
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A new security model for collaborative environments

Permalink
https://escholarship.org/uc/item/0dc3q2sj

Authors
Agarwal, Deborah
Lorch, Markus
Thompson, Mary
et al.

Publication Date
2003-06-06

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dc3q2sj
https://escholarship.org/uc/item/0dc3q2sj#author
https://escholarship.org
http://www.cdlib.org/

A New Security Model for Collaborative Environments
D. Agarwal, M. Thompson, M. Perry

Lawrence Berkeley Lab
DAAgarwal@lbl.gov, MRThompson@lbl.gov, MPerry@lbl.gov

M. Lorch
Virginia Tech
mlorch@vt.edu

Abstract

Prevalent authentication and authorization models for
distributed systems provide for the protection of computer
systems and resources from unauthorized use. The rules
and policies that drive the access decisions in such
systems are typically configured up front and require trust
establishment before the systems can be used. This
approach does not work well for computer software that
moderates human-to-human interaction. This work
proposes a new model for trust establishment and
management in computer systems supporting
collaborative work. The model supports the dynamic
addition of new users to a collaboration with very little
initial trust placed into their identity and supports the
incremental building of trust relationships through
endorsements from established collaborators. It also
recognizes the strength of a user’s authentication when
making trust decisions. By mimicking the way humans
build trust naturally the model can support a wide variety
of usage scenarios. Its particular strength lies in the
support for ad-hoc and dynamic collaborations and the
ubiquitous access to a Computer Supported Collaboration
Workspace (CSCW) system from locations with varying
levels of trust and security.

Introduction

The fundamental mechanisms available today for
authentication to computer mediated resources or
communications are public or shared key based
credentials (e.g. Kerberos Tickets [9] or X.509
Certificates [5]) , and username/password mechanisms.
Authorization, based on the authentication token
established by the authentication process, is usually either
based on a local access control list or is decided by an
authorization server. Most computer software today
provides interfaces that interact with the user to perform
authentication and make authorization decisions without
requiring the immediate intervention of an administrator.
In these systems, it is essential that the system be able to
gain confidence in the identity of the user and
automatically determine authorization.

The current authentication and authorization model
described above provides an important function in
protecting computer systems and resources from
unauthorized use. But, it is not necessarily the correct
model for authentication and authorization in computer
software that moderates human-to-human interactions (e.g.
collaboratory software). In a collaboration, one normally
builds trust incrementally through interactions with the
other collaborators. If collaboratory software precludes
this natural trust building and requires that the trust all be
built before the credentials are ever issued, then it will only
serve the small percentage of already existing and very
solid collaborations. Collaboratory software, to be truly
effective, needs to allow for the building of trust between
individuals through interactions within the collaboration
environment.

Imagine the case where you are at a conference and you
sit in on the presentation of a paper that you realize solves
a long-standing problem you and your collaborators are
dealing with. Ideally you should be able to bring the
speaker into the collaboration on the spot, introduce her to
your collaborators and begin interacting immediately. At
this point you don’t trust the person to have access to
everything in the collaboration, you also don’t have time to
contact an administrator and perform verification of
identity. These steps should not be necessary at this point.
Instead, you should be able to introduce new collaborators
to the environment, give them a level of access that
identifies that they are some form of a guest in the
environment and allows them to interact with the other
users in a controlled fashion.

Another example of a scenario typically not supported
by prevalent authentication and authorization systems is
access using an untrusted client computer. E.g. if you are
on travel and the only computer access you have is through
an Internet café. You are concerned about entrusting such
a computer with your password or your private key but you
need to get a very important message to one of your
collaborators or attend a very important collaboration
meeting. A third common collaboration scenario is creating
a new collaboration from scratch, adding a few members at
a time. A system that is very easy to set up initially, but
that can later be scaled up to something more robust and
fuller featured is essential.

In this paper, we describe a framework for
authentication and authorization in collaborative
environments which supports incremental trust. A first
prototype of this model is being implemented in a secure
messaging system that is part of the Pervasive
Collaborative Computing Environment (PCCE) project at
LBNL. The implementation incorporates PKI,
username/password, and guest authentication methods. It
provides an authorization process that is aware of an
individual’s trust level. We will use this implementation
to study the implications and requirements for support of
an incremental trust model. It is our expectation that this
model, if successful, will be useful in a broad range of
applications beyond collaborative software. Since we are
working to prototype this model now, the discussion will
leverage off of authentication and authorization
mechanisms available today.

Requirements and Authentication Model

Most authentication systems require the user to
perform two steps. The first is a one-time registration
where the user registers and possibly provides credentials
to a trusted system representative who approves the user.
The second is a per session authentication where the user
provides proof that he has access to the registered
credential and a secure connection to an agent running
with his user-id is established. In our model, we wish to
allow various levels of registration with several types of
credentials and subsequent per session authentication
using one of the credentials that was previously
registered. Since in such a model, the user can be
authenticated by credentials that may have different levels
of trust, the current authenticated level of trust must be
considered by the authorization process.

The use cases we want to support include:
 A trusted user connecting in from a machine on

which she has her X.509 certificate and private key.
 A trusted user connecting from a machine with his

username and password.
 A trusted user connecting from a machine on which

he does not have his certificate or password.
 A new user who wants to join a session immediately

and to build trust in her identity.
 A new user or guest user who wants to join a single

session.
 Several users who wish to spontaneously create a

secure collaboration group.

These use cases are representative of both well-

established collaborations and ad hoc collaborations. The
participants in well established collaborations need a
highly trusted way of connecting when they are on a
trusted machine and a less restrictive means of
authenticating when on travel. In both cases it is of

primary importance that there is a low threshold for
entering the system. We have considerable experience
with systems that are hard to join initially or difficult to
reenter. Whenever possible, users will circumvent or refuse
to use such systems.

1.1. Registration

In order to support the use cases specified above, the
system must provide a registration process and the
resulting persistent database of users. The registration
process must be flexible enough to allow various levels of
registration. The user’s registration record may contain one
or more authentication credentials which can be X.509
identity certificates, username/password pairs or just
usernames. The record also contains the type of
registration that was performed. The type of a registration
can be elevated by re-registering in a more trusted way.
The system should allow subsequent authentication using
any registered credential or no credential at all. Varied
authentication and registration procedures require that the
user’s authentication context contains information about
the method of registration and session.

To support incremental trust, we will provide three
methods of being added to this database: self-registration,
trusted user registration, and administrative registration.
Self-registration is an on-line process where the user
connects to the registration server and provides an official
user name, a shorter login id or nickname and optionally
one or more credentials (e.g., password, x.509 certificate).
This registration is flagged as self-registration. A self-
registered user’s official name and other information may
not be accurate. If the self-registered user has a credential,
other users can at least assume that the individual
represented by this user name is the same person in each
session. A user authenticated without credentials may not
be the same person as in previous sessions. A guest user
would normally be an example of a non-credentialed user.

Trusted user registration is completed by any of the
trusted members of the collaboratory group. The
verification process at this point is likely based on direct
interaction with the new user or personal knowledge of the
new user. The registration information is likely entered by
the new user or by the trusted member and is signed off as
correct at some level by the trusted member registering the
new user. This step may include the addition of a new,
stronger authentication credential.

Administrative registration is completed by one or more
members of the core collaboratory team. This person
should determine in a secure manner that the official user
name being used legitimately belongs to the person
requesting the registration. Any other information that is
being registered such as email address and organization
affiliation should also be verified. This step will normally
be required to gain the strongest levels of authentication
credentials and trust. The registration process will likely be

an incremental process with the users and administrative
officials gradually adding information and credentials to
the database as the user becomes more trusted in the
collaboration.

In summary, persistent registration information
consists of some number of the following things:
• A user name (an official name that represents the

user),
• A password,
• A X.509 credential (uniquely represented by CA/DN,

public key, or CA/serial number)
• An organizational affiliation
• A group affiliation
• The method of registration (self, trusted user, or

administrative)

1.2. Authentication

An orthogonal issue in determining trust is how the
user authenticated to the current session. A user may have
an X.509 certificate that he uses from certain machines, a
password that he may use from other sites, and may not
even want to type in a password from a very untrusted site
(e.g. an Internet café). The user may also not yet have
some of the authentication methods available.

 As one method of allowing a user to build trust, we
will include a "vouched for by" field to be added to
authentication information. The intent of this feature is to
allow a user who has authenticated with a less secure
credential or no credential to be vouched for by one or
more better authenticated members who are also on-line.
The vouching would take place after a side conversation
(either on or off-line) has convinced the trusted member
of the authenticity of the untrusted member. The vouched
for field is only set for the duration of the session and
possibly can be rescinded by the vouching user. It is not
yet clear exactly what additional privileges having a
vouched for field should convey. We likely do not want
vouching for a user to allow the vouched for user to gain
more privileges than the vouching user has.

In summary, the authentication information that is
saved per session consists of the name (nickname) of the
user, the authentication method (certificate, password,
null), and, if applicable, one or more “Vouched for by”
fields that other users might have added after the user
authenticated into the session.

1.3. Authorization

It is likely that new users if they self-register will not
be able to register a username/password or a X.509
certificate when they first register. Some collaborations
will use the establishment of these credentials as coarse
authorization mechanisms; access to particular
capabilities might be gated by what authorization

mechanism was used to enter the collaboration. In this
case, adding a username/password and X.509 certificate to
the user’s registration would require the help of a trusted
user or administrator.

Alternatively, the system could allow self-registration
including all the authentication mechanisms. This would
make it easier for the user to provide these credentials but
makes it more difficult to perform authorization based
purely on the establishment of the credentials. In this case,
an authorization service or database would be used to
define what level of authorization each user has when they
authenticate with different mechanisms. If an authorization
server were present, it would also provide a method of
performing fine-grained authorization.

1.4. Escort

Another feature that we would like to explore is an
ability to provide an escort capability, which would allow a
trusted user to escort a less trusted user into an
environment where they would not normally be allowed.
The idea here is that the less trusted user is only allowed to
stay as long as the escort is with them. This idea will
likely need to be refined to work in systems that do not
revolve around a virtual space metaphor but it is an
important capability that is different from the vouched for
capability. In the escort capability, the idea is that the less
trusted user is continuously supervised by the trusted user.

Prototype Secure Chat server

The secure chat tool that is currently under
development within the Pervasive Collaborative
Computing Environment (PCCE) project at LBNL is
providing a prototype implementation environment for
investigating this incremental trust model.

Our current implementation is based on a client-server
model that supports client and server authentication and
encryption of messages exchanged over the network. In
order to leverage existing technologies, we modified a
public domain IRC server (IRCD hybrid) [6] to replace its
TCP sockets with SSL connections. To provide
persistence (e.g., unique nicknames and permanent venues)
and enhanced presence information independent of any one
chat server, we developed a custom PCCE server which
also provides authentication and authorization services.
Both the IRC and PCCE servers use only SSL network
connections and have their own X.509 credentials which
are presented to each other and to clients.

Users must pre-register with the PCCE server through
either a designated system administrator or a registered
user with administrative privileges. After having
registered, users log into the system via username and
password and can then use the client interface to edit their
own personal information and register their X.509

distinguished names. Subsequent login can be by either
certificate or username and password, and users who
authenticate by certificate are granted extended privileges
(e.g, the ability to create new user accounts and
permanent venues).

The architecture of the LBNLSecureMessaging system
is shown in Figure 1. The asynchronous messaging,
presence information, authentication (AuthN), and
authorization (AuthZ) services are components of the
PCCE (on the left). IRCD, on the right, implements the
text-based synchronous chat messages using the IRC
protocol. It queries the PCCE server for user
authentication and authorization. The client is a graphical
user interface shown at the bottom as “Client GUI.”

A client starts the LBNLSecureMessaging interface
and first establishes an SSL connection to the PCCE
server to log into the authentication service, which checks
the validity of the identifying information. If the login is
successful, the client then connects to the IRC server and
sends its authentication information and then the standard
IRC Nickname and {Username, Nickname, Host}

requests. The IRC server queries the PCCE authentication
server over an SSL connection before granting access. If
the client is allowed to join the chat facility, all other users
are sent the client’s presence information and method of
authentication.

The client’s SSL connections to both servers are kept
open to facilitate messaging and notification. All
synchronous chat messages go directly to the IRC server
which forwards them to targeted recipients through the
established connections. The PCCE server sends
notifications over established connections to the clients so
that users can update their views of the collaboration group
as other people join, change authentication and availability
status, and leave. In addition to locating collaborators,
users can view presence information (including current
method of authentication) to help decide how much to trust
other users (e.g., whether to initiate or respond to private
chat requests or send and reply to notes). This view is
shown in Figure 2.

Figure 1 - Diagram of Secure Chat service

1 – SSL connection
with server-only
authentication or
client/server
authentication

4 - send UserCert and Nick
or Nick and passwd

5 - user IS/ISNOT
authorized to join

PCCE
Presence Information

Asynchronous Messaging
AuthN
AuthZ

IRCD
Standard IRC

chat server

Client GUI
Registered users -
 Method - admin/self
Connected users -
 AuthN - cert/passwd

4
5

3, 7

Register or edit
registration info

Login 2 - Connected
user information

1, 6

2, 6

3 – SSL connection
with server-only or
client/server
authentication

6 – Open SSL connection
for presence info and
asynchronous messaging

7 – Open SSL connection
for synchronous
messaging

Figure 2 – The main window of the client interface

Users can start a one-to-one conversation with

someone. This is a private or invite-only channel that is
created when the invitee accepts an invitation from the
initiator. Other users may be invited by members in the
channel. Any private channel may be made public and
any public channel may be made private by the members
of the channel. Once a user has joined the chat session the
client GUI opens a connection to the PCCE server to find
out information about the other users. Personal
information currently includes user name, affiliation, job
title, and email address. Presence information includes
what venues (chat rooms or channels) a user is in and
availability status (e.g., available, busy, away, and others
we may add later).

There are several aspects of the incremental trust
model that still remain to be implemented in the system.
For example, allowing a user to escort another user,
allowing a user to vouch for another user, self-registration
of new users, and guest access. In the current
implementation the only access that is controlled is
whether a user can join the chat, whether a venue is public
or private, and invitations to enter private venues. We
plan to add access policy on a per venue level to give
finer control than just public/private. For example, some
venues might be open only to registered users, but not

guests. Individuals may also want to control who can see
their presence information. The authentication method of
the user as well as identity and other static attributes
should be considered as a factor in determining what
access and actions a user is allowed.

It is likely that the easiest enforcement mechanism for
IRCD authorization is the bot mechanism. Bots are
software agents commonly used in IRC systems that are
often equipped with administrative rights that reside in a
venue (or channel) and can manage the venue’s
characteristics and enforce the venue’s policy. We may
need to create bots that sit in the channel and manage it.
The bot would then need to interface with the PCCE
server or authorization server and enforce authorization
actions within the IRCD.

The current implementation of the
LBNLSecureMessaging system has approximately 44
registered users and has been in use for the last several
months. Our personal experience has been that the
multiple authentication mechanisms are very easy and
natural to use. The ability to log in with different
credentials based on the security of the current location of
the user has already proven to be extremely valuable
when on travel. In addition, the ability of any trusted
member to create new users when logged in with strong

authentication credentials has allowed dynamic inclusion
of new collaborators on-demand without waiting for
issuance of X.509 credentials or actions by the system
administrator. This immediate inclusion of new
collaborators is essential to early adoption by new users.

Related Work

The concept of trust has been studied extensively by
sociologists and psychologists and a great deal is known
about how people build and maintain trust. It is clear from
this research that trust is an essential ingredient of
effective collaborations [7]. Chopra and Wallace [3] have
extensively surveyed the literature on social trust and trust
in on-line systems, and have produced a set of definitions
to characterize trust. They have used these definitions to
produce a matrix of classes of electronic environments
and the kind of trust that is needed. They note that in on-
line relationships previous interactions, introductions and
referrals are important ingredients of building trust.
Unfortunately, software available today to support
collaborative activities does not provide any notion of
building trust. A user is either a member of the group and
thus trusted or not. Although proposals have been put
forward for capturing the trust in a collaborative system
such as the one in [8], these systems are generally very
complicated and unlikely to be useful in practice. Another
approach to building trust has been used in systems such
as e-bay which uses a rating and review system [1].

There are a variety of tools available to do on-line

authentication. The best known mechanisms include
username/password, shared key (e.g. Kerberos[8]), and
Public Key Infrastructure (PKI) [15]. Typically, an
environment will allow only one style of credential.
However, in widely distributed systems, such as Grids,
there is increasing interest in supporting several types of
credentials. Standard API’s such as GSS [11] and
protocols such as SAML [16] will support different kinds
of credentials, but the software that uses these
mechanisms normally only implements one type. For
example, while Globus [4] can use GSS implemented
with X.509 credentials or Kerberos tickets, the two do not
interact. The client and the server must both be using the
same type of credential. Since it is an added burden to
support different types of credentials, there must be a
clear need. We believe that with the increasing reliance on
X.509 certificates for strong authentication and the
difficulty that people have in obtaining, understanding
and managing such credentials, that there is a clearly
demonstrated need for multiple styles of authentication to
a single system. Most of the strongly secure
authentication tokens, such as X.509 certificates,
Kerberos or Unix ids, secure id cards or one-time
passwords, present a high entry level threshold. Such
credentials are essential for long-term access to many

resources, but are obstacles to acceptance for any ad-hoc
collaborative tool.

There are also many ways to do authorization. The
simplest to implement are based on access control lists
and flat groups such as are used in Unix. Authorization
servers that can be used in conjunction with PKI such as
Akenti[18] and the Community Authorization Service
(CAS) [13] are also available. A more recent
development is the use of third party trusted attribute
servers such as Shibboleth [2,17] and Passport [10,14]
from which a resource can get a user’s attributes or
privileges on which to base an access decision. A related
idea is the use of a privilege management system such as
PRIMA [12] that allows users to selectively use privileges
they hold when accessing resources and flexibly delegate
privileges for which they are authoritative to their peers.

In our model any type of authorization decision
function can be used, but it must not only know the
identity of the requestor, but also how he was registered
and authenticated since the access policy may be based
on such factors.

Conclusion

Although there are many mechanisms available for use
in securing systems, few of these systems allow the
development of trust in an incremental fashion. They
generally require that most of the trust be developed
before the user ever authenticates into the system for the
first time. Existing secure authentication tokens are hard
to manage, and the connection mechanisms systems can
be quite cumbersome. Sophisticated authorization features
that actually implement any differentiation in trust levels
between users often go unused because they are non-
intuitive and difficult to use.

We believe that the incremental trust model described
in this paper defines a system that is easy and intuitive to
use. As such, it will fit comfortably into a collaboratory
environment and be used to enhance security when
needed. Although we have only implemented a small
portion of the incremental trust model in our
LBNLSecureMessaging collaboration tool, we already see
significant benefits in the model.

Aknowledgements
This work was supported in part by the U.S.

Department of Energy, Office of Science, Mathematical,
Information and Computation Sciences under contract
DE-AC03-76SF0098 and by the Virginia Commonwealth
Information Security Center (CISC). This paper is also
available as LBNL Report number LBNL-52894.

References

1. J. Boyd, “In Community We Trust: Online Security

Communication at eBay,” In Journal of Computer
Mediated Communication, 7(3), April 2003.

2. S. Carmody, “Shibboleth Overview and
Requirements,” Internet2/MACE Shibboleth
Working Group Overview and Requirements
Document, February 20, 2001,
http://shibboleth.internet2.edu

3. K.Chopra and W.A.Wallace, “Trust in Electronic
Environments”, In Proceedings of HCISS-36, Jan.
2003

4. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke "A
Security Architecture for Computational Grids”.
IEEE Computer, 33(12):60-66, 2000.

5. R. Housley, W. Polk, W. Ford, D. Solo “Internet
X.509 Public Key Infrastructure Certificate and
CRL Profile”, RFC3380,
http://www.ietf.org/rfc/rfc3380.txt/, 2001

6. IRCD
ftp://ftp.blackened.com/pub/irc/ircservers/hybrid/ol
d

7. S. Jarvenpaa and D. Leidner, “Communication and
Trust in Global Virtual Teams,” In Journal of
Computer Mediated Communication, 3(4) June
1998.

8. S. Jones and S. Marsh, “Human-Computer-Human
Interaction: Trust in CSCW,” in the Special
Interest Group on Computer-Human Interaction
(SIGCHI) Bulletin, Vol. 29, No. 3, July 1997.

9. Kerberos: The Network Authentication Protocol”,
http://web.mit.edu/kerberos/www/.

10. D.P.Kormann and A.D.Rubin, “Risks of the
Passport Single Signon Protocol” Computer
Networks, Elsevier Science Press, vol. 33, pp 51-
88, 2000 , http://avirubin.com/passport.htm

11. J. Linn “Generic Security Service Application
Program Interface, version 2, update 1”, IETF
RFC2743. Jan 2000

12. M. Lorch, D. Kafura “Supporting Secure Ad-hoc
User Collaboration in Grid Environments”, Proc.
3rd Int. Workshop on Grid Computing, pp 181 –
193, Baltimore, USA, 18 November 2002

13. L. Pearlman, V. Welch, I. Foster, C. Kesselman,
and S. Tuecke, “A Community Authorization
Service for Group Collaboration,” in the 2002
IEEE Workshop on Policies for Distributed
Systems and Networks.

14. Microsoft Corporation “.NET Passport 2.0
technical overview” Microsoft Corporation
06/03/2002

15. PKI Basics: A Technical Perspective,
http://www.pkiforum.org/pdfs/PKI_Basics-
A_technical_perspective.pdf.

16. SAML “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML)”
Committee Specification 01, 31 May 2002

17. Internet2 Shibboleth Project, “Shibboleth

Architecture “
http://shibboleth.internet2.edu/docs/draft-internet2-
shibboleth-arch-v05.pdf, 2 May 2002

18. M. Thompson, A. Essiari, S. Mudumbai,
“Certificate-based Authorization Policy in a PKI
Environment,” ACM Transactions on Information
and System Security, Aug 2003

Disclaimer

This document was prepared as an account of work
sponsored by the United States Government. While this
document is believed to contain correct information,
neither the United States Government nor any agency
thereof, nor The Regents of the University of California,
nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency
thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof, or The Regents of the
University of California.

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.

