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ARTICLE OPEN

The impact of adjusting for baseline in pharmacogenomic
genome-wide association studies of quantitative change
Akinyemi Oni-Orisan 1,2*, Tanushree Haldar2, Dilrini K. Ranatunga3, Marisa W. Medina 4, Catherine Schaefer 3, Ronald M. Krauss4,5,
Carlos Iribarren3, Neil Risch2,3,6,7 and Thomas J. Hoffmann 2,6,7

In pharmacogenomic studies of quantitative change, any association between genetic variants and the pretreatment (baseline)
measurement can bias the estimate of effect between those variants and drug response. A putative solution is to adjust for
baseline. We conducted a series of genome-wide association studies (GWASs) for low-density lipoprotein cholesterol (LDL-C)
response to statin therapy in 34,874 participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort as
a case study to investigate the impact of baseline adjustment on results generated from pharmacogenomic studies of quantitative
change. Across phenotypes of statin-induced LDL-C change, baseline adjustment identified variants from six loci meeting genome-
wide significance (SORT/CELSR2/PSRC1, LPA, SLCO1B1, APOE, APOB, and SMARCA4/LDLR). In contrast, baseline-unadjusted analyses
yielded variants from three loci meeting the criteria for genome-wide significance (LPA, APOE, and SLCO1B1). A genome-wide
heterogeneity test of baseline versus statin on-treatment LDL-C levels was performed as the definitive test for the true effect of
genetic variants on statin-induced LDL-C change. These findings were generally consistent with the models not adjusting for
baseline signifying that genome-wide significant hits generated only from baseline-adjusted analyses (SORT/CELSR2/PSRC1, APOB,
SMARCA4/LDLR) were likely biased. We then comprehensively reviewed published GWASs of drug-induced quantitative change and
discovered that more than half (59%) inappropriately adjusted for baseline. Altogether, we demonstrate that (1) baseline
adjustment introduces bias in pharmacogenomic studies of quantitative change and (2) this erroneous methodology is highly
prevalent. We conclude that it is critical to avoid this common statistical approach in future pharmacogenomic studies of
quantitative change.

npj Genomic Medicine             (2020) 5:1 ; https://doi.org/10.1038/s41525-019-0109-4

INTRODUCTION
Pharmacogenomic studies of continuous (quantitative) pheno-
types most commonly identify genetic determinants of the
change between pretreatment (baseline) and on-treatment levels
from the administration of a therapeutic drug intervention. This
approach has improved statistical power in detecting a genetic
effect over using dichotomous outcomes (i.e., case-control
design), especially when the dichotomous outcome is rare.1

A critical objective of this type of analysis is to identify genetic
effects on drug-induced changes independent of the baseline
value, especially when it is known that the baseline value itself has
a strong genetic component. Any association between genetic
variants and the baseline measurement can produce a false-
positive association between that variant and the drug response
phenotype. A putative solution is to add the baseline value as a
covariate to the linear regression model. However, it has been
documented in multiple studies of statistics and epidemiology
that this analytical approach (adjusting for baseline) may
introduce the bias that it seeks to prevent.2–6

Here, we present the results for a series of statin-induced low-
density lipoprotein cholesterol (LDL-C) response genome-wide
association studies (GWASs) as a case example illustrating that the
bias introduced when adjusting for baseline also applies to
pharmacogenomic analyses. We also report the results of a

comprehensive literature search to determine the prevalence of
adjusting for baseline in pharmacogenomic studies.

RESULTS
Population and genetic characteristics
A total of 34,874 statin users from the GERA cohort met the criteria
for inclusion. The study population was multiethnic (Supplemen-
tary Table 1). The median percent reduction in LDL-C from statin
treatment was 35% (interquartile range (IQR), 24−45%). There
were 17,708,023, 16,329,859, 8,984,232, and 10,307,784 variants
that remained for analyses in White/European, Black/African, East
Asian, and Hispanic/Latino participants, respectively. Of these,
13,250,765 variants were shared between two or more race/
ethnicity groups: these were carried forward for the GWASs. There
was no evidence of genomic inflation7 based on a genomic
inflation factor (λ) value of 0.997 in the combined population (for
baseline-unadjusted percent change in LDL-C from statin therapy).
Likewise, the genomic inflation factor within each race/ethnicity
group was 1.001, 1.001, 1.005, and 0.983 for White/European,
Black/African, East Asian, and Hispanic/Latino participants,
respectively.
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The impact of phenotype and baseline-adjustment in GWASs of
statin LDL-C response
The GWAS of statin LDL-C response using the Postmus et al.
definition (the difference of natural log-transformed baseline and
on-treatment LDL-C levels adjusted for the natural log-
transformed baseline level) revealed variants from six loci that
met genome-wide significance (SORT/CELSR2/PSRC1, LPA,
SLCO1B1, APOE, APOB, and SMARCA4/LDLR; Fig. 1a, Table 1). In
contrast, the GWAS of statin LDL-C response using our previous
definition (statin-induced LDL-C percent lowering without adjust-
ment for baseline LDL-C) yielded only three loci that met genome-
wide significance: LPA, SLCO1B1, and APOE (Fig. 1b, Table 1). It was
unknown if the phenotype itself, baseline-adjustment, or both
were impacting this discrepancy in results (i.e., the discrepant
count of significant genome-wide loci). When we altered the
Postmus et al. definition so that baseline was not included as a
covariate (the difference of natural log-transformed baseline and
on-treatment LDL-C levels without adjustment for baseline), we
identified only the three same loci as statin-induced percent LDL-C
lowering without baseline adjustment (LPA, SLCO1B1, and APOE;
Fig. 1c). This suggested that baseline-adjustment was impacting
the number of significant genome-wide loci. The GWAS of statin-
induced percent LDL-C lowering with adjustment for baseline
LDL-C identified the same six loci as the Postmus et al. definition
(SORT/CELSR2/PSRC1, LPA, SLCO1B1, APOE, APOB, SMARCA4/LDLR;
Fig. 1d), further confirming the impact of baseline-adjustment on
results. Taken together, when baseline LDL-C was included as a
covariate in the GWAS regression model, six loci met genome-
wide significance; when baseline was not included as a covariate,
three loci met the threshold of genome-wide significance. Effect
size magnitude and direction did not vary significantly by race/
ethnicity (Table 1, Supplementary Tables 2–5).
We then conducted an interaction test, a genome-wide

heterogeneity test of statin baseline versus on-treatment LDL-C
levels, as the definitive test for the true effect of genetic variants
on statin-induced LDL-C change. Findings were generally

consistent with the baseline-unadjusted models: variants from
LPA and APOE met genome-wide significance and variants from
SLCO1B1 met suggestive significance (Fig. 2, Table 2).
Separate GWASs of baseline and on-treatment LDL-C levels

each revealed multiple genome-wide associations as expected
(Supplementary Figs. 1 and 2). Notably, among the three loci
meeting genome-wide significance only when baseline was
adjusted for (and not in the analyses of baseline-unadjusted
phenotypes), all were also significantly associated with baseline
LDL-C levels at the genome-wide level: SORT/CELSR2/PSRC1, APOB,
SMARCA4/LDLR (Table 1). In contrast, among the three loci
identified in the unadjusted analyses (LPA, SLCO1B1, APOE), only
APOE was associated with baseline LDL-C levels (Table 1).

Baseline adjustment in previous genome-wide pharmacogenomic
studies of quantitative change
Among GWAS studies in the NHGRI-EBI GWAS Catalog, 59
included ≥1 quantitative drug response phenotype (using base-
line and on-treatment measures) where covariates were added to
the linear regression model (Supplementary Table 6). These
studies investigated drug response to a variety of disease
biomarkers including asthma, diabetes, dyslipidemia, hyperten-
sion, schizophrenia, depression, and others. Among the 59, 35
(59%) adjusted the drug-induced change phenotype for baseline
values. At the time of the literature search, the year of publication
for these studies ranged from 2009 to 2018. A majority of the
studies (21 of 35; 60%) were published within the last 3 years from
the time of literature search (2016 to 2018).

DISCUSSION
An important source of bias in studies of quantitative change is
the potential impact of the baseline measurement on the change.
In this report, we extend the work of previous studies on this topic
to the field of pharmacogenomics through a series of genome-
wide analyses. We demonstrate that the number of significant
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Fig. 1 Manhattan plots for a series of genome-wide association studies (GWAS) of statin-induced low-density lipoprotein cholesterol
(LDL-C) response, highlighting key chromosomal regions. A GWAS for baseline-adjusted difference of natural log-transformed LDL-C levels
yielded six significant loci (a), whereas a GWAS of baseline-unadjusted statin-induced percent LDL-C lowering yielded three loci that met
genome-wide significance (b). Consistent with the impact of baseline-adjustment on results, baseline-unadjusted difference of natural log-
transformed LDL-C levels (c) and baseline-adjusted statin-induced percent LDL-C lowering (d) yielded three and six genome-wide significant
loci, respectively. All tests were two-sided.
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associations can be strongly influenced by baseline adjustment.
We also suggest, through the results of a systematic literature
search, that confusion exists surrounding baseline adjustment in
recent pharmacogenomic studies of quantitative change.
An excellent paper that touched on this topic was published in

2008 (online) by McArdle and Whitcomb.8 In this publication, the
authors used simulations with blood pressure measurements of
the HAPI Heart Study (the mean, distribution, and measurement
error of the blood pressures were simulated; observed measure-
ments from the HAPI Heart Study were used to ensure the
measurements were biologically plausible) and genotype data for
loci in an area of chromosome 2q to demonstrate the bias
introduced from adjusting for baseline in genetic association
studies. However, at the time of that publication, there were less
than a dozen pharmacogenomic GWASs published with only a
few investigating phenotypes of quantitative change.9 In the
current study, we use full-genome and real-world (not simulated)
data to report the false-positives that appear as a result of
baseline-adjustment in pharmacogenomic studies. Furthermore,
now that a decade has passed since the McArdle and Whitcomb
article (allowing time for the number of published pharmacoge-
nomic GWASs to accumulate), we also report the prevalence of
analyses performing this improper baseline-adjustment approach.

It turns out that a likely source of this bias is the “regression
toward the mean” phenomenon.2,3 Briefly, baseline values should
not necessarily impact the quantitative change. However, any
measurement error in the baseline value will produce a false
statistical correlation between the baseline and change.6 This is
because any baseline measurement error will be negatively
correlated with an observed change (e.g., baseline error in the
positive direction from the true baseline measurement value will
show an observed change in the negative direction: enhanced
reduction if the true change causes a reduction in value or
attenuated increase if the true change increases the value). The
error in the second measurement will not produce changes of a
great enough magnitude to balance out changes from errors in
the baseline measurement. Accordingly, any association between
a covariate in the model and the apparent baseline value will also
falsely correlate with the quantitative change, since there is now
an artificial statistical relationship between baseline and change.
Thus the “regression toward the mean” in this case of quantitative
change is related to the error for the second measurement, which
is likely to be less extreme than the original baseline measurement
error. This is the case whether the baseline error is at a positive or
negative extreme. Importantly, measurement error must be
present for this biasing to occur. However, all laboratory values

Table 1. All six lead variants from the genome-wide significant meta-analysis loci for baseline-adjusted difference of natural log-transformed statin
on- and baseline low-density lipoprotein cholesterol levels by statin response variable in combined race/ethnicity groups (N= 34,874).

Gene SNP CHR BP Minor
allele

MAF Statin response
variablea

Beta (SE)b P value Cochrane’s Q
statistic P valuec

I^2 heterogeneity
index (0–100)c

SORT1 rs7528419 1 109817192 G 0.198 Baseline-adjusted −0.019 (0.002) 9.55E-18 0.944 0

Baseline-unadjusted −0.046 (0.010) 3.59E-06d 0.496 0

Interaction 0.009d

Baseline only −0.035 (0.002) 1.57E-54 0.352 8

APOB rs1713222 2 21271323 A 0.145 Baseline-adjusted −0.013 (0.002) 4.68E-08 0.255 26

Baseline-unadjusted −0.031 (0.011) 5.05E-03d 0.455 0

Interaction 0.176d

Baseline only −0.027 (0.003) 1.09E-26 0.670 0

LPA rs10455872 6 161010118 G 0.068 Baseline-adjusted 0.042 (0.003) 1.01E-33 0.128 51

Baseline-unadjusted 0.179 (0.016) 4.24E-30 0.160 45

Interaction 1.21E-11

Baseline only 0.008 (0.003) 0.019d 0.593 0

SLC01B1 rs58310495 12 21357711 T 0.179 Baseline-adjusted 0.015 (0.002) 4.58E-11 0.225 31

Baseline-unadjusted 0.069 (0.010) 7.48E-12 0.247 28

Interaction 5.83E-04d

Baseline only −0.001 (0.002) 0.622d 0.489 0

SMARCA4/
LDLR

rs67337506 19 11207982 C 0.250 Baseline-adjusted −0.012 (0.002) 3.08E-08 0.602 0

Baseline-unadjusted −0.033 (0.010) 8.41E-04d 0.609 0

Interaction 0.043d

Baseline only −0.017 (0.002) 1.26E-13 0.162 42

APOE rs7412 19 45412079 T 0.070 Baseline-adjusted −0.068 (0.004) 1.08E-78 0.35 5

Baseline-unadjusted −0.202 (0.016) 1.46E-36 0.229 32

Interaction 7.89E-19

Baseline only −0.086 (0.004) 1.67E-118 0.068 63

BP base pair, CHR chromosome, MAF minor allele frequency, SE standard error, SNP single nucleotide polymorphism
aBaseline-adjusted difference of natural log-transformed statin on- and baseline low-density lipoprotein cholesterol levels, baseline-unadjusted statin-induced
percent low-density lipoprotein cholesterol lowering, interaction of natural log-transformed statin on- versus baseline low-density lipoprotein cholesterol
levels, and natural log-transformed baseline low-density lipoprotein cholesterol level
bFixed effects calculated with respect to the minor allele. A negative value indicates more intense statin LDL-C lowering
cRefers to the variation on results between race/ethnicity groups
dNot reaching genome-wide significance (P < 5E-08)
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inherently have some degree of analytical error. Thus, adjusting
for baseline has the potential to bias data regardless of study,
disease state, or phenotype.
In regards to the current study, we previously estimated overall

measurement error in LDL-C values from the GERA cohort to be
34%.10 Since statin therapy generally produces large reductions in
LDL-C levels, any error in baseline LDL-C levels in a positive
direction (for example) from the true LDL-C value will tend to be
associated with falsely larger reductions in LDL-C than in actuality.
An error in the statin on-treatment LDL-C level that is also in the
positive direction would have an opposite correlation on LDL-C
change (compared to the aforementioned baseline LDL-C
measurement error in the positive direction). But as stated above,
extreme error in baseline levels is not balanced out by the error
from the second measurement of LDL-C due to “regression toward
the mean”. This imbalance results in a false correlation between
baseline LDL-C levels and statin LDL-C response (i.e., a more
positive apparent baseline level is correlated with larger statin
LDL-C reduction and vice versa). Accordingly, the addition of
baseline LDL-C to a regression model of statin LDL-C change will
produce false correlations between any covariate that is truly
associated with baseline (e.g., genetic variants) and the quantita-
tive change. It should be mentioned that regardless of whether
the response variable is in units of percent reduction from
baseline (%) or absolute difference (mg/dL), this principle holds as
our data shows (Supplementary Table 7).
In addition to the aforementioned large measurement error of

LDL-C levels, it is established that untreated (baseline) LDL-C is
highly heritable with several genome-wide predictors.10 Both
features of LDL-C make GWASs of statin-induced LDL-C response a
good case study to illustrate the impact of baseline adjustment in
pharmacogenomic studies of quantitative change.

To demonstrate the impact of baseline adjustment, we used
two regression models (either adjusting for baseline or not) for
each of two statin-induced LDL-C change phenotypes. We found
that adjusting for baseline led to more genome-wide associations
compared to unadjusted models (6 versus 3 hits). Unlike the effect
of baseline adjustment in the regression model, the specific
phenotype (statin-induced percent LDL-C lowering vs. the
difference of natural-log-transformed LDL-C levels) had no impact
on results. We then performed a genome-wide heterogeneity
study investigating the interaction of statin treatment on genetic
variant LDL-C effects. These results mirrored our baseline-
unadjusted findings confirming the appropriateness of not
adjusting for baseline in our regression models. We believe that
the extra genome-wide hits (SORT1, APOB, SMARCA4/LDLR) from
the baseline-adjusted analyses are false-positives. All three of
these loci were found to be strong predictors of baseline LDL-C in
our current report as well as in previous studies.10

Ultimately, we identified three unconfounded genome-wide
significant loci of statin-induced LDL-C response: LPA, APOE,
SLCO1B1. These loci have been previously identified among the six
past GWASs of statin LDL-C response.11–16 Specifically, multiple
GWASs (including baseline-unadjusted analyses) have shown
associations between LPA and APOE with statin response. Only
one previous study (Postmus et al.) identified SLCO1B1 as a
genome-wide hit.15 As a meta-analysis (19 observational and RCT
studies covering 40,914 European participants), this is the only
previous GWAS that investigates genetic predictors of statin LDL-C
lowering with a sample size that is comparable to the current
report; other studies may not have had the statistical power to
identify SLCO1B1 at the genome-wide level.
Along with LPA, APOE, and SLCO1B1, Postmus et al. also

reported SORT1 as a genome-wide predictor of statin LDL-C

Chromosome
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)P
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APOE

SLCO1B1

Fig. 2 Manhattan plot for the genome-wide heterogeneity test of baseline versus statin on-treatment low-density lipoprotein
cholesterol (LDL-C) levels. Results analyzing the interaction of genetic variants on statin LDL-C response revealed variants from two loci that
met genome-wide significance and variants from one loci that met suggestive statistical significance. A Cochran’s Q test comparing baseline
versus on-treatment betas was performed to test the gene−drug interaction of each variant. All tests were two-sided.

Table 2. Lead variants of the significant loci from the genome-wide heterogeneity test of baseline versus statin on-treatment low-density lipoprotein
cholesterol levels in combined race/ethnicity groups (N= 34,874).

Gene SNP CHR BP Minor allele MAF Baseline betaa On-treatment betaa P value I^2 heterogeneity index (0–100)b

LPA rs10455872 6 161010118 G 0.068 0.008 (0.004) 0.048 (0.004) 1.21E-11 98

SLC01B1 rs73079476 12 21343833 C 0.152 0.0004 (0.004) 0.016 (0.004) 4.49E-07c 96

APOE rs7412 19 45412079 T 0.070 −0.086 (0.003) −0.128 (0.003) 7.89E-19 99

BP base pair, CHR chromosome, MAF minor allele frequency, SNP single nucleotide polymorphism
aFixed effects calculated with respect to the minor allele
bRefers to the variation on results between baseline versus statin on-treatment low-density lipoprotein cholesterol levels
cSuggestive of genome-wide significance (P < 1E-05)
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response.15 However, a baseline-adjusted phenotype was used to
perform this GWAS. Of note, though the inclusion of baseline in
the regression increases the chances of false-positives, it does not
warrant a complete dismissal of all results generated with this
approach (some of which may be true positives). That being
stated, there are multiple lines of evidence suggesting that SORT1
may not be a true genetic predictor of statin-induced LDL-C
change. First, in a post-hoc interaction study, Postmus et al.
demonstrated that among their four genome-wide significant hits,
while LPA, APOE, and SLCO1B1 showed a significant interaction (or
suggestive interaction) with statin effect at the genome-wide
level, the interaction P value for the SORT1 hit was far from
genome-wide significant (P= 0.047). Second, our interaction
results of the current study were similar to the above interaction
results (top hit for SORT1 [rs7528419] interaction P value= 0.009).
Third, Postmus et al. showed that while adjusting for measure-
ment error at LPA, APOE, and SLCO1B1 only modestly attenuated
the apparent genetic effect with statin LDL-C response, the
measurement error-adjusted effect for SORT1 was dramatically
attenuated (by 65 to 68%). And finally our own baseline-adjusted
results of the current study replicated all 4 hits reported by
Postmus et al. providing a positive control that SORT1 is only
associated with LDL-C response to statins when baseline LDL-C
levels are inappropriately added to the model as a covariate.
Further studies are necessary investigating the role of SORT1
variants in statin-induced LDL-C lowering.
To assess how commonly baseline adjustment had been

conducted in pharmacogenomic studies, we systematically reviewed
GWASs of drug-induced quantitative change. We determined that
the majority of studies performed flawed baseline-adjusted analyses.
Furthermore, we found that most of the studies were published in
recent years. Clearly, this type of error is widespread in the
pharmacogenomics community and persists today, though it is
unknown how many false-positive associations have been dissemi-
nated due to this practice. As the use of quantitative biomarkers for
drug efficacy and safety continues to grow in pharmacogenomics
research, it is important that this erroneous approach is avoided in
future studies to prevent any further reporting of false-positive
genetic associations in the literature.
Approaches beyond using baseline as a regression covariate

include matching, stratifying, and excluding patients by baseline
value. These methods generate the same bias as the baseline
covariate.3 Another approach is to use the baseline-adjusted on-
treatment level alone (rather than quantitative change) as the
response variable. This method has high statistical power and
performs well in randomized controlled trials, but induces large
biases with more heterogeneous observational data.17 We
confirmed this bias in a GWAS of statin on-treatment LDL-C
adjusted for baseline LDL-C (Supplementary Table 8), which also
produced false-positive genome-wide hits similar to other
baseline-adjusted analyses in the current report. One may also
adjust for baseline measurement error variance.2 However, this
approach requires an estimate of measurement error variance
(e.g., through repeat measures), which many not be feasible to do.
Furthermore, the impact of regression to the mean may not be
adequately removed through this approach.18

These consequences of baseline-adjusted analyses also apply to
the pharmacogenetic candidate gene approach with phenotypes
of quantitative change. This is because a common method in
candidate gene studies is to compare mean change between
groups defined by genotype or haplotype using analysis of
covariance (ANCOVA) to adjust for baseline. Past studies in
statistics show that the “regression toward the mean” principle
described in this current work occurs for ANCOVA.19,20

Evidently, no options are free of limitations. We generally
recommend that researchers performing pharmacogenomic
studies of quantitative change observe the following best
practices: (a) use multiple baseline measures if available to

reduced measurement error, (b) perform baseline-unadjusted
analyses on change response variables, and (c) perform interaction
analyses (e.g., baseline vs. on-treatment) to confirm the true
genetic effects on drug response.
Our results support that of not adjusting for baseline in GWASs

of quantitative change. A concerted effort from the scientific
community to implement appropriate statistical approaches in
pharmacogenomic studies will improve the reporting of true
genetic determinants of drug response in the literature and
ultimately improve the translation of pharmacogenomic discovery
into clinical application.

METHODS
Data source and study population
We used electronic health records (EHRs) from the Kaiser Permanente
Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort
as previously described.21–23 Lipid panel measurements, statin dispensing
records, and other medical records from individuals who initiated statin
therapy between 1996 and early 2018 were extracted for the study. We
used the same methods as previously described to define a new statin user
and classify individuals by cardiovascular risk factor status (hypertension,
diabetes, cigarette smoking status).23 Briefly, participants had to have ≥2
dispensing records of a statin (to exclude potentially nonadherent
participants) as well as ≥1 lipid measurement before and after statin
initiation (to determine statin LDL-C response). Approval was obtained
from Kaiser Permanente and University of California Institutional Review
Boards. Participants gave written informed consent.

Phenotype
We used a pair of lipid measurements from each participant: the most
recent pretreatment level (designated as the baseline) and earliest on-
treatment LDL-C from the EHRs before and after statin initiation,
respectively. On-treatment LDL-C values had to have been measured
within a time frame starting 3 weeks after statin initiation and ending
3 weeks after the initial statin fill days’ supply. Lipid measurements within
the time frame of a non-statin LDL-C therapy (bile acid sequestrants,
ezetimibe, fibrates, prescription niacin, and prescription omega-3 fatty
acids) were excluded. All lipid measurement data collected from the EHRs
were fasting levels, were obtained in the course of patient care, and were
assayed in Kaiser Permanente laboratories, as previously described.10,23

From the pair of LDL-C measurements per participant, we calculated statin
LDL-C response using two formulas. The first formula was based on the
definition of Postmus et al.15 as the difference between the natural log-
transformed baseline LDL-C (X) and on-treatment LDL-C (Y) values adjusted
for the natural log-transformed baseline value: ln(Y)− ln(X) adjusted for ln
(X). The second formula was a percent change in LDL-C from statin therapy
that we used previously.23 Briefly, response was expressed as (Y− X)/X.
Both phenotypes were adjusted for the following prespecified covariates
(at the time of statin initiation) within self-reported race/ethnicity groups
for each participant: age, sex, body mass index (BMI), statin type, statin
dose, hypertension, diabetes, and cigarette smoking (current/former). Each
race/ethnicity group (White/European, Black/African, East Asian, and
Hispanic/Latino) was analyzed separately. Participants who did not self-
identify within these four race/ethnicity groups were excluded. Statin dose
adjustment was based on a revised defined daily dose equivalency table as
previously described.23 Genetic ancestry eigenvectors previously gener-
ated from principal component analyses within the race/ethnicity groups
were also included as covariates.21 In particular, the first ten eigenvectors
for White/Europeans and the first six eigenvectors for Black/Africans, East
Asians, and Hispanic/Latinos were included as covariates. The additional
eigenvectors in White/Europeans were to ensure robustness against any
potential minute population structure variation that might be detected
within this larger race/ethnicity group. To investigate the impact of
adjusting for baseline LDL-C values, both calculations of statin LDL-C
response were performed with and without baseline adjustment. This
resulted in four phenotypes (regression models) within each race/ethnicity
group for interrogation of genome-wide variants: ln(Y)− ln(X) adjusted for
ln(X), (Y− X)/X, ln(Y)− ln(X), and (Y− X)/X adjusted for X. Residuals were
rank-normalized for the two phenotypes that were not already trans-
formed: (Y− X)/X and (Y− X)/X adjusted for X.
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Genotype
Study participants were previously genotyped on one of four Affymetrix
Axiom arrays (ranging from 674,518 to 893,631 variants) based on self-
reported race/ethnicity.21,22,24 Imputation was performed to the 1000
Genomes Project (Phase I integrated release, March 2012, with August
2012 chromosome update),10 as has been described. Only common
variants were included in the analysis. For Black/Africans, East Asians, and
Hispanic/Latinos, minor allele frequencies >1% were considered common
variants. Due to a larger sample size, a more liberal minor allele frequency
threshold (>0.05%) was used to define common variants in White/
Europeans. These minor allele frequency thresholds ensured a minimum
minor allele count of ten within each race/ethnicity group.

Statistical analysis
Residuals derived from the above regression models (four response
formulas for each of four race/ethnicity groups) were evaluated as a
function of genotype using multiple linear regression in an additive model
of inheritance. For imputed variants, the phenotypes were evaluated as a
function of allelic dosage.25 A fixed-effects meta-analysis of the combined
race/ethnicity groups was then conducted to generate the final genome-
wide association results (for each of the four phenotypes). We also
conducted repeat GWASs with untransformed residuals for the (Y− X)/X
phenotype to approximate an effect size (beta) of the associations in the
units of percent change from baseline. Finally, we performed an interaction
analysis to determine the effect of statin on baseline versus on-treatment
LDL-C values. For this, we first ran regression analyses on the natural log-
transformed baseline and on-treatment LDL-C values to generate residuals
for ln(X) and ln(Y), respectively. For ln(Y), we adjusted for the following
covariates analogous to the statin LDL-C response phenotypes described
above: age, sex, BMI, statin type, statin dose, hypertension, diabetes,
cigarette smoking (current/former) and genetic ancestry eigenvectors in
population-stratified analyses. A similar regression model was used for ln
(X) except statin type and statin dose were not added to the model. The
beta of each variant was then generated for baseline and on-treatment
LDL-C values by conducting GWAS of the ln(X) and ln(Y) residuals,
respectively. A Cochran’s Q test (genome-wide heterogeneity test)
comparing baseline versus on-treatment betas was performed to test
the gene−drug interaction of each variant. For all genome-wide analyses,
P < 5 × 10−8 was considered to meet genome-wide significance and P <
1 × 10−5 was considered to be suggestive of an association. Significant/
suggestive variants >0.5 Mb from each other were considered to be from
independent loci. Statistical analyses were conducted with R (R Foundation
for Statistical Computing, version 3.5.1, https://www.R-project.org/) and
PLINK (version 1.07, http://pngu.mgh.harvard.edu/purcell/plink/).26 All
statistical tests were two-sided.

Literature search
We conducted a comprehensive review of previous GWASs from an online
resource maintained by the National Human Genome Research Institute
(NHGRI-EBI GWAS Catalog; accessed 02/07/19)27 and determined how
often drug response studies included quantitative change phenotypes that
adjusted for baseline. We accomplished this in three stages. In stage 1, we
used four search terms (“pharm”, “drug”, “treat”, “response”) to select for
GWASs of drug response phenotypes. Studies that included ≥1 of these
search terms in its title or disease/trait description were carried forward for
further review. In stage 2, the studies selected from stage 1 were manually
reviewed to: (1) confirm that the studies included a phenotype of a
pharmacologic intervention in humans, (2) select only studies that
included ≥1 phenotype(s) of change in a quantitative measurement (as a
response to a pharmacologic intervention), and (3) select only studies that
included clinical or demographic covariates in the linear regression model.
Phenotypes of vaccine effects, antibody titer response, drug-treated cell
lines, and pharmacokinetic metrics were not considered phenotypes of
drug response for the purposes of this study. We also excluded drug−gene
interaction studies not involving quantitative change phenotypes (i.e.,
baseline versus on-treatment measurement values), abstracts, and
sensitivity analyses of an exploratory nature. Moreover, studies using the
ANCOVA approach were inherently excluded, as GWASs of quantitative
change are primarily regression analyses. In stage 3, among the final set of
studies selected from stage 2, we determined the proportion of studies
that included baseline as a covariate in the regression model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Genotype data are available on approximately 78% of GERA participants from the
database of Genotypes and Phenotypes (dbGaP) under accession phs000674. v1.p1.
This includes individuals who consented to having their data shared with dbGaP. The
complete GERA data are available upon application to the Kaiser Permanente
Research Bank Portal (https://researchbank.kaiserpermanente.org/for-researchers/).
Summary statistics will be made publicly available from the National Human Genome
Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog,
(https://www.ebi.ac.uk/gwas/downloads/summary-statistics).
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