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Abstract 
The Playbook Workflow Builder (PWB) is a web-based platform to dynamically construct 

and execute bioinformatics workflows by utilizing a growing network of input datasets, 

semantically annotated API endpoints, and data visualization tools contributed by an eco-

system of collaborators. Via a user-friendly user interface, workflows can be constructed 

from contributed building-blocks without technical expertise. The output of each step of 

the workflow is added into reports containing textual descriptions, figures, tables, and 

references. To construct workflows, users can click on cards that represent each step in a 

workflow, or construct workflows via a chat interface that is assisted by a large language 

model (LLM). Completed workflows are compatible with Common Workflow Language 

(CWL) and can be published as research publications, slideshows, and posters. To 

demonstrate how the PWB generates meaningful hypotheses that draw knowledge from 

across multiple resources, we present several use cases. For example, one of these use 

cases prioritizes drug targets for individual cancer patients using data from the NIH Com-

mon Fund programs GTEx, LINCS, Metabolomics, GlyGen, and ExRNA. The workflows 

created with PWB can be repurposed to tackle similar use cases using different inputs. 

The PWB platform is available from: https://playbook-workflow-builder.cloud/.
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Introduction
The rate of growth in diversity and volume of biological and biomedical data is rapidly 
increasing. This rapid growth poses challenges for our ability to discover, access, interoperate, 
integrate, and analyze these data. Although hundreds of bioinformatics tools and databases 
are published each year, few efforts aim to organize and integrate all these resources into 
integrative platforms. As biological and biomedical data analyses become increasingly more 
complex and customized, and at the same time more standardized, workflow engines and 
workflow languages that combine tools and databases are needed [1–5]. Although there are 
many bioinformatics workflow engines and workflow languages (S1 Table), each of these 
resources has advantages and disadvantages. Broadly, workflow engines modularize data anal-
ysis tasks into steps that can be performed in isolation. Capturing dependencies between each 
step facilitates stringing them into workflows. Most workflow engines and workflow languages 
are task-agnostic and operate at the command-line interface (CLI).

Some of the first generation workflow platforms geared towards bioinformatics were Ruf-
fus [6], Anduril [7,8], Bioconductor workflows [9], and Taverna [10,11]. Ruffus and Anduril 
are Python libraries that make it easier to combine analysis from multiple tools. Taverna was a 
larger project that was initially called Taverna Workbench and later Apache Taverna. It could 
be operated as a desktop application, CLI, or via a remote execution server. Taverna was cou-
pled with a catalog of workflows called BioCatalogue [12]. With the arrival of the cloud and 
due to rapid expansion in the availability of bioinformatics tools, the original platforms such 
as Ruffus and Taverna were superseded with platforms that offered more features and flexi-
bility. These platforms are led by Galaxy [13–17] an internationally large-scale well-funded 
project that offers many features including a user interface (UI), a library of components, and 
extensive user training. Alternatives to Galaxy include platforms such as Snakemake [18,19] 
and NextFlow [20].

Two leading community standardized workflow languages are Common Workflow Lan-
guage (CWL) [21] and Workflow Description Language (WDL) [22], both of these standards 
decouple the workflow specification from the task management and execution. CWL can 
be executed by cloud workspaces that implement the Global Alliance for Genomics and 
Health (GA4GH) Workflow Execution Service (WES) API [23]. Two leading cloud platforms 
that implement WES are CAVATICA [24] and Terra [25]. Other examples of community 
standards developed to encode metadata about workflows include BioCompute Objects, a 
JavaScript Object Notation (JSON) schema validatable IEEE standard (IEEE 2791-2020) that 
is published in the BioCompute Object portal repository [26], and WorkflowHub [27]. Work-
flowHub describes workflows by adopting the Research Object Crate (RO-Crate) standard 
[28] leveraging schema entities from BioSchemas [29].

Besides the workflow engines mentioned above, there are also many efforts for facilitating 
the construction of bioinformatics analyses by combining tools to perform various parts of a 
scientific report. For example, BioConductor [9] is a repository of curated R packages for bio-
informatics tools that can interoperate with one another. The thousands of publicly available 
bioinformatics tools and databases with APIs gave rise to another class of systems tangentially 
related to workflow engines. These are federated knowledge graphs (KGs). Examples of such 
systems include the BioThings Explorer [30] which invokes APIs documented and registered 
with the SmartAPI registry [31] to dynamically resolve edges between two destination data 
types. BioThings Explorer is related to the Translator project [32,33] which operates similarly 
but with a UI. caGrid [34], BioMoby [35], and Mobyle [36] are platforms for constructing 
API-based workflows and the Semantic Automated Discovery and Integration (SADI) [37] 
is a way to annotate bioinformatics web-services with semantics for the purpose of API 
interoperation.
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Another class of workflow engines are bioinformatics applications that enable users to 
upload their data into a cloud environment and then select from a collection of tools to 
produce a single workflow that produces a report. For example, BioJupies [38] is a workflow 
engine for performing RNA-seq analysis in the cloud. Users of BioJupies can start with a gene 
count matrix, or raw FASTQ files. After these files are uploaded, the user can pick from a 
collection of tools that will be executed in a Jupyter Notebook to produce a report that resem-
bles a publication [39]. The BioJupies platform was later extended to enable analysis of many 
other data types with Appyters [40]. Appyters are parameterized Jupyter Notebooks converted 
into full-stack web-based applications. Other similar platforms include GenePattern [41] and 
iLINCS [42]. Several of the platforms in this category interoperate with the workflow lan-
guages CWL and WDL.

Since its inception in 2004, the US National Institutes of Health (NIH) Common Fund 
(CF) has funded more than 50 large-scale biomedical research programs. CF programs have 
generated large and diverse datasets with the aim of having these datasets propel biomedical 
research forward by serving as resources for hypothesis generation and integrative systems 
level analyses. These datasets include various omics profiling from across thousands of human 
subjects, cell lines, organoids, and animal models. Each CF program typically has a Data 
Coordination Center (DCC) that is tasked with managing these datasets and serving them 
to the community via databases, tools, workflows, and search engines. CF DCCs typically 
develop data portals that serve the raw data from their respective CF program, as well as 
providing more processed knowledge extracted from such data. To accomplish this, CF DCCs 
developed tools that enable users to interactively explore datasets via user interfaces as well as 
via well-documented APIs.

However, enabling knowledge discovery by combining data and tools from multiple CF 
programs remains both a challenge and an opportunity. To address this challenge, the NIH 
established the Common Fund Data Ecosystem (CFDE) consortium (https://cfde.info). In its 
first phase, the CFDE consortium established a data model that standardizes cross-program 
data elements such as genes, tissues, drugs, and diseases [43]. These harmonized identifiers 
can be used to find data files produced by multiple CF programs, but such data model fails to 
directly enable cross-program hypothesis generation. Here we demonstrate how by leverag-
ing data, tools, and well-documented APIs from multiple CF programs, and other sources, 
we constructed a visual user-friendly web-based workflow construction platform called the 
Playbook Workflow Builder (PWB). In contrast with other bioinformatics workflow engine 
platforms, PWB requires stricter annotations and specifications of workflow building-block 
components that were curated to facilitate bioinformatics data knowledge discovery leverag-
ing CF primary datasets and tools. Such extensive descriptions of components, termed meta-
nodes, enable complex data analyses that result in complete reports that resemble research 
publications. Moreover, users of the PWB can interactively and visually construct workflows 
by exploring all possible available options at each workflow building step. Alternatively, users 
can interact with a chatbot interface to query the PWB workflow building blocks with a text 
prompt to automatically produce new workflows.

Design and implementation

The knowledge resolution graph (KRG)
To dynamically develop workflows that draw knowledge from across bioinformatics tools 
and databases, we organized well-documented APIs into an integrative network of microser-
vices. Nodes in this network represent semantic types, for example, variants, genes, glycans, 
metabolites, drugs, gene sets, gene expression signatures, and diseases. Edges in the network 

https://cfde.info
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represent operations performed by various tools applied to these semantic types. For example, 
enrichment analysis applied to a set of genes, principal component analysis (PCA) applied to 
a data matrix, or a PubMed search query with a search term that describes a disease. Nodes 
and edges in the network are characterized in a strict type-safe manner forming a program-
matically defined data structure. We term this network a knowledge resolution graph (KRG). 
In contrast to a KG, a KRG encodes the capacity of obtaining knowledge by means of some 
computational or manual process. In other words, instead of subjects connected via predicates 
in a KG, a KRG has functions connected via common data types. Knowledge obtained from 
one tool or database may be augmented, compared, or supplemented with knowledge from 
another. The KRG can be used to find compatible processes with instantiated knowledge at 
any step when constructing a workflow. The edges in the KRG are mostly API-driven micro-
services providing interoperability across bioinformatics tools and databases. The APIs must 
be documented with OpenAPI [44] and deposited into the SmartAPI [31] repository. Such 
compliance with these standards eases implementation.

The assembled metanodes are then used to facilitate a collection of use cases and use case 
templates. Use case templates are defined as workflows with the same structural components 
but with application to different data instances. For example, gathering information about a 
gene or a variant from several databases can be done for a single gene, but also as a template 
that supports the querying of other genes by changing the input query. The collected use cases 
are geared toward accumulation of evidence from transcriptomics, metabolomics, glycomics, 
proteomics, epigenomics, genomics, and other assay types. The workflows that are generated 
for realizing these use cases are reusable and extendible. To enable access to the system, a user-
friendly interface (UI) was developed. The UI is geared towards experimental biologists with 
no programming background. The PWB system is set up in a way that other developers can 
contribute to the system, and/or reuse components of the PWB for enhancing their own web 
portals and bioinformatics data analysis workflows. Metanodes are accessible via a uniform 
REST API that supports multi-step workflow executions via CWL. Thus, the KRG graph can 
be queried programmatically.

Metanode specifications
Metanodes are workflow building block components that are specified with TypeScript. The 
specification captures common identifiable metadata elements about each workflow building 
block component. The metadata about a component includes human-readable labels, descrip-
tions, icons, authors, license, and versioning information. The specification then couples these 
semantics with type-safe implementations which inherit types from dependent components. A 
metanode can be of three types: a prompt, a resolver, or a view (Fig 1). A view function renders 
the interactive visualization of an instance of the type of interface. A resolver function accepts 
one or many data types as inputs and produces a single data type as an output. A prompt is an 
interactive React component that can accept input data types to facilitate decisions made by the 
user for transforming the inputs into a single output data type, for example, selecting a gene 
from a list, or submitting a gene set for enrichment analysis. With these three types of metan-
odes, we can construct workflows. A prompt with no inputs can inject an initial instance of a 
data type object, and that instance can be used as an input argument to compatible resolvers or 
prompts to yield other data type instances, or figures, tables, and charts. Metanodes also specify 
parts of a story. This is a parameterized sentence about what that component is doing. This sen-
tence will appear in the methods section of the output report. This sentence is written in a style 
that is typical for a Methods section of a research paper including citations. These sentences are 
chained together into paragraphs to construct a human-readable description of the entire work-
flow. The paragraphs can be further reorganized and copyedited using an LLM like GPT-4 [45].
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System modularity
Because of the metanode specification, PWB metanodes can be developed, tested, and oper-
ated independently from the PWB codebase. All the implemented metanodes are collected and 
assembled into a unified KRG database (Fig 2). The PWB system queries and utilizes this database 
to construct the data-driven UI (Fig 3). As such, the PWB web-based application is a product of 
the contents of the KRG database, and thus, extending the functionality of the PWB web-based 
application only requires creating and registering additional metanodes. By modularizing the 
PWB processes, we can mix, match, and stack PWB metanodes to construct parameterizable 
workflows. PWB metanodes and workflows have consistent interfaces and can thus be exposed in 
consistent ways such as over API, in CWL workflows, or through additional interfaces.

Fully persistent process resolution graph (FPPRG) database
While the KRG can be used to construct arbitrary workflow templates, a workflow is an 
instance of that template operating on a unique dataset. To store data from a workflow, an 

Fig 1.  The different PWB metanode types are strung together to form workflows. A. In this example, the prompt type of metanode takes a gene as the input; then 
the resolver metanode uses the GTEx API to obtain the expression of the input gene from across human tissues. Finally, a view metanode visualizes the contents 
returned from the API as a bar chart. B. Screenshot from the executed workflow in the PWB platform.

https://doi.org/10.1371/journal.pcbi.1012901.g001

https://doi.org/10.1371/journal.pcbi.1012901.g001
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additional database is established. This additional database stores the data that flows through 
workflows. As such, the database ensures collision-free updates and a self-deduplication. 
Another feature of this additional database is the decoupling of workflow templates from the 
actual data that flows through those workflows, providing further deduplication and repro-
ducibility. In this database, executed workflows are stored in 4 tables (Fig 4). The first table is 
a dependency graph of each constructed step of a workflow. This information is stored in a 
record called a Process. This record is tightly coupled with the Component, it stores the Com-
ponent ID, a JSON object for Prompt configuration, and back references to any other Process 
whose output is used by this record. The second table is a fully persistent list (FPL) [46]. It 
stores sequential order of a workflow through a linked list. A singular list can be resolved with 
the ID of the last element of the list, and each intermediary state has a unique ID. Importantly, 
elements of the lists need only be stored once even if used in multiple lists. The third table is a 
Result record. It has a one-to-one relationship with a Process record and is constructed by per-
forming the execution using the function from the Component type referenced in the Prompt. 
Finally, the 4th table is a Data record. This table contains JSON Binary Large Objects (BLOBs) 
used to store data in the Process and Result tables. All IDs are created by hashing the content 
of the record. A unique series of user steps can be stored and accessed by a single ID through 
the FPL, while the dependency graph ensures deduplication of the workflows regardless of 
order. Finally, the actual results of any given workflow step are stored. Requests for the output 

Fig 2.  Network visualization of the PWB knowledge resolution graph (KRG). The network of connected metanodes is interactive 
and can be explored from the user interface.

https://doi.org/10.1371/journal.pcbi.1012901.g002

https://doi.org/10.1371/journal.pcbi.1012901.g002
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of any Process are sent to a queue of workers if the Result does not already exist. Hence, steps 
are executed simultaneously if there are enough workers, and equivalent execution results are 
deduplicated. Altering an earlier step in a workflow can be done with a git-style rebase. A new 
FPL and dependency graph starting from the parent of the modified node are created and 
expanded to the previous tail. Result records would then be computed as required to obtain 
the new output for the entire workflow.

Developing the PWB user interface
The PWB UI is developed in TypeScript with Next.js, a full-stack framework that uses React 
and offers isomorphic server-side and client-side rendering. Tailwind CSS-based DaisyUI and 
Blueprint.js are used for styling the site and data tables. NextAuth.js is used for managing user 
accounts via ORCID or e-mail. The FPPRG database, which stores workflow executions can 
operate entirely in memory or with a PostgreSQL database in a production setting. Workers 
run in the main process or execute independently on different machines. Message passing is 
achieved through PostgreSQL’s listen/notify feature. The website’s navigation and metanode 
rendering are driven by queries to the in-memory KRG over REST API or WebSocket. The 

Fig 3.  The landing page of the PWB UI provides access to a collection of prompt metanodes to begin constructing workflows.

https://doi.org/10.1371/journal.pcbi.1012901.g003

https://doi.org/10.1371/journal.pcbi.1012901.g003
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UI is decoupled from the metanodes facilitating the independent development of the website 
and the metanodes. This also means that a completely new set of metanodes can be used for 
a platform with a different focus. All metanodes' TypeScript, Python, and other dependencies 
are assembled and installed into a single Docker container. This container is used to run the 
PWB workers. A smaller Docker container with only JavaScript dependencies runs the UI.

Cloud agnostic file storage
A Python library was developed to help with managing files in a storage system that is agnostic 
to the cloud provider. All files uploaded to the PWB are stored and accessed using an abstract 
layer provided by this library. In development, files are stored on the local disk, while in produc-
tion, the files are stored in an S3 bucket. Alternatively, users can have their files in a CAVATICA 
workspace [24] when CAVATICA sessions are established. Once uploaded, files are stored by 
their SHA-256 checksum which provides content-based addressing for deduplication. An entry 
is added to the database and is associated with the user who uploaded the file. These records 
receive universally unique identifiers (UUID) and are served by the PWB platform using 
GA4GH’s Data Repository Service (DRS) protocol [47]. Files on the platform are then treated as 
DRS URIs which can be resolved anywhere in the system. Files can also be provided to the plat-
form directly from external DRS hosting platforms. Functional helpers are available to obtain 
the contents of the DRS files/bundles or for uploading new files from PWB metanodes.

Workflow format translations
The FPPRG database encodes workflows along with their data. The steps of the workflow 
are encoded in the KRG where metadata about each step can be resolved. These steps can be 
translated and exported to other workflow description formats providing interoperability with 

Fig 4.  The structure of the Persistent Process Resolution Graph (FPPRG) Database. The FPPRG database stores the data that flows through workflows in four 
tables. The first table is a dependency graph of each constructed step of a workflow. The second table stores the sequential order of a workflow. The third table is a 
Result record, and the 4th table is a Data record.

https://doi.org/10.1371/journal.pcbi.1012901.g004

https://doi.org/10.1371/journal.pcbi.1012901.g004
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other platforms. Hence, the PWB platform provides users with the ability to export con-
structed workflows into several workflow specification standards. These are outlined below:

BioCompute Objects.  Establishing better conceptual descriptions of workflows is important 
for reproducibility [48]. Workflow languages are machine-readable files that should be able to 
provide all the details needed to re-execute workflows. However, usually there is insufficient 
information that is needed to fully reproduce a workflow. For this, the IEEE 2791-2020 
BioCompute Objects (BCO) standard was developed [26]. BCO is a rigorously defined standard 
for bioinformatics analysis workflow documentation that is flexible enough to accommodate 
any pipeline, but rigid enough to define a structure for computable metadata to annotate 
workflows. There is an ecosystem of tools that are compatible with the BCO standard, including 
cloud genomics platforms like Seven Bridges Genomics, CAVATICA, and DNAnexus. The 
BioCompute Portal is part of this ecosystem, and acts as a repository of published BCOs, as 
well as a place to manually build BCOs. The portal is provided with several published examples 
[49,50]. Using the PWB interface, a BCO can be constructed from any workflow. The exported 
BCO contains full provenance about the workflow including description of the steps, data, 
versioning, and authorship. The serialized BCO specifications can be downloaded as well 
as submitted to the BioCompute Portal via API where they can be inspected, modified with 
additional annotations, or extended to other schemas, and ultimately published.

Common workflow language (CWL).  Common Workflow Language (CWL) is an open 
standard for describing how to run command line tools and connect them to create workflows 
[21]. A command line interface (CLI) was developed from the KRG to invoke any Process 
metanode, providing inputs in JSON-serialized files, and writing the output to a JSON-
serialized file. Using this CLI, a CWL CommandLineTool specification can be constructed 
out of any Process metanode, and a CWL Workflow specification and input variables file can 
be constructed from the FPPRG database. License, authorship, versioning information, and 
descriptions for the individual metanodes in use, are included in the resulting CWL output. 
All Prompt data that may be captured via interactions between the user and the UI are instead 
specified in the input variable file. Hence, the PWB platform metanodes are fully compatible 
with CWL, and CWL workflows can be exported from the PWB interface.

Research object crate (RO-Crate).  RO-Crate is a community-based specification for 
research data packaging of Research Objects (RO) with rich metadata, based on open standards 
and vocabularies including JSON Linked Data (JSON-LD) and schema.org [51]. Adopting a 
similar structure to describing workflows as WorkflowHub [52], an RO-Crate can be created 
from entries in the FPPRG database containing complete workflow provenance including 
license, authorship, versioning information and descriptions for the individual metanodes in 
use. The RO-Crate can then be used for registering PWB workflows in WorkflowHub and for 
minting citable Digital Object Identifiers (DOIs) for published workflows.

External API-driven metanodes.  The PWB platform is agnostic to the actual 
implementation of each step but a significant portion of the currently implemented 
metanodes rely on external API services. These services can more efficiently provide the most 
up-to-date knowledge as the data behind these APIs evolves. The downside of this is that 
reproducibility of workflows in not guaranteed. To mitigate this risk, we annotate the relevant 
steps that rely on external services and save the outputs of those services with a timestamp 
when the execution occurred.

Constructing workflows from prompts with an LLM
The user interface of the PWB facilitates construction of workflows by presenting to the user 
all possible next steps compatible with the current step. This functionality is also presented 
as a prompt to a large language model (LLM) chatbot. A generative pre-trained transformer 
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(GPT) model is tasked with making decisions about the best next step to take when presented 
with a text prompt from the user. Using a few-shot prompt, we direct the chatbot to choose 
from a set of possible next steps based on user messages. We accept single suggestions auto-
matically and present multiple suggestions to the user. Selected suggestions are included 
in an incrementally constructed workflow and rendered in a chat box-style interface along 
with LLM Assistant messages. Because we use the chatbot assistant to only help build a PWB 
workflow based on the constrained KRG, the risk of hallucination is mitigated. In the worst 
case, users may receive a self-documented workflow that performs some analysis that is not 
intended. By collecting feedback from users in the form of thumbs up and down, we plan to 
fine-tune the model to provide increasingly accurate workflows based on user prompts.

Results
The Playbook Workflow Builder (PWB) is a web-based interactive workflow construction 
platform. The workflow engine facilitates user traversal through a network of microservices 
stored in a knowledge resolution graph (KRG). The metanodes include well-documented 
functions or API wrappers that are executed on-demand with the inputs of the previous step 
to produce the outputs for the next; and React components that render interactive visualiza-
tions using the output of the previous step and producing the outputs for the next step based 
on user interaction. The PWB user-friendly web-based interface facilitates users to extend, 
branch, and merge workflows that are executed while they are constructed. Users can con-
struct workflows manually by clicking on cards and breadcrumbs, or via a chatbot interface. 
Notably, the PWB system provides the means to modify workflows on-the-fly while all past 
versions of the workflows remain persistent [46]. PWB workflows are saved and accessible via 
fixed URLs. This makes any user session a reusable and reproducible workflow template. Each 
step in the workflow can be inspected and extended, and the entire workflow can be viewed as 
a complete Jupyter Notebook-style report.

Besides constructing new workflows, PWB users can start with published workflows cre-
ated by others. The published workflows contain detailed descriptions of each step, and this 
provides the ability to construct reports that resemble research publications. These published 
workflows can be re-executed by uploading new user data. Once the user uploads their own 
data, and when users adjust a workflow, a new workflow is created and executed, and the 
results are presented and available via a unique URL. The automatically generated text with 
citations describing the workflow is created by stacking descriptions from each step. This 
description can be reformatted and simplified with an LLM or adjusted manually by the user 
to enhance and customize it. Some features of the platform require users to log in. These 
features include uploading files, saving workflows, publishing workflows in the PWB catalog 
of published workflows, contributing suggestions, using the LLM features, and publishing 
workflows as BioCompute Objects or operating the playbook within CAVATICA.

Implemented metanodes
The PWB platform provides users with the ability to perform a wide variety of analyses pow-
ered by the network of metanodes. These metanodes are used as steps in workflows. So far, 
we have developed 561 such metanodes (S2 Table). Below we describe some of the currently 
implemented metanodes.

RNA-seq data analysis and visualization.  Beginning from a user-uploaded count 
matrix of gene expression, where each row represents a gene, and each column is a sample 
with associated metadata, data is uploaded to the PWB and encoded with AnnData [53]. 
From the gene expression matrix, several metanodes enable different normalization and 
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data visualizations. For example, the contents of the data matrix can be visualized with PCA 
[54], UMAP [55], or t-SNE [56] plots. These metanodes are supported by the Scanpy Python 
package [57]. From the data matrix, users can compute differential expression to produce 
gene expression signatures. Differential expression analysis can be performed with methods 
such as the Characteristic Direction [58], limma-voom [59,60], or DESeq2 [61]. Differentially 
expressed genes can be used as input for downstream analysis such as enrichment analysis 
which is described next.

Enrichment analysis.  Enrichment analysis can be performed within the PWB using 
the Enrichr API [62]. The gene sets data type in the PWB can be submitted for enrichment 
analysis against the many gene set libraries available from Enrichr. For example, the GTEx 
[63] and ARCHS4 [64] tissue expression gene set libraries can be selected to obtain ranks 
of more relevant tissues. Similarly, the KEGG [65] and WikiPathways [66] gene set libraries 
can be used to prioritize relevant cell signaling pathways. Enrichr also provides an API to 
search for metadata terms across the Enrichr gene set libraries. For example, a disease term 
search can be used to construct a consensus gene set [67]. Another way to obtain gene sets is 
through literature search. By submitting to PubMed any search term, term-gene co-mentions 
in publications can be used to construct the most relevant gene set for any search term. This 
functionality is supported by PWB via the Geneshot API [68].

Gene set manipulation.  The gene matrix transpose (GMT) file format is commonly 
used to serialize gene set libraries. GMT files contain lists of terms followed by sets of genes 
associated with each term. GMT files can be uploaded and analyzed by the PWB platform. A 
common way to interrogate the overlap between several gene sets is through UpSet plots [69] 
or SuperVenn diagrams [70]. The PWB has metanodes to display interactive versions of such 
plots. Additionally, several operations are implemented to transform data types from one to 
another. For example, turning ranked lists of genes into gene sets by choosing a cutoff, turning 
multiple gene sets into a GMT file, or collapsing a GMT file into a single gene set by applying 
a consensus or a union set operation on it.

Healthy human tissue expression atlases.  GTEx has profiled postmortem tissues from 
healthy donors with RNA-seq to produce gene expression data matrices from 54 human 
tissues [63]. The GTEx API can be used to find median tissue expression levels for all human 
genes for each one of these 54 profiled tissues. Similarly, the ARCHS4 resource [64] was 
created by uniformly aligning approximately 2 million publicly available RNA-seq samples 
collected from human and mouse. The ARCHS4 API can also be used to find median tissue 
expression across over 200 tissues and cell types. The PWB enables users to obtain summary 
statistics from these APIs, which can be visualized as bar graphs. It is also possible to use these 
data resources as a baseline to identify novel drug targets. For example, gene expression data 
collected by RNA-seq from tumor samples, can be compared to all normal tissue to identify 
genes that are only highly expressed in the tumor using the TargetRanger API [71].

Metanodes created from LINCS resources.  The Library of Integrated Network-Based 
Cellular Signatures (LINCS) program [72] profiled the response of human cells to thousands 
of chemical and genetic perturbations followed by omics profiling. The PWB provides 
several metanodes related to prioritizing drugs and preclinical small molecules for targeting 
individual genes and gene expression signatures. For example, a metanode can be used 
to perform LINCS L1000 reverse search queries for a given gene, producing interactive 
visualizations and tables of significant LINCS L1000 chemical perturbagen signatures that 
may maximally increase or decrease the expression level of the single human gene. A similar 
metanode was implemented to provide search against the L1000 CRISPR KO signatures. 
Other metanodes enable users to query the SigCom LINCS database [73] with gene expression 
signatures or gene sets. Such signatures may be in the form of a vector of differential gene 
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expression, or up- and down-regulated gene sets. Both types of input signature queries can 
yield ranked lists of chemical perturbations and CRISPR KOs.

Metanodes created from GlyGen resources.  GlyGen is an international initiative funded 
by the NIH to promote research about glycoscience [74]. The GlyGen consortium developed 
a web-based portal that brings together glycan and protein specific data from major resources 
such as UniProt [75], GlyConnect [76], Protein Data Bank (PDB) [77], UnicarbKB [78], 
ChEBI [79] and PubChem [80] and other resources [81]. These datasets are presented to 
users through a standardized data model [82] via the GlyGen data portal (https://data.glygen.
org). The GlyGen API endpoints (https://api.glygen.org) facilitate the same functionality 
provided by the user interface, providing the PWB with several GlyGen metanodes that can 
be integrated in various workflows. The GlyGen metanodes also support data visualization 
and kinase enrichment analysis. Furthermore, the GlyGen metanodes operate several core 
data types such as, glycans, proteins, and glycoproteins. For other glycoconjugate species, such 
as glycolipids, GlyGen metanodes implement the passthrough search APIs to the GlySpace 
alliance [83] and other resources. In addition, uploaded mass spectrographic glycan files are 
analyzed with various GlyGen specific metanodes, and then knowledge is extended with other 
PWB metanodes.

Metanodes created from metabolomics resources.  The Metabolomics Workbench (MW) 
is another resource supported by the NIH CF [84]. MW contributed several metanodes to 
the PWB including those from the bioinformatics tools MetGENE [85], MetENP [86], and a 
gene ID conversion tool. These tools, originally designed to be stand-alone web applications, 
provide REST APIs to obtain relevant information for analyses related to profiled metabolites 
within the PWB. MetGENE is a hierarchical, knowledge-driven tool designed for gene-
centered information retrieval. By entering a single gene, or a set of genes, users can access 
information related to the gene such as pathways, reactions, metabolites, and studies from 
metabolomics in MW. To refine searches, MetGENE incorporates filtering options based on 
organism, tissue or anatomy, and disease or phenotype. This feature provides tailored and 
context-specific search experience. Several metanodes using MetGENE are implemented that 
take as input either a gene, or a gene set, for downstream analyses. The relevant functionality 
from MetENP is provided via a REST API called MetNet. Briefly, given a list of metabolites, 
e.g., metabolites with significant change between two conditions such as disease/normal or 
treatment/control in a metabolomics study obtained by using MetENP or another tool, a 
researcher may want to find what are the pathways and functions affected. MetENP/MetNet 
facilitates metabolite name harmonization using RefMet [87], metabolite class enrichment, 
metabolic pathway enrichment and visualization, and identification of reactions related to the 
given metabolites and genes coding for enzymes catalyzing these reactions. In MetNet, the 
list of these genes can be used to develop their protein-protein interaction (PPI) subnetwork 
using the STRING database APIs [88]. Each of these metanodes has an associated table that 
renders the information obtained from the API.

The connect the dots (CTD) metanode.  The Connect the Dots (CTD) metanode takes 
as input a set of genes or proteins and identifies a subset of genes or proteins that are highly 
connected within either knowledge graphs or networks derived from gene expression, 
metabolomic or other omic datasets [89]. CTD algorithm has previously discovered multi-
gene biomarkers of drug response to breast cancer therapies based on mouse PDX models 
[90], and metabolomic signatures of rare inborn errors of metabolism [89,91]. While CTD 
has been previously deployed as independent R and Python packages (https://github.com/
BRL-BCM/CTD), its deployment on the Playbook will allow for its use by a wider scientific 
audience. The CTD workflow starts with an input set of genes. The user then has the 
option of identifying significant connections within this set in the STRING protein-protein 

https://data.glygen.org
https://data.glygen.org
https://api.glygen.org
https://github.com/BRL-BCM/CTD
https://github.com/BRL-BCM/CTD
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interaction network [88], WikiPathways [66], or a network derived from user-supplied 
data. The networks represented as weighted graphs, can be derived from expression data, 
proteomic data, metabolomics, or any other normalized omic dataset. This allows for users to 
identify highly connected sets of genes within their specific disease, treatment, or condition 
of interest. Given a weighted graph and a set of graph nodes as an input, CTD identifies 
significant highly connected subsets. An optional “guilt by association” feature identifies 
neighboring nodes using probability diffusion. CTD also returns a visual display of the nodes 
and connections.

Metanodes created from ERCC resources.  The ExRNA Communication Consortium 
(ERCC) Common Fund (CF) Data Coordination Center created a framework and toolset for 
FAIR data, information, and knowledge that delineate the regulatory relationships between 
genes, regulatory elements, and variants, and made them available to PWB via metanodes. 
We have implemented the ClinGen Allele Registry (CAR) and Genomic Location (GL) 
Registry [92], variant and genomic region on demand naming services, respectively. The CAR 
canonical identifiers (CAid) or Genomic Location identifiers (GLid) provided are reference 
genome-agnostic, stable, and globally unique. The ERCC metanodes enable the retrieval and 
mapping of unique identifiers and other commonly used identifiers, such as dbSNP IDs [96], 
connected through the Allele Registry and GL Registry using the Allele Registry RESTful APIs. 
Moreover, we have created the CFDE Linked Data Hub (LDH) [93], a graph-based database, 
to extract and link tissue and cell type-specific regulatory information from SCREEN [94], 
GTEx [63], and other CF projects, including Roadmap Epigenome [95] and EN-TEx [96]. 
Each excerpt on the CFDE LDH is created in a machine-readable format and contains a link 
to the original data source for provenance tracking. The CFDE LDH RESTful APIs provide 
read and write capabilities for both accessing and contributing gene regulatory information. 
This enables the CFDE LDH to connect more than 800 million regulatory data and 
information documents, which can be quickly retrieved by PWB through the API endpoints 
given any variant, regulatory region, or gene as input.

The book of use cases
The PWB currently contains a collection of fully implemented and published workflows. 
These workflows were first designed by drawing each workflow as a flowchart diagram (S1 
Fig). Each flowchart represents a unique workflow contributed by different groups that 
worked collaboratively on the project. In these diagrams, each node represents a metanode. 
Each flowchart representing a workflow also lists the name of the workflow and the resources 
used to obtain the data needed to run the workflow. The color of each metanode was used to 
track the status of the implementation of each metanode and the entire workflow. The flow-
chart plots were used as a guide to capture ideas about potential workflows. Thus, not all these 
designed workflows are fully implemented. In some cases, implemented workflows do not 
match exactly the flowchart diagram that was used to design it.

Use case workflow templates and workflow instances
The PWB fully implemented and published workflows are listed on a dedicated area on the 
PWB site termed the PWB catalog of workflows (Fig 5 and Table 1). Each published workflow 
has a title, a short description, a description of the inputs and outputs, the data resources used, 
the authors, version, license, the date of publication, and a button to launch the workflow. 
Since each workflow is parameterized, we consider these workflows as templates. These tem-
plates can be executed with different inputs to produce a new workflow. Below we describe 
several selected published PWB workflows in detail.
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Use case 13: Cell surface targets for individual cancer patients analyzed with Common 
Fund datasets.  The input to this workflow is a data matrix of gene expression that was 
collected from a pediatric tumor from the Kids First CF program [24]. The RNA-seq samples 
are the columns of the matrix, and the rows are the raw expression gene counts for all human 
coding genes. This data matrix is fed into TargetRanger [71] to screen for targets that are 
highly expressed in the tumor but lowly expressed across most healthy human tissues based 
on gene expression data collected from postmortem patients with RNA-seq by the GTEx 
CF program [63]. Based on this analysis, the gene Insulin-like growth factor II m-RNA-
binding protein 3 (IMP3) was selected because it was the top candidate returned from the 
TargetRanger analysis (Table 2). Next, we leveraged unique knowledge from various other 
CF programs to examine knowledge related to IMP3. First, we queried the LINCS L1000 data 
[97] from the LINCS program [72] converted into RNA-seq-like LINCS L1000 Signatures 
[98] using the SigCom LINCS API [73] to identify mimickers or reversers small molecules 
and CRISPR KOs that maximally impact the expression of IMP3 in human cell lines. These 

Fig 5.  Published workflows are curated workflows that are listed on a dedicated page that catalogs these in a table. Each workflow entry can be expanded to 
obtain more information about the workflow and to launch the workflow within the PWB platform in report mode.

https://doi.org/10.1371/journal.pcbi.1012901.g005

https://doi.org/10.1371/journal.pcbi.1012901.g005
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potential drugs and targets were filtered using the CF IDG program’s list of understudied 
proteins [99] to produce a set of additional targets. Next, IMP3 was searched for knowledge 
provided by the Metabolomics Workbench MetGENE tool [85]. MetGENE aggregates 
knowledge about pathways, reactions, metabolites, and studies from the Metabolomics 
Workbench CF supported resource [84]. The Metabolomics Workbench was searched to 

Table 1.  List of published use cases available for re-execution and expansion on the PWB platform. *The base 
URL for the DOIs is “10.48546/WORKFLOWHUB.WORKFLOW.”.

Label DOI* Inputs Output

Use Case 1: Explain Drug-Drug 
Interactions

1237.3 Phenotype; 
Drug; Drug

SuperVenn Visualization

Use Case 2: Explain MOAs of Side 
Effects for Approved Drugs

1238.2 Phenotype; 
Drug

Gene Set; Supervenn Visualization

Use Case 3: Compounds to Reverse 
Disease Signatures

1248.2 Gene Signature; 
Gene Signature

Scored Drugs

Use Case 4: Identify the Tissue 
Activity for a TF based on its 
Targets

1239.2 Gene Scored Tissues

Use Case 5: Small Molecules to 
Induce a Biological Process

1240.2 Phenotype Scored Drugs

Use Case 6: CFDE Knowledge about 
a Variant

1241.2 Variant LINCS L1000 Reverse Search Dashboard; Plotly 
Plot

Use Case 6: CFDE Knowledge about 
a Gene

1242.2 Gene LINCS L1000 Reverse Search Dashboard; Plotly 
Plot

Use Case 7: Variant Expression in 
Tumor/Healthy

1243.2 Variant Plotly Plot

Use Case 9: Identifying regulatory 
relationships between genes, regula-
tory regions, and variants

1249.3 Variant Regulatory Element Set

Use Case 10: Guilt by Association 1244.2 Gene Set Gene Set
Use Case 11: Related Proteins/
Metabolites across DCCs

1245.2 Gene MetGENE Reaction Table; MetGENE metabolite 
table; MetGENE Studies Table

Use Case 13: Novel Cell Surface Tar-
gets for Individual Cancer Patients 
Analyzed with Common Fund 
Datasets

1246.2 Gene Count 
Matrix

LINCS L1000 Reverse Search Dashboard; Met-
GENE Summary; Scored Genes; Scored Drugs; 
MetGENE Reaction Table; MetGENE metabolite 
table; Variant Set; GlyGen Protein Products

https://doi.org/10.1371/journal.pcbi.1012901.t001

Table 2.  Ranked list of targets identified by TargetRanger to be highly expressed in the tumor sample and lowly 
expression across normal tissues from GTEx.

Gene Z-score
IMP3 inf
ARHGDIA inf
GPRIN1 7.23
CARM1 6.98
JSRP1 6.70
SLC7A6 6.60
NBPF15 5.78
RABGEF1 5.76
HPS4 5.64
ANKRD39 5.21

https://doi.org/10.1371/journal.pcbi.1012901.t002

https://doi.org/10.1371/journal.pcbi.1012901.t001
https://doi.org/10.1371/journal.pcbi.1012901.t002
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find associated metabolites linked to IMP3. Furthermore, we leveraged the Linked Data Hub 
(LDH) API [93] to list knowledge about regulatory elements associated with IMP3. Finally, 
the GlyGen database [74] was queried to identify relevant sets of proteins that are the product 
of the IMP3 genes, as well as known post-translational modifications discovered on IMP3. 
The discovery of IMP3 is not completely novel, IMP3 has been previously reported to be 
aberrantly expressed in several cancer types and its high expression is associated with poor 
prognosis [100].

Use case 1: Explaining drug-drug interactions.  This workflow takes as input an adverse 
event term and two drugs. The adverse event is identified in several databases that contain 
gene sets already associated with the adverse events and mammalian phenotypes related 
to the adverse event. Namely, matching adverse events and mammalian phenotypes are 
identified from the GWAS Catalog [101], MGI Mammalian Phenotype Ontology [102], and 
from the Human Phenotype Ontology (HPO) [103]. A set of consensus genes associated with 
the matching terms is assembled. Then, the workflow queries the LINCS L1000 chemical 
perturbation signatures [73] with the two input drugs to find gene sets that are consistently 
up- or down-regulated by the treatment of human cell lines with these drugs. The consensus 
gene sets impacted by the drugs, and the gene set related to the adverse events are then 
compared and visualized using a SuperVenn diagram to highlight overlapping genes between 
these sets. Genes of interest are those affected by both drugs and are associated with the 
phenotype. Such overlapping genes can be further interrogated individually for evidence in 
the literature, or as a gene set using enrichment and network analyses.

To demonstrate the workflow for a specific instance, we start with the adverse event 
“bleeding” and the drugs warfarin and aspirin. It is known that these drugs interact to 
increase the risk of internal bleeding [104] but the exact intracellular mechanism of such 
interaction is still not fully understood. The workflow starts with selecting “bleeding” as 
the search term. Gene sets with set labels containing the word "bleeding" were queried from 
Enrichr [1]. Identified matching terms from the GWAS Catalog 2019 [2], MGI Mammalian 
Phenotype Level 4 2019 [3] and the Human Phenotype Ontology [4] libraries are then assem-
bled into a collection of gene sets. A GMT file is extracted from the Enrichr results for all the 
identified gene sets from each library and then these are combined using the union set oper-
ation. Gene sets with set labels containing the terms warfarin and aspirin were next identi-
fied from the LINCS L1000 Chem Pert Consensus Sigs [5] library. The gene sets collected 
for each drug were combined into one gene set library. The collection of gene sets was then 
visualized with a SuperVenn diagram (Fig 6). This analysis identified 243 genes up-regulated 
and 245 genes down-regulated by warfarin; 249 genes up-regulated and 244 genes down-
regulated by aspirin, 85 genes associated with bleeding from MGI, and 35 from HPO. Only 
one gene, namely THBS2, is up regulated by both drugs, and is also associated with bleeding 
related phenotype in MGI. While the gene SLC7A11 is downregulated by both drugs and is 
linked to an MGI bleeding phenotype. THBS2 is a member of the thrombospondin family, 
and as such it plays a critical role in coagulation. It was shown that knockout mice of THBS2 
have an increased bleeding time phenotype (MP:0005606) [105] and THBS2 is a potent 
inhibitor of tumor growth and angiogenesis [106]. It is difficult to explain why both drugs 
are found to up-regulate this gene. The expected effect is that these drugs would reduce the 
expression of the genes to reduce coagulation. At the same time, both drugs are also found to 
down-regulate the expression of the amino acid transporter SLC7A11. SLC7A11 knockout 
mice also have an increased bleeding time phenotype (MP:0005606), and mutations in this 
gene have been implicated in many acute human diseases through induction of ferroptosis 
[107,108]. Hence, for SLC7A11 the direction of the impact of the drugs on its expression is 
consistent with other prior evidence.
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Use case 11: Related proteins/metabolites across DCCs.  The enzyme ribulose-5-
phosphate epimerase (RPE) participates in the catalysis of the interconversion of ribulose-
5-phosphate (Ru5P) to xylulose-5-phosphate (Xu5P) in the pentose phosphate pathway. 
A recent study [109] focused on the biophysical and enzymatic characterization of RPE in 
several organisms. Interestingly, the study suggested that RPE may play a crucial role in 
protection against oxidative stress. Toward integrative analysis to further elucidate the roles 
of RPE in various pathways and mechanisms of human disease, we collected knowledge 
about PRE from various NIH CF programs and other sources. The collected information 
about RPE includes: 1) Associated metabolites from the Metabolomics Workbench [84]; 
2) Expression across human tissues from GTEx [63]; 3) Small molecules and single gene 
knockouts that maximally induce the expression of RPE from LINCS [73]; 4) Associated 
variants from ClinGen via LDH [110]; 5) Protein-protein interactions from STRING [88]; 
and 6) Regulation of RPE by transcription factors from ChEA3 [111]. In addition, the use case 
converts RPE into a gene set using the Geneshot API [68]. The Geneshot API returns a set of 
100 genes that mostly correlate with RPE based on thousands of human RNA-seq uniformly 
processed from GEO [112]. Co-expression correlations computed from the data processed 
by ARCHS4 [64]. The comprehensive approach to find knowledge about a single gene is also 
applied to the generated gene set with all six resources. The final report provides a mechanistic 
understanding of how RPE can affect various pathways and functions despite not being 
involved in the pathways and processes directly.

Use case 10: Identifying gene regulatory relationships between genes, regulatory 
elements, and variants.  This workflow takes as input one or more genes, regulatory 
elements, or variants. One may then query for regulatory relations of the selected entity type 
with other entity types. In one application, we may ask what genomic regions regulate a gene 
of interest and what evidence supports that regulatory relationship. We start the workflow 
by providing the gene of interest as input. We first focus on regulatory elements that are 
in the vicinity of the gene body identified using the epigenomic data from NIH Roadmap 

Fig 6.  SuperVenn diagram to visualize the overlap between sets of genes that are up and down regulated by aspirin and warfarin based on LINCS L1000 sig-
natures, as well as knockout mouse, HPO, and GWAS phenotypes associated with the term “bleeding”. The permanent URL for a description of this workflow is: 
https://doi.org/10.48546/WORKFLOWHUB.WORKFLOW.1237.3.

https://doi.org/10.1371/journal.pcbi.1012901.g006

https://doi.org/10.48546/WORKFLOWHUB.WORKFLOW.1237.3
https://doi.org/10.1371/journal.pcbi.1012901.g006
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Epigenomics [95] and ENCODE projects stored in the ENCODE SCREEN database [94]. 
Regulatory evidence associated with the SCREEN regulatory elements was connected to 
genes and variants using CFDE LDH [93], a graph-based database that facilitates the linking 
of findable, accessible, interoperable, and reusable (FAIR) [113] information about genes, 
regulatory elements, and variants retrieved through well-documented RESTful APIs. The 
available regulatory information includes: 1) Variants associated with regulatory elements 
from the ClinGen Allele Registry [92]; 2) Allele-specific epigenomic signatures, such as 
DNA methylation, histone modifications, and transcription factor binding, from Roadmap 
Epigenomics [95] and EN-TEx [96] projects; 3) Quantitative trait loci information from GTEx 
[63] and other studies; and 4) Regulatory element activity, all presented in a tissue- and cell-
type-specific manner. The workflow also provides users with commonly used identifiers for 
variants that fall within a regulatory element of interest, including those from dbSNP [114], 
ClinVar [115], and the ClinGen Allele Registry [92].

System scalability
To test the ability of the platform to horizontally scale to support simultaneous users, we 
simulated many parallel users submitting workflows via the API with increasing depth and 
with an increasing number of horizontally scaled backend processes. Workflow depth refers 
to the maximum number of workflow steps where each step depends on the results of a prior 
step. Workflows with more depth are inherently slower to resolve and are not parallelizable. 
Overall, the horizontal scaling of the PWB platform should be able to serve at least 50 concur-
rent users with our currently allocated resources (S2 Fig).

Reproducibility of workflows
The PWB platform was designed to empower biomedical researchers without coding skills. 
Users can find and invoke bioinformatics workflows by leveraging the availability of public 
datasets, and commonly used data visualization methods. In contrast with other workflow 
engines, PWB users are provided with written details with citations about steps of the anal-
ysis. The PWB platform was initially created for a specific purpose of bringing to the surface 
datasets and tools developed in projects that received support from the NIH Common Fund. 
Due to this initial goal, many of the PWB components trigger external APIs and this feature 
of the platform has advantages and disadvantages. The use of federated microservices enables 
tool and repository owners to continuously improve and update these services independently 
of the PWB platform. Most repositories and web-based bioinformatics tools typically have the 
computational infrastructure to resolve queries in real-time, assembling all the data behind 
the service. Hence, it may become cost prohibitive for a single researcher, or a single platform 
to locally host these resources in one place. Additionally, many resources developed by Com-
mon Fund supported programs continue to evolve as additional data is gathered. The mainte-
nance of these APIs and the data these APIs query pose a long-term sustainability challenge. 
While the PWB platform cannot guarantee the reproducibility of the results because federated 
knowledge continues to evolve, the PWB platform supports exporting reports. These exports 
contain the workflow, the output produced by every step in the workflow, and a timestamp 
of when the APIs were called. This description of the workflow can be interrogated, and the 
entire workflow can be imported into a Docker-served container using the same version of the 
original APIs. It is important to note that PWB components are not inherently required to be 
external microservices. In fact, roughly half of the PWB components are not. These compo-
nents operate without external APIs. Most PWB components that access large and evolving 
indexed databases, however, are wrappers around external APIs. The nature of evolving 
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federated services makes assembling all parts of all workflows into an isolated environment 
is largely intractable. As the field rapidly evolves in data types and methods, out-of-date tools 
inevitably become less useful. Importantly, the PWB platform retains timestamped results so 
that reports persist, but re-execution of these reports is subject to change, providing the most 
recent knowledge from each microservice.

Comparison to other platforms
In contrast with Galaxy [13], and the Galaxy ToolShed [116], PWB metanodes operate with 
semantic and runtime asserted JSON intermediaries instead of files. These artifacts make API 
usage more practical, and it enables custom rendering of information passed throughout the 
system. PWB components can also be implemented to receive user input, and components 
can have interactive visualizations. These features provide customization via user interaction. 
Examples of customized user interactions that are not possible with Galaxy, but present in 
PWB, include: autocomplete for user-input selection, extracting regions from an interactive 
set overlap visualization, and interactive labeling of columns from a data table. Additionally, 
constructing a Galaxy workflow involves selecting from a massive list of all possible Galaxy 
supported tools and configuring each tool by providing it with all needed options and files. In 
contrast, PWB workflows start with a selection of a data file, or other information provided 
by the users. Once such selection is made, only the applicable tools for the next step become 
available. This happens at each step of workflow construction. Each user step selection in the 
PWB environment yields a new workflow capable of executing, exporting, saving, and sharing 
with a persistent URL.

Considering other relevant platforms, Bioconductor [9] annotates packages using bio-
cViews, a direct acyclic graph (DAG) made of terms extracted from a controlled vocabulary 
which helps users locate packages relevant for a particular analysis. caGrid [34], BioMoby 
[35], and Mobyle [36] had syntactic and semantic interoperability but these platform are no 
longer available. PWB has annotated functions with annotated input arguments and return 
types, these annotations form a Knowledge Resolution Graph (KRG) which can be used to 
enumerate all compatible functions with a given type. Semantic types are used for disam-
biguating standard software types, for example, a gene symbol or a drug name rather than 
a string, or a gene count matrix, rather than just a file. The Semantic Automated Discovery 
and Integration (SADI) [37] is a way to annotate bioinformatics web-services functions with 
semantics. This makes SADI compatible with the PWB’s KRG functions. In practice, however, 
most services do not provide SADI, and typically require minor tweaks to be compatible with 
other services. The PWB platform's centralized approach allows APIs to be annotated without 
requiring modifications to the APIs. Furthermore, PWB components can also facilitate the 
definition of user-facing form-controls and interactive visualizations, something that none of 
the other platforms currently facilitate.

Overall, the PWB platform is independent of the workflow execution system. This means 
that an existing workflow tool, like snakemake or CWL runner, could be employed with no 
change to the user experience. Currently, unresolved executions are queued in a postgreSQL 
database, and a horizontally scalable set of workers execute the tasks as they come in, while 
skipping tasks with unresolved dependencies. The PWB platform’s primary focus is guiding the 
user through the analysis steps where provenance is fully captured. This produces a reusable 
workflow. For computationally demanding jobs, and for working with patient protected private 
data, users of the PWB should execute their workflows via the CAVATICA integration. In 
CAVATICA, users can run any computationally intensive workflow with any GA4GH compat-
ible workflow execution service. The CAVATICA integration can be used to reduce the burden 
of utilization of PWB native pooled resources available for the community of most PWB users.
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Availability and future directions
There are no primary data in the paper; the project’s source code with instructions is avail-
able from: https://doi.org/10.5281/zenodo.14641815 and https://github.com/MaayanLab/
Playbook-Workflow-Builder.

The Playbook Workflow Builder platform is available from:
https://playbook-workflow-builder.cloud/
In the future, we plan to continue to expand the capabilities of the PWB platform based 

on user feedback and community adoption. So far, we have conducted three use-a-thon 
events that introduced the PWB to new users. These users provided valuable feedback about 
the platform that we fully implemented. The users in these three events were both “regular” 
users that worked with the PWB via the UI, and “power” users that contributed new PWB 
components. The “regular” users provided feedback on how to improve the UI, while the 
“power” users provided feedback on the documentation and SDK for contributing PWB 
components.

So far, most of the metanodes and use cases implemented by the PWB platform are 
related to systems biology, molecular networks, and the analyses of genes, variants, 
metabolites, and post-translational modifications. The platform is extensible and could be 
applied to other areas of biomedical research domains such as structural biology, chemin-
formatics, genomics, and clinical research. In addition, the PWB platform can be applied 
in other domains besides biomedical research. The chat interface of the PWB also opens 
opportunities for applications that may enhance the functionality of chatbots in general. 
By executing workflows on demand to produce knowledge and deeper understanding, 
chatbots that currently are mostly based on large language models (LLMs) could be 
enhanced with a PWB-like system operating in the background to construct knowledge 
from building blocks.

Supporting information
S1 Fig.  Workflow diagrams created to design various workflows. Before implementing 
metanodes to construct workflows, the workflows were sketched as flowchart diagrams. 
Note that not all nodes and links in the diagrams were implemented exactly how they were 
designed.
(PDF)

S2 Fig.  Horizontal scaling of the platform workflow executions. Users submitting work-
flows in parallel were simulated with the platform using between 1 and 50 parallel users 
submitting workflows of depth 5 and 10. Figure shows the time in seconds it took for the 
entire workflow to be completed for each individual simulated user (A), and the time it took 
to submit that workflow via the API (B). Simulations performed with 1, 2, and 4 horizontally 
scaled backend processes each with 5 worker threads.
(PDF)

S1 Table.  Bioinformatics Workflow Platforms. A list of only a few key related bioinformat-
ics workflow engines with various features compared across platforms.
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S2 Table.  Implemented PWB Metanodes. Listing of 561 currently implemented metanodes 
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