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REVIEW Open Access

Apolipoprotein E4, inhibitory network
dysfunction, and Alzheimer’s disease
Ramsey Najm1,2†, Emily A. Jones1,3† and Yadong Huang1,2,3,4,5*

Abstract

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer’s disease (AD), increasing risk and decreasing
age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts.
However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood.
Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro
and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype
dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview
of the literature describing apoE4’s detrimental effects in the central nervous system (CNS), specifically focusing on its
contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons
in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the
importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network
manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network
deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress
induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced
apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic
interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This
dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD.

Keywords: Apolipoprotein E, Alzheimer’s disease, GABAergic interneuron, Hyperexcitability, Inhibitory network,
Selective vulnerability, Tau

Background
Alzheimer’s disease (AD) is the most common form of
dementia and is characterized by a progressive loss of
memory and other cognitive functions [1–4]. Currently,
there are 46.8 million people worldwide living with
dementia, and this number is estimated to double every
20 years, reaching 74.7 million by 2030. Worldwide, AD
cost $818 billion in 2015. By 2030, these costs could rise
as high as $2 trillion [1]. This extreme expense com-
bined with the growing aging population highlights the
need for a better understanding of the disease mechan-
ism and development of therapeutics.

AD is a multifactorial neurodegenerative disorder caused
by interactions among multiple genetic and environmental
factors. Mutations in three genes—those encoding amyloid
precursor protein (APP), presenilin-1 (PS1), and presenilin-
2 (PS2)—are linked to early-onset autosomal dominant AD,
which accounts for less than 1% of all AD cases [2–4]. Apo-
lipoprotein (apo) E4, an isoform of the APOE gene in
humans, is the major genetic risk factor for late-onset
familial and sporadic AD [4–8], which account for most
AD cases. ApoE4 increases the risk and decreases the age
of onset of AD in a gene dose dependent manner [4–11].
ApoE4 is present in roughly 20–25% of the human popula-
tion, and apoE4 carriers account for 60–75% of AD cases
in most clinical studies [11], highlighting the importance of
apoE4 in AD pathogenesis.
AD is characterized by two molecular pathological

hallmarks: extracellular amyloid-β (Aβ) plaques and
intracellular neurofibrillary tangles (NFTs) [2–4]. The
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accumulation of Aβ plaques and NFTs is associated with
significant neuronal and synaptic loss as well as neuroin-
flammation. Both of these pathologies are exacerbated by
the presence of apoE4 [4–7, 12]. Biochemical, cellular,
transgenic animal, and clinical studies have suggested
many potential explanations for apoE4’s contribution to
AD pathogenesis [4–7, 12]. This review focuses on apoE4’s
detrimental effects on GABAergic interneurons, the net-
work deficits resulting from GABAergic interneuron
dysfunction or loss, and the mechanisms that link these
deficits to AD pathogenesis and cognitive decline.

ApoE structure, function, and expression in the CNS
ApoE is a 34-kDa protein comprised of 299 amino acids. It
is a polymorphic protein with three common isoforms,
apoE2, apoE3, and apoE4 in humans. Each isoform differs
only by one or two amino acids [4, 6, 8, 13, 14]. The apoE3
and apoE4 amino acid sequences differ only at position
112 where apoE4 has an Arg instead of a Cys. This seem-
ingly small difference induces significant changes to its
structures and biological functions. ApoE is comprised of
two domains: the amino-terminal domain and carboxyl-
terminal domain. These two domains contain the receptor-
binding region and the lipid-binding region, respectively,
and are joined by a flexible hinge region. Multiple research
groups have investigated potential interaction between the
two domains, which is important to apoE’s function [15–
17]. Nuclear magnetic resonance (NMR) analysis of a
monomeric mutant form of apoE3 recently revealed a po-
tential full-length structure of apoE. In this monomeric
mutant apoE3, Arg-61 interacts with Thr-194 via a H-bond

and Lys-95 forms a salt bridge with Glu-255 [17]. Whether
this mutant form of apoE3 truthfully reflects the biophys-
ical and biological properties of wildtype apoE3 needs to
be further evaluated. An alternative model which used X-
ray crystallography and circular dichroism spectroscopy to
identify the structure of the amino-terminus and the
carboxyl-terminus, respectively, demonstrates that Arg-112
in apoE4 interacts with Glu-109, exposing Arg-61 to inter-
act with Glu-255. This domain interaction mediated by a
salt bridge formation between Arg-61 and Glu-255 is
unique to apoE4 (Fig. 1) [15]. This model of apoE4 domain
interaction has been supported by Fluorescence Resonance
Energy Transfer and electron paramagnetic resonance tests
[18] and was observed in live neurons expressing apoE4
[19]. Importantly, this domain interaction renders apoE4
to be more susceptible to proteolytic cleavage, resulting in
the generation of neurotoxic apoE4 fragments [20–22].
Initially, apoE was described as a lipid transport protein

and was shown to play a key role in cholesterol metabolism
and cardiovascular disease. However, by the mid-1980s, it
had become apparent that apoE also plays significant roles
in neuronal repair and remodeling as well as in neuro-
logical disease [8, 12, 13]. Astrocytes are the primary
source of apoE in the brain [23, 24]. However, under aging
and stress conditions, neurons also produce apoE, albeit at
lower levels than astrocytes [25, 26]. Microglia also express
apoE, especially under conditions of neurodegeneration
and/or inflammation, and the interplay between apoE and
microglia has been reviewed elsewhere [27]. Cellular origin
plays a crucial role in apoE’s biophysical properties and
pathological effects. Astrocytic apoE might be more heavily

Fig. 1 Model of domain interaction as a determinant of conformation of apoE. In apoE4 (left), Arg-112 orients the side chain of Arg-61 into the aqueous
environment where it can interact with Glu-255, resulting in interaction between the amino- and carboxyl-terminal domains. In apoE3 (right), Arg-61 is not
available to interact with residues in the carboxyl-terminal domain, resulting in a very different overall conformation
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involved in Aβ pathology, while neuronal apoE has been
shown to be more impactful on neuronal function and sur-
vival as well as on NFT formation. Clearly, more research
needs to be done to completely understand how cellular
origin affects apoE’s biological and pathological characteris-
tics [27, 28]. Overall, it has been demonstrated, both in vivo
and in vitro, that apoE plays major roles in AD pathogen-
esis in both an Aβ-dependent and independent manner,
and different cellular sources of apoE4 may contribute in
distinct ways to AD pathogenesis [4–8, 12–14, 21, 22].

Aβ-dependent roles of ApoE4 in AD
Accumulation of fibrillar Aβ peptides (amyloid plaques) in
the brain is a requirement for an AD pathological diagnosis.
Aβ accumulation can take place due to an imbalance be-
tween production and clearance in the brain. ApoE is asso-
ciated with amyloid plaques and its roles in Aβ-related
pathologies have been extensively reviewed elsewhere [5, 7,
29–32]. Here we only briefly overview its relationship to
Aβ aggregation/deposition and clearance in the brain.

ApoE4 and Aβ seeding, aggregation, and plaque formation
The roles of apoE in Aβ seeding, aggregation, and
plaque formation are still not fully understood, as
research groups have shown that both increasing or de-
creasing apoE levels reduces plaque load [5, 7, 33–48].
These seemingly conflicting results are most likely due
to the model in question, the complexity of apoE biol-
ogy, and the cellular source of apoE, as lipidation status,
isoform, cell source, expression level, and the aggressive-
ness of the Aβ production in the model can complicate
results. For example, increasing apoE levels in the brain
has been shown to suppress Aβ deposition, facilitating
Aβ clearance, and reverse memory deficits [49–51].
However, these results were disputed by several follow-
up studies. Notably, genetically decreasing apoE expres-
sion results in less Aβ deposition in amyloid mouse
models, independently of apoE isoform [39, 40]. Redu-
cing apoE through immunotherapy has also been shown
to significantly reduce insoluble Aβ levels [52]. ApoE4
has also been shown to facilitate Aβ production in vitro
[53]; thus, lowering apoE4 may decrease Aβ production.
Furthermore, recent studies have demonstrated that in-

creasing or decreasing apoE levels at specific time points
during Aβ plaque formation differentially affects Aβ
plaque associated pathology. In an APP/PS1 mouse model
where human apoE3 or apoE4 is expressed exclusively in
astrocytes, apoE4 accelerated amyloid pathology. More
specifically, increased expression of astrocytic apoE4 dur-
ing the early seeding stage of amyloid plaque formation
increased amyloid deposition and neuronal pathology
[54]. In APP/PS1–21 mice with either the human apoE3
or apoE4 allele homozygously knocked-in (apoE-KI), apoE
levels were reduced at different ages using antisense

oligonucleotides (ASO) in order to better understand how
the timing of apoE expression impacts Aβ accumulation
and pathology. ASO treatment directly after birth led to a
significant decrease in Aβ pathology opposed to treatment
starting at 6-weeks of age (when significant amyloidosis
has occurred due to the aggressive nature of amyloid path-
ology in these mice). Lowering apoE4 levels at 6-weeks of
age led to an increase in Aβ plaque size and reduction in
plaque-associated neuritic dystrophy with no change in
overall plaque load [55]. Taken together, these results indi-
cate that apoE plays a significant role in the initiation of
Aβ pathology; however, after Aβ pathology has been initi-
ated, lowering apoE modulates plaque size and toxicity.

ApoE4 and Aβ clearance
The role that apoE plays in clearing Aβ has been heavily in-
vestigated as well [29, 30, 32, 56–60]. Multiple pathways
exist to clear Aβ, including proteolytic degradation, cellular
clearance, and the cerebrovascular clearance, all of which
have been reviewed elsewhere [7]. It has been suggested
that apoE facilitates Aβ degradation by converting its struc-
ture into one that is more recognizable by proteolytic
enzymes. ApoE assists in Aβ clearance in an isoform-
dependent manner wherein apoE2 > apoE3 > apoE4 [29, 30,
59]. Strikingly, C-terminally truncated apoE4 clears Aβ inef-
ficiently and acts in concert with Aβ to elicit neuronal and
behavioral deficits in transgenic mice [61]. Astrocytes have
been shown to internalize and degrade Aβ in an apoE
dependent manner [31]. ApoE also promotes Aβ clearance
by activating phagocytosis and migration of microglia
wherein apoE3 is more effective than apoE4 [62–64].
Astrocytic apoE4 significantly increases brain Aβ half-life
relative to apoE3, suggesting an impairment of Aβ clear-
ance by astrocytic apoE4 relative to apoE3 [54, 65]. In
addition to astrocytes, neurons are also capable of up taking
and degrading Aβ, however more work needs to be done in
order to dissect the mechanism of Aβ clearance in neurons
[66]. Although apoE interacts with amyloid, it should be
noted that plaque load does not correlate well with cogni-
tive impairments, highlighted most obviously by people
with substantial plaque burdens and normal cognition [67].
Therefore, it is important to also consider apoE4’s roles in
AD pathology independently of Aβ as well.

Aβ-independent roles of ApoE4 in AD
ApoE4 has also been shown to affect many different patho-
logical processes independently of Aβ. For example, both
apoE4 transgenic and apoE4-KI mice show age- and sex-
dependent learning and memory deficits in the absence of
Aβ accumulation, as compared to apoE3 transgenic and
apoE3-KI mice [68–71]. ApoE4 impairs synaptogenesis and
decreases dendritic spine density in vivo and in vitro in pri-
mary neuronal cultures [72, 73]. Furthermore, it impairs
adult hippocampal neurogenesis in mice and affects cortical
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thickness, brain activity, and mitochondrial function well
before significant Aβ accumulation in the human brains
[74–76]. Other non-amyloid pathways affected by apoE4
include lipid metabolism, synaptic plasticity, and most rele-
vant to AD, tau pathology [77].
In response to injury, or stress such as normal aging, neu-

rons express apoE, likely to facilitate transport of choles-
terol and other lipids for membrane repair and/or
remodeling [22]. As mentioned above, apoE4 is highly sus-
ceptible to neuron-specific proteolysis, which generates
neurotoxic fragments [20, 77–79]. These fragments escape
the secretory pathway and enter the cytosol, where they
stimulate tau-phosphorylation and interact with mitochon-
dria, leading to mitochondrial dysfunction and neurodegen-
eration [4]. In particular, GABAergic interneurons in the
dentate gyrus (DG) are particularly vulnerable to apoE4
fragment-mediated neurotoxicity, and in apoE4 fragment
transgenic mice, knocking out tau rescues GABAergic
interneuron loss as well as learning and memory deficits,
demonstrating the tau-dependent nature of apoE4-induced
cognitive impairment [71]. Therefore, in order to better
understand apoE4’s pathophysiology in the context of AD,
it is important to study its interaction and impact on tau.
In mutant human Tau-P301S transgenic mice, expression

of apoE4 led to more advanced tau pathology, brain
atrophy, and neuroinflammation. Interestingly, knocking-
out apoE (apoE-KO) protected the mice from Tau-P301S-
induced neurodegeneration and neuroinflammation. These
data strongly support apoE4’s gain of toxic effects on tau
pathology and its related neurodegeneration and neuroin-
flammation, all of which are independent of Aβ [80]. How-
ever, a recent study using a gene delivery approach, in
which adeno-associated virus (AAV) expressing human tau
protein containing the P301L mutation (AAV-TauP301L)
was injected into the cerebral lateral ventricles of neonatal
apoE2-KI, apoE3-KI, and apoE4-KI mice, resulted in
contradictory findings. Specifically, 6-month old apoE2-KI
mice injected with the AAV-TauP301L construct at postnatal
day 0 had significantly higher levels of hyperphosphorylated
and aggregated tau, as well as more severe behavioral ab-
normalities than did 6-month old apoE3-KI and apoE4-KI
mice under the same conditions [81]. Strikingly, in humans,
APOE2 is associated with increased risk of two tauopathies:
progressive supranuclear palsy and corticobasal degener-
ation [81]. The discrepancies between these studies could
be the result of differences between model systems, such as
cell type specificity and the overall level of tau expression,
differences in toxicity between Tau-P301S and Tau-P301L
mutations, and age of the mice. It should be noted that
clinical manifestations of Tau-P301S and Tau-P301L are re-
lated to frontotemporal dementia (FTD) but not AD. In
order to fully understand apoE isoform-dependent role in
tau pathology in the context of AD, more in-depth research
and new animal models are required.

Inhibitory system dysfunction in AD
In recent years, it has become clear that neurodegenerative
diseases target specific neuronal populations [82]. GABAer-
gic interneuron dysfunction, in particular, is found in a
range of neurological and psychiatric disorders, including
schizophrenia, autism, Fragile X syndrome, epilepsy, mi-
graines, depression, bipolar disorder, and AD [83]. Loss of
GABA, the primary inhibitory neurotransmitter in the
brain, is a key component of AD. Post-mortem tissue from
AD patients shows reduced GABA level throughout the
brain, particularly in temporal, parietal, and frontal cortices
[84, 85]. Post-mortem cortices from AD patients contain
reduced GABAergic terminals, particularly near amyloid
plaques [86, 87]. AD patients show reduced cortical GABA
as measured by positron emission tomography, especially
in the temporal cortex [88, 89], and reduced GABA in cere-
brospinal fluid [90–93]. Additionally, AD patients have a
specific loss of somatostatin-positive interneurons in the
cortex [94] and hippocampus [95]. Several other neuronal
subtypes are also affected by AD pathology, including cho-
linergic and glutamatergic neurons, whose loss and
dysfunction in turn contribute to cognitive impairment
[96]. This review will focus on the consequences of
GABAergic interneuron loss and dysfunction, which have
broad consequences at the network and behavioral level.
Loss of GABA and GABAergic interneurons in AD pa-

tients may be responsible for network hyperactivity mani-
festing as seizures. Substantial evidence shows that loss of
GABAergic tone leads to seizures [97]. 10–22% of AD pa-
tients exhibit seizures [98–100], as do hAPPFAD mice
[101], and the onset of these seizures precedes cognitive
decline [102]. Levetiracetam, an anti-epileptic drug, suc-
cessfully reverses hyperexcitability and learning and mem-
ory deficits in an hAPPFAD mouse model of AD [103, 104]
and in aged mice [105–107]. Cognitively normal elderly,
amnestic mild cognitive impairment (MCI), and AD pa-
tients all show cognitive improvement following chronic
levetiracetam administration [108–110]. Thus, GABAergic
dysfunction contributes to network-wide deficits in AD,
which may in turn harm cognition.
GABAergic inhibitory interneurons make up a minority

of neurons within the brain but play an outsized role in co-
ordinating activity [111]. Inhibitory interneurons regulate
network oscillations, which synchronize neuronal activity
to rhythms that are crucial to learning and memory [112–
116]. Inhibition also prevents hyperactivity of excitatory
principal cells, which disrupts normally sparse neural cod-
ing and leads to decreased signal-to-noise ratio [117–119].
Furthermore, reducing hippocampal GABA levels impairs
learning and memory [120, 121], and silencing inhibitory
interneurons in the dentate gyrus prevents both encoding
of new memories and recall of old memories [122]. Given
their importance to proper learning and memory, it is cru-
cial to better understand GABAergic inhibitory interneuron
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dysfunction and/or loss in the context of AD. As apoE4 is
the major genetic risk factor for AD, understanding its ef-
fect on GABAergic interneurons, a population that is par-
ticularly vulnerable to apoE4 pathology, is essential. ApoE
is expressed in neurons during periods of stress or normal
aging. The neuronally expressed apoE4 is more susceptible
to proteolytic cleavage and cytotoxic fragment generation.
In the following sections, evidence for GABAergic inter-
neuron susceptibility to apoE4 and the subsequent network
deficits that result of inhibitory neuron loss, culminating in
learning and memory deficits will be discussed.

GABAergic interneuron susceptibility to ApoE4
In vivo studies
Many lines of evidence from in vivo studies contribute to
the hypothesis that GABAergic interneurons in the hippo-
campus are disproportionately susceptible to apoE4-
mediated toxicity. For example, apoE4-KI mice display an
age- and tau-dependent decrease in hilar GABAergic
somatostatin-positive interneurons in the hippocampus
[71]. The extent of this inhibitory interneuron loss corre-
lates with both decreased adult hippocampal neurogenesis
and with learning and memory deficits [70, 74]. The
adverse effects of apoE4 are prevented by tau removal, in-
dicating a direct link between tau pathology, apoE4, and
GABAergic interneuron death [71]. Interestingly, the cellu-
lar source of apoE is critical to its pathological effect on
GABAergic interneurons. ApoE4 undergoes proteolytic
cleavage which generates neurotoxic fragments only when
produced in neurons, but not when produced in astrocytes
[20]. When expressed in neurons, apoE3 is excitoprotective
whereas apoE4 is not; however, when expressed in astro-
cytes, apoE3 and apoE4 are equally excitoprotective [123].
Likewise, when expressed in neurons, apoE4 decreases
dendrite arborization and spine density whereas apoE4
expressed in astrocytes does not show similar effects [124].
Importantly, deletion of apoE4 in GABAergic interneurons,
but not deletion of apoE4 in astrocytes, is sufficient to
protect aged mice from apoE4-induced GABAergic inter-
neuron loss and learning and memory deficits [125]. These
findings suggest that, although the majority of apoE is
produced in astrocytes, it is apoE4 produced within
GABAergic interneurons that is detrimental to their sur-
vival in vivo which leads to deficits in both learning and
memory in AD models. Strikingly, bolstering inhibitory
function, either through systemic GABA-agonist treatment
[126] or through transplant of mouse derived inhibitory
interneuron progenitors directly into the hippocampus
[127], restores learning and memory in aged apoE4-KI
mice without or with mutant hAPPFAD expression.

In vitro studies
GABAergic interneuron selective vulnerability to apoE4 is
also supported by a recent study in an in vitro model using

hiPSC-derived neurons with different APOE genotypes
[128]. These included APOE4, APOE3, gene-edited isogenic
APOE3 derived from APOE4, and APOE-deficient hiPSC
lines. Strikingly, much of AD pathology seen in vivo was
successfully recapitulated in this hiPSC-derived neuronal
model in vitro. For example, apoE4/4 neurons produced
significantly more Aβ and phosphorylated tau than apoE3/
3 neurons. ApoE4/4 GABAergic interneurons in particular
showed degeneration and displayed significantly elevated
phosphorylated tau levels compared to apoE3/3 GABAergic
interneurons. Importantly, there was no significant loss of
glutamatergic neurons and dopaminergic neurons in
apoE4/4 hiPSC-derived neuron cultures, suggesting a pref-
erential detrimental effect of apoE4 on GABAergic neurons.
Converting APOE4 to APOE3 by gene editing rescued these
pathologies, including tau hyperphosphorylation, Aβ40 and
Aβ42 overproduction, and GABAergic interneuron loss,
suggesting that neuronal apoE4 expression alone was suffi-
cient to induce these interneuron pathologies. Finally, a
small molecule that renders apoE4 ‘apoE3-like’ by changing
the protein’s conformation to nullify apoE4’s unique do-
main interaction was tested. Treatment with this structure
corrector significantly decreased apoE4 fragmentation, re-
duced the levels of hyperphosphorylated tau and Aβ40 or
Aβ42 overproduction and/or secretion, and increased
GABAergic interneuron survival [128], again suggesting
that the specific actions of neuronal apoE are responsible
for this GABAergic interneuron specific toxicity. Isogenic
hiPSC lines with an apoE3/3 or apoE4/4 genotype have also
been used to study transcriptomic, molecular, and cellular
alterations caused by apoE4 [129]. In hiPSC-derived iso-
genic APOE4 neurons, genes known to control synaptic
function were significantly downregulated, there was an
increase in Aβ42 secretion, and an increase in hyperpho-
sphorylated tau levels in isogenic APOE4 neurons versus
APOE3 controls [129].

ApoE4-mediated GABAergic interneuron loss and
inhibitory network dysfunction in AD
Given that hippocampal GABAergic interneurons are se-
lectively vulnerable to apoE4, an intriguing question is: how
does interneuron dysfunction manifest at the network and
behavioral or clinical levels? At the network level, loss of
GABAergic function can lead to deficits in both tonic and
phasic inhibition. Loss of tonic inhibition manifests itself
most prominently in AD patients as hypersynchrony, lead-
ing to epilepsy and olfactory processing deficits, as well as
hyperactivity, leading to aberrantly increased activation of
cortical and hippocampal networks [130]. Loss of phasic in-
hibition manifests as reduced hippocampal rhythms [130].
These network consequences of inhibitory deficits each
contribute to learning and memory impairments [131]. The
following sections will address these manifestations of
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inhibitory network dysfunction that occur as a result of
apoE4 expression.

ApoE4 and GABAergic interneuron dysfunction leading to
seizure activity in AD
The loss of GABA and GABAergic interneurons in AD
patients may lead to network hyperactivity, most com-
monly observed through seizures. ApoE4 carriers have a
higher risk [132–136] and earlier onset [137–139] of de-
veloping idiopathic or secondary temporal lobe epilepsy. It
is still unclear whether these patients demonstrate a
higher risk for developing AD later in life, or if indeed the
proportion of AD patients with concomitant epilepsy is
enriched for apoE4 carriers. In addition to increased risk,
apoE4 is also associated with increased epileptic path-
ology. The presence of apoE4 is correlated with smaller
neuron size and increased DNA damage in temporal lobes
of epilepsy patients [140], and epilepsy patients with at
least one APOE4 allele are six times more likely to exhibit
treatment resistance [141]. Investigating the connection
between apoE4 and epilepsy may shed light on its role in
large-scale network dysfunction in AD.

ApoE4-mediated GABAergic interneuron dysfunction and
olfactory deficits in AD
Olfactory dysfunction is also an early and common
symptom of AD as well as a result of carrying apoE4
and odor identification ability predicts future cognitive
decline [142–145], making olfactory acuity a potential
early signal of underlying neurodegenerative processes.
ApoE4 carriers show particularly marked deficits in odor
identification and memory relative to non-carriers [146],
and evidence suggests disrupted GABA signaling in the
olfactory bulb may mediate this olfactory loss [147]. In
vivo electrophysiological recordings from aged apoE4-KI
mice with odor memory deficits revealed increased local
field potential response to odors in both the olfactory
bulb and in primary olfactory cortex [148], which was at-
tributed to inhibitory dysfunction. These studies to-
gether suggest that apoE4-mediated odor memory
impairment, a potential early biomarker of cognitive dys-
function, may be due to apoE4-induced hyperactivity.

ApoE4 and microglial dysfunction in the GABAergic
inhibitory network and AD
The link between apoE, microglia, and GABAergic inter-
neuron dysfunction is also an emerging area of interest
in the context of network dysfunction and AD. ApoE
expression in microglia and its roles in microglial physi-
ology and pathology have recently been actively
explored. ApoE is upregulated in primed/activated
microglia [149, 150], and apoE signaling in microglia fol-
lowing phagocytosis of apoptotic neurons or in response
to Aβ accumulation leads to a transcriptional switch

from promoting homeostasis to promoting inflammation
and neurodegeneration [150, 151]. Deletion of the Apoe
gene suppresses microglial activation in response to Aβ
accumulation and prevents migration of microglia to-
ward amyloid plaques [150]. However, the effect of spe-
cific apoE isoforms has yet to be explored [152, 153]. It
has been reported that activated microglia migrate to in-
hibitory synapses and displace them from excitatory
neurons [154] and an increase in CX3CR1 expression in
activated microglia suppresses GABAA receptor signal-
ing in excitatory neurons [155], both of which could
contribute to GABAergic inhibitory network deficits in
the context of apoE4. Another avenue by which micro-
glial dysfunction may affect GABAergic interneurons is
through perineuronal nets. Perineuronal nets are extra-
cellular matrix structures which surround synapses of
highly active neuronal subtypes and are associated with
microglia [156]. These structures are involved in synapse
development, stabilization and remodeling, buffering
ions, and regulating the synapse microenvironment
[157]. AD patients have reduced perineuronal net dens-
ity [158]. Strikingly, the majority of neurons surrounded
by perineuronal nets are parvalbumin-expressing
GABAergic interneurons [159], and these interneurons
show deficits in perineuronal net density in AD model
of mice [160]. Since perineuronal nets protect these in-
terneurons from oxidative stress and other injuries
[161], it is possible that their breakdown in AD, which
can be triggered or exacerbated by microglial dysfunc-
tion, may lead to interneuron dysfunction or death and
thus inhibitory network deficits.

ApoE4 and network hyperactivity induced by GABAergic
interneuron dysfunction
Network hyperactivity is an overarching symptom of AD
and is evident in human apoE4 carriers. More specific-
ally, hyperactivity in two networks which are normally
disengaged during task performance in healthy individ-
uals has been demonstrated by multiple groups. First,
cognitively normal apoE4 carriers show reduced task-
induced deactivation of the default mode network
(DMN) [162–164]. Higher resting state GABA levels in
the DMN are associated with enhanced task-induced de-
activation of this network [165–167], suggesting that this
DMN hyperactivity could be the result of inhibitory defi-
cits. Reduced ability to deactivate the DMN during
memory encoding is found in AD patients [168–170]
and is correlated with worse task performance [171],
linking this apoE4-induced deficit to memory impair-
ments. Second, healthy elderly apoE4 carriers show in-
creased hippocampal and entorhinal activation during
encoding task performance [172, 173]. A recent study
found that aged apoE4-KI mice had increased field po-
tential synchrony and pyramidal cell firing in the
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entorhinal cortex [174]. This activation is dysfunctional
hyperactivity rather than task-related, as levetiracetam
treatment of amnestic MCI patients both reduces hippo-
campal over-activation and improves cognitive perform-
ance during a recognition memory task [109, 175].
Greater hippocampal activation during encoding tasks is
associated with worse task performance [176] in MCI
and AD patients [172, 177], and even predicts future
cognitive decline in cognitively healthy elderly [178]. Fi-
nally, aberrant activity increases in these networks are
seen even prior to aging. Healthy young and middle-
aged adult apoE4 carriers show increased DMN activa-
tion at rest [179] and increased hippocampal activation
during encoding task performance [179–181], suggesting
that apoE4-induced network hyperactivity occurs before
significant Aβ accumulation in human brains.

ApoE4-mediated GABAergic interneuron loss and
hippocampal network dysfunction and memory deficits
Susceptibility of GABAergic interneurons to apoE4 and
subsequent loss of inhibitory function can also lead to
reduced coordination of hippocampal network activity in-
volved in memory. ApoE4-KI mice show reduced abun-
dance of sharp-wave ripples, the local field potential of
hippocampal replay events which are critical for consolidat-
ing spatial memory [182, 183]. ApoE4-KI mice also display
reduced slow gamma power throughout the hippocampal
circuit during ripple events, suggesting reduced accuracy of
these replay events [182, 184]. Thus, apoE4 leads to re-
duced instances as well as accuracy of spatial memory con-
solidation. Notably, removing apoE4 from inhibitory
interneurons specifically rescues slow gamma power and
learning and memory deficits, indicating that these pheno-
types are caused by intraneuronal apoE4 expressed in
GABAergic interneurons. Younger mice recorded before
the onset of significant interneuron loss do not show
significant slow gamma power loss, further implicating in-
hibitory interneurons in apoE4-induced hippocampal
gamma loss [182].

Conclusions and perspectives
Conclusion: working model of ApoE4-induced GABAergic
interneuron deficit and network dysfunction in AD
The combination of the data presented above paints a more
complete picture of the mechanism underlying apoE4 me-
diated cognitive decline. We present a model wherein
injury or aging-related stress induces neuronal apoE expres-
sion. Due to its pathological conformation (domain inter-
action), apoE4 is more susceptible to proteolytic cleavage
than apoE3, leading to increased levels of neurotoxic frag-
ment generation, and through a tau-dependent mechanism,
results in GABAergic interneuron dysfunction and death.
The loss of hippocampal GABAergic interneurons leads to
network dysfunction and hyperexcitability. The network

dysfunction and hyperexcitability themselves contribute to
learning and memory deficits as well as induce further
stress, and therefore more neuronal expression of apoE.
This process culminates in further GABAergic interneuron
loss and eventual cognitive decline (Fig. 2).
It is apparent that more research needs to be done on un-

derstanding apoE4’s roles in AD pathogenesis and on devel-
oping therapeutics targeted to its specific detrimental
effects. This can be achieved by focusing on: 1) better un-
derstanding of the selective vulnerability of GABAergic
interneurons to apoE4 and 2) better therapeutic approaches
addressing apoE4’s detrimental effects at a molecular, cellu-
lar, and network level.

Perspective: better understanding of the selective
vulnerability of GABAergic interneurons to ApoE4
Based on both in vivo and in vitro studies, GABAergic in-
terneurons appear to be selectively vulnerable to apoE4
induced neurotoxicity, although the underlying molecular
and cellular mechanisms are still unclear. However, a num-
ber of potential hypotheses can be put forth for experimen-
tal testing [82]. While many potential pathways could cause
GABAergic interneurons to be selectively vulnerable to
apoE4, we would suggest focusing on the following two.

Neuronal
Expression of ApoE

Domain Interaction
ApoE Fragmentation

(ApoE4 > ApoE3)

Tau
Pathology

Mitochondrial
Impairment

GABAergic Interneuron
Dysfunction/Loss

Network Dysfunction/
Hyperexcitability

Fig. 2 Proposed working model of apoE4-induced GABAergic
interneuron deficit and network dysfunction in AD. In response to
aging, stress, or injury, apoE is expressed in neurons to facilitate neuronal
repair and remodeling. However, higher apoE4 fragmentation due to
its pathological conformation (domain interaction) leads to tau
pathology and mitochondrial impairments. GABAergic interneurons in
the hippocampus are selectively vulnerable to apoE4 toxicity, resulting
in dysfunction and eventual loss. The inhibitory interneuron loss leads
to network dysfunction and hyperexcitability, resulting in a positive
feedback loop culminating in learning and memory deficits
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One hypothesis is that GABAergic interneurons might gen-
erate more neurotoxic apoE4 fragments due to higher ex-
pression of apoE or its cleaving protease. This increased
fragment generation would lead to increased neurotoxicity
and cell death [20, 123–125]. Upon identification of the
apoE4 cleaving protease, a testable hypothesis would be to
investigate whether GABAergic interneurons produce more
of this protease and therefore generate more neurotoxic
apoE4 fragments leading to their death. A second hypoth-
esis is that the metabolic demand of GABAergic interneu-
rons makes them selectively vulnerable to apoE4 pathology.
Multiple groups have presented evidence of mitochondrial
impairments in AD [185, 186]. As mentioned previously,
apoE4 induces deficits in mitochondrial function [187,
188]. Interestingly, there is increasing evidence that
GABAergic interneurons require a unique level of high-
energy expenditure [189]. An intriguing explanation for
GABAergic interneuron selective vulnerability to apoE4,
then, is that they have unique demands for high energy
production which, in turn, makes them vulnerable to any
perturbation of mitochondrial function [189, 190]. A recent
study reports that apoE4-expressing neuronal cells have
50% less reserve capacity to generate ATP than apoE3-
expressing neuronal cells as well as widespread changes in
mitochondrial protein production and translocation, which
makes apoE4-expressing neuronal cells more vulnerable to
metabolic stress [191]. Building off these data, a testable hy-
pothesis is that apoE4-induced mitochondrial dysfunction
is especially damaging to GABAergic interneurons because
of their especially high demands for metabolic energy.

Perspective: better therapies targeting ApoE4’s detrimental
effects on GABAergic interneurons
Several approaches could be further developed for treating
apoE4-mediated pathologies or GABAergic dysfunction.
First, apoE4-mediated GABAergic deficits and cognitive
decline could be treated with small molecules. For example,
treating apoE4-KI mice with pentobarbital early in life pre-
vents learning and memory deficits late in life [126]. Fur-
thermore, the use of a structure corrector has been shown
in vitro to ameliorate apoE4-mediated AD pathologies in
hiPSC-derived neurons, including GABAergic neuron defi-
cits [128]. However, developing new drugs for new targets
can be prohibitively expensive. Using current screening
methods it is possible to find combinations of existing
drugs (drug repurposing) that can correct pathological phe-
notypes of AD [192, 193]. In the context of apoE4, it would
be especially interesting to identify existing drugs that can
enhance GABAergic interneuron function or can correct
gene expression signatures in apoE4/4 neurons to a more
‘apoE3/3-like’ profile.
Several treatments which enhance inhibition have been

tested in animal models and in clinical trials. GABAA re-
ceptor potentiators or agonists ameliorate apoE4- or

amyloid-induced toxicity and improve cognition in rodent
models of AD and normal aging [126, 194]. However,
across several clinical trials, these agents have produced be-
havioral, but not cognitive, improvements [85]. Unfortu-
nately, these therapeutics produce undesirable side effects
which limit long-term use [195, 196]. Anti-epileptic agents
similarly show promise in animal models [103, 104], but
have not produced cognitive improvements in clinical trials
[85], with the exception of levetiracetam that improved
cognition and reduced hippocampal hyperactivity in pre-
clinical and initial clinical studies [107–110, 175, 197–199].
However, trials for both of these therapeutics used only
small cohorts over short treatment periods, so further study
in larger clinical trials is required. Moreover, specifically tar-
geted therapies might be more beneficial. For instance,
theta burst stimulation via transcranial magnetic stimula-
tion has been used successfully to increase GABA within
the DMN [200]. This could be used to rescue specific net-
work pathologies rather than globally increasing inhibition.
Driving specific interneuron populations could be used

to rescue network synchrony. Two foundational optoge-
netic studies demonstrated that optogenetically driving in-
hibitory interneurons specifically enhances slow gamma
frequency oscillations throughout cortex, reducing circuit
noise while amplifying circuit signal [201, 202]. Non-
invasive stimulation can augment endogenous network
oscillations to enhance learning and memory. In humans,
transcranial magnetic stimulation enhances cortical slow
waves and thus improve task performance [203]. In mice,
slow gamma frequency visual or audio input entrains
neural firing to this frequency in the cortex and hippo-
campus and reduces Aβ pathology and microglial abnor-
malities [204, 205]. Finally, enhancing activity of existing
interneurons could also attenuate the network effects. For
example, exogenous neuregulin 1 increases excitability of
parvalbumin-positive interneurons [206] and has been
used to restore hippocampal theta synchrony and fear
conditioning in a mouse model of schizophrenia, which
showed inhibitory impairments [207].
In addition to targeting susceptibility of GABAergic inter-

neurons to apoE4 and the subsequent network hyperexcit-
ability that results from inhibitory neuron loss, another
potential therapy is to replace the lost population of
GABAergic interneurons. Cell replacement therapy has
been explored in the context of various neurodegenerative
diseases [208–211]. Notably, it has been shown that
GABAergic interneuron progenitor transplantation has po-
tential to be an effective method to correct seizure activity
in an epilepsy model [212]. Likewise, transplantation of
mouse MGE-derived GABAergic progenitors into aged
apoE4-KI mice without or with Aβ accumulation rescues
learning and memory deficits [127]. Furthermore, trans-
planting Nav1.1-overexpressing interneurons derived from
the mouse MGE into an hAPPFAD mouse model enhances
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behavior-dependent gamma oscillatory activity, reduces
network hypersynchrony, and improves cognitive function
[213]. In the future, it would be interesting to employ a
similar cell therapeutic strategy, using hiPSC-derived
GABAergic progenitors with an apoE3/3 genotype as donor
cells for transplantation, to treat hyperexcitability and net-
work deficits in an apoE4 model of AD.
Clearly, new hope for effective therapeutics of AD re-

lies upon the ability of scientists to explore multiple lines
of inquiry. Moving forward, it is certainly conceivable
that there will be combination therapies implemented,
with drugs targeting Aβ, tau, inflammation, apoE4, and
apoE4-induced GABAergic interneuron impairment.
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