
UC Irvine
UC Irvine Previously Published Works

Title
Categorizing Sleep in Older Adults with Wireless Activity Monitors Using LSTM Neural 
Networks

Permalink
https://escholarship.org/uc/item/0df7c8cs

ISBN
9781538613115

Authors
Yildiz, Selda
Opel, Ryan A
Elliott, Jonathan E
et al.

Publication Date
2019-07-01

DOI
10.1109/embc.2019.8857453
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0df7c8cs
https://escholarship.org/uc/item/0df7c8cs#author
https://escholarship.org
http://www.cdlib.org/


Categorizing Sleep in Older Adults with Wireless Activity 
Monitors Using LSTM Neural Networks

Selda Yildiz,
Oregon Health and Science University, Portland, OR 97239 and the VA Portland Health Care 
System, Portland, OR 97239 USA

Ryan A. Opel,
VA Portland Health Care System, Portland, OR 97239 USA

Jonathan E. Elliott,
VA Portland Health Care System, Portland, OR 97239 and Oregon Health and Science University, 
Portland, OR 97239 USA

Jeffrey Kaye [Member, IEEE],
Oregon Health and Science University, Portland, OR 97239 USA

Hung Cao [Senior Member, IEEE],
School of Engineering, University of California, Irvine, CA, 92679 USA

Miranda M. Lim
VA Portland Health Care System, Portland, OR 97239 and Oregon Health and Science University, 
Portland, OR 97239 USA

Abstract

Novel approaches are needed to accurately classify and monitor sleep patterns in older adults, 

particularly those with cognitive impairment and non-normative sleep. Traditional methods ignore 

underlying sleep architecture in these patient populations, and other modern approaches tend to 

focus on healthy, normative patient populations. In this paper, we developed a model using a long-

short-term memory neural network (LSTM) and trained it on a sample of older, non-normative 

patients. The 22 nights of data collected were trained on gold-standard polysomnography (PSG) as 

ground truth and were compared against the clinical standard threshold-based method for sleep 

detection. The LSTM more than doubled the traditional method’s ability to detect clinically-

relevant wakefulness during sleep (37.7% vs. 15%) without significantly sacrificing accuracy 

(67.7% vs. 75%) or precision (90.7% vs. 94%) of sleep classification.
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I. Introduction

Sleep disturbances may be one of the earliest clinical signs of neuropathology in dementia 

[1]. Emerging literature shows strong evidence for a bidirectional relationship between sleep 

and dementia. Indeed, an important biological function of sleep may be to facilitate 

clearance of neuronal wastes from the brain parenchyma (e.g., the "glymphatic function” of 

cerebrospinal fluid and brain interstitial fluid exchange) [2]. Early screening and detection of 

a change in sleep patterns may present a valuable window of opportunity during which 

potential interventions could be tested [1]. However, detecting sleep impairment is 

challenging, as the gold standard method of overnight polysomnography (PSG) is time-

limited, cumbersome, and expensive. At best, PSG provides a random snapshot of one or a 

handful of nights of sleep in the laboratory. Obtaining overnight PSG on older, cognitively 

impaired subjects is particularly burdensome and challenging.

Wearable devices are one possible solution to the time-limited vignette provided by PSG. 

Actigraphy devices – wearable accelerometers embedded into a wristwatch – allow long-

term data collection in the home, thus more accurately capturing subjects’ sleep patterns. 

Actigraphy is relatively unobtrusive and well tolerated, even in the older, cognitively 

impaired population. Actigraphy has been validated against PSG [3], [4] with high accuracy 

for distinguishing sleep versus wake in certain healthy/normative populations [5], [6], and in 

populations with sleep disorders including most recently in obstructive sleep apnea patients 

[7]-[10]. However, actigraphy has two major short-comings: i) sleep staging challenges to 

interpret in aged and/or cognitively impaired subjects who have irregular sleep and circadian 

rhythms, and ii) difficulty categorizing wake -with frequently over-estimating the quantity of 

sleep- when subjects lay still in bed [11]. Thus, novel approaches are needed in this regard.

Traditional threshold-based actigraphy scoring algorithms, including Cole-Kripke [12] and 

its derivatives, are problematic in non-normative populations due to their minimal 

assumptions about the underlying transition probabilities between sleep stages, acting as 

band-pass filtered, but otherwise direct, translations of raw activity data. Due to the tendency 

to simplify or smooth-over, these algorithms create underlying biases in sleep staging for 

older and cognitively impaired individuals, especially those with sleep problems.

Several groups [13]-[15] have attempted to stage sleep using a logistic regression model that 

considers multiple derived activity parameters in a moving window (e.g. moving average, 

standard deviation of the window). While these implementations improve upon threshold-

based algorithms, problems still exist even in young and healthy subjects. All logistic 

regression models report low specificity (~50%) for detecting wakefulness [15], thus 

underestimating the amount of true wakefulness and skewing clinically-relevant sleep 

metrics, including total sleep time and sleep efficiency.

More recently, Fang et al. compared the ability of a variety of machine learning models to 

predict sleep using passive smart home sensors, and illustrated the benefits of a neural 

network over a hidden Markov model (HMM) or conditional random field (CRF) for the 

task [16]. While HMMs and CRFs address the underlying transition and emission 
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probabilities problems inherent in previous methods, both approaches require knowledge of 

prior probabilities, leading to decreased accuracy and sensitivity.

To address these problems and to score sleep, we proposed employing a neural network 

machine learning algorithm: a Long Short-Term Memory model (LSTM) [17], which is 

particularly well suited for longitudinal data. Neural networks have numerous advantages 

over both traditional methods, including the ability to both dynamically adapt to training 

data and detect complex, non-linear relationships between independent and dependent 

variables [18], and HMMs and CRFs, including utilizing backpropagation.

II. Methods

A. Actiwatch

The Philips Actiwatch 2 (Philips Respironics, Bend, Oregon) is a wrist-worn activity 

monitoring device that has been validated against PSG in normative populations [5]. The 

device uses a solid-state piezoelectric accelerometer to record activity, sampling at 32 Hz 

and band-pass filtered from 0.35 – 7.5 Hz. The accelerometer’s sensitivity is approximately 

0.025 G with a range of 0.5 – 2 G peak. The Actiwatch also collects information on ambient 

light levels using a silicon photodiode, which has a wavelength range of 400 – 900 nm (570 

nm peak sensitivity) and a photopic illuminance range of 5 – 100,000 Lux. The device is 

typically 90% accurate at 3,000 Lux.

While the piezoelectric accelerometer samples at a fixed 32 Hz, Actiwatches can be 

configured to record data in various fixed intervals ranging from 30 seconds to 5 minutes. 

With a 30 second sampling configuration, for example, the total measured activity and light 

levels are summed over this 30 second interval, which is then stored to the device’s internal 

memory. Configuration of this interval does not affect the accelerometer’s sampling 

frequency, but it does affect the device’s battery life and the maximum recording length due 

to memory usage. When Actiwatch data are downloaded, the exported files contain 

information on the total activity levels and light for each interval, depending on the 

frequency specified during configuration.

In a typical clinical setting, Actiwatches are used to monitor a patient’s sleep patterns most 

commonly from ten days to two weeks at a time. In order to create a model that would 

translate to a clinical setting protocol optimized for longer recordings, we chose to configure 

the Actiwatches to record data at two-minute intervals (e.g. 0.5 Hz). This specific frequency 

was chosen because it is the longest sampling interval that the Philips’ Actiware 

implementation of Cole-Kripke will stage sleep, despite the watch allowing configuration of 

five-minutes, and we wanted to compare the classification of our model to the standard sleep 

staging model chosen by sleep clinics.

B. Polysomnography

All subjects completed a clinically-indicated, inlaboratory, Type I sleep study recorded using 

Polysmith® version 9.0 (Nihon Kohden 2012). Sleep staging was performed by an 

American Academy of Sleep Medicine (AASM)-accredited polysomnographic technician, 

and interpreted by a board-certified physician in Sleep Medicine. Standard parameters as 
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specified by the AASM were captured in the PSG recordings, including 

electroencephalography (EEG), electromyography (EMG) of the mentalis muscle, 

electrocardiography (EKG), electrooculography (EOG; left and right eyes), peripheral 

blood-oxygen saturation (SpO2), respiratory movement/effort (thorax and abdominal), 

airflow (nasal and oral), auditory (snoring), and body positioning (right side, left side, 

supine, prone). Following standard AASM guidelines, each PSG was sleep staged in 30-

second intervals, or “epochs”, beginning from the first second of the PSG recording.

Fig. 1 displays a sample of actigraphy data versus PSG data collected in the same subject 

overnight (~8.3 hours). Activity levels are high during wake periods (W) and near-zero 

during PSG-validated sleep stages (REM, N1, N2, N3).

C. Subjects

Written informed consent was obtained from each subject for this prospective study 

approved by the VA Portland Health Care System Institutional Review Board (IRB #4085). 

This study was conducted in accordance with the ethical guidelines of the Belmont Report 

[19]. Thirty-two (n = 32) participants were recruited from the VA Portland Health Care 

System Sleep Disorders Clinic, who were undergoing clinically-indicated sleep studies 

(PSG). Patients consented to wear an Actiwatch for 4 weeks, including the night of their 

PSG. Five participants were eliminated from the original cohort for having insufficient sleep 

quantity or quality resulting in n = 27 at this stage of analysis. PSG studies lasted 7.6 hours 

on average [5.6 – 8.7 hours]. All remaining participants had at least 90 minutes of sleep. An 

additional five patients were eliminated due to poor data quality with either their PSG 

recording or Actiwatch data resulting in final sample size of n = 22 (mean age: 49.3 ± 17.6 

years; age range: 26-72). The study consort diagram is displayed in Fig. 2, and patient 

characteristics are displayed in Table 1.

All subjects completed a series of surveys before their PSG. Surveys included demographic 

information and two validated questionnaires: the Patient-Related Outcomes Measurement 

Information System (PROMIS) Cognitive Function [20] to asses patient-perceived cognitive 

deficits such as verbal fluency, concentration, verbal and non-verbal memory, and perceived 

changes in these cognitive subdomains, and the Neurobehavioral Symptom Inventory (NSI) 

[21] as a measure of post-concussion symptoms after traumatic brain injury (TBI), which 

contains assessment of cognitive symptoms including concentration, forgetfulness, and 

ability to make decisions. On average, our cohort self-reports cognitive dysfunction 

consistent with some symptoms of early mild cognitive impairment.

D. Data Processing and Machine Learning

Sleep studies were exported from the Portland VA Sleep Clinic in Open eXchange Data 

Format (.xdf) [22], and were cleaned, processed, and exported to SQL using the Python 

“openxdf” module. Actiwatch files were exported from Philips Actiware software to CSV 

and were cleaned, processed, and exported to SQL using the Python “actiwatch” module.

Because of the sampling rate disparity between the subjects’ PSG (2 Hz) and actigraphy 

devices (0.5 Hz), actigraphy data needed to be interpolated to match the physician-validated 

sleep scoring (Fig. 3). Four interpolation methods were used – nearest neighbor, linear, 
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quadratic, and cubic – and both activity and light data from the Actiwatch underwent 

interpolation. After all relevant files were processed, each participant’s actigraphy data then 

underwent interpolation using the four interpolation methods before being joined with their 

PSG data.

Using the merged, interpolated data, numerous LSTM neural networks were trained, testing 

multiple architectures and hyper-parameter configurations (i.e., variables that are related to 

properties of the neural network, such as learning rate, the network structure, etc.). These 

configurations modulated the sequence length (3, 5, 7, 9, 11, 13, or 15 epochs), the dropout 

rate (0%, 5%, 10%, or 20%), and the interpolation method for both activity and light, 

amounting to 448 configurations in total. The various model configurations were trained on 

an 80-20 training-test split using a categorical cross-entropy loss function, which optimizes 

the average number of bits needed to identify an event drawn from a set of probability 

distributions. Note that the training is implemented on one night’s sleep data per patient, 

similar to that which would be undertaken as in a clinical setting.

After training, the models were evaluated using the 20% test set data. For comparison, a 

confusion matrix of sleep/wake stage in both the true condition (PSG) and the predicted 

condition (LSTM on actigraphy data) was created, and from this confusion matrix a number 

of contingency table parameters were generated, including accuracy, sensitivity, specificity, 

precision, and the F1 score. Because of the imbalanced distribution in sleep/wake in a 

typical night’s sleep, accuracy is not the correct outcome to focus on. Instead, we evaluated 

model performance using specificity, an area where traditional actigraphy scoring algorithms 

have suffered. Finally, to compare the output of the LSTM against the control state 

(traditional actigraphy algorithm scoring), the control scoring was interpolated using last-

observation-carried-forward.

III. Results

A confusion matrix was generated for the test set (n=3512 epochs from 4 subjects) 

comparing traditional PSG for W, N1, N2, N3, and REM versus LSTM model for W and 

Sleep (S = N1, N2, N3, or REM) (Table 2). Concordance between PSG and the LSTM 

model was highest for N2, N3, and REM sleep, and lowest for N1 sleep. These data are 

consistent with the fact that N1 sleep is widely regarded as the least distinguishable stage 

from W.

The best LSTM model (Fig. 4; with a dropout rate of 10% and a sequence length of 15 

epochs) increased the specificity (detecting wake) to 37.7%; more than double of the 

specificity of the traditional actigraphy scoring methods (15%). Sensitivity (detecting sleep) 

was moderately lower in the LSTM model compared to traditional actigraphy methods 

(60.2% vs. 76%). Classification accuracy and precision (67.7% and 90.7%) were similar to 

the threshold-based approach (75% and 94%).

IV. Discussion and Future Work

Our results show that machine learning approaches, specifically neural network LSTM 

modeling, can be successfully applied to parse sleep/wake states from actigraphy data when 
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compared to a common gold standard among older and non-normative patients. Because 

gold standard polysomnography is so challenging to widely obtain in older, cognitively 

impaired populations, and novel methods for sleep analysis monitoring and classifying have 

previously focused on healthy normative patients, our approach highlights the potential for 

actigraphic analyses in the non-normative population.

While our model specificity is relatively low, it holds a high clinical relevance by nearly 

doubling the traditional scoring specificity of detecting wakefulness: 37.7% compared to 

15% seen in traditional actigraphy scoring. From a clinical perspective, it could be argued 

that knowing when patients are awake when they should be asleep is the most critical piece 

of nighttime sleep analysis. Further, because nighttime studies are biased towards “sleep”, 

accuracy is not a particularly useful metric. For the same reason, the F1 score, the harmonic 

mean of recall and precision, is problematic in this application because it equally weights 

recall and precision.

Further, the best LSTM model used quadratic interpolation for activity, nearest-neighbor 

interpolation for light, and has a sequence length of 15 epochs, meaning it considered the 

current epoch and the following 14 when classifying the sleep/wake for the current period. 

Additionally, the chosen sequence length means that the final 14, 30-second epochs are not 

assigned a sleep stage. For a clinical setting, missing five minutes of data at the tail-end of a 

night of sleep is insignificant, thus we have no concerns about our model’s ability to 

translate to healthcare applications.

Other groups [23] have achieved considerably higher categorical accuracy with LSTM 

networks by using multimodal data, including more complicated wrist-worn devices, such as 

the Affectiva Q-Sensor, which records both skin conductance and temperature, and mobile 

phone data. However, in addition to access to higher-dimensional data, most groups that 

achieve higher accuracy work with younger, healthy populations. Furthermore, skin 

conductance and temperature is more variable in older populations and more difficult to 

record reliably. While we did not apply multimodal techniques in this study, our proof-of-

concept that machine learning can be applied to wrist actigraphy in our older, non-normative 

sample is promising nonetheless.

Future directions include expansion of these analyses to additional subjects. A larger cohort 

could allow us to compare the effectiveness of the network on different subsets of the 

population, investigating the effects of age, sex, and disease burden on wakefulness 

detection. With more subjects, we would also like to see how the network performs at the 

level of an individual subject, which is not currently feasible given our small test data 

sample size. An additional future step is to explore feature engineering, rather than feeding 

raw data into the neural network.

V. Conclusion

In conclusion, we have developed a neural network LSTM model which we trained on a 

sample of older and non-normative patients and have shown that machine learning 

approaches to wrist actigraphy can be useful for sleep/wake estimation in older and non-
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normative patients. The 22 nights of data were trained on gold-standard PSG and were 

compared against the clinical standard threshold-based method for sleep detection. The 

LSTM model we have implemented more than doubled traditional method’s ability to detect 

clinically-relevant wakefulness during sleep (37.7% vs. 15%) without sacrificing accuracy 

(67.7% vs. 75%) or precision (90.7% vs. 94%) of sleep classification. This LSTM model 

displayed considerably higher specificity at the cost of slightly reduced sensitivity. Neural 

network models should be considered for the estimation of sleep and wake states in non-

normative subjects.

Acknowledgments

The authors would like to express their sincere appreciation and gratitude for the participation of all subjects, to the 
staff at the VAPORHCS Sleep Disorders Clinic, and Steven Helms, Alisha McBride, and Nadir Balba for recruiting 
subjects. This material is the result of work supported with resources and the use of facilities at the VA Portland 
Health Care System, VA Career Development Award IK2 BX002712, NIH EXITO Institutional Core, 
UL1GM118964, the Portland VA Research Foundation to M.M.L., Oregon Roybal Center for Translational 
Research on Aging NIH P30 AG024978-15 to R.A.O., M.M.L., S.Y., and J.K., NIH P30-AG008017 to J.K, and 
NIH NIA U19 PO#S9001796 (PEACE-AD) to J.E.E, J.K., and M.M.L., and NIH NCCIH K99AT010158 to S.Y. 
The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States 
Government. The content is solely the responsibility of the authors and does not necessarily represent the official 
views of the National Institutes of Health.

References

[1]. Shi L, Chen S-J, Ma M-Y, Bao Y-P, Han Y, Wang Y-M, Shi J, V Vitiello M, and Lu L, “Sleep 
disturbances increase the risk of dementia: A systematic review and meta-analysis.,” Sleep Med. 
Rev, 7. 2017.

[2]. Boespflug EL and Iliff JJ, “The Emerging Relationship Between Interstitial Fluid–Cerebrospinal 
Fluid Exchange, Amyloid-β, and Sleep,” Biol. Psychiatry, vol. 83, no. 4, pp. 328–336, 2. 2018. 
[PubMed: 29279202] 

[3]. Sadeh A , Hauri PJ, Kripke DF, and Lavie P. "The Role of Actigraphy in the Evaluation of Sleep 
Disorders," Sleep. vol. 18, no. 4, pp. 288–302, 5 1995. [PubMed: 7618029] 

[4]. Sadeh A, "The role and validity of actigraphy in sleep medicine: An update," Sleep Medicine 
Reviews,; vol. 15, no. 4, pp. 259–267, 8. 2011. [PubMed: 21237680] 

[5]. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, Dulin H, Berkman 
LF, and Buxton OM, “Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist 
Actigraphy Compared to Polysomnography,” Sleep, vol. 36, no. 11, pp. 1747–1755, 11. 2013. 
[PubMed: 24179309] 

[6]. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, and Poliak CP, “The role of 
actigraphy in the study of sleep and circadian rhythms.,” Sleep, vol. 26, no. 3, pp. 342–92, 5 
2003. [PubMed: 12749557] 

[7]. Kushida CA, Chang A, Gadkary C C, Guilleminault C, Carrillo O, Dement WC, "Comparison of 
actigraphic, polysomnographic, and subjective asessment of sleep parameters in sleep-disordered 
patients", Sleep Med. vol. 2, no. 5, pp. 398–396, 9. 2001.

[8]. Trenkwalder C, Stiasny K, Pollmacher T, Wetter T, Schwarz J, Kohnen R, Kazenwadel J, Kruger 
HP, Ramm S, Kunzel M and Oertel WH, "L-Dopa therapy of uremic and idiopathic restless legs 
syndrome: A double-blind, crossover trial,' Sleep. vol. 18, no. 8, pp. 681–688, 10. 1995. 
[PubMed: 8560135] 

[9]. Collado-Seidel V, Kazenwadel J, Wetter TC, Kohnen R, Winkelmann J, Selzer R, Oertel WH, 
Trenkwalder C, "A controlled study of additional sr-L-dopa in L-dopa-responsive restless legs 
syndrome with late-night symptoms," Neurology. vol. 52, no. 2, pp. 285–290, 1. 1999. [PubMed: 
9932945] 

Yildiz et al. Page 7

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[10]. Gruwez A, Bruyneel AV, and Bruyneel M. "The validity of two commercially-available sleep 
trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients," 
PLoS ONE vol 14, no. 1, 1. 2019.

[11]. Blackwell T, Ancoli-Israel S, Redline S, Stone KL, and Osteoporotic Fractures in Men (MrOS) 
Study Group, “Factors that may influence the classification of sleep-wake by wrist actigraphy: 
the MrOS Sleep Study.,”J. Clin. Sleep Med, vol. 7, no. 4, pp. 357–67, 8. 2011. [PubMed: 
21897772] 

[12]. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, and Gillin JC, “Automatic sleep/wake identification 
from wrist activity.,” Sleep, vol. 15, no. 5, pp. 461–9, 10. 1992. [PubMed: 1455130] 

[13]. Sadeh A, Sharkey KM, and Carskadon MA, “Activity-based sleep-wake identification: an 
empirical test of methodological issues.,” Sleep, vol. 17, no. 3, pp. 201–7, 4. 1994. [PubMed: 
7939118] 

[14]. Lötjönen J, Korhonen I, Hirvonen K, Eskelinen S, Myllymäki M, and Partinen M, “Automatic 
sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago 
WristCare.,” Sleep, vol. 26, no. 1, pp. 86–90, 2. 2003. [PubMed: 12627738] 

[15]. Paquet J, Kawinska A, and Carrier J, “Wake detection capacity of actigraphy during sleep.,” 
Sleep, vol. 30, no. 10, pp. 1362–9, 10. 2007. [PubMed: 17969470] 

[16]. Fang H, He L, Si H, Liu P, and Xie X, “Human activity recognition based on feature selection in 
smart home using back-propagation algorithm,” ISA Trans., vol. 53, no. 5, pp. 1629–1638, 9. 
2014. [PubMed: 25016308] 

[17]. Schmidhuber J. "Deep learning in neural networks: An overview.", Neural Networks, vol. 61, pp. 
85–117, 1. 2015. [PubMed: 25462637] 

[18]. Tu JV, “Advantages and disadvantages of using artificial neural networks versus logistic 
regression for predicting medical outcomes,” J. Clin. Epidemiol, vol. 49, no. 11, pp. 1225–1231, 
11. 1996. [PubMed: 8892489] 

[19]. N. C. for the P. of H. S. of B. and B. Research., “The Belmont report: Ethical principles and 
guidelines for the protection of human subjects of research.,” Bethesda, MD, 1978.

[20]. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buysse D, Choi 
S, Cook K, Devellis R, DeWalt D, Fries JF, Gershon R, Hahn EA, Lai J-S, Pilkonis P, Revicki D, 
Rose M, Weinfurt K, Hays R, and PROMIS Cooperative Group, “The Patient-Reported 
Outcomes Measurement Information System (PROMIS) developed and tested its first wave of 
adult self-reported health outcome item banks: 2005-2008.,” J. Clin. Epidemiol, vol. 63, no. 11, 
pp. 1179–94, 11. 2010. [PubMed: 20685078] 

[21]. Soble JR, Silva MA, Vanderploeg RD, Curtiss G, Belanger HG, Donnell AJ, and Scott SG, 
“Normative Data for the Neurobehavioral Symptom Inventory (NSI) and Post-Concussion 
Symptom Profiles Among TBI, PTSD, and Nonclinical Samples,” Clin. Neuropsychol, vol. 28, 
no. 4, pp. 614–632, 5 2014. [PubMed: 24625213] 

[22]. OpenXDF Consortium “Open eXchange Data Format Specification.” 2009.

[23]. Sano A, Chen W, Martinez DL, Taylor S, and Picard RW, “Multimodal Ambulatory Sleep 
Detection Using LSTM Recurrent Neural Networks,” IEEE J. Biomed. Heal. Informatics, pp. 1–
1, 2018.

Yildiz et al. Page 8

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Raw actigraphy data indicating activity levels (red) and PSG data indicating sleep stages: 

W=wake, REM=rapid eye movement, N1=non-REM stage 1, N2=non-REM stage 2, 

N3=non-REM stage 3.
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Figure 2. 
Study consort diagram.
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Figure 3. 
Smoothed (green), nearest-neighbor interpolation (red), and linear interpolation (blue) 

compared with interpolated actigraphy and PSG data. Note that due to the sampling 

frequency disparity with PSG (2 Hz), actigraphy data (0.5 Hz) was interpolated to match the 

physician-validated sleep scoring.
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Figure 4. 
LSTM model with a dropout rate of 10% and a sequence length of 15 epochs.
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Table I.

Patient Demographics

Demographics n = 22 Range

Age (years) 49.3 ± 17.6 26 – 72

Sex (% male) 77%

NSI Cognitive Subscale 5.0 ± 4.6 0 – 16

PROMIS Cognitive Function 14.5 ± 5.3 4 – 20
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Table 2.

Confusion matrix

LSTM Model

PSG

W S

W 1005 443

N1 72 297

N2 41 1007

N3 1 263

REM 9 374
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