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AN AVERAGE-CASE ANALYSIS OF BIN PACKING
WITH UNIFORMLY DISTRIBUTED ITEM SIZES

George S. Lueker

Abstract
Ve analyze the one—dimensional bin-packing problem under the
assumption that bins have unit capacity, and that items to be packed
are drawn from a uniform distribution on [0,1]. Building on some
 recent work by Frederickson, we give an algorithm which uses
n/2+0(n1/2) bins oﬁ the average to pack n items. (EnBdel has
achieved a similar result.) The analysis involves the use of a'
certain 1-dimensional random walk. We then show that even an
optimum packing'under this distribution uses n)2+n(n1/2) bins on thé
average, 80 our elgorithm is asymptotically optimal, up to ‘constant.
factors on the amount of wasted space. Finally, following |
Frederiokson. we show that two well—known greedy bin—packing
algorithms use no more bins than our algorxthm; thus their behavior

is also in asymptotically optimal in this semnse.

1, Introdumotion

We consider the following ﬁ:oblem. Given n numbers xl.xz,...;xn. which
represent weights, pack them into a minimum number of bint so that no bin has

a total weight exceeding 1.

The worst—case behaviot of algorithms for this problem has been the
subject of considerable inwestigation. For a long time, the best—known
worst—case asymptotio error bound was 11/9 [Jo73, JDUGG74]. Thi# was imprdyéd
very slightly by Yao [Ya80], and then improved to 71/60 by Johnson [GJ80]

Recently an algorithm with an asymptotic bound of 1l+g, for any &>0, has been
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obtained [VL81]. Unfbrtunately, all of these results have drawbacks from a
practical sténdpoint.. The algorithm in [VL81], while theoretically linear,

has a huge constant for small values of &. The earlier algorithms have error

bounds which might be larger than we would desire.

.‘A number of the early pdpers [Jo74, IDUGG74] suggested that an
average—case analysis of the problem would be interesting. As observed iﬁ
[CSHY80], analyses of algorithms for this problem can quickly become very
complicated; there a next—fit strategy is analyzed under a rather gemeral
distribution of the item sizés ii‘ For the case in which the sizes are
uniformly drawn from [0,1], this strategy tends to.leave the bins about 1/4
émpty. Frederickson has shown that a different algorithm tends to waste much
less space. Assuming that the x, are drewn from a uniform distribution on
[0.1]. he gives an algorithm which:nses an average of n/2+0(n2/3)v$ins, aﬁd _
thus tends asymptotically to £ill the bins almost coﬁpletely. One easily sees
that an average of at least n/2 bins will be required, since this is the
expected total of the x,. Thus Frederickson has.established that the expected

number of bins required is asymptotic to n/2. It is interesting, however, to

look at the number of extra bins required beyond the sum_of the xi; ﬁs
observed in [Sh77], this is equivalent to looking at the expected amount of |
wasted space in the packing. Frederickson'’s algorithm has an expected wasted
Spaée of 0(n2/3f. Here we present an algorithm with an expected wastéd sﬁaéé
of 6(n1/2);.-a similar result was achieved by Kndel [Kn81]1. Moreover, we
éhowﬁthat even anvoptiﬁﬁﬁ packing wastes O(nllz).space on the average. Thus

in some sense .our algdrithm can not be improved, except for constant factors.

Our analysis of this algorithm will use some facts about sums of random

variables, which are well-known or easily established.
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Fact 1. Let V;, V,, ..., V; each have an exponential distribution with
mean one; i.e., each has the density function e ~, for x>0. Then, for any
p<l, the probability that the sum of the Vi is less than or equal to pk is
exponentially small in k. (This is a special case of Theorem 1 in [Ch5213

such theorems are referred to as theorems about large deviations.);

The next fact is more interesting. The random variables considered will
have distributions which are symmetric about the origin; instead of bounding

only the sum of all the random variables; we wish to bound all of the partial

~sums. Thus we wish to bound the probability that a k-step random walk about

‘the origin ever passes some point x.

Fact 2. Let Wy, W,, ..., W, each have a bilateral exponmential

distribution; i.e., the density function for each Wi is %e_l;l. Let
s
F k(x) be the cumulative probability distribution for the sum of k such

ﬁariables; i.e.,

F¥(x) = P(W, + W

g *oees +Wk_$_x}.

Then the probability that any of the partial sums W1+W2+...+Wi. 1<{i<k, exceed
x is less than or equal to 2(1 - F'k(x)). (This is a special case of the

Lévy inequalities [CT78, Section"3.3, Lemma 5, page 71]1.)

The mext two facts have to do with expected values of quantities related

to sums of random variables.

" Fact 3. Let f£(x) be any demsity function which satisfies the conditions
for [Fe66, Chapter XVI.2, Theorem 2, page 508], with r=4., Let f have mean
zero and variance cz, and let f‘In denote the pdf for the sum of n independent

draws with pdf f. Then for any fixed a>0,
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an ’
j Dz £8%x) dax = o ()2 4 0l’?).

) 25
.
Fact 4. ) 2% (D (/) = (Y2 4 0wl
i=[n/2]

Verifications of Facts 3 and 4 are sketched in the Appendix.

2, The algorithm and its analysis

VWe begin by reviewing Frederickson’s algorithm [Fr80], which forms thé
basis for our work; e is a parameter which is-chosen in advance, aﬁd is just
under 1. Ffederickson had an important insight ﬁhich turns out to be central
to an understanding of the bin—packing problem——good solutions can be obtained
by paifing large elements with small elements.

procedure BINPACK; géggggz from [Fr801l; ,
kegin .

place each element which is greater than @ in a bin by itself;
let XysXpseeerXy be the remaining elements, in increasing order;

for i :=1 step 1 until lm/2] do

begin
AL Xty g 0 1
then put X, and X i+l in separate new bins
onds else put x, and X _i+1 together in a new bin;
Af m is odd themn place X2 in a new bin;

end; '
By a careful choice of a, he is able to cause only a few items to exceed a,
ahd yet guarantee that most of the sums considered in the for—loop are less

than 1.

Our aléorithm is a slight modification of Frederickson'’s, which -
eliminates the need to decide & priori on a value for a. (A similar algorithm
has been presented by Kn8del [Kn81].) For convenience in our later analysis,

we will allow the bim capacity to be variable.
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procedunre BINPACK1;
begin

place the x, into increasing order;

i
lo :=1; hi := n;
while 1o < hi do
begin
Aéz x10 + X3 is less than the bin capacity
then
begin
put X0 and X4 together in a new binj;
lo :=1lo + 1; hi := hi - 1;
end
‘else
Begin
" put X in a new bin by itselfs;
hi := hi - 1;
end; '
gnd; :
if lo = hi then put x4 in a new bin by itself;
end; .

A common problem that arises during the analysis of algorithms with
random input is that once the algorithm has run for even a short time, the }
distribution of the‘input has been conditionéd in a complicated ways;
fortunately, we can got around this problem for the curfent analysis by-a
simple trick. We will let Zis i=1,2,...,n+1 be independent draws from a unit

exponential distribution, and set

x. =

j41 T %t 2

i+1°

Then it will be the case that all the differences between the successive xi
are independent. We will also make a slight change in the statement of the
prdbiem: X 41 will be the bin capacity. We will later show how to relate the

results obtained under these assumptions to the original distribution with bin

capacity 1.

’We may now write a revised version of BINPACKl which gives more insight

into the processes involved. SUM will be a variable containing the difference
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between xlo+xhi and the bin capacity (xn+1). BINS1 (resp. BINS2) will tell
the number of bins containing 1 (resp. 2) items. EXP will denote a proce&ure
which returns, at each call, a random variable with an exponential
distribution with mean 1. Note that by our definition of the input
distribution, décreasing'hi by 1 wili subtract EXP from SUM, and increasing lo
by 1 will add EXP to SUM.

progedure BINPACK2;

gin .
SUM := EXP - EXP; BINS1 := BINS2 := 0;
¥hile at least 2 items remain gdg

begin
Af SUM > O
then
Begin |
SUM := SUM - EXP;
BINS1 := BINS1 + 1;
end
else
Begin
SUM := SUM + EXP - EXP;
BINS2 := BINS2 + 1;
ends
end; - |
if one item remains then BINS1 := BINS1 + 1;

end;
Be sure to recall that EXP generates an independent drawing ;t each calls
thu§ EXP-EXP is not identioally zero. In fact, a simple calculation
establishes the well-known fact that EXP—E#P has the bilateral exﬁonential

distribution mentiomed in Fact 2.

Now since in ‘the packing produced by this algorithm each bin contains one

or two items, it is clear that

n + BINS1

BINS = ) s

(1)

where BINS is the total number of bins used. We now turm to the analysis of
BINS1. Note that as currently written the algorithm is a bit vague, since the

ggilg—loop involves the condition "at least 2 items remain”, and this -



Page 7

condition is not explicitly set in the remainder of the algorithm. We could
make this explicit by maintaining a count of all EXP values generated during
the algorithm; when this count exzceeds n, we would know that the variables hi
~ and lo must have met, There is a simpler approach which is sufficient to
enable us to obtain a gcod bound on BINSL1, Note that at most n/2 executions
of the glse clause ocan ocour before all of the items are used up. Moreover,
the variable BINS1 is nondecreasing as the algorithm proceeds, so the
following algorithm produces a variable B’ such that the expectation of B'+1
is an upper bound on that of BINSL.

procedure BINPACK3;

begiz ,
SUM := EXP - EXP; B’ := 03
for i :=2 step 2 mntil n do

begin \ :

comment the following loop corresponds to the

operation of decrementing hi until the
current %0 and X4 fit into a bin;

xhile SUM > 0 do

begin
PACKl: SUM := SUM - EXP;
if B'<n then B' := B’ + 1; v
end;
gomment now we may place %0 and X
into a bin together;
PACK2: SUM := SUM + EXP - EXP;
ends
ends
Let p be some real in the range [0,1]. Note that if B’ exceeds some number b,

then at least ome of the following events must have occurred:

i) At some point, the total of all the quantities added thus far to SUM

in statement PACK2 must have exceeded pb, or

ii) the first b executions of PACKl must have subtracted less than pb from

SUM.

The probability of (ii) is exponentially small in b by Fact 1. Now let F'E be

defined as in Fact 2; then the probability of (i), by that Fact, is at most

‘
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2 - ZF‘m+1(pb).-where m is the number of executions of the main loop, namely

Ln/2). Adding the probability of (i) and (ii),

P(B' > b} (2 - ZF.m+1(pb) + (exponentially small terms in b).

Using this inequality, Fact 3, and the fact that F has variance 2, ome readily

establishes that

E[BINS1] < E[B' + 1]

I~

o o ptmtl |
I [(2 - 2F (pb) + (exponentially small terms in b)] db + 1
0 . .

1/2 /2y

+ o(m1

m
(2/p)

p—1 (%?)1/2 + o(nllz)

Since this holds for p arbitrarily close to 1, we may conclude that .

E[BINS1] £ (%?)1/2 + oal’?).

Thus in view of (1) we obtain

Theorem 1. Under the distribution of input derived above from‘thé
exponential distribution, the expected pumber of bins used by BINPACK1l is at

X most n/2+(%§)1/2+o(n1/2)

Corollary. If we assume each z, is drawn uniformly and independently
from [0,1], and that the bin capacity is 1, the expected number of bins used

by algorithm BINPACKl1l is at most

1/2 112,

n/2 + (gg) + o(n

(Similar results were obtained by Knddel [En81], using Kolmogorov's :

inequality. His result states that the expected number of bins is

O
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a/2+0(a*/%) )

Proof. Note that the behavior of BINPACK1 is completely un;ffected if we
| ' scale xi) 1{i¢n, and the bin capacity by the same factor. Recall tha£ unﬁer
the model assumed in Theorem 1, X 41 Ves used as the bin'cépacity. Suppose'we
scale all of the xi,'inoluding X +1° by dividing by X +1° lThen the bin
‘capacity becomes 1, and by [Fe66, Section IIX.3, Examples (d) and (e), pp.
74—75] tﬁe distribution of XiseeesXy becomes exactly that of the order
statistics of n uniform independent draws from [0,1]. Thus the behavior of-

the random variable B’ is exactly the same under these two models. a

3. A lower bound

Here we ostablish that the result of the previous section is optimal, up
to constant factors on the smount of wasted sfaoe. In this section, we will
again assume that the bin capacity is 1 and that the x; are n uniform
independent draws from [0,1]. Let BINS be a random variable telling the

optimum number of bins for a problem instance.

Theorem 2. E[BINS] > n/2 + (ﬁ‘;)”z (31/2 -1) + o(nll.z)-

Proof. Let N be a random variable telling the number of items whose
weight exceeds 1/2; clearly no two of these can lie in the same bucket, so
BINS)N., Let T be a random variable télling the total of the weights of the
items; since each bin has capacity 1, BINS)T. Now for any two random

variables Y and Z, not necessarily independent,

P{max(Y,Z) < x} < min(P{¥<x}, P{Zx]).

Thus
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P(BINS < z} < min(P(N < x}, P{T £ x}).
Now let W be a random variable with the PDF

P{T £ x} for x { n/2
CB(x) =

P{N ¢ x} for x > n/2

(One easily checks that this is an increasing function.) Then, letting u'®(x)

denote the density function for the sum of n uniform draws from [0,1], we have

E[BINS] > EIW] = n/2 + E[V - n/2]

n/2 n
ya2+ | (x-al2) Wi ax v Y Gma/2) (D 27
| ° i=[n/21

Applying Fact 3 to the integral, and Fact 4 to the sum, we obtain

n ,1/2 n, 1/2
- (iz;) + (E;)

Y-

n

. (By1/2 (31/2

24n - .

f

4., A Bound on the Behavior of Two Common Greedy Algorithms

2 A M R e e s S——

Two common epproximation algorithms for bin packing are
best—-fit—-decreasing (BFD) and first-fit-decreasing (FFD). Each of these
algorithms first sorts the items to be packed into order of decreasing size,
and then packs them in that order, allocating a new bin only when the item
being packed fits in none of the bins currently allocated. If any of the

partially allécated bins can hold the item, FFD uses the one which was

allocated the earliest, while BFD uses the one which can hold the item with
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the least leftover space. The following theorem and its proof are quite
| * similar to a corresponding result for the algorithm in [Fr80]. In the

theorem, XFD denotes either FFD or BFD.

Theorem 3. The number of bins used by XFD does not exceed the number

|
| used by BINPACKL.

Proof. Let A demote the set of bins used in algorithm BINPACK1 which
contain an element greater than 1/2. Let B denote the set of bins used by
BINPACK1l which contain no element greater than 1/2. Now suppose we run XFb.
Nﬁte that the elements greater than 1/2 are packed first, and each apfears!in
a separate bin., Thus we may identify these biné ﬁith the set A of bins |
mentioned above for algorithm BINPACK1. Imagine we also give XFD a set B of

initially empty bins to use during the packing, of cardinality equal to the

set B mentioned above.

Suppose we have partially completed a run of algorithm XFD, and have
packed the elements X X greeerX iy thus far. Assume that xi$1/2. Let
Ri={xi.xi_1.....x1}'and let Si denote a multiset of capacities constructed as

follows:

a) for each bin b in A which contains only one item, include the

remaining capacity of A.

.b) for each bin in B which currently contains omne element, include the

capacity 1/2.

c) for eqph'bin in B which currently is empty, include two copies of the

capacity 1/2.

Let'Mi denote a pairing of maximum cardinality between items in Ri and

capacities in Si such that no element of Ri or Si is used more than once, and
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in each pair the item size is less than or equal to the capacity. We

establish the following three facts about the size of these Mi'

A)

B)

C)

|Mh| = h. To see this, mote that the packing used by BINPACKl packs
at most two items to each bin in B, and does not exceed the capacity
of any bin in A, so it giveé us a matching of cardinality h between

the item sizes in Rh and the capacities in Sh.

For i=h, h-1, ..., 1, if |Mi|=1, then when XFD is packing x, it can do
so without using dny bins beyond those provided by the sets A and B.

To see this, note that Mi describes a way df.packing all of the

remaining items into the bins in A and B, so surely there is a way to

pack Xs.

For i=h, bh-1, ..., 2, |Mi_1|2IMi|—1. Intuitively, the potential
problem is that since packing x, requires us to remove one item from

Ri' and can require us to remove one capacity fromvSi, the size of the

"maximum pairing between Ri and Si could conceivably decrease by 2.

Now if x, is packed into & bin which already had two items,-si_l,will

be the same as Si, so this problem does not arise. Suppose that x, is

‘packed into a bin which contained fewer than two items; let b be the

minimum of 1/2 and the remaining capacity of the bin into which x; is

packed by XFD. Then the only case in which the size of the maximum

‘pairing could decrease by more than one is the case in which both x,

and b are used in the pairing Mi‘ but xi>is not paired with b3 agsume
that this case holds. Let b’ be tﬁe value paired with Zy and let x'
be the item paired witﬁ b. Now since x, is paired with b', if XFD is
BFb we know that b is less than b',.for BFD always uses the bin of
least possible iemaining capacity. If XFD is FFD, we again know that

b is less than b’, since FFD uses the first feasible bin and the bins
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corresponding to values in Si are in order of increasing Si values.
Therefore.’whether XFD is BFD or FFD, x' c¢ould be paired with b', so
removing x, from Ri and b from Si decreases the cardinality of the

maximum pairing by at most 1. Thus |Mi_1|2|Mi|—1.

From (A), (B), and (C), it follows that XFD will complete the packing

without using any bins beyond those provided in sets A and B.

By this theorem and the results of the previous sections, we obtain the

following theorem.

Theorem 4. If we assume each x, is drawn uniformly and independently
from [0,1]1, and that the bin capacity is 1, the expected nﬁmber of bins used

by BFD or FFD is n/2+8(n}/2).

5. Other distributions

It would be interesting to investigate the behavior Qf this‘problem under
other distributions; ‘it app;ars that the behavior is quite sensitive to
changes in the distribution. For example, if the x, are drawn from a
distribution on [0,1] which has mean 1/2 but‘hﬁs a probability of more than
1/2 of being greater than 1/2, it is easy to establish that the expected

wasted space in the optimum solution is ©(n).

'T wish to thank a number of people for some very helpful‘suggestionsf
Jon Bentley brought this problem to my attention, and made some remarks which
were helpful in obtaining the lower bound in Section 3. The contents of

Section 4 were suggested to me by Dave Johnson. chtt Huddleston had some
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useful discussions with me; in particular, when I mentioned the use of
partial sums of exponential distributions for introducing independence in a
scheduling problem, he suggested that I also use this trick when analyzigg bin
packing. A number of uséful comments were received‘when an earlier version of

this paper was presented at GE Labs in Schenectady. Donald Darling brought

references for Facts 1 and 2 to my attention.
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Appendix I.

In this Appendix we sketch proofs of some of the_technicél facts used

during the proofs.

Fact 3. Let f(x) be any density funotion which satisfies the conditions
for [Fe66, Chapter XVI.2, Theorem 2, page 508], with r=4. Let f have mean
& o .
zero and variance 02, and let f © demote the pdf for the sum of n independent

draws with pdf £f. Then for any fixed a>0,

an, ‘ ’ .
[7 2@ ax = 0 (24 0a?'h. (2)

0
1/

Proof. Define §{ by x=n 26&. where.c? is the variance of f (in this case

2). Following [Fe66, Chapter XVI, Section 1, page 505], we define £ as

/2 ‘n(n1/2 o

fn(ﬁ) = n1 o f g).

Making a change of variable in the integral of (2) yields

anllzla 1/2
j at2%ag ¢ (2) .,
0

which can be written as

1/2/6 an1/2/6

Ian - nllzaﬁ z(§) d¢ + I

a1/ 2qk (£.(8) - =(8)) g, (3
0 0 ) .

where z(¢) denotes the density fumotion for the normal distribution with zero

mean and unit variance. Now

unllzla'

j 2126t 2(k) 42 = o (5%)1’2 + o(1),
0

by direct calculation. Next, by [Fe66, section XVI.2, Theorem 2, page 5081,



Page 16
we have
£(8) - 2(8) = [n /2 Py(g) + 0t P(e)] 2(8) + ola D),

where P3 and P4 are polynomials whose coefficients do not depend on n. Thus

the second integral in (3) can be rewritten as

J

an1/2/c

1/2 1/2
n

of L /2 p (o) + 2t P (8)) 2(§) + o(a 1)1 at

0

anllzla

= I o & [Ps(g) +n
0

Y2 p, 01 22) az + oa'?). 4)

Now for any polynomial p,

[ @l e = o),

so (4) is o(nllz). completing the proof. |

n
-n .n _ (4
Y 2D Gew) =
i=[n/21

)1/2 1/2).

+ ofn

&=

Fact

Proof sketch. Rewrite the sum as

n+1
2 2 ‘LnJ’ (LxJ-n/2) dx. (5)
x=[n/21] x - ‘

Change the lower limit of the integral to n/2; clearly this introduces only

3/5]. and I2 be the

,n+1], Using [FeSS, VII.3, Theorem 1, page 184], we may

an o(1) error. Now let I1 be the interval [n/2,n/2+n
3/5

intétval (n/2

rewrite the part of the integral in (5) over 11 as

1/2 a/24’!? /2., »
(1 + o(1)) (4/n) j 2(4/m Y 2(Lxb-n/2)) (LxJ-n/2) ax

n/2
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3/5
n/2+n

= (1 + o(1)) (4/m)/2 j [z((4/n)t
a/2

12 (x-n/2)) (x-n/2) + 0(1)] dx,

where z(x) is again the normal density function with zero mean and unit

variance, and the equality follows from the fact that the derivative of

i/2

x z((4/n) x) is uniformly bounded. Now by direct computation,

/5

z((4yn)1/2(x—n/2)) (x-n/2) dx

3
n/2+n
(a7m)t/2 |
n/2

1/2

_ n
= (—8—7.[) + o(l)l

so the integral of (3) over I, is

)1/2 3/5/n1/2)]

(1 + o(1)) [(gﬁ + o(1) + O(an

= (M2 4 oY,

The integral over IZ may be seen to be o(1l), using the above-cited theorem and

the monotonicity of Z_n(L:J) over I Thus the fact follows., |

2-
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