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Amplicon sequencing of 16S, ITS, and 18S regions of microbial genomes is a commonly
used first step toward understanding microbial communities of interest for human health,
agriculture, and the environment. Correlation network analysis is an emerging tool
for investigating the interactions within these microbial communities. However, when
data from different habitats (e.g., sampling sites, host genotype, etc.) are combined
into one analysis, habitat filtering (co-occurrence of microbes due to habitat sampled
rather than biological interactions) can induce apparent correlations, resulting in a
network dominated by habitat effects and masking correlations of biological interest.
We developed an algorithm to correct for habitat filtering effects in microbial correlation
network analysis in order to reveal the true underlying microbial correlations. This
algorithm was tested on simulated data that was constructed to exhibit habitat filtering.
Our algorithm significantly improved correlation detection accuracy for these data
compared to Spearman and Pearson correlations. We then used our algorithm to
analyze a two real data sets of 16S variable region amplicon sequences that were
expected to exhibit habitat filtering. Our algorithm was found to effectively reduce habitat
effects, enabling the construction of consensus correlation networks from data sets
combining multiple related sample habitats.

Keywords: microbial community, correlation network, habitat filtering, network analysis algorithm, rhizosphere

INTRODUCTION

The importance of microbial communities has become increasingly recognized in a variety
of contexts, including human health, agricultural sustainability, and the conservation of our
natural environment and resources. While many studies have evaluated microbial community
composition, generally through amplicon (16S, ITS, 18s) based sequencing approaches, an
increasing number of studies address community structure and interactions through microbial
correlation network analyses. Microbial correlation networks have been used to investigate
microbial communities in a wide range of systems including oceans, human microbiomes, and soil
and plant associated microbial communities (Barberán et al., 2012; Faust et al., 2012; Lima-Mendez
et al., 2015; Milici et al., 2016; Shi et al., 2016; Delgado-Baquerizo et al., 2018).

Microbial correlation network analysis goes beyond simple surveys of community composition,
and can provide important insights into the ecological interactions within microbial communities.
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These analyses can be used to investigate the interactive
structure of microbial communities across different experimental
conditions and how communities change over time. For instance,
a study of bulk soil and rhizosphere microbiomes from wild
oat (Avena fatua) found greater complexity in the rhizosphere
correlation networks as compared to bulk soil, with increasing
network complexity over the course of plant growth that
was repeatable over two growth cycles (Shi et al., 2016).
Increasing network complexity has been interpreted to indicate
increased ecological interactions such as mutualistic metabolic
cross-feeding and niche sharing (Berry and Widder, 2014; Shi
et al., 2016). Microbial correlation networks have also been used
to identify keystone species that appear to play a central role in
microbial community structure. For instance, Shi et al. (2016)
evaluated within and between module connectivity of network
nodes to try to identify hub species, while Berry and Widder
found that high degree centrality, high closeness centrality,
and low betweenness centrality were indicative of keystone
species in microbial correlation networks (Berry and Widder,
2014). Correlation analyses have also been used to generate
testable hypotheses about specific interactions. In a study of
plankton communities, an interaction between acoel flatworms
(Symsagittifera sp.) and a green microalgae (Tetraselmis sp.)
was predicted based on correlation analysis, and subsequently
confirmed via microscopy (Lima-Mendez et al., 2015).

Several different approaches have been used to construct
microbial correlation networks. While some studies use
Spearman or Pearson correlations between microbial
abundances, other tools have been introduced to address
the particular issues associated with microbial community
analysis (Deng et al., 2012; Friedman and Alm, 2012; Kurtz
et al., 2015; Weiss et al., 2016; Faust and Raes, 2016). For
instance, because the data represent relative abundances, these
data are inherently compositional: an increase in the relative
abundance of one taxon is necessarily accompanied by a decrease
in the relative abundance of other taxa. Compositionality can
also induce spurious correlations, a problem that is especially
important in lower diversity systems (Friedman and Alm, 2012).
Tools such as SparCC and SPEIK-EASI have been introduced
specifically to address compositional effects in these analyses
(Aitchison, 1982; Friedman and Alm, 2012; Kurtz et al., 2015;
Knight et al., 2018). A comparison of network construction
approaches details pros and cons of several of these approaches
for detecting particular types of interactions (Weiss et al., 2016).

Habitat filtering (HF) can confound microbial correlation
network analysis when samples from different habitats (e.g.,
sampling sites, soil compartments, host genotype) are combined
(Berry and Widder, 2014; Röttjers and Faust, 2018). HF occurs
when microorganisms’ abundances are correlated with different
habitats. For example, two microorganisms that are correlated
with habitat will appear to be correlated with each other
when data from different habitats are combined into one
analysis, as conceptualized in Figure 1. The two microorganisms’
abundances are not correlated in Habitat A or in Habitat B, but
both increase in abundance with the change in habitat between
A and B (Figures 1A,B). When data from Habitat A and Habitat
B are combined, the two microorganisms appear to be strongly

correlated (Figure 1C). However, this correlation is the result of
HF rather than an underlying interaction between the organisms.
Correction for HF, as proposed here, eliminates detection of the
spurious correlation (Figure 1D).

Habitat effects have been shown to dominate network
structures when data from different habitats are combined into a
single analysis. For instance, an analysis of data from the human
microbiome project found that the network clustered largely by
sample site on the human body (Faust et al., 2012). Similarly, a
recent study of soil bacteria across a range of habitats found that
bacterial habitat preference dominated co-occurrence network
structure (Delgado-Baquerizo et al., 2018).

Some studies have tried to identify habitat related effects
in correlation network analyses, generally by addressing the
impacts of specific measurable habitat factors. In a study of
plankton communities, several factors including temperature,
mixed layer depth, and phosphate and nitrite concentrations
were shown to have significant effects on microbial abundances
and induce network correlations (Lima-Mendez et al., 2015).
In that study, the authors analyzed “taxon-taxon-environment
associations” in which two taxa correlated with each other and
with a particular environmental factor, and used that analysis
to remove some spurious correlations from the network (Lima-
Mendez et al., 2015). Another study proposes an algorithm
to determine global interaction coefficients that account for
gradients of environmental factors (Shang et al., 2017). However,
both of these analyses were facilitated by relatively large sample
sizes (313 samples and 150 samples respectively) and also did
not account for additional environmental factors that were
not measured experimentally but may be of importance for
community composition and structure (Lima-Mendez et al.,
2015; Shang et al., 2017). For example, plant root exudates are
complex mixes of organic compounds that have been shown to
influence microbial community composition in the rhizosphere
(Zhalnina et al., 2018). Even closely related plant genotypes can
differ in exudate composition, which may influence microbial
community composition (Iannucci et al., 2017). Thus, failing to
account for HF, due to plant genotype for instance, may bias
networks with spurious correlations.

In this study we propose and test a new algorithm for HF
correction that could be used for microbial network analysis
across multiple study systems. The aims of this approach are (a)
to enable the construction of accurate consensus networks from
multiple habitats by removing habitat induced edges, (b) to do
this with relatively small sample sizes, and (c) when differences
between habitats are not necessarily easily characterized.

RESULTS

An Algorithm for HF Correction
We developed an algorithm that corrects for HF effects
in microbial abundance data prior to correlation detection,
enabling more accurate and unbiased identification of the
underlying microbial correlations (Figure 1D). In these data sets,
microorganism abundances are approximated by the (relative)
abundances of amplicon sequence variants (ASVs; alternately
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FIGURE 1 | Conceptual illustration of HF effect and correction. (A) Two microorganisms’ abundances in Habitat A. (B) The same microorganisms’ abundances in
Habitat B. (C) Combined data from Habitat A and Habitat B, resulting in a habitat induced correlation. (D) Correction for HF by subtracting the within habitat mean
abundance eliminates detection of the spurious correlation.

operational taxonomic units or OTUs) in the sequencing data.
The HF correction algorithm subtracts the within habitat mean
abundance for each ASV from the abundances for that ASV in
each sample. Thus, for a data matrix of abundance data A, the
elements of the corresponding HF corrected matrix C are given
by Equation 1.

Cij = Aij −
1
n

∑
k in Hi

Akj (1)

Here Aij represents the abundance of ASV j in sample i, Hi
represents the set of all samples for the habitat from which sample
i originated, and n represents the number of samples in Hi. Once
correction has been performed, microbial correlations can be
detected with either Spearman or Pearson correlations based on
the corrected data matrix C. For the purposes of the analyses
below, we have used Spearman correlations after HF correction.

In order to reduce correlations caused by the compositionality
of relative abundance data, the data can be transformed to
reduce compositionality effects prior to HF correction and
correlation detection. For the analysis of real data described here,

the centered log ratio transformation was used to account for
compositionality (Aitchison, 1982).

HF Correction Improves Accuracy of
Correlation Detection for Simulated Data
We tested the performance of Pearson correlations, Spearman
correlations, and the HF correction algorithm in detecting
correlations in simulated data. Simulated data sets represented
relative abundances of 50 ASVs, with each pair of ASVs having
a 10% chance of having a true correlation, and each ASV having
a 10% chance of being impacted by HF. Fifty simulations were
evaluated at each of a range of sample sizes (6 to 60 samples = 3
to 30 samples per habitat) and HF strengths (0 to 10 times the
ASV abundance standard deviation).

Two measures were used to evaluate algorithm performance
on simulated data. First, we evaluated the root mean squared
error (RMSE) of the detected correlation matrix as compared to
the correlation matrix used in simulated data generation prior
to the imposition of the HF effect. This measure of correlation
accuracy has been used previously to evaluate the performance of
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correlation detection algorithms to recover correlation patterns
from simulated data (Friedman and Alm, 2012).

Second, the proportion of correlations detected that
corresponded to true correlations in the simulated network
was used as another evaluation of correlation accuracy. This was
determined based on including all correlations detected with
a significance cutoff of p < 0.01. These were compared to the
randomly generated set of correlations from the initial stage of
data simulation. Detected correlations that corresponded to true
correlations with the same direction were considered correct,
while those corresponding to no correlation or with the incorrect
correlation direction were considered incorrect.

As compared to the other correlation detection methods
tested (Spearman and Pearson), HF correction resulted in
significantly lower RMSE and higher proportions of correlations
correct for simulated data with HF (Figures 2–4). When no
HF was imposed on the simulation (corresponding to 0 on
the x axes of Figures 2, 3, 4A,B), all methods demonstrated
similar performance. However, even a low level of HF (HF
effect size equal to the standard deviation of the data) resulted

in worse performance for Spearman and Pearson correlation
networks, while the performance of HF correction remained
stable. The difference in performance increased with increasing
strength of the HF effect. When tested over a range of sample
sizes and HF strengths, these effects were statistically significant
(p < 0.05) for all combinations except when both sample size
and HF strength were very low, as indicated by the red boxes in
Figures 2, 3. With either larger sample size or larger HF effect
size, performance with HF correction was significantly better
than that of the other methods.

HF Correction Reduces Habitat
Preference Bias in Microbial Correlation
Networks
In order to assess the HF correction algorithm’s performance
on real microbiome data, we analyzed two different data sets
expected to exhibit significant HF effects. The first of these data
sets consisted of 16S-V4 amplicon sequences from rhizosphere
soil collected from two distinct maize accessions grown in

FIGURE 2 | Correlation detection performance for simulated data: correlation matrix RMSE. Heat map colors represent the mean correlation matrix RMSE based on
50 simulated data sets for each combination of HF strength and sample size. (A) Spearman correlations. (B) Pearson correlations. (C) HF correction. Red box in
(A,B) indicates the set of conditions (HF strength and sample size) for which there was a statistically significant improvement for HF correction compared to the other
method tested.

FIGURE 3 | Correlation detection performance for simulated data: proportion of detected correlations that are correct. Heat map colors represent the mean
proportion of correct correlations based on 50 simulated data sets for each combination of HF strength and sample size. (A) Spearman correlations. (B) Pearson
correlations. (C) HF correction. Red box in (A,B) indicates the set of conditions (HF strength and sample size) for which there was a statistically significant
improvement for HF correction compared to the other method tested.
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FIGURE 4 | Correlation detection performance and variation on simulated data at set sample size or HF strength. (A,B) Set simulated sample size of 30 samples (15
samples for each habitat) and varying HF strength. (C,D) Set HF strength of 5σ and varying simulated sample size. Performance was measured based on two
criteria: (A,C) RMSE between detected and simulated correlation matrices. (B,D) Proportion of correlations detected (at a significance cutoff of p < 0.01)
corresponding to the initial randomly simulated correlations. Points indicate the mean and error bars indicate the standard deviation of 50 simulations.

three differently managed soils. The two maize accessions were
Mo17 (an inbred line that was sequenced to produce a maize
reference genome) (Yang et al., 2017), and DeKalb2015 (a modern
commercially successful transgenic hybrid line released in 2015).
All three soils were from the Century Experiment at the Russell
Ranch Sustainable Agriculture Facility (University of California,
Davis), from replicated plots under different management
practices and crop rotations for over 20 years (Wolf et al., 2018).
The three soils’ histories are described in Table 1.

The second data set was publicly available data from the
National Institutes of Health Human Microbiome Project (HMP)
(Consortium et al., 2012a,b). We analyzed a subset of the data that
included the samples from a single body site (throat) processed
at two different sequencing centers: Baylor College of Medicine
(BCM) and the J. Craig Venter Institute (JCVI).

Principal coordinate analyses of the relative abundances of
ASVs/OTUs from these experiments suggested potentially strong
HF effects between sample subsets from different habitats.
Analysis of the maize data set revealed clear distinctions between
rhizosphere communities originating from two different maize
accessions grown in the three different soils (Figure 5A). There
was a particularly clear difference between the communities from
Soil 3 as compared to the other soils along the first principal
coordinate axis. Analysis of the HPM data revealed distinctions
between samples from BCM and JCVI (Figure 5B).

TABLE 1 | Soils used in experiment to explore rhizosphere microbial communities.

Fertilization Irrigation Crop rotation

Soil 1:
Conventional

Synthetic
fertilizer

Drip irrigation Tomato/corn

Soil 2: Organic Compost and
cover crop

Drip irrigation Tomato/corn

Soil 3: No
input, marginal

Unfertilized Rain-fed Wheat/fallow

Individual networks were constructed for each of the
two maize accessions and for the HMP throat samples
using Spearman correlations, Pearson correlations, and the
proposed HF correction algorithm. Data were centered log
ratio transformed prior to HF correction and/or correlation
detection in order to account for inherent compositionality
effects in microbiome data. Correlations were included in the
network based on a maximum p-value of 0.01. For the maize
samples, and additional criterion of a minimum correlation
strength of 0.75.

An independent differential abundance analysis was
conducted on the same data sets to identify the habitat preference
of individual ASVs/OTUs in the microbiome communities (see
Methods section for details of this analysis). Any ASVs/OTUs
that had a significantly (padjusted ≤ 0.05) increased abundance in
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FIGURE 5 | Principal coordinate analysis of (A) rhizosphere microbiome data from two maize accessions grown in three soils and (B) HMP throat microbiome data
from two sequencing centers. Analysis is based on 16S-V4 sequences using Bray-Curtis distances. The clear differences in community composition apparent
between the different (A) soils and (B) sequencing centers imply that HF occurs between soils.

samples from one (or two) of the maize soils or HMP sequencing
centers as compared to the other(s) were considered to prefer the
habitat(s). This information was used to evaluate how strongly
network structures were influenced by HF effects.

The networks constructed with Spearman or Pearson
correlations were dominated by HF effects, while those
constructed with HF correction exhibited a clear reduction or
elimination of these effects (Figure 6). ASVs with the same
habitat preference as determined by the independent differential
abundance analysis (indicated by node color in Figure 6)
clustered together in the Spearman and Pearson correlation
networks. This indicates that HF effects rather than underlying
microbial interactions dominate the structure of these networks.
However, the networks constructed with the HF correction
algorithm do not exhibit these patterns.

We quantified the extent to which the network structure
corresponds to habitat preference using the proportion of
network connections that are between ASVs/OTUs with a shared
habitat preference (Figure 7). For networks constructed for both
data sets, the Pearson correlation networks had the highest
proportion of correlations between ASVs with shared habitat
preference (47, 45, and 41% for Mo17, DeKalb2015, and HMP).
Spearman correlation networks were intermediate for the maize
rhizosphere data set (29 and 23% for Mo17 and DeKalb2015),
but comparable to the Pearson correlation network for the HMP
data set (39%). HF corrected networks had the lowest levels of
shared habitat preference correlations (18, 16, and 15%). The
differences in habitat preference correlations between network
construction algorithms were statistically significant (p < 0.01
based on chi-square test for equality of proportions), with the
exception of Spearman and Pearson correlation networks for the
HMP data set, which did not differ significantly. As a point of
reference, for a randomized network based on either of these data
sets, this proportion would be 7–8%.

DISCUSSION

Correlation network analysis is an important tool for
understanding interactions within microbial communities, but
HF can have significant impacts that should be considered
when constructing, analyzing, and interpreting these
networks. HF effects are known to influence correlation
network structure, and have been shown to affect a range
of commonly used network construction approaches (Berry
and Widder, 2014; Röttjers and Faust, 2018). In the analysis
of rhizosphere microbiome sequencing data presented here,
the uncorrected networks showed a strong impact of HF on
the network structure (Figures 6, 7). This is consistent with
the expectations based on both the soil history (Table 1)
and the PCoA of the microbial community composition
(Figure 5). Both crop rotation and fertilization practices are
expected to influence the bulk soil microbial community,
which in turn impacts the community that plants recruit
to the rhizosphere from that soil. Another important factor
affecting rhizosphere microbiomes is nutrient and water
availability, which are strongly affected by soil management
practices, and is also expected to influence rhizosphere
microbiome recruitment by the plant (Koyama et al., 2014;
Naylor et al., 2017).

We developed and tested an algorithm to correct for HF
effects in correlation network construction when samples from
different habitats are combined. The algorithm accomplishes the
correction by subtracting the within habitat mean abundance
from each ASV within each sample (Equation 1). This is
conceptually similar to hierarchical regression, which has
been used to analyze wood decay fungi co-occurrence
(presence/absence) data to account for host tree preference
when analyzing positive or negative associations between fungi
(Ovaskainen et al., 2010).

Frontiers in Microbiology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 585

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00585 March 18, 2019 Time: 15:22 # 7

Brisson et al. Habitat Filtering Correction

FIGURE 6 | Rhizosphere microbiome correlation networks constructed with different correlation detection algorithms for (A) maize Mo17, (B) maize DeKalb2015,
and (C) HMP throat microbiome data sets. Each node in the network represents a single ASV/OTU. ASVs/OTUs are colored based on their habitat preference as
assessed by the independent differential abundance analysis.

The analysis of performance on simulated data showed
that when HF was present, the HF correction was able
to improve correlation detection compared to Spearman or
Pearson correlations even at small sample sizes (n = 6
total samples (3 per habitat) for most HF strengths tested)
(Figures 2, 3). Performance, measured as low RMSE and
a high proportion of correct correlations, increased with
increasing sample size up to approximately 30 total samples
(15 per habitat), at which point performance leveled off
(Figures 1–3). This is consistent with another study which
recommended a sample size of at least 25 samples based on
reduced specificity of network correlations at lower sample sizes
(Berry and Widder, 2014).

Increasing HF strength negatively impacted the performance
of Spearman and Pearson correlations for network construction.
However, HF correction was able to maintain consistent
performance, and lower variability in performance, across the
full range of HF strengths tested. A recent comparison of
several microbial correlation network construction methods,
including CoNet (Faust and Raes, 2016), SparCC (Friedman and
Alm, 2012), SPEIC-EASI (Kurtz et al., 2015), and Spearman
correlations, also found that all methods tested exhibited reduced
precision on data with simulated HF (Röttjers and Faust, 2018).

Selection of appropriate methods for correlation network
analysis requires careful consideration of the advantages and
limitations of different approaches with respect to the dataset
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FIGURE 7 | Proportion of network correlations that are between ASVs/OTUs
with a shared habitat preference. Networks constructed with Pearson
correlations have the highest proportion of shared habitat preference
correlations while HF corrected networks have the lowest.

being analyzed. For instance, the method presented in this study
assumes monotonic correlations, and other correlation patterns
would not be correctly detected. The Maximal Information
Coefficient method has been studied to detect non-monotonic
correlations in microbial community analysis, but that method
does not address HF effects (Reshef et al., 2011; Weiss
et al., 2016). Compositionality of the data is another potential
concern. Moderate compositional effects can be reduced by
the CLR transform and Spearman correlations (Friedman and
Alm, 2012; Weiss et al., 2016), which are incorporated into
the HF correction analysis presented here. However, low
diversity, highly compositional data may require an approach
specifically designed to address that problem, such as the
SparCC program (Friedman and Alm, 2012). These types of
tradeoffs should be considered when selecting an appropriate
analysis method.

HF correction is most appropriate when HF is known or
suspected to have a significant impact based on preliminary
analyses, such as the habitat related differences revealed in the
PCoA plots in Figure 5. The algorithm presented here is limited
to correction for habitats defined in the analysis, and care must be
taken to identify the appropriate habitat groups ahead of analysis.
Additionally, different habitat groups should have similar sample
sizes. If sample sizes differ significantly, results could be skewed
to favor interactions associated with a particular habitat.

Besides direct mutualistic (or antagonistic) interactions
between microorganisms, other mechanisms can contribute

to positive (or negative) correlations once HF effects have
been corrected. For instance, if two microorganisms A and
B both individually have positive interactions with a third
microorganism C, then A and B will appear to have a positive
correlation with each other, even if they do not interact directly,
a situation referred to as conditional independence. Most
correlation network construction algorithms cannot differentiate
this from correlations due to direct interactions, although the
SPIEC-EASI method was developed to try to address this concern
in microbial networks (Kurtz et al., 2015). Similarly, it is also
possible that a correlation between microorganisms will be
due to environmental factors not accounted for in the HF
correction, such as the availability of a particular substrate used
by both microorganisms.

Understanding and accounting for HF effects is an important
part of conducting meaningful microbial correlation network
analyses of data from varying habitats. HF correction accounts
for those effects and allows for the construction of consensus
networks representing the underlying microbial correlations
from data spanning multiple related habitats.

MATERIALS AND METHODS

Simulated Data Generation
Data simulation was based on that described by Friedman
et al., with some modifications (Friedman and Alm, 2012).
Simulated data were generated for 50 ASVs, at a range of
HF strengths (0–10σ) and a range of sample sizes (6–60
samples), with half of the samples (3–30) belonging to each of
2 simulated habitats. To generate an initial set of correlations,
any pair of ASVs was given a 10% chance of being perfectly
correlated, with equal probabilities that correlations were positive
or negative. Based on those correlations, the nearest valid
covariance matrix was determined based on a standard deviation
of 0.1 using the cov_nearest function in the StatsModels Python
module. Additionally, each ASV was given a 10% chance of
exhibiting HF, with equal probabilities of positive or negative
correlation with habitat. Data were drawn from a lognormal
distribution with a standard deviation of 0.1. Fifty simulated
data sets were generated for each combination of HF strength
and sample size.

Maize Rhizosphere Experimental Data
Collection and Analysis
Experimental data from rhizosphere soil samples were from
two different maize accessions grown in three different soil
types as described above. Maize seeds were surface sterilized in
5% sodium hypochlorite for one minute, germinated in petri
dishes, and planted in five gallon pots containing one of the
three soils. Plants were grown in a greenhouse for 8 weeks
with automated drip irrigation and no fertilization. At the
end of the experiment, plants were harvested and rhizosphere
soil was collected as described by Barillot et al. (2013). DNA
was extracted with the MoBio PowerSoil extraction kit [MoBio
Laboratories Inc., Carlsbad, CA, United States] according to the
manufacturer’s instructions.
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16S-V4 amplicon sequencing was conducted at
the DOE Joint Genome Institute using the 515F
(GTGYCAGCMGCCGCGGTAA), 805R (GGACTACNVGGGT
WTCTAAT) primer set. Sequencing was performed on an
Illumina MySeq in 2 × 300 run mode. Sequencing data were
analyzed with the DADA2 package in R based on the big data
analysis pipeline with the following parameters: truncLen = (160,
120), maxEE = (2, 5), and truncQ = 2 (Callahan et al., 2016). The
resulting sequence count data were analyzed using the phyloseq
package in R (McMurdie and Holmes, 2013). Chloroplast and
mitochondrial sequences were removed and data were rarefied
to the minimum number of reads in all samples prior to
further analysis.

Network Construction
Networks were constructed with each of three different
approaches: Spearman correlations, Pearson correlations, and
our proposed HF correction algorithm. For HF correction
networks, rhizosphere microbial data were corrected based on
equation 1 and correlation were determined from corrected
data using Spearman correlations. For analysis of simulated
networks, both positive and negative correlations were included.
In order to select significant correlations to determine the
proportion of correct correlations, a significance cutoff of
p < 0.01 was applied. For analysis of experimental data,
only ASVs detected in at least 50% of the samples being
analyzed were included in the analysis. Experimental data were
first transformed with the centered log transform in order to
account for compositionality of the data. In addition to the
significance cutoff of p < 0.01. For the maize rhizosphere data,
a correlation strength cutoff of r > 0.75 was also applied. Only
positive correlations were included in the networks based on
experimental data.

Differential Abundance Analysis
An independent differential abundance analysis was conducted
to identify the habitat preference of individual ASVs/OTUs. This
analysis was conducted using DeSeq2 to compare ASV/OTU
abundances between pairs of soil types (Love et al., 2014).
P-values were adjusted to account for multiple comparisons
using the Benjamini and Hochberg correction. Adjusted p-values
below 0.05 were considered to indicate habitat preference for the
associated ASV/OTU.
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