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High temporal and spectral resolution of stimulated x-ray Raman signals with
stochastic free-electron-laser pulses

Stefano M. Cavaletto, Daniel Keefer, and Shaul Mukamel∗
Department of Chemistry and Department of Physics & Astronomy,

University of California, Irvine, CA 92697, USA
(Dated: January 7, 2021)

The chaotic nature of x-ray free-electron-laser pulses is a major bottleneck that has limited the
joint temporal and spectral resolution of spectroscopic measurements. We show how to use the
stochastic x-ray field statistics to overcome this difficulty by correlation signals averaged over in-
dependent pulse realizations. No control is required over the spectral phase of the pulse, enabling
immediate application with existing, noisy x-ray free-electron-laser pulses. The proposed stimulated
Raman technique provides the broad observation bandwidth and high time–frequency resolution
needed for the observation of elementary molecular events. A model is used to simulate chaotic free-
electron-laser pulses and calculate their correlation properties. The resulting joint temporal/spectral
resolution is exemplified for a molecular model system with time-dependent frequencies and for the
RNA base Uracil passing through a conical intersection. Ultrafast coherences, which represent a
direct signature of the nonadiabatic dynamics, are resolved. The detail and depth of physical in-
formation accessed by the proposed stochastic signal are virtually identical to those obtained by
phase-controlled pulses.

I. INTRODUCTION

Recent advances in the generation of sub-femtosecond
extreme-ultraviolet (XUV) and x-ray pulses are enabling
the control of electron dynamics on their natural time
scales [1–4]. This is essential for the direct manipulation
of the ensuing electronic and nuclear dynamics and for
the control of chemical reactions with light, with broad
applications to photochemistry and photobiology [5–7].

Free-electron lasers (FELs) provide intense pulses at
frequencies ranging from the XUV to the hard-x-ray do-
main [2] suitable for nonlinear x-ray spectroscopy [8].
While XUV seeded FELs offer stable coherent XUV
pulses [9] with the possibility of pulse shaping [10] and
control [11], soft- and hard-x-ray FELs based on the self-
amplified spontaneous emission (SASE) mechanism [12]
provide stochastic pulses with limited longitudinal co-
herence, and noisy spikes in their temporal and spec-
tral profiles. Stimulated x-ray Raman scattering, a fun-
damental building block of nonlinear spectroscopy [13],
was recently demonstrated using hard-x-ray FEL pulses
[14], but future multidimensional nonlinear x-ray spec-
troscopy protocols [15–17] require coherent and repro-
ducible pulses. Self- or laser-seeding methods have been
implemented to improve the coherence of hard-x-ray FEL
pulses [18]. Novel techniques have demonstrated high-
intensity few-femtosecond pulses [19] with reduced inten-
sity spikes [20], but with an underlying SASE structure
which renders them not reproducible from shot to shot.

Recently, transient redistribution of ultrafast elec-
tronic coherences in attosecond Raman signals (TRUE-
CARS) [21] was proposed as a suitable technique to
achieve the demanding time–frequency resolution nec-
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essary to detect ultrafast nonadiabatic molecular pro-
cesses, such as at conical intersections (CoIns) of elec-
tronic states [22, 23]. CoIns are ubiquitous in molecules,
playing an essential role in virtually all photochemical
processes. However, their direct experimental observa-
tion, i.e., via signals whose appearance can be exclu-
sively attributed to CoIns, is a challenging task due to
the requirements on joint temporal and spectral resolu-
tion. Several approaches have addressed this issue [24–
26]. In TRUECARS, as shown in Fig. 1(a), two coher-
ent x-ray pulses induce an off-resonant stimulated x-ray
Raman process between the valence electronic states in-
volved in the CoIn. By varying the pulses’ arrival time,
a time-resolved measurement of this signal allows direct,
background-free access to the nonadiabatic dynamics of
the molecular coherences. This differs from other ap-
proaches that possess additional contributions from the
populations [27, 28] or use strong fields [29, 30]. The
TRUECARS technique, however, assumes reproducible
coherent pulses with control over their carrier-envelope

Figure 1. Off-resonant stimulated x-ray Raman signal
(TRUECARS) between two molecular potential-energy sur-
faces via an off-resonant core state. (a) TRUECARS with
hybrid broadband (E2) and narrowband (E1) coherent x-ray
pulses (red), which requires control over their CEPs; and (b)
s-TRUECARS with one stochastic x-ray FEL pulse (E1, blue)
with no phase control.
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phases (CEPs). This hinders its application with exist-
ing x-ray technology.

Here, we show how the technique can be imple-
mented with stochastic x-ray FEL pulses. The pro-
posed stochastic (s-TRUECARS) technique, displayed in
Fig. 1(b), does not require control over the pulse phase.
By averaging over independent pulse realizations, s-
TRUECARS takes advantage of correlations between the
spectral components of the field, providing joint tempo-
ral and spectral resolutions comparable to TRUECARS
with phase-controlled pulses (c-TRUECARS). Correla-
tion techniques have been investigated in recent theo-
retical and experimental studies with stochastic optical
lasers [31, 32] and x-ray FEL pulses [33–37]. We use a
model of stochastic x-ray FEL pulses that describes their
amplitude and phase fluctuations. The s-TRUECARS
performance is illustrated for a model system with two
electronic states with time-dependent frequencies and
further applied to the RNA base Uracil undergoing a
CoIn. The methods presented here, based on correla-
tion functions of stochastic FEL fields, can be straight-
forwardly extended to other time-resolved nonlinear x-
ray signals, including multidimensional nonlinear spec-
troscopy.

The paper is structured as follows. In Sec. II, we in-
troduce the model of stochastic FEL pulses and calcu-
late the relevant multi-point field correlation functions.
These are the crucial quantities determining the average
properties of the signal. The properties of c-TRUECARS
implemented with coherent phase-controlled pulses are
presented in Sec. III and demonstrated for a model with
time-dependent frequencies. Section IV presents the s-
TRUECARS signal, illustrated for a time-dependent-
frequency model (Sec. IVB) and applied to Uracil
(Sec. IVC). Finally, in Sec. V, we discuss future exten-
sions of the methods used here to multidimensional non-
linear x-ray spectroscopies.

II. MODELING OF STOCHASTIC X-RAY
FREE-ELECTRON-LASER PULSES

SASE FEL pulses arise from the self-amplification of
the photons spontaneously emitted by an electron beam
in a linear accelerator [2]. The interaction between the
electron beam and the initially emitted photons creates
electron bunches, which emit intense bursts of in-phase
x rays. Due to the noisy nature of the spontaneously
emitted photons involved in the process, FEL pulses fea-
ture chaotic envelopes and a limited longitudinal coher-
ence. The temporal envelope of an FEL pulse consists of
a series of short spikes spanning the overall duration of
the pulse. Each spike has an average duration given by
the pulse coherence time. The spectrum of an FEL pulse
has a similarly spiky structure, with several peaks within
its bandwidth (see Fig. 2).

Early optical-laser experiments were also performed
with the chaotic pulses available at the time, and simula-

tion techniques were developed to model their properties
[38]. These methods have long been utilized to model
experiments at x-ray FELs [39–44]. Pfeifer et al. showed
that, by using a model starting from random spectral
phases, one can simulate chaotic pulses with the correct
statistical properties of SASE FEL pulses, including their
time and frequency spiky profiles and their energy dis-
tribution [40]. Below, we briefly outline the model and
present the key pulse properties, in particular the asso-
ciated two- and four-point correlation functions of the
field. These are then used in Sec. IV to study the s-
TRUECARS signal.

A. Stochastic model for pulse intensity and phase
fluctuations

The envelope of the stochastic pulse is represented by

E(t) = 2π f(t)u(t), (1)

with the stochastic term f(t) and the temporal gating
function u(t) determining the pulse spectral bandwidth
and the time duration, respectively. The pulse intensity
is given by |AE(t)|2/(8πα), where A is a prefactor ensur-
ing the correct peak intensity, and α is the fine-structure
constant. Atomic units are used throughout unless oth-
erwise stated.

The function

f(t) =

∫
dω

2π
g̃(ω) eiϕ(ω) e−iωt (2)

is obtained via the Fourier transform of the complex func-
tion f̃(ω) = g̃(ω) eiϕ(ω), with a broadband real envelope
g̃(ω) and a stochastic phase ϕ(ω). g̃(ω) sets the pulse
bandwidth, while the phase ϕ(ω) is obtained by interpo-
lating a set of independent random variables ϕk, corre-
sponding to a discrete grid of frequencies ωk = kΛ, where
Λ is the sampling frequency. Each ϕk is a uniformly dis-
tributed stochastic phase (UDSP) varying in the interval
[−a, a] with probability density function

P (ϕk) =


1

2a
, if −a ≤ ϕk ≤ a,

0, otherwise.
(3)

The temporal envelope f(t) features stochastic fluctu-
ations in its intensity and phase, with a long overall du-
ration given by 1/Λ. Multiplying f(t) by the temporal
gating function u(t), whose duration τ is much shorter
than 1/Λ but still significantly longer than the average
duration of the spikes in f(t), ensures that the complex
envelope E(t) in Eq. (1) has a finite duration τ [see, e.g.,
Fig. 2(a)]. As a result of the gating function u(t), the
spectral envelope of the gated pulse is given by

Ẽ(ω) =

∫
dt E(t) eiωt =

∫
dω′ f̃(ω′) ũ(ω − ω′)

≈ g̃(ω)

∫
dω′ eiϕ(ω

′) ũ(ω − ω′),
(4)
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with stochastic fluctuations both in its spectral intensity
and phase [see, e.g., Fig. 2(b)] in agreement with the
spiky spectral features of FEL pulses [2]. The convolu-
tion in Eq. (4) shows that ũ(ω) acts as a spectral gating
function over the rapid oscillations of eiϕ(ω). This has two
important consequences: first, Ẽ(ω) has intensity fluctu-
ations; second, its phase is not given by ϕ(ω). Both the
amplitude and the phase of Ẽ(ω) vary on the broader
frequency scale set by the width of ũ(ω).

We assume Gaussian envelopes

g̃(ω) = e−
ω2

2σ2 , (5)

u(t) =
1√
2π

e−
t2

2τ2 , (6)

with bandwidth σ, pulse duration τ , and Fourier trans-
forms

g(t) =

∫
dω

2π
e−

ω2

2σ2 e−iωt =
σ√
2π

e−
σ2t2

2 (7)

and

ũ(ω) =

∫
dt

1√
2π

e−
t2

2τ2 eiωt = τ e−
ω2τ2

2 , (8)

respectively. We require that Λ � 1/τ , in order to re-
produce the spikes in the frequency envelope of the pulse,
as observed experimentally. We set the additional condi-
tion 1/τ � σ, ensuring that the width of these spikes is
narrower than the overall pulse bandwidth.

The outcome of nonlinear spectroscopy experi-
ments with stochastic pulses depends on n-point
field correlation functions Fn(ω1, ω2, . . . , ωn) =

〈Ẽ1(ω1)Ẽ2(ω2) · · · Ẽn(ωn)〉, where 〈· · · 〉 denotes the
ensemble average over independent realizations. The
two- and four-point correlation functions of the field
Ẽ(ω) for our UDSP model [Eq. (4)] are given in
Eqs. (A6) and (A7) in Appendix A. These correlation
functions are the key quantities we will use in Sec. IV to
calculate the s-TRUECARS signal.

Machine drifts in the electron-bunch energy at FELs
cause a shot-to-shot jitter in the central frequency ωX

of the resulting pulse E(t) = E(t) e−iωXt, which can af-
fect the resolution of measurable absorption spectra [33].
As we show in Appendix B, including this energy jit-
ter in the stochastic-pulse envelope of Eq. (4) leads to a
shot-to-shot shift in the central frequency of the envelope
function g̃(ω) appearing in the two- and four-point corre-
lation functions of the field. In the following, we assume
broadband stochastic pulses with bandwidths larger than
the frequency jitter caused by machine drifts, such that
the shot-to-shot change in Eqs. (A6) and (A7) and in the
associated s-TRUECARS signal can be safely neglected.

The field measured by a detector with finite resolution
Q is given by an additional convolution between Ẽ(ω)
from Eq. (4) and the detector’s response function q̃Q(ω).

X-ray detectors planned for resonant inelastic x-ray scat-
tering (RIXS) experiments have a frequency resolution
ranging from 10 meV at hard-x-ray frequencies to 30 meV
for soft x rays. As long as Q is narrower than the width
1/τ of the gating function ũ(ω), the effect of the finite
detector resolution can be safely neglected. In our calcu-
lations, we assume pulses satisfying this condition.

B. Pulse properties

The spiky temporal and spectral profiles of stochastic
UDSP pulses are shown in Figs. 2, 3, and 4 for different
values of the parameter a. The ensemble-averaged tem-
poral and spectral intensity profiles can be calculated in
terms of F2(ω1, ω2) and are given by

〈|E(t)|2〉 =

∫
dω1

2π

∫
dω2

2π
F2(ω1, ω2) e−i(ω2−ω1)t

= 2π s2(a) |g(t)|2 +
[
1− s2(a)

]
Λ
√
π σ |u(t)|2

(9)
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Figure 2. Intensity profiles of a stochastic UDSP pulse with
a = π, Λ = 5meV, τ = 4.65 fs (1/τ = 0.14 eV), and
σ = 10 eV. The (a) temporal and (b) spectral intensity pro-
files are shown. The blue continuous curves display one re-
alization of the stochastic pulse from Eqs. (1) and (4). The
yellow continuous curves exhibit the mean profiles of |E(t)|2

and |Ẽ(ω)|2, obtained by averaging over 1,000 independent
realizations. The blue dashed curves show the average inten-
sities calculated from Eqs. (9) and (10).
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and

〈|Ẽ(ω)|2〉 = F2(ω, ω)

=
{

2π s2(a) +
[
1− s2(a)

]
Λ
√
πτ
}
|g̃(ω)|2,

(10)
with s(a) = sinc(a) = sin(a)/a.

In Fig. 2, we display stochastic UDSP pulses with
a = π. This case was shown to reproduce the statis-
tical properties of experimental SASE FEL pulses, i.e.,
their energy distribution and time and frequency spiky
profiles [40]. The temporal intensity profile of a single
pulse from Eq. (1) is shown by the blue continuous curve
in Fig. 2(a). Its duration τ is associated with the time
envelope u(t), with several short spikes of average dura-
tion determined by the inverse 1/σ of the pulse band-
width. The blue continuous curve in Fig. 2(b) represents
the spectral intensity of the same stochastic pulse from
Eq. (4). It has an overall width σ given by the frequency
envelope g̃(ω), with spikes of average width 1/τ owing
to the finite pulse duration. In both panels, the yellow
curves, obtained by averaging over independent realiza-
tions of the stochastic pulse, are in very good agreement
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Figure 3. Wigner spectrogram [Eq. (11)] for the same pulse
parameters as in Fig. 2. (a) Modulus of the Wigner spec-
trogram of a single stochastic pulse realization and (b) mean
modulus of the Wigner spectrogram averaged over 500 pulse
realizations.

with the mean temporal and spectral intensities [Eqs. (9)
and (10)], shown by the blue dashed curves. For a = π
and s(a) = 0, these reduce to 〈|E(t)|2〉 = Λ

√
π σ |u(t)|2

and 〈|Ẽ(ω)|2〉 = Λ
√
πτ |g̃(ω)|2, respectively, and are in-

dependently determined by the time and frequency en-
velopes |u(t)|2 and |g̃(ω)|2.

To illustrate the time–frequency pulse profiles of this
model, we examine the Wigner spectrogram of the pulse
envelope E(t)

W (t, ω) =

∫
dτE∗

(
t+

τ

2

)
E
(
t− τ

2

)
e−iωτ . (11)

Figure 3(a) displays the modulus |W (t, ω)| for a single
stochastic pulse, while the expectation value of |W (t, ω)|,
obtained by averaging over several independent realiza-
tions, is shown in Fig. 3(b). The temporal and spectral
widths of the pulse are determined by τ and σ, respec-
tively, and their product is larger than the Fourier un-
certainty minimum τσ > 1.

We next consider UDSP pulses with a < π. Figure 4
shows simulation results for a = 3. The temporal and
spectral profiles exhibit similar patterns to Fig. 2. How-
ever, a central peak now emerges in the temporal inten-
sity profile of the pulse, as apparent in Fig. 4(a). The
blue continuous curve shows a single stochastic pulse,
featuring a central peak surrounded by a noisy back-
ground. This central peak survives in the average tempo-
ral intensity of the pulse, depicted by the yellow contin-
uous curve, and provides a clearly defined central time.
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Figure 4. Intensity profiles of a stochastic UDSP pulse with
a = 3, Λ = 5meV, τ = 4.65 fs (1/τ = 0.14 eV), and σ =
5 eV. The (a) temporal and (b) spectral intensity profiles
are shown. The blue continuous, yellow continuous, and blue
dashed curves have the same meaning as in Fig. 2.
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This agrees with the average time intensity in Eq. (9)
for s(a) 6= 0: two contributions are present, respectively
proportional to |g(t)|2 and |u(t)|2 and both recognizable
in the blue dashed curve in Fig. 4(a). The central peak of
UDSP pulses with a < π is reminiscent of the properties
observed in phase-gate shaped optical pulses [45] used
for the control of resonant Raman signals of vibrational
states.

UDSP pulses with a < π have not been previously
used to model chaotic SASE FEL pulses. However, they
can be realized by pulse-shaping capabilities at FELs
[10], which can generate stochastic FEL pulses with en-
gineered amplitudes and phases. In addition, the cor-
relation properties of UDSP pulses with a < π can be
achieved via an alternative stochastic-pulse scheme pre-
sented in Appendix C. In this case, the stochastic pulse
in Eq. (C1) is given by the sum of a short broadband
pulse and a stochastic UDSP FEL pulse with a = π,
without requiring any shaping or control of the pulse
phase. The associated two- and four-point correlation
functions [Eqs. (C2) and (C3)] exhibit a structure anal-
ogous to UDSP pulses with a < π [Eqs. (A6) and (A7)],
which translates into identical s-TRUECARS signals for
these two stochastic-pulse models. This will be further
discussed in Sec. IV

III. TRUECARS WITH HYBRID
BROAD-/NARROWBAND COHERENT PULSES

Stimulated Raman spectroscopy has been widely em-
ployed with near-infrared and optical fields to monitor
vibrational dynamics of molecules. Impulsive stimu-
lated Raman spectroscopy uses off-resonant femtosecond
pulses to induce a Raman process between two vibra-
tional states [46, 47]. Augmenting the broadband pulse
with an additional picosecond pulse was shown to im-
prove the joint time–frequency resolution [48–50].

Intense coherent HHG- and FEL-based XUV and x-ray
pulses can induce stimulated Raman excitations for the
study of electronic valence-state dynamics [8]. Resonant
stimulated Raman scattering has been recently demon-
strated in neon with a hard-x-ray FEL pulse [14]. In-
spired by stimulated Raman spectroscopy of vibrational
states with a femtosecond and a picosecond optical pulse,
the TRUECARS signal was proposed to monitor nonadi-
abatic molecular processes and the associated fast elec-
tronic dynamics via the combination of an attosecond
and a femtosecond pulse [21, 51]. In contrast to conven-
tional stimulated Raman spectroscopy, which is a quartic
Raman signal in which each pulse interacts twice with the
system, TRUECARS is linear in both pulse amplitudes,
as shown in Fig. 5. The signal has no contributions from
level populations and can thus directly access the evolu-
tion of electronic coherences in a background-free man-
ner, rendering it a direct signature of CoIns. The TRUE-
CARS signal implemented with two coherent pulses (c-
TRUECARS) requires control over their CEPs. This

limits its implementation with existing intense stochastic
FEL pulses.

In the following, we summarize the key features of the
c-TRUECARS signal, showing how two pulses of differ-
ent bandwidth can provide independent control over the
observation bandwidth of the technique and its time–
frequency resolution. This sets the stage for Sec. IV,
where we show how the same goals can be reached by a
single stochastic pulse.

A. The coherent TRUECARS signal

The TRUECARS technique involves an off-resonant
stimulated x-ray Raman process. The pulse E1 is respon-
sible for the excitation of the system, while E2 stimulates
the emission of the photon. E1 and E2 may represent
two distinct pulses, or two components of a single broad-
band pulse. The associated loop diagram [52] is shown
in Fig. 5.

The off-resonant stimulated Raman process is de-
scribed in the rotating-wave approximation by the follow-
ing effective light–matter interaction Hamiltonian [50],

Ĥint = −α̂(Ê†2 Ê1 + Ê†1 Ê2). (12)

Here, α̂ is the electronic polarizability operator, while

Êi =
∑
ji

i

√
2πωji
V

â(ωji) (13)

and Ê†i , i ∈ {1, 2}, are the positive- and negative-
frequency components of the electric-field operator, re-
spectively. In Eq. (13), the index ji runs over the modes
of the ith pulse, V is the quantization volume, and â†(ω)
and â(ω) are the creation and annihilation operators of
a photon with frequency ω, respectively. The effective
light–matter interaction Hamiltonian in Eq. (12) and
the polarizability operator appearing therein can be ex-
pressed in terms of molecular charge- and current-density
operators. This is shown in Appendix D, where we de-
rive the TRUECARS signal starting from the minimal-
coupling Hamiltonian of Eq. (D1), which fully describes

T

0

t

i

j

j

j

ε1

a

a

ε*2

Figure 5. Loop diagram of the off-resonant stimulated Raman
signal TRUECARS. The red arrows represent the fields E1,
exciting the system, and E∗

2 , stimulating the emission of the
signal photon.
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the radiation–molecule interaction without expansion in
multipoles.

The signal S(ωs) is defined in terms of the frequency-
resolved probe-pulse intensity after passing through the
sample. It is given by the time-integrated rate of change
of the number of photons of frequency ωs in the E2 pulse
[53],

S(ωs) dωs = −
∫

dt

〈
dN̂2(ωs)

dt

〉
, (14)

where N̂2(ωs) = â†(ωs)â(ωs) is the number operator of a
photon with the detected signal frequency ωs. This is a
heterodyne-detected signal, and the subscript 2 implies
that only modes of pulse E2 are measured. For an opti-
cally thin medium, Nmol S(ωs) dωs represents the change
in the number of x-ray photons detected in the differential
frequency interval [ωs, ωs + dωs] owing to the interaction
of E2 with Nmol molecules. A similar approach, based
on the time-integrated rate of energy exchange between
light and matter, was used to model attosecond transient-
absorption spectroscopy in the presence of strong near-
infrared fields [54].

The signal is calculated by starting with the Heisen-
berg equations of motion for the photon number oper-
ator, via the commutator [Ĥint, N̂2(ωs)] and the inter-
action Hamiltonian in Eq. (12). The expectation values
over the fields’ degrees of freedom are calculated assum-
ing coherent states, thus replacing the field operators Êi
with classical electric fields

Ei(t) = Ei(t− T ) e−iωXi(t−T ). (15)

Ei(t) are complex envelope functions, the pulses
have carrier frequencies ωXi, and are both centered
at the time delay T . We further introduce the
frequency-domain envelope Ẽi(ω) =

∫
dt Ei(t) eiωt, with

Ei(t) =
∫

dω Ẽi(ω) e−iωt/(2π). Measuring the frequency-
dispersed spectrum S(ωs) for different time delays T re-
sults in the frequency- and time-resolved signal

S(ωs, T )

= 2 Im

{
Ẽ∗2 (ωs − ωX2)

∫
dt E1(t− T ) ei(ωs−ωX1)(t−T ) 〈α̂(t)〉

}
= 2 Im

{
Ẽ∗2 (ωs − ωX2)

∫
dω

2π
Ẽ1(ωs − ωX1 − ω) e−iωT 〈 ˆ̃α(ω)〉

}
,

(16)
with the expectation values of the polarizability operator

〈α̂(t)〉 = Tr{α̂ρ̂(t)} =
∑
i,j

αjiρij(t),

〈 ˆ̃α(ω)〉 = Tr{α̂ ˆ̃ρ(ω)} =
∑
i,j

αjiρ̃ij(ω),
(17)

given in terms of the valence-space elements of the den-
sity matrix of the system ρ̂(t) or its Fourier transform
ˆ̃ρ(ω).

The signal in Eq. (16) depends on the dynamics of
the system via 〈α̂(t)〉. For sufficiently low pulse intensi-
ties, at the level of perturbation theory shown in Fig. 5,
the TRUECARS signal gives direct access to the free,
unperturbed evolution of the molecular electronic and
nuclear wavepacket. This is the regime we will focus
on in Secs. III B and IV, to illustrate how the TRUE-
CARS signal, be it implemented with phase-controlled or
stochastic pulses, offers a good joint temporal and spec-
tral resolution—a key requirement for the spectroscopy
of ultrafast molecular dynamics.

By coupling the system to the continuum, the x-ray
probe pulse can cause photoionization and ensuing pop-
ulation losses. The influence of photoionization on 〈α̂(t)〉
can reduce the strength of the signal and erode its tem-
poral and spectral resolution. X-ray fluxes should thus
be properly optimized, so that these competing decay
losses will not compromise the resolution provided by
the TRUECARS technique. Changes in 〈α̂(t)〉 due to
x-ray photoionization or additional higher-order strong-
field interactions and their influence on the TRUECARS
signal are discussed in Appendix E.

The strength of the TRUECARS signal is determined
by the intensity of the x-ray probe pulses in Eq. (16),
the density and size of the molecular sample in the x-
ray focal volume, and the amplitude of the polarizability
matrix elements αij . Both the signal in Eq. (16) and the
pulse spectral intensity are proportional to the second
power of the peak field strength. The relevant signal-
to-background ratio, defined as the ratio between the
number of absorbed and incident probe-pulse photons,
is thus independent of the pulse peak intensity. The
maximum pulse intensity can thus be reduced to limit x-
ray photoionization without compromising the signal-to-
background ratio. At the same time, the signal strength
and its ratio to the background pulse intensity can be
maximized via a suitable choice of the molecule and by
optimizing its density in the experiment. Furthermore,
the molecular polarizability can be significantly increased
by using x-ray pulses near-resonant to the core-excited
states in the molecule, as we discuss in Sec. IVC (see,
e.g., Fig. 13). For such regime, we predict in Appendix F
a signal-to-background ratio of ∼ 1%. We recognize
that detecting such signal-to-background ratio may be
challenging, especially when using stochastic FEL pulses,
but should still be within the capabilities of present and
future x-ray detectors. We also notice that stimulated
resonant x-ray Raman scattering, the building block of
TRUECARS in its resonant x-ray implementation, was
already successfully demonstrated in atomic neon [14] in
the presence of photoionization channels. Very recently,
electronic population transfer following impulsive stimu-
lated resonant x-ray Raman scattering was also observed
in NO molecules [55] thanks to the availability of novel
attosecond x-ray FEL pulses.
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Figure 6. Time-dependent-frequency model. (a,b) Evolu-
tion of the time-dependent frequency ωba(t) [Eq. (18), yellow
curves], along with the (a) real and (b) imaginary parts of
the corresponding coherence ρab(t) [Eq. (20), blue curves]. (c)
Stokes- and (d) anti-Stokes-type contributions to the TRUE-
CARS signal between states (blue) a and (yellow) b. The red
arrows represent the off-resonant stimulated Raman process.

B. The c-TRUECARS signal for a model system
with a time-dependent frequency

To illustrate the joint temporal and spectral resolu-
tion of c-TRUECARS, we will employ a model system
consisting of two electronic states with a time-dependent
frequency switching between two values [49]. This can
represent, e.g., photoisomerization.

We assume a two-level model, with states a and b and
a time-dependent frequency

ωba(t) = ω0 + ∆ω
tanh[(t− t0)/∆t]

2
, (18)

with central frequency ω0 = 2 eV, central time t0 = 50 fs,
and with a frequency variation of ∆ω = 2 eV within a
time interval of ∆t = 10 fs, as shown in Fig. 6. The
population dynamics are modeled by

ρii(t) = ρii,0 e−γit, (19)

with ρaa,0 = ρbb,0 = 1/3 and γ1 = γ2 = 1/(200 fs), and
the evolution of the coherences ρab(t) and ρba(t) = ρ∗ab(t)
is given by

ρab(t) =
√
ρaa(t) ρbb(t) ei

∫ t
−∞ dt′ ωba(t

′). (20)

We shall recast the c-TRUECARS signal in terms of
the Raman frequency

ωR = ωs − ωX1 (21)

and the difference of the x-ray carrier frequencies

ωd = ωX1 − ωX2 (22)

as

S(ωR, ωd, T )

= 2 Im

{
Ẽ∗2 (ωR + ωd)

∫
dω

2π
Ẽ1(ωR − ω) e−iωT 〈 ˆ̃α(ω)〉

}
.

(23)
The Ẽ2(ω) bandwidth determines the spectral detec-
tion window, whereas the width of Ẽ1(ω) sets the time–
frequency resolution of the technique. This can be better
understood by recasting the signal in the time domain:

S(ωR, ωd, T )

= 2 Im

{
Ẽ∗2 (ωR + ωd)

∫
dt E1(t− T ) eiωR(t−T ) 〈α̂(t)〉

}
.

(24)
E1(t) acts as a temporal gate function centered at time
T , thereby selecting the dynamics of the system within
a time window given by the pulse duration and centered
around T . The signal is determined by the Fourier trans-
form of this gated function, so that the time duration, i.e.,
frequency width, of the coherent pulse E1(t) determines
at the same time the temporal and spectral resolutions
of the signal.

For a single pulse E1(t) = E2(t) = E(t), the signal is
quadratic in E(t) and, thus, does not require control over
its CEP. However, it does not provide adequate time–
frequency resolution. To elucidate why hybrid broad- and
narrowband pulses are necessary for the TRUECARS
technique of Ref. [21], Fig. 7 shows the c-TRUECARS
signal obtained by a single coherent Gaussian pulse

Ẽ(ω) = e−
ω2

2σ2 (25)

with carrier frequency ωX and for different bandwidths σ.
This could be realized experimentally at FEL facilities,
e.g., via a split-and-delay module [56, 57]. For a narrow-
band pulse [Fig. 7(a,d)], the observation bandwidth is too
narrow to reproduce the change of the frequency from
left to right. Increasing the width, from Fig. 7(b,e) to
Fig. 7(c,f), offers a broader observation bandwidth, but
this is accompanied by a notable decrease in frequency
resolution. Shorter pulses provide a narrower time win-
dow of the gate function, with improved temporal but
significantly deteriorated spectral resolution.



8

T
(f

s
)

(a)
0

20

40

60

80

100

(b) (c)

(d)

-4 -2 0 2 4

0

20

40

60

80

100

(e)

-4 -2 0 2 4

ωR (eV)

(f)

-4 -2 0 2 4

-125

-100

-75

-50

-25

0

25

50

75

100

125

S
(ω

R
,

T
)
(a

rb
.

u
.)

Figure 7. c-TRUECARS signal with a single coherent pulse. The signal [Eq. (23)] is exhibited for a pulse spectrum Ẽ(ω) of
bandwidth (a,d) σ = 0.5 eV (1/σ = 1.3 fs), (b,e) σ = 2 eV (1/σ = 0.33 fs), and (c,f) σ = 3.5 eV (1/σ = 0.19 fs). The signal is
shown (a–c) as a function of the time delay T and the Raman frequency ωR, and (d–f) for selected time delays. The orange
dashed line in (a–c) and the orange dots in (d–f) display the time-dependent frequency ωba(t) in Eq. (18).

Two coherent pulses are thus needed to better control
the observation bandwidth and the time–frequency res-
olution. The arrival time of the pulses is given by their
identical time delay T . We further set a vanishing CEP
difference (ϕ2 − ϕ1) = 0 between the two pulses. To en-
sure that a broad frequency range can be accessed, we
use a broadband Ẽ2(ω). The c-TRUECARS signal thus
only weakly depends on ωd, as long as this lies within the
bandwidth σ2 of the pulse. By scanning the Raman fre-
quency ωR, the signal exhibits the appearance of Raman
resonances, with a time–frequency resolution determined
by the width of Ẽ1(ω). This is exemplified in Fig. 8 for
two Gaussian pulses

Ẽi(ω) = e
− ω2

2σ2
i , (26)

i ∈ {1, 2}, with a broadband pulse Ẽ2(ω) and a narrow-
band pulse Ẽ1(ω).

The c-TRUECARS signal in Figs. 8(a–c) shows con-
tributions at positive and negative Raman frequencies,
centered at +/− the local frequency ωba(T ) of the Ra-
man resonance. Stokes- and anti-Stokes-type processes,
shown in Fig. 6(c) and 6(d), respectively, simultaneously
contribute to both branches of the signal, leading to ab-
sorption or emission of a photon depending on the phase
of 〈α̂(T )〉. A Stokes-type process leads to absorption at
ωR > 0 and emission at ωR < 0, while emission at ωR > 0

and absorption at ωR < 0 are induced by an anti-Stokes
process. The oscillatory variation of the signal with T ,
which reveals a time-dependent redistribution of energy
from emission to absorption, reflects the molecular po-
larizability 〈α̂(T )〉 encountered by the pulses at different
time delays.

For the time-dependent frequency to be imprinted in
the signal, the gate function E1(t) must be sufficiently
short compared to the variation time scale of ωba(t).
However, E1(t) must be also long enough to include a
sufficient number of oscillations of the system at the fre-
quency ωba(t) itself, thereby providing frequency resolu-
tion. Figures 8(a,d) show c-TRUECARS for a long nar-
rowband pulse E1(t). While the signal provides a good
frequency resolution in the regions in which ωba(T ) is
constant, time–frequency resolutions are both lost when
the transition frequency is time dependent. The signal
results from the average of all molecular Raman frequen-
cies contributing within the long duration of E1(t), and
the local frequency ωba(T ) cannot be accessed. This
can be understood by considering the limiting case of a
continuous-wave field, Ẽ1(ω) = 2πδ(ω), where the signal
reduces to

S(ωR, ωd, T ) = 2 Im
{
Ẽ∗2 (ωR + ωd) e−iωRT 〈 ˆ̃α(ωR)〉

}
,

(27)
with no temporal information accessed via T .
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Figure 8. c-TRUECARS signal with two coherent phase-controlled pulses. The signal [Eq. (23)] is exhibited for a broadband
pulse Ẽ2(ω) of width σ2 = 10 eV (1/σ2 = 66 as) and a narrowband pulse Ẽ1(ω) of width (a,d) σ1 = 50meV (1/σ1 = 13 fs), (b,e)
σ1 = 0.2 eV (1/σ1 = 3.3 fs), and (c,f) σ1 = 0.7 eV (1/σ1 = 0.94 fs). The signal is shown (a–c) as a function of the time delay T
and the Raman frequency ωR, and (d–f) for selected time delays. The orange dashed line in (a–c) and the orange dots in (d–f)
display the time-dependent frequency ωba(t) in Eq. (18). The carrier frequencies of the pulses must be such that |ωd| < σ2.
Here, we set ωd = 0. Good temporal and spectral resolutions are shown.

The c-TRUECARS signal is shown in Figs. 8(c,f) for
a very short pulse E1(t). As already pointed out while
discussing Fig. 7, the very good time resolution achieved
in this case is accompanied by a significant erosion of
the frequency resolution. The pulse is short compared
to the local oscillating period 2π/ωba(T ) of the molecule,
with a consequent broadening of the Raman peaks in the
signal. In the limiting case in which Ẽ1(ω) = 1 (a δ-like
excitation in time domain), the signal

S(ωR, ωd, T ) = 2 Im
{
Ẽ∗2 (ωR + ωd) 〈α̂(T )〉

}
(28)

can monitor the time evolution of the system, but with
no frequency information. We notice that 〈α̂(T )〉 is in
general a real quantity, and the signal will vanish for
such very broadband pulses, if they both have the same
CEP.

A trade-off between the two molecular time scales is
thus necessary in order to extract the evolution of ωba(t)
from the c-TRUECARS signal with optimal joint time–
frequency resolution. This case is depicted in Figs. 8(b,e).

The populations ρii(t) do not carry a dynamical phase.
For any bandwidth of Ẽ1(ω), they do not give rise to a
real term in Eq. (23) and do not contribute to the sig-
nal. c-TRUECARS can thus directly access the emer-
gence and evolution of the molecular coherences ρij(t) in

a background-free manner—a crucial requirement for the
unambiguous observation of CoIns, as will be shown in
Sec. IVC.

IV. TRUECARS WITH A STOCHASTIC X-RAY
PULSE

The duration and bandwidth of a coherent pulse are
linked by Fourier uncertainty. Therefore, a large obser-
vation bandwidth and a controllable time–frequency res-
olution cannot be achieved by a single coherent pulse, as
shown in Fig. 7. Two pulses with a controlled CEP are
needed for the implementation of c-TRUECARS. Varia-
tions of the pulse CEPs will lead to changes in the signal,
which average out to zero. This has hindered the imple-
mentation of the c-TRUECARS technique with currently
available stochastic FEL pulses.

When implemented with a single SASE FEL pulse, the
TRUECARS signal itself [Eq. (16)] is a stochastic pro-
cess. However, since each signal is uniquely related to
the particular pulse producing it, valuable spectroscopic
information can be retrieved by exploiting the correla-
tions between the spectral components of the stochastic
pulse [31–33, 35, 36]. In the following, we will investigate
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the s-TRUECARS signal defined by the correlation be-
tween the stimulated Raman signal S(ωs2, T ), induced by
a given stochastic pulse E(t), and the spectral intensity
|Ẽ(ωs1 − ωX)|2 of that same pulse. The s-TRUECARS
signal, obtained by averaging this correlation function
over independent realizations of the stochastic process,
provides time–frequency resolution over a broad band-
width, thus enabling the observation of fast molecular
dynamics, such as at CoIns, with current x-ray FEL
pulses. The s-TRUECARS signal shares the advantages
of c-TRUECARS, as it enables background-free access to
the evolution of the coherences in the system. However,
it does not require any control over the pulse spectral
phase.

A. The s-TRUECARS correlation function

The s-TRUECARS technique exploits the stimulated
off-resonant Raman scattering of a stochastic pulse off
the system. The signal is given by Eq. (16) where
E1(t) = E2(t) = E(t) is the envelope of the stochastic
pulse and ωX1 = ωX2 = ωX its carrier frequency. Infor-
mation with time and frequency resolution is extracted
by correlating each signal with the pulse producing it,
and then averaging over independent realizations of the
stochastic pulse.

We thus introduce the covariance signal [31–33, 35]
given by the correlation function between the pulse spec-
tral intensity at frequency ωs1 and the signal at a different
frequency ωs2:

C(ωs1, ωs2, T ) = 〈|Ẽ(ωs1 − ωX)|2 S(ωs2, T )〉
− 〈|Ẽ(ωs1 − ωX)|2〉〈S(ωs2, T )〉.

(29)

Here, 〈· · · 〉 denotes the average over independent mea-
surements. By using Eq. (16), the correlation function
expressed in terms of the frequency differences

ω′si = ωsi − ωX (30)

reduces to

C(ω′s1, ω
′
s2, T ) = 2 Im

{∫
dω

2π
G(ω′s1, ω

′
s2, ω) e−iωT 〈 ˆ̃α(ω)〉

}
,

(31)
with

G(ω′s1, ω
′
s2, ω) =F4(ω′s1, ω

′
s1, ω

′
s2, ω

′
s2 − ω)

− F2(ω′s1, ω
′
s1)F2(ω′s2, ω

′
s2 − ω)

(32)

defined in terms of the two- and four-point correlation
functions of the field Ẽ(ω). The signals and the pulse
spectral intensities are correlated at frequencies ωs2 and
ωs1, with the frequency difference (ωs2−ωs1) here playing
the role of the Raman frequency—in c-TRUECARS it
was (ωs − ωX1). The frequency ωs1 thus provides the
reference necessary to reveal the Raman resonances in
the molecule and the evolution of their time-dependent
frequencies by scanning ωs2.

B. The s-TRUECARS signal for the
time-dependent-frequency model

We first consider a stochastic FEL pulse based on the
UDSP model with a = π. We calculate G(ω′s1, ω

′
s2, ω)

based on Eqs. (A6) and (A7) with s(π) = 0, so that the
correlation function in Eq. (31) reduces to

C(ω′s1, ω
′
s2, T ) = 2Λ2πτ2 Im

{
|g̃(ω′s1)|2 g̃∗(ω′s2) e−

(ω′s2−ω
′
s1)

2τ2

4

∫
dω

2π
g̃(ω′s2 − ω) e−

(ω′s2−ω
′
s1−ω)

2τ2

4 e−iωT 〈 ˆ̃α(ω)〉
}

= 2Λ2πτ2 Im

{∣∣∣g̃(ωm −
ωR

2

)∣∣∣2 g̃∗(ωm +
ωR

2

)
e−

ω2
Rτ

2

4

∫
dω

2π
g̃
(
ωm +

ωR

2
− ω

)
e−

(ωR−ω)2τ2

4 e−iωT 〈 ˆ̃α(ω)〉
}
,

(33)

where we have introduced the Raman frequency

ωR = ω′s2 − ω′s1 = ωs2 − ωs1 (34)

and the mean detected signal frequency

ωm =
ω′s2 + ω′s1

2
=
ωs2 + ωs1

2
− ωX. (35)

The correlation function displays the same structure
as the c-TRUECARS signal implemented with a single
pulse. This can be more clearly seen by considering
the limit of an extremely broadband frequency envelope,

g̃(ω)→ 1, for which the correlation function reads

C(ωR, ωm, T )

= 2Λ2πτ2 Im

{
e−

ω2
Rτ

2

4

∫
dω

2π
e−

(ωR−ω)2τ2

4 e−iωT 〈 ˆ̃α(ω)〉
}
.

(36)
As apparent in Eq. (36), in spite of the broadband fre-
quency envelope g̃(ω), the observation bandwidth of the
correlation function is given by the Fourier transform
ũ(ωR/

√
2) = τ e−ω

2
Rτ

2/4 of the time envelope u(t). Since
the same function also determines the time–frequency
resolution of the technique, this leads to the same limi-
tations shown in Fig. 7.

The stochastic UDSP pulse considered above, with
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a relatively long time envelope u(t) and with a = π,
does not possess a well defined central time T . This
is apparent in Fig. 2(a): the pulse features a series of
peaks randomly distributed within its duration τ , result-
ing in a large uncertainty over the position of its central
time. However, for the UDSP model with a < π and
for the composite stochastic pulse of Eq. (C1), a central
peak emerges in the pulse temporal envelope [see, e.g.,
Fig. 4(a)]. This is crucial to simultaneously utilize the

large bandwidth and the long duration of the stochastic
pulse, and thus for the implementation of s-TRUECARS,
as shown in the following.

For stochastic UDSP pulses with a < π and, thus,
s(a) 6= 0, the function G(ω′s1, ω

′
s2, ω) can be calculated

via Eqs. (A6) and (A7) to first (leading) order in (Λτ),
and the associated correlation function C(ωR, ω

′
m, T ), in

terms of the above introduced Raman and mean frequen-
cies, can be recast in the form

C(ωR, ωm, T ) = 4πs2(a)
[
1 + s(a) c(a)− 2s2(a)

]
Λ Im

{∣∣∣g̃(ωm −
ωR

2

)∣∣∣2 g̃∗(ωm +
ωR

2

)
×
∫

dω

2π
g̃
(
ωm +

ωR

2
− ω

)√
πτ

(
e−

ω2
R2τ

2

4 + e−
(ωR−ω)2τ2

4

)
e−iωT 〈 ˆ̃α(ω)〉

}
,

(37)

where s(a) = sinc(a) = sin(a)/a and c(a) = cos(a). The properties of the correlation function and the origin of the
time–frequency resolution provided by s-TRUECARS can be better understood by writing the integral in Eq. (37) in
time domain,

C(ωR, ωm, T ) = 4πs2(a)
[
1 + s(a) c(a)− 2s2(a)

]
Λ Im

{∣∣∣g̃(ωm −
ωR

2

)∣∣∣2 g̃∗(ωm +
ωR

2

)
×
∫

dt

[
g(t− T ) ei(ωm+

ωR
2 )(t−T ) e−

ω2
Rτ

2

4 +

∫
dt′ g(t′) ei(ωm+

ωR
2 )t′ e−

(t−t′−T )2

τ2 eiωR(t−t′−T )

]
〈α̂(t)〉

}
,

(38)

where g(t) is the Fourier transform of the broadband fre-
quency envelope.

For broadband pulses, the correlation function is vir-
tually independent of the mean frequency ωm as long as
this lies within the large pulse bandwidth σ. By scan-
ning the Raman frequency ωR, the correlation function
reveals the appearance of Raman resonances in the sys-
tem. This is shown in Fig. 9 for a model with time-
dependent frequencies and for different pulse durations
τ . s-TRUECARS provides the same combination of large
observation bandwidth and optimal joint time–frequency
resolution enabled by c-TRUECARS, without requiring
any phase control of the pulse.

Clear analogies can be drawn between the coherent
and stochastic techniques. In the s-TRUECARS corre-
lation function of Eq. (37), the frequency envelope g̃(ω)
sets the observation bandwidth. This is analogous to the
role played by Ẽ2(ω) for c-TRUECARS. The overall fre-
quency envelope of the stochastic pulse should therefore
be broad to ensure a wide observation range. The time–
frequency resolution of the technique is then determined
by the integrand in Eq. (37). To better understand this
property, it is useful to focus on the limiting case of an
extremely broadband pulse, g̃(ω)→ 1, where the correla-
tion function only depends on the Raman frequency ωR

and reduces to

C(ωR, ωm, T ) −−−−−→
g̃(ω)→1

C(ωR, T )

∝
√
πτ e−

ω2
Rτ

2

4 Im

{∫
dω

2π
e−iωT 〈 ˆ̃α(ω)〉

}
+ Im

{∫
dω

2π

√
πτ e−

(ωR−ω)2τ2

4 e−iωT 〈 ˆ̃α(ω)〉
}
.

(39)

The first addend in Eq. (39) is proportional to
Im {〈α̂(T )〉} and vanishes exactly in the limit of a very
broadband envelope g̃(ω) since 〈α̂(T )〉 is real. The main
contribution to the correlation function thus comes from
the second term given by

Im

{∫
dω

2π

√
πτ e−

(ωR−ω)2τ2

4 e−iωT 〈 ˆ̃α(ω)〉
}

= Im

{∫
dt e−

(t−T )2

τ2 eiωR(t−T ) 〈α̂(t)〉
}
.

(40)

The overall time envelope |u(t)|2 = e−t
2/τ2

/(2π) of the
stochastic pulse acts as a gate centered at t = T , se-
lecting the dynamics of the system only within a time
window τ centered around T . The correlation function
results from the Fourier transform of this gated function,
with τ controlling the time–frequency resolution. This
is illustrated in Fig. 9 for different stochastic-pulse du-
rations. The role played by the time envelope |u(t)|2 in
s-TRUECARS is thus completely analogous to the role
of E1(t) in c-TRUECARS.
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Figure 9. s-TRUECARS signal for stochastic x-ray UDSP pulses with a < π. The correlation function in Eq. (37) is exhibited
for σ = 10 eV and (a,d) τ = 19 fs, (b,e) τ = 4.7 fs, and (c,f) τ = 1.3 fs. The correlation function is shown (a–c) as a function
of the time delay T and the Raman frequency ωR, and (d–f) for selected time delays. The orange dashed line in (a–c) and
the orange dots in (d–f) display the time-dependent frequency ωba(t) in Eq. (18). The mean frequency ωm must be such that
|ωm| < σ. Here, we set ωm = 0.

The s-TRUECARS signal in Eq. (37) was calculated
for the stochastic pulses of Eqs. (1) and (4), based on the
UDSP model with a < π. Such pulses provide a broad-
band frequency envelope g̃(ω), a long time envelope u(t),
and a precisely defined central time T . All these features
are required to achieve large observation widths and a
controllable time–frequency resolution. The stochastic
pulse presented in Eq. (C1), consisting of a short peaked
pulse and a long broadband stochastic UDSP FEL pulse
with a = π, provides the same favourable combination of
parameters. As shown in Appendix C, the corresponding
correlation function, given in Eq. (C4), exhibits exactly
the same structure as Eq. (37). This composite stochastic
x-ray pulse can thus identically enable large observation
widths and time–frequency resolutions, without requiring
any shaping or control of the pulse phase.

C. s-TRUECARS signal of a conical intersection in
the RNA base Uracil

The passage through a CoIn of electronic states is a
particularly intriguing example of nonadiabatic molec-
ular dynamics originating from the strong coupling of
electronic and nuclear degrees of freedom [22, 23]. CoIns
are electronic degenerate regions of two potential en-

ergy surfaces, where electronic and nuclear frequencies
become comparable and the Born–Oppenheimer approx-
imation breaks down [58]. In spite of being ubiquitous
in molecules, CoIns could not be observed directly in an
experiment. This is due to the fact that the passage of
a molecular wave packet (WP) through CoIns simulta-
neously involves ultrafast dynamics and very small fre-
quencies, with challenging requirements on the time and
frequency resolutions necessary for their observation.

We demonstrate the s-TRUECARS signal for the pho-
torelaxation of Uracil through a CoIn seam. Uracil is an
RNA nucleobase exhibiting ultrafast (femtosecond) re-
laxation after optical excitation to the bright S2 state.
Due to its biological relevance, interesting photophysics,
convenient size and chemical handleability, it is a fre-
quent subject of experimental and theoretical studies,
and a promising candidate for pioneering x-ray FEL ex-
periments. An effective Hamiltonian necessary for per-
forming exact nuclear quantum dynamics according to
the time-dependent Schrödinger equation has been de-
scribed in Refs. [59, 60]. It contains two nuclear degrees
of freedom and the ground and first two electronically
excited states, with a CoIn seam between the S2 and
S1 states. Using a 20 fs full-width at half maximum
(FWHM) optical pump in resonance with the bright S0
to S2 transition, there is a free evolution period of the
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nuclear WP in the S2 state. Starting at 100 fs, tails of
the WP constantly reach the S2/S1 CoIn region, where
it bifurcates and relaxes to the S1 state. For a more de-
tailed description and visualization of this process, see
Refs. [59, 60]. The time-dependent material quantity
that is probed by the TRUECARS signal is the vibronic
coherence emerging at the CoIn due to the WP bifurca-
tion. Figure 10(a) displays the magnitude of this coher-
ence. It is initially zero, since only the S2 state is bright,
and becomes finite at around 1000 fs, where the WP
reaches the CoIn and the nonadiabatic passage starts.
After 250 fs, the coherence magnitude constantly de-
creases, since major parts of the WP have already evolved
away from the CoIn in the S1 state.

The c-TRUECARS signal [Eq. (23)] using a broadband
(500 as) Ẽ∗2 (ω) and a narrowband (2 fs) E1(t) x-ray pulse
to probe this process in Uracil was described in Ref. [60].
The signal was demonstrated to reveal deep insight into
the CoIn passage by directly mapping the path of the
WP coherence around the CoIn. A major difficulty in
potential experimental realizations is that precise phase
control of the two probe pulses is required to measure the
signal, which is not feasible yet.

Here, we report the s-TRUECARS signal according
to Eqs. (39) and (40) using a single stochastic probe
pulse rather than two phase-controlled pulses. As demon-
strated in Fig. 10, the signal can be measured with almost
equivalent detail, and the same physical effects can be re-
solved. Figure 10(c) displays the signal using the phase-
controlled hybrid broad-/narrowband probing scheme.
Originally, this pulse configuration was chosen to pro-
vide the optimal joint time–frequency resolution which
is needed to monitor the ultrafast coherences during the
CoIn passage. The s-TRUECARS signal using a single
stochastic x-ray pulse with random phase, as generated
from an FEL, is shown in Fig. 10(d). It exhibits the same
characteristic oscillations between Stokes and anti-Stokes
contributions. To corroborate this strong similarity, hor-
izontal and vertical cuts through the signal are displayed
in Fig. 11. A similar behavior is observed, with some
small differences occurring, e.g., in the vertical cut at
290 fs, where the c-TRUECARS signal exhibits a small-
amplitude oscillation period, while the s-TRUECARS is
very close to zero. Note that Fig. 10 shows the isotropic
signal, i.e. there is no molecular orientation necessary in
the experiment.

Additional physical information about the molecule
can be accessed with the TRUECARS signal. The os-
cillations between blue and red in the frequency-resolved
signal are due to the S2/S1 coherence propagating with a
dynamical phase owing to the energy difference in the vi-
bronic states [21, 60]. This is also shown in Fig. 11(a) in
the horizontal signal slices at constant Raman frequency
ωR. The energy splitting between the contributing vi-
bronic states is encoded in the frequency of this oscil-
lation. To visualize the dynamical evolution of this fre-
quency, the signal trace S(t), be it the c-TRUECARS
signal or the s-TRUECARS correlation function, is con-

Figure 10. s-TRUECARS and c-TRUECARS of the Uracil
CoIn. The effective Hamiltonian that models the nuclear WP
dynamics during relaxation from the S2 to the S1 state has
been described in Ref. [60]. The polarizability [Eq. (D7)] and
the isotropic signal, averaged over the field polarization di-
rection, are exhibited for an off-resonant x-ray pulse of fre-
quency ωX = 354 eV. (a) Magnitude of the coherence be-
tween the S2 and S1 state. After an initial free evolution
time in the S2 state, the nuclear WP reaches the CoIn, and
a coherence ρ12 emerges due to the bifurcation in the nona-
diabatic passage. (b) Expectation value of the polarizability
operator resulting from the dynamics in atomic units. (c) c-
TRUECARS signal according to Eq. (23) using a broadband
(attosecond) and a narrowband (femtosecond) x-ray probing
field, requiring phase control. (d) s-TRUECARS signal ac-
cording to Eqs. (39) and (40), using a single x-ray probe field
with τ = 0.93 fs (1/τ = 0.71 eV) and random phase.

volved with a Gaussian gating function Egate(t) with 3 fs
FWHM, scanning the trace at each time delay Tcoh, sim-
ilar to a frequency-resolved optical-gating (FROG) mea-
surement [61]:

IFROG(ωcoh, Tcoh) =

∣∣∣∣∫ ∞
−∞

dt S(t)Egate(t− Tcoh) e−iωcoht

∣∣∣∣2 .
(41)

This yields a spectrogram of the signal trace S(t) which
reveals the energy splitting of the coherence ωcoh at each
delay. The spectrograms for both the phase-controlled
and the stochastic signal are shown in Fig. 12. Both the
spectrograms in Figs. 12(a) and 12(b), as well as the rep-
resentative slices at indicated time delays in Figs. 12(c)
and 12(d), are very similar. The coherence phase evolves
from higher values of 0.2 eV at 100 fs to lower values at
250 fs, mapping the evolution of the WP coherence on
the electronic potential energy surface around the CoIn.
Strikingly, this information is accessible in equivalent de-
tail using stochastic pulses.

The magnitude of the molecular polarizability deter-
mines the strength of the s-TRUECARS signal, and thus
its ability to survive loss processes. In Fig. 13, we dis-
play the polarizability for Uracil in the nuclear space
of the two reactive coordinates in the effective Hamilto-
nian [60]. These were calculated according to Eq. (D7),
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Figure 11. Horizontal and vertical slices through the signals
shown in Fig. 10. (a) Temporal trace at constant Raman
frequency ωR corresponding to the maximum signal inten-
sity. The blue line corresponds to the c-TRUECARS signal
in Fig. 10(c) at ωR = 0.7 eV, while the orange line is the s-
TRUECARS signal in Fig. 10(d) at ωR = 1.0 eV. The traces
are normalized with respect to the maximum signal intensity.
(b,c) Frequency slices at constant times for (b) c-TRUECARS
and (c) s-TRUECARS. The traces are normalized with re-
spect to the maximum signal intensity and show similar fea-
tures. Small differences are observed, e.g., at 290 fs, where the
c-TRUECARS signal exhibits the characteristic gain and loss
contributions, while the s-TRUECARS signal is very close to
zero, or at 330 and 400 fs.

and are dependent on the probe pulse carrier frequency
ωX. Three cases are shown, with ωX = 245 eV, below
the Carbon resonance, ωX = 281 eV, 10 eV below the
Carbon resonance, and ωX = 327 eV, between the Car-
bon and the Nitrogen resonance. When close to a bound
state resonance, the polarizability becomes significantly
stronger, in this case by around three orders of magni-
tude. The signal is visible in all three cases, with the
same qualitative features, but is also enhanced by three
orders of magnitude for ωX closer to the Carbon reso-
nance. This shows that even within the parameter space
determined by a given molecule, the polarizability, and
thus the strength of the s-TRUECARS signal compared
to other competing processes, can be tuned heavily. Also
in other molecules, with different, weaker or stronger po-
larizabilities, the x-ray pulse frequency could be used to
control the s-TRUECARS signal strength.

V. CONCLUSIONS AND OUTLOOK

The stochastic properties of x-ray FEL pulses are com-
monly assumed to have a detrimental effect on the joint
temporal and spectral resolution of spectroscopic signals
compared to coherent pulses. Intense phase-controlled
pulses which can be reproduced from shot to shot are
not yet available at hard-x-ray FELs based on the SASE

Figure 12. FROG spectrograms of the signal traces shown
in Fig. 11(a) according to Eq. (41). When the nuclear WP
reaches the CoIn at 100 fs, the S2/S1 coherence emerges at
0.2 eV, from where it evolves to lower energies at 250 fs. The
spectrogram of (a) the c-TRUECARS signal trace and (b)
the s-TRUECARS trace both reveal this information. Rep-
resentative vertical slices of the (c) c-TRUECARS and (d)
s-TRUECARS spectrograms at indicated times corroborate
this similarity.

mechanism. We have shown that, by taking advantage
of the correlations of the field, stochastic FEL pulses can
provide the same temporal and spectral resolution as
phase-controlled pulses. Like its coherent counterpart,
s-TRUECARS offers a probe of the evolution of molec-
ular coherences free from the background owing to the
populations. The signal arises from the interaction with
a single stochastic pulse, without requiring any phase
control, and information is retrieved by averaging over
many independent repetitions. Each signal originates
from specific spectral components of the field, and time-
and frequency-resolved spectroscopic information is ex-
tracted by exploiting the field correlations.

In s-TRUECARS, the duration of the time enve-
lope determines the time–frequency resolution, while the
broad frequency envelope of the x-ray FEL pulse offers
a large observation bandwidth and a well defined cen-
tral time T . UDSP pulses with a < π were shown to
provide this combination of properties, as well as the
stochastic pulses discussed in Appendix C, consisting of
the sum of a short peaked pulse and a background broad-
band noise. The latter scheme could be experimentally
realized with attosecond pulses recently demonstrated at
FELs [3, 4]. No control over the phase of the pulse is nec-
essary, and shot-to-shot variations of the FEL pulse do
not hinder the application of the technique. In contrast,
UDSP pulses with a = π, similar to models employed
in Refs. [33, 38, 40], were shown to lead to the same
limitations in joint spectral and temporal resolutions as
c-TRUECARS implemented with a single pulse.

Different stochastic-field models and statistics, as en-
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(a)

(b)

Figure 13. Molecular polarizabilities of Uracil and s-
TRUECARS signal at three different probe wavelengths for
z-polarized x-ray pulses. (a) Polarizability from Eq. (D7)
in atomic units, in the two-dimensional nuclear space of the
Uracil Hamiltonian [59, 60]. q1 and q2 are the nuclear degrees
of freedom, with q1 leading from the Franck–Condon point to
the CoIn, and q2 leading to a local S2 minimum. The indi-
cated probe frequency enters Eq. (D7) as ωX, with the middle
panel at 281 eV, 10 eV below the bound state Carbon reso-
nance, and the left and right panels significantly below and
above this resonance, respectively. (b) s-TRUECARS signal
associated with these polarizabilities. The same qualitative
features are exhibited, with the signal in the middle panel
being three orders of magnitude stronger than the other two.

abled by recent advances in the shaping of, e.g., XUV
FEL pulses [10], could be considered. In the UDSP
model, a finite correlation frequency emerges via the gate
function ũ(ω). In Appendix G, we present a different
stochastic-phase model with Gaussian statistics, which
can be calculated exactly by the second-order cumulant
expansion.

The s-TRUECARS signal of Eq. (29) is defined by
the correlation function between the frequency-resolved
signal and the spectral intensity of the incoming pulse.
Alternatively, one could correlate the spectral intensity
of the transmitted, outgoing x-ray pulse at different
frequencies. For optically thin samples, the signal in
Eq. (14) is given by the difference between the outgoing
and the incoming spectral intensities. Correlating the
spectra measured after transmission through the sample
will then yield a function corresponding to the correla-
tion function in Eq. (29) added to the autocorrelation of
the incoming x-ray pulse. While this could render the
analysis and extraction of spectrally and temporally re-
solved information more challenging, it would simplify
the experimental implementation of the technique.

The present approach can be extended to other non-
linear signals, with any number of interactions with the
stochastic field. TRUECARS implemented with stochas-
tic x-ray pulses resonantly tuned to the core-state transi-
tions in the molecule is a straightforward extension of
the off-resonant case described here. A recent inves-
tigation in Thiophenol molecules with phase-controlled
pulses showed that resonant TRUECARS offers tempo-
rally and spectrally resolved information about the dy-
namics of the molecular wavepacket [62], albeit with
background contributions from the populations. Our
approach, based on the correlations of stochastic fields
and exemplified in Sec. IV for off-resonant TRUECARS,
could be straightforwardly applied to resonant x-ray
pulses as well, with a significant increase in the molecular
polarizability and the associated signal strength. More
in general, the methods implemented here for the cal-
culation of the two- and four-point correlation functions
can be applied to derive higher-order n-point correlation
functions for the prediction of signals involving n stochas-
tic fields. Such signals could involve correlations obtained
by post-processing of the data, as was the case here, but
could also represent the direct outcome of other measure-
ments. This will allow the extension of virtually any mul-
tidimensional spectroscopy protocols from the optical to
the hard-x-ray regime at present-day FEL facilities, with
promising applications to the study and control of ultra-
fast electronic dynamics in complex molecular systems
with light and, beyond that, in proteins or semiconduc-
tors.
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Appendix A: Two- and four-point correlation
functions of stochastic UDSP pulses

In this Appendix, we derive the two- and four-point
correlation functions of the pulses in Eq. (4). Since the
chaotic nature of the pulses stems from the stochastic
phase ϕ(ω), we start by considering the two- and four-
point correlation functions of eiϕ(ω), which can be cal-
culated exactly if ϕ(x) and ϕ(y), x 6= y, are indepen-
dent random variables. For the UDSP model, as given in
Eq. (3), the two- and four-point correlation functions of
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eiϕ(ω) read

F̃2(x, y)
.
= 〈e−iϕ(x) eiϕ(y)〉
= s(a)2 + Λ

[
1− s2(a)

]
δ(x− y)

(A1)

and

F̃4(x, y, x′, y′)
.
= 〈e−iϕ(x) eiϕ(y) e−iϕ(x

′) eiϕ(y
′)〉

= s4(a) + Λs2(a)
{[

1− s2(a)
] (
δ(x− y) + δ(x− y′) + δ(y − x′) + δ(x′ − y′)

)
− s(a) [s(a)− c(a)]

(
δ(x− x′) + δ(y − y′)

)}
+ Λ2

{[
1− s2(a)

]2 (
δ(x− y)δ(x′ − y′) + δ(x− y′)δ(y − x′)

)
− s2(a)

[
1− 2s2(a) + s(a) c(a)

] (
δ(x− y) + δ(x′ − y′)

)(
δ(x− y′) + δ(y − x′)

)
+ s2(a) [s(a)− c(a)]2 δ(x− x′)δ(y − y′)

}
− Λ3

{
1− s2(a)

[
4− c2(a)

]
− c(a) s3(a)− 6s4(a)

}
δ(x− y)δ(x− x′)δ(x− y′),

(A2)

respectively, where s(a) = sinc(a) and c(a) = cos(a), and
where we have substituted Kronecker deltas, which apply
to discrete independent phases ϕi with Dirac delta func-
tions, modeling uncorrelated continuous phases ϕ(ω):

δij −−−−→
Λτ�1

Λδ(ω − ω′). (A3)

This is a valid substitution for Λ � 1/τ , as required
in order to reproduce the spiky frequency envelopes of
experimental FEL pulses. The two- and four-point cor-
relation functions in Eqs. (A1) and (A2) consist of a sum
of products of delta functions, with different contribu-
tions reflecting whether any of the two (four) frequencies
in F̃2(x, y) [F̃4(x, y, x′, y′)] are identical. The coefficients
in front of each addend were calculated via the proba-
bility density function P (ϕ) in Eq. (3). An alternative,
approximate approach, based on the second-order cumu-
lant expansion and exact only for Gaussian statistics, is
presented in Appendix G.

The two- and four-point correlation functions of Ẽ(ω)
are given by

F2(ω1, ω2) = 〈Ẽ∗(ω1)Ẽ(ω2)〉

=

∫
dx

∫
dy g̃∗(x) g̃(y) F̃2(x, y) ũ(ω1 − x) ũ(ω2 − y)

(A4)
and

F4(ω1, ω2, ω3, ω4) = 〈Ẽ∗(ω1)Ẽ(ω2)Ẽ∗(ω3)Ẽ(ω4)〉

=

∫
dx

∫
dy

∫
dx′
∫

dy′ g̃∗(x) g̃(y) g̃∗(x′) g̃(y′)

× F̃4(x, y, x′, y′) ũ(ω1 − x) ũ(ω2 − y)

× ũ(ω3 − x′) ũ(ω4 − y′),
(A5)

with F̃2(x, y) and F̃4(x, y, x′, y′) from Eqs. (A1) and (A2),
respectively. By assuming a broadband envelope function
g̃(ω), the two- and four-point correlation functions read

F2(ω1, ω2) ≈ g̃∗(ω1) g̃(ω2)

{
2π s2(a) +

[
1− s2(a)

]
Λ
√
πτ e−

(ω1−ω2)
2τ2

4

}
(A6)

and

F4(ω1, ω2, ω3, ω4)

≈ g̃∗(ω1) g̃(ω2) g̃∗(ω3) g̃(ω4)

{
(2π)2 s4(a) + 2π s2(a)Λ

√
πτ

[[
1− s2(a)

](
e−

(ω1−ω2)
2τ2

4 + e−
(ω1−ω4)

2τ2

4

+ e−
(ω2−ω3)

2τ2

4 + e−
(ω3−ω4)

2τ2

4

)
− s(a)[s(a)− c(a)]

(
e−

(ω1−ω3)
2τ2

4 + e−
(ω2−ω4)

2τ2

4

)]
+
[
1− s2(a)

]2
Λ2πτ2

(
e−

(ω1−ω2)
2τ2

4 e−
(ω3−ω4)

2τ2

4 + e−
(ω1−ω4)

2τ2

4 e−
(ω2−ω3)

2τ2

4

)
+ · · ·

}
.

(A7)

Appendix B: Energy-jitter effects

To account for shot-to-shot variations in the pulse cen-
tral frequency ωX due to machine drifts at FELs, a small

frequency shift ε, varying from shot to shot, can be in-
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cluded in the envelope of each stochastic pulse,

Eε(t) = 2π f(t)u(t) e−iεt, (B1)

with the same definitions of Sec. II A and the resulting
electric field given by Eq. (15). This is associated with
the spectral envelope

Ẽε(ω) =

∫
dt Eε(t) eiωt

=

∫
dω′ g̃(ω′ − ε) eiϕ(ω

′−ε) ũ(ω − ω′)
(B2)

and the two- and four-point correlation functions

F2,ε(ω1, ω2) = 〈Ẽ∗ε (ω1)Ẽε(ω2)〉

=

∫
dx

∫
dy g̃∗(x− ε) g̃(y − ε) F̃2(x, y) ũ(ω1 − x) ũ(ω2 − y)

(B3)

and

F4,ε(ω1, ω2, ω3, ω4) = 〈Ẽ∗ε (ω1)Ẽε(ω2)Ẽ∗ε (ω3)Ẽε(ω4)〉

=

∫
dx

∫
dy

∫
dx′
∫

dy′ g̃∗(x− ε) g̃(y − ε) g̃∗(x′ − ε) g̃(y′ − ε)

× F̃4(x, y, x′, y′) ũ(ω1 − x) ũ(ω2 − y)

× ũ(ω3 − x′) ũ(ω4 − y′),
(B4)

where F̃2(x, y) and F̃4(x, y, x′, y′) are independent of the
shift ε, according to their definitions in Eqs. (A1) and
(A2). For broadband stochastic pulses, whose band-
widths are larger than the shift caused by machine drifts,
this effect will induce a minor modulation in the strength
of the signal, and will not modify the spectral properties
of the s-TRUECARS signal discussed in Sec. IV.

Appendix C: Alternative stochastic-pulse scheme

Here, we put forward an alternative stochastic-pulse
scheme resulting from the sum of a short broadband pulse
Ẽc(ω) =

√
2πs g̃(ω) and a stochastic UDSP FEL pulse

Ẽπ-UDSP(ω) with a = π,

Ẽ(ω) = Ẽc(ω) + Ẽπ-UDSP(ω)

=
√

2πs g̃(ω) +
√

1− s2 g̃(ω)

∫
dω′ eiϕπ(ω

′) ũ(ω − ω′),

(C1)
where ϕπ(ω) is a UDSP function varying in [−π, π]. Note
that neither shaping is required, not control over the ab-
solute or relative phases of Ẽc(ω) and Ẽπ-UDSP(ω), and
the pulse could thus be obtained at x-ray FELs.

The two- and four-point correlation functions of the
stochastic pulse Ẽ(ω) in Eq. (C1), given by

F2(ω1, ω2)
.
= 〈Ẽ∗(ω1)Ẽ(ω2)〉 = g̃∗(ω1) g̃(ω2)

(
2π s2 +

(
1− s2

)
Λ
√
πτ e−

(ω1−ω2)
2τ2

4

)
(C2)

and

F4(ω1, ω2, ω3, ω4)
.
= 〈Ẽ∗(ω1)Ẽ(ω2)Ẽ∗(ω3)Ẽ(ω4)〉

≈ g̃∗(ω1) g̃(ω2) g̃∗(ω3) g̃(ω4)

[
(2π)2 s4 + 2π s2 (1− s2)Λ

√
πτ

(
e−

(ω1−ω2)
2τ2

4 + e−
(ω1−ω4)

2τ2

4 + e−
(ω2−ω3)

2τ2

4

+ e−
(ω3−ω4)

2τ2

4

)
+
(
1− s2

)2
Λ2πτ2

(
e−

(ω1−ω2)
2τ2

4 e−
(ω3−ω4)

2τ2

4 + e−
(ω1−ω4)

2τ2

4 e−
(ω2−ω3)

2τ2

4

)
+ · · ·

]
,

(C3)

and those of a UDSP pulse with a < π, shown in
Eqs. (A6) and (A7), are closely related. For s = s(a), the
two-point correlation functions (A6) and (C2) are iden-
tical, and the four-point correlation functions (A7) and
(C3) display an analogous dependence upon the Gaussian

envelope ũ(ω/
√

2) = τ e−ω
2τ2/4.

These analogous two- and four-point correlation func-
tions lead to identical s-TRUECARS signals. By in-
serting the pulse two- and four-point correlation func-
tions (C2) and (C3) into Eq. (31), the correlation func-
tion to first order in (Λτ) reads
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C(ωR, ωm, T ) = 4πs2
(
1− s2

)
Λ Im

{∣∣∣g̃(ωm −
ωR

2

)∣∣∣2 g̃∗(ωm +
ωR

2

)
×
∫

dω

2π
g̃
(
ωm +

ωR

2
− ω

)√
πτ

(
e−

ω2
R2τ

2

4 + e−
(ωR−ω)2τ2

4

)
e−iωT 〈 ˆ̃α(ω)〉

}
,

(C4)

with the same structure as the s-TRUECARS signal in
Eq. (37) for UDSP pulses with a < π.

Appendix D: Derivation of effective polarizability
and TRUECARS signal via the minimal-coupling

light–matter interaction Hamiltonian

The minimal-coupling Hamiltonian provides the com-
plete formalism to describe the interaction between light
and matter by avoiding the multipolar expansion. In the
rotating-wave approximation, this is given by

Ĥint = −
∫

d3r

(
ĵ(+)(r)Â(r) + ĵ(−)(r)Â†(r)

− 1

2
σ̂(r)Â†(r)Â(r)

)
.

(D1)

Here, the matter is described in terms of the charge-
density operator σ̂(r) and the positive- and negative-
frequency parts of the current-density operator ĵ(r) =

ĵ(+)(r) + ĵ(−)(r). The radiation field is given by the
vector-potential operator

Â(r) =
∑
j

√
2π

V ωj
â(ωj) eikj ·r (D2)

via the radiation modes kj . In the above equations, Â(r)

and ĵ(r) are the projections of the associated vectors
along a fixed field-polarization direction.

With steps analogous to those used in the derivation of
Eq. (16), the signal is obtained via Heisenberg equations
of motion for the photon number operator, assuming also
here that the x-ray radiation is in a coherent state such
that the vector-potential operator Â(r) can be replaced
by the classical field

A(r, t) = A(t− T ) eikX·r e−iωX(t−T ), (D3)

with the complex envelope functions A(t), wavevec-
tor kX, and frequency-domain envelope Ã(ω) =∫

dt A(t) eiωt. The frequency-dispersed spectrum S(ωs)

as a function of the pulse arrival time T is then given by

S(ωs, T )

= − 2 Im

{
Ã∗(ωs − ωX)

∫
dt A(t− T ) ei(ωs−ωX)(t−T )

×
〈[∫

d3r

∫
d3r′

∑
c

ĵ(−)(r, t)|c〉〈c|ĵ(+)(r′, t)

ωX − ωc + iγc
e−ikX·(r−r′)

+
1

2

∫
d3r σ̂(r, t)

]〉}
.

(D4)
The sum in c runs over all possible high-energy excited
states which are coupled to the molecular vibronic states
by the x-ray pulse, and can thus include off-resonant
bound core-excited states and continuum states. By sub-
stituting

E(t) = iωXA(t) (D5)

and defining the effective polarizability operator

α̂(t)

= −
[∫

d3r

∫
d3r′

∑
c

ĵ(−)(r, t)|c〉〈c|ĵ(+)(r′, t)

ωX − ωc + iγc
e−ikX·(r−r′)

+
1

2

∫
d3r σ̂(r, t)

]
1

ω2
X

,

(D6)
Eq. (16) is recovered.

The polarizability operator employed in Sec. IVC for
Uracil was calculated in Ref. [60] from ab-initio theory
in the dipole approximation,

αij =
∑
c

(
〈i|µ̂|c〉〈c|µ̂|j〉
ωcj − ωX

+
〈i|µ̂|c〉〈c|µ̂|j〉
ωci + ωX

)
, (D7)

where µ̂ is the component of the dipole-moment oper-
ator along the field polarization direction, and the sec-
ond term in Eq. (D7) includes contributions beyond the
rotating-wave approximation. The sum in c includes
forty C, twenty N, and twenty O core-excited states.
Coupling to the continuum was not included directly in
the calculation of 〈α̂(t)〉. For off-resonant x-ray pulses,
however, this direct pathway through continuum inter-
mediate states was shown to induce population transfer
[63]. Including the coupling to the continuum could thus
contribute to the effective polarizability 〈α̂(t)〉 between
the vibronic states in the molecule, whose evolution is
probed by the TRUECARS signal. This would not alter
the definition of the TRUECARS signal in Eq. (16), but
only the explicit form of 〈α̂(t)〉 therein. Nondipole effects,
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not included in Eq. (D7), have been investigated for res-
onant and off-resonant x-ray spectroscopy [64–66], and
were recently shown to affect molecular photoionization
[67]. New simulations in Uracil based on the minimal-
coupling interaction Hamiltonian may modify the details
of the spectra in Figs. 10–13, but would not alter the ap-
plicability of s-TRUECARS with stochastic FEL pulses.

Appendix E: Influence of x-ray photoionization on
the TRUECARS signal

The TRUECARS signal in Eq. (16) provides access
to the molecular dynamics via the polarizability 〈α̂(t)〉.
In the most general case, this is obtained by solving the
time-dependent Schrödinger equation for the molecule in-
teracting with the x-ray probe fields. In particular, reso-
nant coupling to the continuum can lead to photoioniza-
tion and population losses at a rate

Γij(t) =
1

2
(σX,i + σX,j) I(t), (E1)

where I(t) = |AE(t)|2/(8παωX) is the x-ray pulse flux
and σX,i = σi(ωX) are the photoionization cross sections
evaluated at the pulse frequency ωX.

As a population loss channel, x-ray photoionization
does not modify the definition of the TRUECARS signal
in Eq. (16). However, it can modulate the free evolution
of the molecular polarizability by an exponentially decay-
ing factor, centered around T and with time-dependent
decay rates given by Γij(t − T ). Including the coupling
to the continuum as a photoionization loss channel was
shown to be important in recent studies of XUV stim-
ulated Raman adiabatic passage via autoionizing states
[68]. An exponential decay of 〈α̂(t)〉 will cause a decrease
in its amplitude and thus a reduction in the strength of
the TRUECARS signal. Furthermore, such exponential
decay can act as an additional temporal gate function in
the Fourier transform of Eq. (16). The rate of decay in-
duced by photoionization needs to be small compared to
the transition frequency ωba(t) of the system, to ensure
that a sufficient number of oscillations are captured by
the signal within the time window determined by x-ray
photoionization. The x-ray pulse flux I(t) should thus
be optimized, such that the decay rates in Eq. (E1) do
not compromise the frequency resolution provided by the
TRUECARS technique.

Far from the strong-field regime, and especially for off-
resonant x-ray pulses, additional interactions with the
x-ray radiation beyond those included in Fig. 5 can be
safely neglected. For strong, resonant x-ray fields, how-
ever, well beyond the range of intensities of interest here,
additional interactions with the probe pulses may induce
Rabi oscillations in the populations of the system [33],
which would be reflected in the spectral features of the
signal.

Appendix F: Estimation of the signal-to-background
ratio

The signal-to-background ratio can be estimated
by comparing the number of absorbed photons
Nmol S(ωs) dωs to the number of probe-pulse photons
Afoc Ĩ(ωs)/ωX2 dωs in the differential interval dωs cen-
tered on ωs. Here, Afoc is the focal area and

Ĩ(ωs) =
1

8πα

|Ẽ2(ωs − ωX2)|2

2π
(F1)

the pulse spectral intensity, with the fine-structure con-
stant α. With the signal defined in Eq. (16), the signal-
to-background ratio is given by

R(ωs, T ) = 32π2αnmolLωX2

× Im

{∫
dω

2π

Ẽ1(ωs − ωX1 − ω)

Ẽ2(ωs − ωX2)
e−iωT 〈 ˆ̃α(ω)〉

}
,

(F2)
with the molecular density nmol and the propagation
length L. In the above equation, we considered the
general c-TRUECARS setup requiring two pulses E1(t)
and E2(t). In s-TRUECARS, the two pulses coincide.

For an estimation of the signal-to-background ratio, we
approximate it to R ≈ 32π2αnmolLωX2〈α̂(T )〉, where we
have assumed that E1(t) and E2(t) have the same peak
intensity (as for s-TRUECARS) and neglected their spec-
tral details. Figure 10 shows that 〈α̂(T )〉 ∼ 10−7 a.u.
when ωX = 354 eV. However, a two-order-of-magnitude
increase in the value of the polarizability can be ob-
tained by approaching the Carbon resonance, as shown
in Fig. 13. We thus assume 〈α̂(T )〉 ∼ 10−5 a.u. and
ωX2 ∼ 300 eV. For realistic values of the molecular den-
sity nmol = 1.6× 1019 cm−3 [14] and a short propagation
length of L = 1 mm, we estimate a signal-to-background
ratio of R ∼ 1%.

Appendix G: Multi-point field correlation functions
for Gaussian phase fluctuations

In this Appendix, we calculate the two- and four-point
correlation functions of the stochastic pulse in Eqs. (1)
and (4) assuming a stochastic phase ϕ(ω) with Gaussian
statistics. In this case, 〈ϕ(ω)〉 and 〈ϕ(ω)ϕ(ω′)〉 fully de-
termine the higher momenta of the stochastic process.

The stochastic nature of the pulse in Eqs. (1) and (4)
follows from the phase ϕ(ω). We thus start by consider-
ing the two- and four-point correlation functions of eiϕ(ω),
defined as

F̃2(ω1, ω2)
.
= 〈e−iϕ(ω1) eiϕ(ω2)〉 (G1)

and

F̃4(ω1, ω2, ω3, ω4)
.
= 〈e−iϕ(ω1) eiϕ(ω2) e−iϕ(ω3) eiϕ(ω4)〉,

(G2)
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respectively. Since F̃2(ω1, ω2) = F̃4(ω1, ω2, ω3, ω3) for
any ω3, we derive the four-point correlation function and
obtain F̃2(ω1, ω2) as a particular case.
F̃4(ω1, ω2, ω3, ω4) is calculated via the second-order cu-

mulant expansion [69], which is exact for Gaussian statis-
tics and is based on the ansatz

F̃λ,4(ω1, ω2, ω3, ω4) = exp

( ∞∑
n=1

λnGn(ω1, ω2, ω3, ω4)

)
.

(G3)
Here, we defined

F̃λ,4(ω1, ω2, ω3, ω4)

.
=

〈
exp

(
−iλ

[∫ ω1

ω0

dω ϕ̇(ω)−
∫ ω2

ω0

dω ϕ̇(ω)

+

∫ ω3

ω0

dω ϕ̇(ω)−
∫ ω4

ω0

dω ϕ̇(ω)

])〉
,

(G4)

with the first derivative ϕ̇(ω) of the stochastic phase,
while the functions Gn(ω1, ω2, ω3, ω4) are determined via
a second-order expansion in λ of both sides in Eq. (G3).
The right-hand side of Eq. (G3) reads

exp

( ∞∑
n=1

λnGn(ω1, ω2, ω3, ω4)

)
= 1 + λG1(ω1, ω2, ω3, ω4)

+ λ2
[
G2(ω1, ω2, ω3, ω4) +

1

2
G1(ω1, ω2, ω3, ω4)

]
+ . . .

(G5)
The expansion of the left-hand side of Eq. (G3) gives

F̃λ,4(ω1, ω2, ω3, ω4)

= 1− iλ
[
〈ϕ(ω1)〉 − 〈ϕ(ω2)〉+ 〈ϕ(ω3)〉 − 〈ϕ(ω4)〉

]
− λ2

2

{
h(ω1, ω1) + h(ω2, ω2) + h(ω3, ω3) + h(ω4, ω4)

− 2
[
h(ω1, ω2)− h(ω1, ω3) + h(ω1, ω4)

+ h(ω2, ω3)− h(ω2, ω4) + h(ω3, ω4)
]}

+ . . . ,

(G6)
where we have defined

h(ωa, ωb) =

∫ ωa

ω0

dω

∫ ωb

ω0

dω′〈ϕ̇(ω)ϕ̇(ω′)〉. (G7)

We assume that the expectation value of the phase van-
ishes for any frequency ω

〈ϕ(ω)〉 = 0 (G8)

and define the functions

p(ωa, ωb) =

∫ max(ωa,ωb)

min(ωa,ωb)

dω

∫ max(ωa,ωb)

min(ωa,ωb)

dω′ 〈ϕ̇(ω)ϕ̇(ω′)〉

(G9)
and

h̃(ωa, ωb) =

∫ min(ωa,ωb)

ω0

dω

∫ max(ωa,ωb)

min(ωa,ωb)

dω′ 〈ϕ̇(ω)ϕ̇(ω′)〉,

(G10)

so that
h[max(ωa, ωb),max(ωa, ωb)]

=h[min(ωa, ωb),min(ωa, ωb)] + 2h̃(ωa, ωb) + p(ωa, ωb)
(G11)

and thus

h(ωa, ωb)
.
= h[min(ωa, ωb),min(ωa, ωb)] + h̃(ωa, ωb)

=
1

2

[
h(ωa, ωa) + h(ωb, ωb)− p(ωa, ωb)

]
.

(G12)
With the above identities, Eq. (G6) reduces to

F̃λ,4(ω1, ω2, ω3, ω4)

= 1− λ2

2

[
p(ω1, ω2)− p(ω1, ω3) + p(ω1, ω4)

+ p(ω2, ω3)− p(ω2, ω4) + p(ω3, ω4)
]

+ . . . ,

(G13)

and a comparison of Eqs. (G13) and (G5) shows that

G1(ω1, ω2, ω3, ω4) = 0 (G14)

and
G2(ω1, ω2, ω3, ω4)

= − 1

2

[
p(ω1, ω2)− p(ω1, ω3) + p(ω1, ω4)

+ p(ω2, ω3)− p(ω2, ω4) + p(ω3, ω4)
]
.

(G15)

By taking the second-order cumulant expansion, the four-
point correlation function of eiϕ(ω) is given by

F̃4(ω1, ω2, ω3, ω4)

= exp

{
−1

2

[
p(ω1, ω2)− p(ω1, ω3) + p(ω1, ω4)

+ p(ω2, ω3)− p(ω2, ω4) + p(ω3, ω4)
]}
.

(G16)

When the fluctuations of the stochastic spectral phase
ϕ(ω) are given by a wide-sense stationary process so that

〈ϕ̇(ω)ϕ̇(ω′)〉 = q̃(ω − ω′), (G17)

it follows that

p(ωa, ωb) =

∫ max(ωa,ωb)

min(ωa,ωb)

dω

∫ max(ωa,ωb)

min(ωa,ωb)

dω′ q̃(ω − ω′)

= p̃(ωa − ωb),
(G18)

with

p̃(ω) =

∫ ω

0

dx

∫ ω

0

dy 〈ϕ̇(x)ϕ̇(y)〉. (G19)

The four-point correlation function then reads

F̃4(ω1, ω2, ω3, ω4)

= exp

{
−1

2

[
p̃(ω1 − ω2)− p̃(ω1 − ω3) + p̃(ω1 − ω4)

+ p̃(ω2 − ω3)− p̃(ω2 − ω4) + p̃(ω3 − ω4)
]}
,

(G20)
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while the two-point correlation function is given by

F̃2(ω1, ω2) = F̃4(ω1, ω2, ω3, ω3) = e−
1
2 p̃(ω1−ω2), (G21)

since p̃(0) = 0.
For independent random phases, where

〈ϕ(ω)〉 = 0,

〈ϕ(ω)ϕ(ω′)〉 = 〈ϕ2〉Λδ(ω − ω′),
(G22)

and thus

〈ϕ̇(ω)ϕ̇(ω′)〉 = −〈ϕ2〉Λ δ̈(ω − ω′), (G23)

the integral of the correlation function of ϕ̇(ω) tends to

p̃(ω) = 2〈ϕ2〉[1− Λδ(ω)], (G24)

whose exponential is equal to

e±
1
2 p̃(ω) = e±〈ϕ

2〉 +
(

1− e±〈ϕ
2〉
)
Λδ(ω). (G25)

Under those conditions, the two- and four-point correla-
tion functions of eiϕ(ω) read

F̃2(x, y) = e−〈ϕ
2〉 + Λ

(
1− e−〈ϕ

2〉
)
δ(x− y) (G26)

and

F̃4(x, y, x′, y′) = e−2〈ϕ
2〉 + Λ e−〈ϕ

2〉
(

1− e−〈ϕ
2〉
) [(

δ(x− y) + δ(x− y′) + δ(y − x′) + δ(x′ − y′)
)

− e−〈ϕ
2〉
(
δ(x− x′) + δ(y − y′)

)]
+ Λ2

(
1− e−〈ϕ

2〉
)2 [

δ(x− y)δ(x′ − y′) + δ(x− y′)δ(y − x′)

− e−〈ϕ
2〉
(
δ(x− y) + δ(x′ − y′)

)(
δ(x− y′) + δ(y − x′)

)
+ e−2〈ϕ

2〉δ(x− x′)δ(y − y′)
]

− Λ3
(

1− e−〈ϕ
2〉
)4
δ(x− y)δ(x− x′)δ(x− y′),

(G27)
respectively. Equations (G26) and (G27) exhibit the same structure as the two- and four-point correlation functions
in Eqs. (A1) and (A2), but are exact only for Gaussian probability density functions. When P (ϕ) is not Gaussian,
Eqs. (G26) and (G27) only represent an approximation of the exact two- and four-point correlation function. By
using Eqs. (G26) and (G27), the two- and four-point correlation functions of the field Ẽ(ω) in Eq. (4) are given by

F2(ω1, ω2)
.
= 〈Ẽ∗(ω1)Ẽ(ω2)〉 =

∫
dx

∫
dy g̃∗(x) g̃(y) F̃2(x, y) ũ(ω1 − x) ũ(ω2 − y)

≈ g̃∗(ω1) g̃(ω2)

[
2π e−〈ϕ

2〉 +
(

1− e−〈ϕ
2〉
)
Λ
√
πτ e−

(ω1−ω2)
2τ2

4

] (G28)

and

F4(ω1, ω2, ω3, ω4)
.
= 〈Ẽ∗(ω1)Ẽ(ω2)Ẽ∗(ω3)Ẽ(ω4)〉

=

∫
dx

∫
dy

∫
dx′
∫

dy′ g̃∗(x) g̃(y) g̃∗(x′) g̃(y′) F̃4(x, y, x′, y′) ũ(ω1 − x) ũ(ω2 − y) ũ(ω3 − x′) ũ(ω4 − y′)

≈ g̃∗(ω1) g̃(ω2) g̃∗(ω3) g̃(ω4)

{
(2π)2 e−2〈ϕ

2〉 + 2π e−〈ϕ
2〉
(

1− e−〈ϕ
2〉
)
Λ
√
πτ

[(
e−

(ω1−ω2)
2τ2

4 + e−
(ω1−ω4)

2τ2

4

+ e−
(ω2−ω3)

2τ2

4 + e−
(ω3−ω4)

2τ2

4

)
− e−〈ϕ

2〉
(

e−
(ω1−ω3)

2τ2

4 + e−
(ω2−ω4)

2τ2

4

)]
+
(

1− e−〈ϕ
2〉
)2
Λ2πτ2

(
e−

(ω1−ω2)
2τ2

4 e−
(ω3−ω4)

2τ2

4 + e−
(ω1−ω4)

2τ2

4 e−
(ω2−ω3)

2τ2

4

)
+ · · ·

}
,

(G29)

where we have assumed a broadband frequency envelope g̃(ω). Inserted into Eq. (31), the two- and four-point
correlation functions in Eqs. (G28) and (G29) lead to a correlation function to first order in (Λτ) given by

C(ωR, ωm, T ) = 4π e−〈ϕ
2〉
(

1− e−〈ϕ
2〉
)2
Λ Im

{∣∣∣g̃(ωm −
ωR

2

)∣∣∣2 g̃∗(ωm +
ωR

2

)
×
∫

dω

2π
g̃
(
ωm +

ωR

2
− ω

)√
πτ

(
e−

ω2
R2τ

2

4 + e−
(ωR−ω)2τ2

4

)
e−iωT 〈 ˆ̃α(ω)〉

}
.

(G30)
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Since e−〈ϕ
2〉 never vanishes, the above correlation function features the same structure as the s-TRUECARS signal

in Eq. (37) for UDSP pulses with a < π, independent of the value of 〈ϕ2〉.
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