

time within a potential window of 0.57 to −0.43 V (vs the standard calomel electrode reference) 

with a scan rate s in the range of 25−400 mV/s. The potential scan gives rise to a current response 

with peak currents associated with reduction (ip‑r) and oxidation (ip‑o) at potentials Vp‑r and Vp‑o, 

respectively (see the discussion related to Figure S3A in the Supporting Information). The V0’ was 
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taken to be the mean value of Vp‑r and Vp‑o. The redox reaction at the platinum electrode is 

considered reversible because the potential separation between the two peaks is ∼59 mV at all s.12 

The relationship between ip‑r/o and s (per the Randles−Ševčík equation, as discussed with reference 

to eq S1 and Figure S3A in the Supporting Information) was used to determine the diffusion 

coefficient of the O and R species, that is, DO = 6.21 × 10−6 cm2/s and DR = 6.77 × 10−6 cm2/s, 

respectively, in accord with previously reported values.13 Typically, CV or the related Nicholson 

method14−17 cannot be used to determine kf (/kb) because the current response beyond Vp‑r (/Vp‑o) 

(i.e., far from equilibrium) is mostly due to mass transport control (see the discussion after Figure 

S3 in the Supporting Information). 

 

 

Figure 6-2. Chronoamperometry, involving (A) potential step experiments, was used to determine kf and kb. A 
potential step V with respect to the formal/equilibrium potential; V0’ of the redox species, yielding an overpotential η 
(= V − V0’), was applied for a time of 20 s with the electrode system initially at the open-circuit potential, Vocp, for 
the oxidizing (O) and the reducing (R) species. (B) Varying η results in corresponding reduction (/oxidation) current 
transients, i(t), due to the combined influences of the diffusion-limited current as well as that due to the kinetics of 
electron transfer at the electrode/electrolyte interface, f (K). 

 

 Consequently, chronoamperometry (involving potential step experiments) was used to 

determine kf and kb at potentials far from equilibrium. Here, a potential step V was applied with 

respect to V0’, for a time of 20 s (Figure 2A), with the electrode system initially at the open-circuit 

potential, Vocp, at which there is no current flow. The application of a voltage (V) that is negative 



76 
 

(/positive) with respect to the V0’ results in reduction (/oxidation) current transients, i(t) (Figure 

2B), proportional to the magnitude of the η. The observed i(t) was parametrized12 as due to the 

combined influences of the diffusion-limited current, iD, as well as that due to the kinetics of 

electron transfer at the electrode/electrolyte interface through 

 

 𝑖(𝑡) = 𝑖஽𝑓(𝐾)  . (2) 

 

Here, 𝑖஽ =
௡ி஺஼ೀ/ೃඥ஽ೀ/ೃ 

√గ௧(ଵାకఏ)
, and 𝑓(𝐾) = √𝜋𝐾 exp(𝐾ଶ) erfc(𝐾) , with 𝐾 = 𝑘௙ට

௧

஽ೀ
(1 + 𝜉𝜃) =

𝑘௕ට
௧

஽ೃ
ቀ

ଵାకఏ

కఏ
ቁ. 

 The n is the number of transferred electrons, A (in cm2) is the electrode area, CO/R (in 

mol/cm3) is the bulk concentration, DO/R is the diffusion coefficient of the O and R species in the 

electrolyte, ξ = sqrt(DO/DR), and erfc() is the complementary error function. The f (K) − t variation, 

as obtained by dividing i(t) by iD, from the experiments related to Figure 2B is plotted in Figure 

3A. From this plot, the K and the involved rate constants, kf and kb, were deduced. 
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Figure 6-3. (A) The kinetics of electron transfer, parametrized through f(K) (see the text), was extracted from the 
i(t) data of Figure 2B. An instance of f(K) for the case of η = −0.10 V is shown. (B) Plot of the extracted rate constants 
(k = kf + kb, sum of the forward and the backward rate constants, respectively) normalized to the kη=0 V as a function 
of η. The experimental data is a poor fit with the theoretical fits expected from conventional B−V kinetics and three-
dimensional MHC kinetics (blue MHC) assuming a constant DOS but could be modeled well through dimensionality-
dependent electrochemical kinetics (red 2D DOS model), following Eqn. (3) in the text. 
 

 The overall rate constant k (= kf + kb), normalized to k0 is plotted as a function of η in 

Figure 3b. It was immediately obvious that the observed ln(k/k0) − η variation differs markedly 

from both Butler−Volmer (B−V) kinetics, where a linear relationship is expected on the semilog 

plot, as well as the Marcus−Hush18-20−Chidsey21 (MHC) kinetics22,23, which predicts a saturation 

of the rate constants with increased η. Alternatively, we observed for the SLG samples that while 

the slope monotonically decreases with increasing |η| it never reaches zero within the stability 

limits of the electrolyte. We have also noted that the observed ln(k/k0) − η variation cannot be fit 

by varying the series/film resistance. 

 We had earlier shown on theoretical grounds24 that the specific consideration of the unusual 

two-dimensional density of states (DOS) of graphene stemming from the linear energy E-k 

relationship3,4 would cause a deviation from Arrhenius activation based B−V kinetics and even the 

MHC kinetics. The assumption of the constant DOS, as in the MHC model, while appropriate for 

metals where the Fermi energy (EF) is far above the bottom of the conduction band, does not hold 
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for SLG. Instead, the linear variation of the DOS with energy, which is unique to two-dimensional 

graphene, must be considered. Consequently, a DOS-based reaction rate constant, kDOS, is 

necessary, considering the influence of the discrete energy levels, through24 

 

 𝑘஽ைௌ = 𝜈𝑘஻𝑇 ∫
஽ைௌฬ௫ା

ಶಷషಶ಴
ೖಳ೅

ฬ

ଵାୣ୶୮(௫)
exp ൬−

௞ಳ்

ସఒ
ቂ𝑥 −

ఒ±௘ఎ

௞ಳ்
ቃ

ଶ

൰ 𝑑𝑥
ஶ

ିஶ
  . (3) 

 

 In Eqn. (3), the integration is with respect to x = (E-EF)/kBT and refers to the normalized 

energy of a relevant participating level E, for example, in the electrode, relative to the EF. ν is the 

attempt frequency for the species undergoing redox reactions, kB is the Boltzmann constant, and λ 

is the reorganization energy23, which incorporates the energy required for both internal (e.g., due 

to the redox species’ conformational changes) and external (e.g., involving rearrangement of the 

solvation shell with respect to the surrounding electrolyte and electrode related heterogeneous 

kinetics etc.) reaction coordinate changes25. The number of electrons available for the redox 

reaction is 

 

 𝑛 = ∫ 𝑓ி஽(𝐸 − 𝐸ி)𝐷𝑂𝑆(𝐸 − 𝐸஼)𝑑𝐸
ஶ

ா಴
  . (4) 

 

Here, fFD is the Fermi−Dirac distribution function, and EC is the energy at the bottom of the 

conduction band. In a limiting case when the DOS is a constant, we revert to the original Chidsey 

formulation21. 
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Figure 6-4. Schematic of (A) the energy (E) dependent density of states, DOS(E)/D(E), of an ideal SLG sheet. 
DOS(E) for a nonideal SLG (say, with wrinkles, electron, hole puddles, etc.), vis-a-vis the distribution functions of 
the O and R species in the redox couple, with respect to the overpotential (η) for (B) η = 0, (C) η < 0, and (D) η > 0, 
respectively. EF and Eredox (= eV0′) are the corresponding Fermi energy of the electrodes and the energy related to the 
formal/equilibrium potential, V0′. The nonzero value of the DOS at the Dirac point is responsible for a finite 
electrochemical rate constant at η = 0, k0. 
 

 Figure 4 is a schematic representation of the implications of Eqn. (3) for (b) η = 0, (c) η < 

0, and (d) η > 0. Electron transfer from the electrode to electrolyte occurs from the filled carrier 

states in the electrode (following the Fermi−Dirac distribution) to the empty states in the 

electrolyte (which may be distributed in energy) following, for instance, a Gaussian distribution26. 

With varying η, the electrolyte states effectively scan over the DOS distribution of the electrode, 

implying that the k/k0 variation mimics the electrode DOS. For a pristine graphene sheet (e.g., 

defect or wrinkle free), n = 0 at the Dirac point, and it would be expected that k0 = 0. However, a 

finite value for k0 with the implication of a nonzero DOS was observed. We then fit the 
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experimental data (depicted through the “2D DOS model” in Figure 3b) assuming a finite and 

constant DOS close to η = 0 and found that the energy width of such a constant DOS region could 

be at most 2λ. A best fit, with a width of 2λ where λ = 4kBT (∼104 meV at room temperature) is 

indicated in Figure 3b. Beyond eη ≈ ±λ, the linear variation of the DOS resumes, yielding an 

increasing k/k0 with η. 

 Physically, the source of this additional, nonideal DOS variation could be due to the 

formation of both27 electron and hole puddles as well as inevitably induced wrinkles28,29, as in 

Figure 1a. Up to a threshold |η| = 4kBT ≈ 104 meV, corresponding to the constant DOS near the 

Dirac point, increasing (/decreasing) η would only result in reducing electron (/hole) puddle 

concentrations that seem to be present in equal numbers as deduced from the symmetry of the data 

in Figure 3b. Only beyond a threshold |η| would the DOS increase linearly, concomitant with an 

increase of the carrier concentration and resulting Fermi energy. Assuming that each electron/hole 

puddle has a sufficient number of carriers to yield concomitant quasi-Fermi levels of ±104 meV, 

we estimated, from Eqn. (4), an intrinsic puddle carrier concentration of ∼8 × 1011 cm-2, which is 

plausible for undoped graphene on the substrate; previous work30,31 on graphene in electrochemical 

cells has shown such intrinsic doping32 of up to 1012 cm-2. 

 The small deviation of the fit from the experimental data, at increasingly negative η, that 

is, say, less than -0.6 V, could be due to both (i) theoretical assumptions as well as (ii) experimental 

causes. First, a linear variation with energy of the DOS of graphene, based on the typically assumed 

linear energy E−k relationship, was considered. However, there would be a deviation from 

linearity3,4 (due to a reduced dE/dk yielding an increased DOS) at increasing |η|, especially when 

electron transfer takes place from deeper occupied energy levels in the graphene to the electrolyte. 

Consequently, the DOS of a realistic graphene sample must be considered at increasingly negative 
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η and would push the fit to higher values. Alternately, background hydrogen evolution (from aq. 

KCl) could also contribute to the derived rate constants. Experiments in aprotic solvents may yield 

more reliable rate constants. 

 Our experiments and related fitting of the experimental data through a DOS-based reaction 

rate constant considerably add to the presently used standard models to analyze the variation of 

the (k/k0)−η data, which predict that for e|η| greater than the λ the k/k0 would tend to a constant 

value. In this regard, such MHC-based models, while seemingly appropriate for most macroscale 

metallic electrodes, need correction33 for nanoscale electrodes such as graphene. We have seen in 

Figure 2B that the obtained data on the SLG cannot be fit with extant Marcus−Hush theory (Figure 

S6 in the Supporting Information) or MHC kinetics (Figure S7 in the Supporting Information). 

Consequently, our work also bares open intriguing aspects related to the necessity for a deeper 

theoretical and experimental investigation34 of dimensionality-related effects in electrochemical 

kinetics. The implications of our study extend to properly modeling the electrical current that could 

be obtained in electrochemical and biological systems, with applications incorporating battery-

related systems, wearable sensors, and so forth. 
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CONCLUSION 
 

 The ideal electrochemical cell has both a large capacitance (large total energy) and a high 

current output (high power output).  First, regarding electrons in the nanoscale electrode, we want 

a large capacitance.  However, the strong localization of nanostructures causes quantum 

capacitance to be small enough to affect the series-connected total capacitance of the device.  

Second, regarding ions in the electrolyte, we want a large device current.  To achieve higher 

current, a longer screening length is desirable, which is determined by how easily ions can move 

in response to an electric field.  Third, regarding charge transfer between electrons and ions across 

the solid-liquid boundary, we again want a large device current.  The electrons carrying this current 

must have both a starting point and an ending point, i.e. sufficient filled states in electrode and 

sufficient empty states in electrolyte ions, or vice versa.  I hope this serves as an original framework 

for further understanding of the electrochemical cell. 




