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From Vectors to Symbols to Cognition: 
The Symbolic and Sub-Symbolic Aspects of Vector-Symbolic Cognitive Models

Matthew A. Kelly (mkelly11@connect.carleton.ca)
Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract
To achieve a full, theoretical understanding of a cognitive 
process, explanations of the process need to be provided at 
both  symbolic (i.e., representational) and sub-symbolic levels 
of description. We argue that cognitive models implemented 
in  vector-symbolic architectures (VSAs) intrinsically  operate 
at both of levels and thus  provide a needed bridge. We 
characterize the sub-symbolic level of VSAs in  terms of a 
small set of linear algebra operations. We characterize the 
symbolic level of VSAs in terms of cognitive processes, in 
particular how information is represented, stored, and 
retrieved, and classify vector-symbolic cognitive models in 
the literature according to  their implementation of these 
processes. On the basis of our analysis, we speculate on 
avenues for future research, and suggest means for theoretical 
unification of existent models.

Keywords: Vector symbolic architectures; Holographic 
reduced representations;  cognitive modelling; symbolic 
modelling; sub-symbolic modelling.

Introduction
To achieve a full, theoretical understanding of a cognitive 
process and how it relates to the physical world, 
explanations of the process need to be provided at both 
symbolic (i.e., representational) and sub-symbolic levels of 
description. The classic symbolic approaches to modelling 
do not account for how the symbol manipulations described 
in the model could arise from neural tissue,  or account for 
how the symbols themselves come into existence. Classic 
connectionist approaches are more concerned with neural 
plausibility, but are notoriously opaque, doing little to aid 
our understanding of the cognitive processes modelled. By 
contrast, the vector-symbolic approach to modelling 
explicitly provides an account at both levels of description.
 Vector Symbolic Architectures (VSAs),  a term coined by 
Gayler (2003; but see also Plate, 1995), are a set of 
techniques for instantiating and manipulating symbolic 
structures in distributed representations. VSAs have been 
used to successfully model a number of different cognitive 
processes (e.g., analogical mapping in Eliasmith & Thagard, 
2001; letter position coding in Hannagan, Dupoux, & 
Christophe, 2011; semantic memory in Jones & Mewhort, 
2007). It has been argued that VSAs provide a bridge 
between conventional symbolic modelling and both 
connectionist modelling (Rutledge-Taylor & West, 2008) 
and more realistic models of neural processing (Eliasmith, 
2007). However,  if we are to take the bridging metaphor 
seriously, it is important to clarify which parts of a VSA are 
symbolic in nature and which are sub-symbolic.  We will 

attempt to lay out a simple system for understanding VSAs 
in terms of basic operations and symbolic/sub-symbolic 
decisions, and thereby provide a comprehensive and 
comprehensible introduction to VSAs for newcomers, and  a 
common frame of reference for those already using VSAs. 
By providing a high-level overview that integrates the 
techniques of existent VSA-based cognitive models into a 
coherent picture we hope to highlight as yet unexplored 
avenues of research and sketch what a VSA-based account 
of cognition as a whole would look like.
 In this analysis, the vectors represent symbolic 
information. These vectors, or symbols, can be combined 
and manipulated using a small number of operations, which 
can be understood as sub-symbolic processes. However, the 
information processing models built from these operations 
are themselves, best characterized at a symbolic level of 
description. Importantly, the modelling decisions made at 
the sub-symbolic level are to some degree independent of 
the modelling decisions made at the symbolic level. This 
paper is divided into two parts to reflect these two levels of 
description, symbolic and sub-symbolic. 

The Sub-Symbolic Level
VSAs are closely related to the better-known tensor product 
representations (Smolensky, 1990),  but unlike tensor 
product representations, VSAs can compactly represent 
symbolic expressions of arbitrary complexity. A number of 
VSA techniques exist in the literature, including 
Holographic Reduced Representations (HRRs; Plate,  1995), 
frequency-domain HRRs (Plate, 1994), some earlier forms 
of holographic associative memory (Eich, 1982; Murdock, 
1982), as well as binary spatter codes (Kanerva, 1992), 
Multiply-Add-Permute coding (Gayler, 2003), and square 
matrix representations (Kelly, 2010). 

Each VSA technique uses the same set of basic 
operations, but implements the operations differently. Thus 
the choice of a particular VSA dictates how symbols are 
instantiated and manipulated and defines the model at the 
sub-symbolic level. To ground the discussion, we mainly 
discuss Holographic Reduced Representations (HRRs)
(Plate, 1995), as HRRs are the most widely used VSAs in 
the cognitive modelling literature. Also, HRRs are used as 
the basis for the Neural Engineering Framework (NEF; 
Eliasmith, 2007) and thus demonstrably have a clearly 
defined and plausible neural implementation. However, the 
other VSA techniques are similar and most anything that can 
be done with an HRR can be done with any VSA technique.
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n-Space and Similarity
In a VSA, a symbol, or representation, is an n-dimensional 
vector: a list of n numbers that defines the coordinates of a 
point in an n-dimensional space. VSAs work best for values 
of n in the hundreds or thousands (Plate, 1995).
 A vector can be understood as a line drawn from the 
origin (the zero coordinates) to the coordinates specified by 
the vector. The length of the line is the vector's magnitude. 
The direction of the vector encodes the meaning of the 
representation. Similarity in meaning can thus be measured 
by the size of the angles between vectors. This is typically 
quantified as the cosine of the angle between vectors. The 
cosine of vectors a and b can be calculated as:

 cosine(a, b) = (a • b) / ( (a • a)0.5 (b • b)0.5 )

where • is the dot product. A cosine of 1 means the vectors 
are identical, -1 means they are opposites, and 0 means they 
are completely dissimilar. If each vector has a magnitude of 
one, the cosine is just the dot-product of the vectors. Thus, 
some systems rescale all vectors to a magnitude of one after 
vector operations. In memory systems where new memories 
are superimposed on old memories, such re-scaling causes a 
recency effect and rapid forgetting because new memories 
will make-up a fixed fraction of memory, regardless of the 
quantity of previous experience.
 While the cosine measures the angle between two vectors,  
the cosine is often described as a measure of distance. As it 
is more intuitive to describe similarity as a measure of 
distance than as a measure of the angle, for convenience, we 
can imagine the vectors as describing points on a 
hypersphere, such that the size of the angles are the 
distances between them.

Atomic versus Complex representations
Representations in a VSA are either atomic or complex. An 
atomic representation is a unique representation, a symbol 
that cannot be broken down into sub-symbols. In an HRR, 
values for an atomic representation are typically generated 
by random sampling from a standard normal distribution. 
By assigning random values to the vectors, atomic 
representations will be uniformly distributed across the 
surface of the hypersphere, such that the atomic 
representations will have little to no similarity to each other.

Complex representations can be created by either 
combining atomic representations or recursively combining 
complex representations.  Critically, in a VSA, a complex 
representation has the same dimensionality as an atomic 
representation, allowing representations both atomic and 
complex to be compared, or combined together to create 
representations of arbitrary complexity. VSAs have two 
operators for combining representations: superposition and 
binding.  In HRRs, superposition is vector addition and 
binding is circular convolution. We denote vector addition 
by +, and circular convolution by *. Binding and 
superposition, along with random permutation, are the basic 
operations used to create complex representations in VSAs.

Superposition (+) versus Binding (*)
The key difference between superposition and binding is 
their effect on similarity. Superposition is similarity-
preserving: the sum of two vectors is a vector that falls in 
the angle between them. Conversely, binding is similarity 
destroying: the circular convolution of two vectors is 
roughly orthogonal to the two original vectors. The purpose 
of superposition is to combine representations to create a 
new representation that is similar to all of the combined 
representations.  The purpose of binding, on the other hand, 
is to create "chunks": unique identifiers for combinations of 
representations.

Most VSA use a form of vector addition for superposition. 
Vector addition is computed by adding together the 
corresponding elements of the two vectors. So, for example, 
{1,4,7} + {5,4,2} = {6,8,9}. 

To bind, HRRs use circular convolution, * , which can be 
computed rapidly using element-wise multiplication, ◦ , and 
the fast Fourier transform, fft, and its inverse, fft -1:

 a * b  = fft -1( fft(a) ◦ fft(b) )

Essentially circular convolution is a lossy way of 
scrambling the information of the two vectors together to 
produce a new vector of the same dimensionally.
 Consider the problem of learning the meaning of the 
phrase "kick the bucket", a colloquial euphemism for death. 
Suppose the cognitive model has a vector representation of 
the concept kick and a vector representation of the concept 
bucket. The sum (superposition) of those two vectors will 
produce a vector that is close to both kick and bucket, 
indicating that the phrase “kick the bucket" has a meaning 
similar to kick and to bucket. But in order for the cognitive 
model to be able to learn that the phrase "kick the bucket" 
has a distinct meaning that is not a function of its parts, the 
model needs to be able to assign to "kick the bucket" a 
distinct identifier. Binding is the operation that performs this 
function in VSA-based models. The vector kick * bucket is 
dissimilar to the vectors kick, bucket, and kick + bucket.
 Binding and superposition can also be used jointly to 
address the binding problem (Gayler, 2003), that is, the 
question of how to couple sets of attributes together such 
that the attributes of one object are not confused with the 
attributes of another. For example, given a small red square 
and a large blue circle, the complex representation (small * 
red * square) + (large * blue * circle) creates a single 
vector that distinctively represents the knowledge that the 
square is small and red and the circle is large and blue.

Unbinding
Unbinding is an inverse of binding that allows vectors that 
have been bound together in a complex representation to be 
unpacked and recovered.  Circular correlation,  #, is the 
unbinding operator for HRRs. Given a pair of vectors bound 
together, and one of the pair, referred to as the probe, 
unbinding produces an approximation of the other vector, 
referred to as the target, i.e.,

 p # (p * t) = a ≈ t
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where p is the probe, t is the target, and a is an 
approximation of the target.
 Unbinding can be understood as binding with the inverse 
of the probe. The inverse of any vector x  is a re-ordering of 
the elements of x, i.e. a permutation of x, such that,

 x # x = x * inverse(x) ≈ δ

where δ is the identity vector for binding, i.e. for any vector 
x, x  * δ = x. Thus binding with the inverse of a vector 
unbinds what that vector has been associated with:

 a # (a * b) = inverse(a) * (a * b) ≈ δ * b = b

In HRRs, the inverse of any vector x = {x1 ... xn} is: 

 inverse(x) = {x1, xn, xn-1, ... x3, x2}

 Circular convolution, *, is commutative, i.e., the order of 
binding does not matter when using circular convolution. 
Given vectors a and b, their association a * b = b * a, and 
likewise, when unbinding, b # (a * b) = b # (b * a) ≈ a.

Permutation
Gayler (2003) describes random permutation as an operation 
used "to quote or protect the vectors from the other 
operations". Permutation of the numbers 1 ... n defines a 
unary function that can transform a vector. A randomly 
chosen permutation of a vector is unlikely to be similar to 
the original vector,  but the permutation is also reversible. 
Given p, there is a permutation p-1 such that, p-1(p(a)) = a. 
When permuted, the information within a vector is 
essentially hidden and protected from being affected by 
other vector operations.
 For example, as noted above,  circular convolution is 
commutative, that is, a*b = b*a. This property of circular 
convolution can be useful, but it can be a hindrance in 
situations where the order of items matter, e.g. "dog feed" 
and "feed dog" are phrases which carry different meanings 
by virtue of differences in word order.
 A non-commutative variant of circular convolution can be 
defined using a random permutation p and its inverse p-1. By 
always randomly permuting one of the arguments before 
convolution, one defines a binding operation that is non-
commutative, i.e. while a*b = b*a,  p(a)*b ≠ p(b)*a. 
Unbinding then uses the inverse permutation p-1, e.g.

 cosine( p-1(a # (a * p(b))), b) ≈ 0.71
 cosine( p-1(b # (a * p(b))), a) ≈ 0

Non-commutative binding is used by the BEAGLE model 
(Jones & Mewhort, 2007) to bind vectors that stand for 
words in sentences in order to construct representations of 
the semantics of each of those words. For a variety of other 
uses of random permutation in VSAs, see Gayler (2003), 
Sahlgren, Holst, and Kanerva (2008), and Kelly (2010).

The Symbolic Level
When making a vector-symbolic model, decisions need to 
be made at both the symbolic and sub-symbolic levels. At 
the sub-symbolic level, the modeller needs to decide how to 
instantiate symbols as vectors and symbol-manipulation as 
vector algebra. Conversely, at the symbolic level, the 
modeller needs to make decisions about how to structure, 
manage, store, and retrieve those symbols. Choosing to use 
HRRs rather than another kind of VSA can define the sub-
symbolic level, but this choice is largely independent of the 
decisions to be made at the symbolic level.
  In fact,  we have already seen two examples of 
manipulations at the symbolic level. The first was 
combining binding and addition to create a vector that 
encodes information about bound entities (e.g.,  small red 
square and large blue circle). The second was combining 
permutation and binding to create a bound entity that 
maintained information about order. Essentially, all VSA 
systems work in the same way. Vectors encode the desired 
information according to some sort of scheme (i.e., by 
combining the operations discussed above), and then, when 
needed, the information is retrieved from the vectors.

Encoding and Storage
BEAGLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor & West, 2008) use the terms environmental vectors 
and memory vectors. We extend the use of this terminology 
to other vector-symbolic models.  An environmental vector is 
a vector that stands for atomic perceptions from the 
environment (e.g.,  a red circle needs two environmental 
vectors, one for circle and one for red).  Environmental 
vectors are fixed and do not change. A memory vector is a 
complex representation stored by the model and used to 
produce behaviour. In some systems, memory vectors 
change with experience. Additionally, we use the term 
experience vector to refer to a representation that stands for 
the model's current experience of its environment created by 
combining environmental vectors (e.g., an experience vector 
could represent the perception of a red circle by convolving 
the environmental vectors of circle and red).
 By examining the relationship between environmental, 
experience, and memory vectors across vector-symbolic 
models, we distinguish between three main approaches to 
storage. In a many-to-one vector model, all experience 
vectors are summed into a single memory vector for storage. 
In a one-to-one vector model,  each experience vector is 
stored as a separate memory vector among an ever-growing 
number of memory vectors. In a many-to-many vector 
model,  there are a fixed number of memory vectors, and 
incoming environmental vectors are used to update them. 
Each of these approaches has strengths and weaknesses.

Many-to-one In a many-to-one vector model, such as 
TODAM (Murdock, 1983) or CHARM (Eich, 1982), 
memory is modelled as a single, high-dimensional vector. 
All experience vectors are added to the memory vector.  
There is a limit to how much can be stored in the vector 
before mistakes start to be made.  Mistakes are, of course, of 
interest to psychologists, and the pattern of mistakes made 
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by a many-to-one vector model allow it to mimic human 
forgetting in list-recall tasks. If the goal is to model how 
people store a small amount of recently learned or closely 
related information, a single memory vector suffices. 
 Many-to-one vector models also have the advantage of a 
clear neural implementation. In the Neural Engineering 
Framework (NEF; Eliasmith, 2007) binding, unbinding, and  
and superposition can all be implemented through neural 
connectivity. In the NEF interpretation, a many-to-one 
memory is a neural group with self-recurrent connections 
that acts as a working memory or buffer,  and many such 
buffers could exist in the brain.

One-to-one In a one-to-one vector model, such as 
MINERVA (Hintzman, 1986), the Iterative Resonance 
Model (Mewhort & Johns, 2005), and the Holographic 
Exemplar Model (Jamieson & Mewhort, 2011),  each 
experience vector is represented as a separate memory. 
While this approach to modelling memory is both simple 
and successful, the ever growing number of vectors that 
need to be stored and accessed by the memory system is 
both neurally implausible and computationally impractical 
for modelling tasks in which very large amounts of 
knowledge are relevant, e.g., semantic priming tasks (Jones 
& Mewhort, 2007).  However, these models are able to 
reproduce a wide variety of memory effects, providing a 
unitary account of episodic, semantic, and implicit memory, 
indicating that, although their warehouse-style management 
of vectors is implausible, their processes of storage and 
retrieval provide a good analogue for biological memory.

Many-to-many Many-to-many vector models, such as 
BEAGLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor,  2008), can be understood as a hybrid of the earlier 
many-to-one and one-to-one approaches. In many-to-many 
memory, for each item of interest,  there is a randomly 
generated environmental vector and a specially constructed 
memory vector. In BEAGLE the items of interest are words: 
the environmental vector stands for the word's orthography 
or phonology and the memory vector stands for the word's 
meaning. In DSHM, the items are objects relevant to the 
experimental task: the environmental vector stands for the 
percept of the object and the memory vector stands for the 
concept of the object. 
 Like the one-to-one models, the management of the 
vectors in many-to-many systems is computationally 
expensive and, at this point, neurally implausible. However, 
the ability to generate memory vectors that stand for 
particular concepts in very powerful (e.g.,  Rutledge-Taylor, 
Vellino, & West, 2008) and allows these systems to capture 
numerous different phenomena (e.g., Rutledge-Taylor & 
West, 2008) and represent vast quantities of data (Jones & 
Mewhort, 2007).
 For example, to create an association between keyboards 
and computers, each time a computer and keyboard co-
occur a copy of the environmental vector for keyboard can 
be added to the memory vector for computer and a copy of 
the environmental vector for computer can be added to the 
memory vector for keyboard. The effect to this would be to 
move the memory vector for computer closer to the 

environmental vector for keyboard and move the memory 
vector for keyboard closer to the environmental vector for 
computer. Over time, the result of this is to organize the 
space so that memory vectors are clustered around 
environmental vectors that they co-occur with so that the 
distance between the vectors equals strength of association.
 Another, more complicated example involves binding and 
the use of the placeholder vector.   The placeholder vector is 
an atomic (i.e, random) vector, but it is used to encode all 
associations, and thus can be used as a universal retrieval 
cue. Consider the phrase or stimulus blue triangle. Without 
using the placeholder, we could update memory as follows:

memoryblue += blue * triangle
memorytriangle += blue * triangle

By binding together the environmental vectors for blue  and 
triangle and adding the result to the memory vectors for 
blue and triangle (an operation denoted by +=),  we move 
the two memory vectors towards the point in space 
described by the vector blue * triangle, and thereby move 
memoryblue and memorytriangle closer together. But people 
almost never get the concepts blue and triangle confused 
with each other. This is because blue is a colour (or an 
adjective), and triangle is a shape (or a noun),  i.e. they are 
different sorts of thing.
 Conversely, consider updating using the placeholder:

memoryblue += placeholder * triangle
memorytriangle += blue * placeholder

This moves   memoryblue towards placeholder * triangle, 
i.e.  towards all properties of triangles, and moves 
memorytriangle towards blue * placeholder,  i.e. towards all 
things that are blue. Thus, by using a placeholder, the 
memory vectors for nouns will cluster together in one region 
of space, and the vectors for adjectives will cluster together 
in another region of space, and things that are colours will 
cluster separately from things that are coloured. This is a 
subtle distinction but Jones and Mewhort (2007) have 
shown it to be very important and very powerful.

Retrieval
There are two categories of information retrieval processes 
used in vector-symbolic models: unbinding, which retrieves 
information from a particular vector, and resonance, which 
allows information to be retrieved from the entire library of 
vectors in memory. Many-to-one models, such as TODAM 
(Murdock, 1982) only use unbinding. One-to-one models 
that do not use binding to encode associations, such as 
MINERVA (Hintzman, 1986), only use resonance. In many-
to-many systems, these two retrieval processes are 
complementary. For example, resonance can be used to 
retrieve a vector, which can then be unbound.

Unbinding Consider a simple example where the, agent is 
given a set of coloured shapes to remember: blue triangle, 
green square, red circle. In a many-to-one vector model this 
could be encoded by binding (*) the vectors for the shapes 
to the colours, then summing to create a memory vector:
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 memory = blue*triangle + green*square + red*circle

The colour of any one of these shapes could then be recalled 
by unbinding (#) using the shape to probe memory:

 triangle # memory ≈ blue

In a many-to-many vector model, unbinding may use the 
placeholder as the probe. The placeholder is a special, 
randomly generated atomic vector that acts as a key to all of 
memory. The placeholder is initially used in binding:

memoryblue = placeholder * triangle
memorytriangle = placeholder * blue

The placeholder can then be used in unbinding:

 placeholder # memorytriangle ≈ blue

Resonance (one-to-one) The term resonance comes from 
MINERVA (Hintzman, 1986), but it is implemented 
differently across different models. In MINERVA, the 
process of resonance begins by measuring the similarity 
(cosine) of each vector in memory to the probe. Then 
resonance computes a weighted sum of all vectors in 
memory. This sum, termed the echo, is what the model 
retrieves from memory. Each vector in the sum is weighted 
by its similarity to the probe raised to an exponent.
 For example, the three shapes might be represented as:

 memory1 = triangle + blue
 memory2 = square   + green
 memory3 = circle     + red

If the probe is triangle, then the echo would approximate:

 echo ≈ 0.5bmemory1 + 0.0bmemory2 + 0.0bmemory3

 echo ≈ 0.5b(triangle + blue)

such that the memory system would remember that the 
triangle is blue. The exponent b is a small, positive integer 
that is odd-numbered so as to preserve the sign of the 
similarity. Note that the similarity values of 0.5 and 0.0 are 
approximate. Random vectors in a high dimensional space 
have an expected cosine of 0, but the actual cosine between 
any two random vectors will be a little more or a little less.
 The exponent b critically allows one-to-one vector models 
to function even when there is a very large amount of data 
in memory. If the exponent b is 1, the result of resonance 
roughly imitates decoding in a simple associative memory, 
such as a Hopfield network. With an exponent greater than 
one, resonance increases the signal to noise ratio in the echo 
by increasing the relative weighting of the memory vectors 
most similar to the probe. If b is too low, a large number of 
partial matches in memory could easily overwhelm an exact 
match to the probe, resulting in a poor echo. With a high b, 
the echo will essentially just be the most similar vector in 
memory to the probe. In MINERVA, a b of 3 is standardly 
used, but a b of 3 may be too low when modelling a larger 

sum of knowledge than what is typically necessary to model 
a psychology experiment (e.g., in modelling word 
pronunciation, such as in Kwantes & Mewhort, 1999).
 In the Iterative Resonance Model (IRM; Mewhort & 
Johns, 2005), resonance is iterated, and with each iteration b 
is increased until a decision to stop iterating is made, 
resulting in either successful retrieval or a failure to retrieve. 
This approach has two benefits: (1) the number of iterations 
can be used to predict response time in memory tasks, and 
(2) it eliminates b as a tweaking parameter by introducing a 
theory-driven approach to setting its value. 

Resonance (many-to-many) Although the term resonance is 
used to describe retrieval in many-to-many vector models, 
the implementation is different and simpler: Essentially, the 
memory vector most similar to the probe is retrieved. This 
can be understood as a kind of spreading activation 
(Rutledge-Taylor & West, 2008). The probe and memory 
vectors can be understood as points on a hypersphere, such 
that the cosine measures the distance between them. One 
can imagine a ripple of activation spreading out from the 
probe across the surface of the hypersphere. The memory 
vectors closest to the probe become active in working 
memory, with the closer vectors becoming active sooner. 
This model of resonance allows BEAGLE (Jones & 
Mewhort, 2007) to make semantic priming reaction time 
predictions (e.g., that doctor is recognized faster when 
preceded by nurse than when preceded by an unrelated 
prime such as stapler) and to model the fan-effect in DSHM 
(Rutledge-Taylor & West, 2008).

Conclusions
We hold that, in order to bridge the gap between human 
experience and neural connectivity,  explanations at both the 
symbolic and sub-symbolic levels of description are 
necessary parts of theory in cognitive science. As we 
illustrate in this paper,  cognitive models that use vector-
symbolic architectures intrinsically operate at both of these 
levels of description and thereby provide a needed bridge 
between the two kinds of explanation.
 At the sub-symbolic level is the vector-symbolic 
architecture itself, and the linear algebra operations on 
vectors that comprise the architecture: similarity, 
superposition,  binding, unbinding, permuting, un-
permuting. All of these operations are easily amenable to 
neural implementation, as in the NEF (Eliasmith, 2007).
 At the symbolic level, we have the cognitive model itself, 
and the cognitive processes that define it. On the basis of 
their storage and retrieval mechanisms, we classify existing 
vector-symbolic cognitive models into many-to-one,  one-to-
one, and many-to-many vector models. This classification 
scheme highlights stark differences between these models.
 Many-to-many vector models differ from the other two 
classes of model in two important ways. First, many-to-
many models use a placeholder vector to stand for "this item 
I am thinking about". The placeholder acts as a symbol with 
an important functional role but no perceptual or conceptual 
meaning. It may be useful to incorporate other kinds of 
function vectors in future models, e.g., a wildcard vector to 
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stand for "that item that I'm not thinking about", vectors to 
stand for emotional states, for truth values, et cetera.
 Secondly,  in many-to-many models, memory vectors are 
labelled and stand for particular concepts, whereas in one-
to-one models concepts are an emergent phenomenon 
produced by the echoes retrieved using resonance 
(Hintzman, 1986).  While the conceptual representations in 
many-to-many models are powerful,  having a predefined 
number of concepts is implausible and limiting.
 Many-to-one vector models can be constructed in NEF as 
self-recurrent neural groups and are understood as working 
memory buffers. By contrast, one-to-one and many-to-many 
models are best understood as models of long-term memory, 
but as yet lack a neural explanation.
 Finding a means of translating one-to-one and many-to-
many vector models into neural models may provide a route 
to a unified, vector-symbolic account of memory storage 
and retrieval. As we noted earlier, a one-to-one model 
behaves somewhat like a Hopfield network when the 
resonance exponent b is set to 1. To implement a one-to-one 
model as a network, one needs to find a mechanism 
analogous to b that can act to increase the signal to noise 
ratio in the echo. We speculate that the vector-symbolic 
intersection circuit proposed by Levy and Gayler (2009) 
might provide a start for developing such a mechanism.
 We suspect that the memory vectors that stand for 
concepts in many-to-many vector models are, in fact, the 
echoes in one-to-one vector models. That is to say, we agree 
with Hintzman (1986) that concepts are an emergent 
property of retrieval. Using a one-to-one model to do the 
kind of large scale modelling in many-to-many models is 
impossible because one-to-one models store all experiences 
without any form of compression. However, a neural 
implementation of a one-to-one model would naturally be 
lossy in its storage, and so could provide a plausible account 
of concept formation over a lifetime of experiences.
 Unification in other areas,  such as representation, is 
important too. Incorporating a vector-symbolic model of 
string encoding (Hannagan et al., 2011) into the BEAGLE 
model of semantics (Jones & Mewhort,  2007) could, for 
instance, allow BEAGLE to model how shared orthography 
can help and hinder in understanding the meaning of words.
  Eventually, we hope to see developed a vector-symbolic 
cognitive architecture, which not only presents a unified and 
neurally plausible approach to representation, storage, and 
retrieval, but also extends the vector-symbolic account 
beyond its roots in memory theory, and integrating it into 
accounts of emotions, attention, perception, and 
consciousness. As cognitive scientists, it is important to 
keep in mind our ultimate,  lofty, and collective goal of a 
theory that unifies not only all aspects of the cognition,  but 
all relevant levels of description.
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