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Abstract. In 1993 Stanley showed that if a simplicial complex is acyclic over some field,
then its face poset can be decomposed into disjoint rank 1 boolean intervals whose minimal
faces together form a subcomplex. Stanley further conjectured that complexes with a higher
notion of acyclicity could be decomposed in a similar way using boolean intervals of higher
rank. We provide an explicit counterexample to this conjecture. We also prove a version of
the conjecture for boolean trees and show that the original conjecture holds when this notion
of acyclicity is as high as possible.
Mathematics Subject Classifications. 05E45, 55U10

1. Introduction

The interplay between combinatorial and topological properties of simplicial complexes has
been a subject of great interest for researchers for many decades (see, e.g., [1, 13, 16]). One
particularly beautiful result due to Stanley connects the homology of the geometric realization
of a complex to a well-behaved decomposition of its face poset.

Theorem 1.1. [15, Theorem 1.2] Let ∆ be a simplicial complex that is acyclic over some field
k. The face poset of ∆ can be written as the disjoint union of rank 1 boolean intervals such that
the minimal faces of these intervals together form a subcomplex of ∆.

This theorem was generalized by Stanley [15, Proposition 2.1] and Duval [4, Theorem 1.1].
Stanley further conjectured [15, Conjecture 2.4] that complexes with a higher notion of acyclicity
possess similar decompositions into boolean intervals of higher rank.

Definition 1.2. A simplicial complex is k-fold acyclic if link∆ σ is acyclic (over a field k) for all
σ ∈ ∆ such that |σ| < k.

https://www.combinatorial-theory.org
mailto:jdoolittle@tugraz.at
mailto:goeckner@uw.edu
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Observe that 1-fold acyclicity is equivalent to acyclicity, so the following conjecture seeks
to extend Theorem 1.1.

Conjecture 1.3. [15, Conjecture 2.4] Let ∆ be a k-fold acyclic simplicial complex. Then ∆ can
be decomposed into disjoint rank k boolean intervals, the minimal faces of which together form
a subcomplex.

Conjecture 1.3 also appears as [16, Problem 27] and [17, Problem 5].
Central to this problem is the f -polynomial f(∆, t) of a d-dimensional simplicial complex

f(∆, t) =
∑
σ∈∆

t|σ| = f−1 + f0t+ f1t
2 + · · ·+ fdt

d+1

where fi = fi(∆) is the number of i-dimensional faces of ∆. Theorem 1.1 shows that if ∆ is
acyclic, then f(∆, t) = (1 + t)f(Γ, t) where Γ is a subcomplex. Earlier, Kalai [11] showed
this equality holds for some complex Γ, which is not necessarily a subcomplex of ∆. Using
results from Kalai’s algebraic shifting [12], Stanley [15, Proposition 2.3] further showed that the
f -polynomial of a k-fold acyclic complex can be written as

f(∆, t) = (1 + t)kf(Γ, t) (1.1)

for some complex Γ (which is not necessarily a subcomplex of ∆). If Conjecture 1.3 were true,
it would provide a combinatorial witness for this Γ. We provide an explicit counterexample to
Conjecture 1.3. We also prove a weaker version of the original conjecture in Theorem 4.5.

In Section 2, we review definitions and relevant background material. In Section 3, we de-
scribe our construction of the counterexample to Conjecture 1.3, which relies on reducing the
problem to relative complexes and follows ideas similar to those recently developed by Duval
et al. [5] and Juhnke-Kubitzke and Venturello [10]. In Section 4, we prove a weaker version of
Conjecture 1.3, replacing boolean intervals with boolean trees. This result gives a witness for
the behavior observed in (1.1). In Section 5, we show that Conjecture 1.3 holds when k is equal
to the dimension of the complex. We end with a section of open questions.

2. Preliminaries

We let [n] denote the set {1, . . . , n}. A simplicial complex ∆ on [n] is a subset of 2[n] such
that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The elements of ∆ are faces, and maximal faces are
facets. If F1, . . . , Fj are the facets of ∆, we will often write ∆ = 〈F1, . . . , Fj〉, since the facets
uniquely determine ∆. The dimension of a face σ is dimσ = |σ| − 1 and the dimension of ∆
is dim ∆ = max{dimσ | σ ∈ ∆}. A complex is pure if all facets have the same dimension.
For a pure complex, a ridge is a face of one dimension lower than the facets. Unless otherwise
specified, we assume throughout that dim ∆ = d.

A subcomplex of ∆ is a simplicial complex Γ such that Γ ⊆ ∆. IfW ⊆ [n], then the induced
subcomplex on W is ∆|W := {σ ∈ ∆ | σ ⊆ W}. Given a face σ ∈ ∆, the link of σ in ∆ is

link∆ σ = {τ ∈ ∆ | τ ∪ σ ∈ ∆, τ ∩ σ = ∅},
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which we will often denote as linkσ if there is no possibility of confusion. Given two complexes
∆1 and ∆2 on disjoint vertex sets, their join is ∆1 ?∆2 = {σ1 ∪ σ2 | σ1 ∈ ∆1, σ2 ∈ ∆2}. If ∆1

is a (k − 1)-simplex, then this join is the k-fold cone of ∆2.
A complex is acyclic (over a field k) if all of its reduced homology groups are trivial. Re-

calling Definition 1.2, we note that 1-fold acyclicity is equivalent to acyclicity, so Theorem 1.1
is the k = 1 case of Conjecture 1.3. When k > 1, k-fold acyclicity is not a topological property.
For example, the d-simplex is (d + 1)-fold acyclic, but its barycentric subdivision is not k-fold
acyclic for k > 1.

The construction of our counterexample relies on relative simplicial complexes; given a sim-
plicial complex ∆ and a subcomplex Γ, the relative complex Φ = (∆,Γ) is the set of all of the
faces of ∆ that are not faces of Γ.

Given a poset P and two elements x, y ∈ P , the interval from x to y is [x, y] = {z ∈ P |
x 6 z 6 y}. If [x, y] = {x, y}, then we say that y covers x. An interval I is a rank k boolean
interval if I ∼= 2[k]. A boolean interval decomposition of P is a collection B of disjoint boolean
intervals in P such that

P =
⊔
I∈B

I.

Such a decomposition is a rank k boolean interval decomposition if all intervals in the decom-
position are of rank k. We also refer to this as a rank k boolean decomposition.

Definition 2.1. A boolean tree of rank i is a subposet Ti of a poset P , that has a unique minimal
element r, and is defined recursively as follows. Any subposet with exactly one element is a
boolean tree of rank 0. Now assume T1 and T2 are two disjoint boolean trees of rank (i − 1),
each with minimal elements r1 and r2 respectively, such that r2 covers r1 in P . Then T1 ∪ T2 is
a boolean tree of rank i, with r1 as its unique minimal element.

A (rank k) boolean tree decomposition of a poset is defined the same as a (rank k) boolean
interval decomposition, except that boolean intervals are replaced with boolean trees. When the
rank is 1, both boolean trees and boolean intervals are simply described by a single covering
relation, matching Stanley’s original theorem statement [15, Theorem 1.2].

Definition 2.2. A simplicial complex ∆ is a stacked simplicial complex if ∆ is pure of dimension
d with a facet order F1, . . . , Fj such that for each i ∈ [j − 1], 〈F1, . . . , Fi〉 ∩ 〈Fi+1〉 is a (d− 1)-
simplex. Such an order is known as a stacked shelling.

Another characterization of stacked complexes, equivalent to Definition 2.2, is that ∆ is
stacked if and only if the minimal new face added by Fi is a vertex, for i 6= 1. That is, a pure
complex ∆ is stacked if and only if there exists an order on its facets F1, . . . , Fj such that for
each i ∈ [j − 1], 〈Fi+1〉 \ 〈F1, . . . , Fi〉 = [vi+1, Fi+1] for some vertex vi+1. We note that stacked
complexes are Cohen–Macaulay quasi-forests (see, e.g., [9, Section 9.2.3]).

3. Construction

To construct our counterexample, we first show that we can reduce the problem to finding a
relative complex (∆,Γ) with appropriate properties. Then we construct a relative pair (∆,Γ) that
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meets the necessary requirements and use it to construct the counterexample to Conjecture 1.3.
This technique of reducing to a relative complex has been used successfully by Duval et al. [5]
and Juhnke-Kubitzke and Venturello [10].

Lemma 3.1. Let ∆1 and ∆2 be simplicial complexes such that ∆1 is j-fold acyclic, ∆2 is k-fold
acyclic, and ∆1∩∆2 is `-fold acyclic. Then ∆1∪∆2 ism-fold acyclic, wherem = min{j, k, `}.

Proof. Let |σ| < m and assume σ ∈ ∆1 ∪∆2. If σ ∈ ∆1 \∆2, then link(∆1∪∆2) σ = link∆1 σ
and thus link(∆1∪∆2) σ is acyclic. The same holds if σ ∈ ∆2 \∆1.

If instead σ ∈ ∆1 ∩∆2, then we note that link∆1∪∆2 σ = link∆1 σ ∪ link∆2 σ and similarly
link∆1∩∆2 σ = link∆1 σ ∩ link∆2 σ. We then have the Mayer–Vietoris sequence

· · · → H̃i(link∆1 σ)⊕ H̃i(link∆2 σ)→ H̃i(link∆1∪∆2 σ)→ H̃i−1(link∆1∩∆2 σ)→ . . . .

Since ∆1, ∆2, and ∆1 ∩ ∆2 are m-fold acyclic, the homology groups of the links of σ in each
of these complexes vanish since |σ| < m. This implies that H̃i(link∆1∪∆2 σ) = 0 for all i.
Therefore ∆1 ∪∆2 is m-fold acyclic.

Lemma 3.1 is used to preserve k-fold acyclicity in the following theorem.

Theorem 3.2. Let Φ = (∆,Γ) be a relative complex such that

1. ∆ and Γ are k-fold acyclic;

2. Γ is an induced subcomplex of ∆; and

3. Φ cannot be written as a disjoint union of rank k boolean intervals.

Let ` be the total number of faces of Γ and let N > `/2k. If Ω = ΩN is the complex formed by
gluingN copies of ∆ together along Γ, then Ω is a k-fold acyclic complex that cannot be written
as a disjoint union of rank k boolean intervals.

Proof. Since Γ is an induced subcomplex of ∆, gluing copies of ∆ together along Γ will result
in a simplicial complex. By Lemma 3.1, this resulting complex Ω is k-fold acyclic. The face
poset of Ω is precisely N disjoint copies of Φ and one copy of Γ. We note that there are at most
`/2k disjoint rank k boolean intervals in Γ.

Since each of ∆ and Γ is k-fold acyclic, their f -polynomials are each divisible by (1 + t)k.
This implies that the f -polynomial of Φ is p(t)(1 + t)k, for some polynomial p(t). Therefore
Φ has p(1)2k many faces. Since Φ cannot be decomposed using only p(1) boolean intervals, a
collection of disjoint rank k boolean intervals in the face poset of Ω which covers Φ must consist
of b > p(1) intervals. Such a collection must also contain at least 2k faces of Ω which are not in
Φ. Since the copies of Φ in Ω are incomparable, these faces must be in Γ.

There are at most `/2k mutually disjoint collections of 2k faces in Γ, and there areN > `/2k

copies of Φ in Ω. By the pigeonhole principle, any rank k boolean decomposition of Ω must con-
tain some Φ which is decomposed into disjoint rank k boolean intervals. This is a contradiction,
so Ω is not rank k boolean decomposable.
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1234 1235 2345 24563456

123134 234135 235 245345 256456356

13 5623 4535

Figure 3.1: The face poset of Ψ = (Σ,Υ) in Example 3.3.

We now start the construction of our counterexample, beginning with the following relative
complex Ψ, which is isomorphic to the complex in [5, Remark 3.6]. We have shortened the
notation for faces so instead of writing {1, 2, 3, 4} we write 1234, for example.

Example 3.3. Let Σ and Υ be the following simplicial complexes and let Ψ be the relative
complex between them.

Σ = 〈1234, 1235, 2345, 2456, 3456〉 ,
Υ = 〈125, 124, 246, 346〉 ,
Ψ = (Σ,Υ).

Both Σ and Υ are 2-fold acyclic and the face poset of Ψ cannot be decomposed into disjoint rank
2 boolean intervals. The face poset of Ψ appears in Figure 3.1 for the reader to verify this.

Since Υ is not an induced subcomplex of Σ, we cannot immediately apply Theorem 3.2 to
produce a counterexample to Conjecture 1.3. However, this complex is the foundation of our
counterexample and will be referred to repeatedly in our construction.

Our goal is to create a new pair (∆,Γ) that meets the conditions of Theorem 3.2. We now
consider the following complex, Γ.

Γ = 〈ABCE,BCEF,BCDF,ABCG,BCGH,BCDH,ABEG,BEFG,BFGH〉

Since Γ is a simplicial 3-ball with no interior vertices, Γ is 2-fold acyclic. Within Γ there are six
pairs of triangles which are listed below and depicted in Figure 3.2.

{ABC,BCD}, {ABE,BEF}, {ABG,BGH},
{CDF,CEF}, {CDH,CGH}, {EFG,FGH}. (3.1)

We now begin the construction of ∆. To each of the edgesAB, CD, EF, andGH , we add cone
points I, J , K, and L respectively, forming four triangles that are not in Γ:

ABI,CDJ,EFK,GHL. (3.2)
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D
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Figure 3.2: The triangles listed in (3.1). Each hollow triangular prism that appears is filled in by
three facets of Γ.

For any pair of triangles from (3.2) there is a unique pair of triangles in (3.1) so that the
four triangles together form a complex isomorphic to Υ from Example 3.3. For example, the
two triangles {ABI,CDJ} from (3.2) together with {ABC,BCD} from (3.1) form a complex
isomorphic to Υ. For these four triangles, we will glue a copy of Σ to Γ along this Υ in the
natural way.

We obtain ∆ as the result of gluing six copies of Σ to Γ in this way, one for each choice of
two triangles from (3.2). For clarity, we list all of the facets of ∆ that are not in Γ.

ABCJ, ABIJ, BCIJ, BCDI, CDIJ,
ABEK, ABIK, BEIK, BEFI, EFIK,
ABGL, ABIL, BGIL, BGHI, GHIL,
CDFK, CDJK, CFJK, CEFJ, EFJK,
CDHL, CDJL, CHJL, CGHJ, GHJL,
EFGL, EFKL, FGKL, FGHK, GHKL.

(3.3)

It is straightforward to verify that ∆ is 2-fold acyclic (see our Sage code [3]) and that Γ is an
induced subcomplex of ∆. It only remains to be shown that (∆,Γ) is not decomposable into
rank 2 boolean intervals; then we can apply Theorem 3.2 to construct our counterexample.

Theorem 3.4. Φ = (∆,Γ) is not rank 2 boolean decomposable.

The following proof follows a similar structure to the proof of Theorem 3.2.

Proof. The face poset of Φ contains six copies of the face poset of Ψ, one for each of the copies
of Σ that was glued in above. Each of the six copies of Ψ is not rank 2 boolean decomposable,
so each requires at least 4 additional faces to possibly be rank 2 boolean decomposable, a total
of 24 faces. These six copies of Ψ are pairwise disjoint and pairwise incomparable. The only
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faces of Φ not contained in a copy of Ψ are the intervals [I, ABI], [J,CDJ ], [K,EFK], and
[L,GHL]. These 16 additional faces are not sufficient for every copy of Ψ to become rank 2
boolean decomposable, so Φ is not decomposable into rank 2 boolean intervals.

Since f(Γ) = (1, 8, 22, 24, 9), Theorem 3.2 immediately implies that Ω17 is a counterexam-
ple to Conjecture 1.3, since 17 > 64/4.

In the proof of Theorem 3.4, Φ had only 16 faces that were not included in a copy of Ψ
instead of the 24 needed to possibly become rank 2 boolean decomposable. This difference of
8 is greater than the 4 assumed in Theorem 3.2. Furthermore, only the 43 faces of Γ that are
below Φ can be used to make Φ rank 2 boolean decomposable. With these improvements, we
know that Ω6 is a smaller counterexample, since 6 > 43/8. In fact, we can find an even smaller
counterexample.
Remark 3.5. A linear program [3] verifies that Ω = Ω3 is a counterexample to Conjecture 1.3.
The f-polynomial of this counterexample is f(Ω3, t) = 1 + 20t + 136t2 + 216t3 + 99t4 =
(1 + t)2(1 + 18t+ 99t2). This is the smallest known counterexample to Conjecture 1.3.

Considering the above discussion showing that Ω6 is a counterexample to Conjecture 1.3,
one might look to find a straightforward proof of Remark 3.5 that does not rely on a computer
calculation.

Proposition 3.6. Let ∆ be a simplicial complex. Then ∆ has a rank k boolean decomposition
if and only if the cone 〈v〉 ?∆ has a rank (k + 1) boolean decomposition.

Proof. If ∆ has a rank k boolean decomposition, then each interval [σ, τ ] in this decomposition
can be modified into the interval [σ, τ ∪ {v}] to form a rank (k + 1) boolean decomposition of
〈v〉 ?∆.

Assume instead that ∆ does not have a rank k boolean decomposition but that 〈v〉 ?∆ does
have a rank (k + 1) boolean decomposition. Consider an interval [σ, τ ] in this decomposition.
If v ∈ σ, τ , none of these faces appear in ∆. If v ∈ τ but v /∈ σ, [σ, τ ] can be decomposed into
[σ, τ \ {v}] and [σ ∪ {v}, τ ], where the first is a rank k interval of ∆ and the second contains no
faces of ∆. If instead v /∈ σ, τ , then [σ, τ ] can be decomposed into [σ, τ \ {x}] and [σ ∪ {x}, τ ]
for any x ∈ τ . These intervals together give a decomposition of ∆ into rank k boolean intervals,
which is a contradiction.

Since the cone of a k-fold acyclic complex is (k+ 1)-fold acyclic, Proposition 3.6 allows us
to produce higher-dimensional counterxamples to Conjecture 1.3.

4. Boolean Trees

While Conjecture 1.3 is false, we will use this section to prove a weakened version of it by
replacing boolean intervals with boolean trees. We will rely on algebraic shifting, developed by
Kalai in [12] and iterated homology, developed by Duval and Rose in [7] and Duval and Zhang in
[8]. We include all necessary results from these sources here for notation and ease of reference.
We use S(∆) to denote the (exterior) algebraic shifting of ∆.
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Proposition 4.1. [7, Theorem 4.1] Let ∆ be a d-dimensional simplicial complex, S(∆) its al-
gebraic shifting, and βk[r](∆) an iterated Betti number (where 0 6 r 6 k + 1 6 d + 1).
Then

βk[r](∆) = |{facets T ∈ S(∆) : |T | = k + 1 and init(T ) = r}| .

where init(T ) = max{i > 0 : [i] ⊆ T} if 1 ∈ T and init(T ) = 0 otherwise.

A set B of faces of a simplicial complex ∆ is an r-Betti set if fk−r(B) = βk[r](∆) for all k.

Theorem 4.2. [8, Theorem 3.2] Let ∆ be a d-dimensional simplicial complex. Then there exists
a chain of subcomplexes

{∅} = ∆(d+1) ⊆ · · · ⊆ ∆(r) ⊆ ∆(r−1) ⊆ · · · ⊆ ∆(1) ⊆ ∆(0) = ∆,

where
∆(r) = ∆(r+1) tB(r) t Ω(r+1) (0 6 r 6 d),

and bijections
η(r) : ∆(r) → Ω(r) (1 6 r 6 d+ 1),

such that, for each r,

1. ∆(r+1) and ∆(r+1) tB(r) are subcomplexes of ∆(r);

2. B(r) is an r-Betti set; and

3. for any σ ∈ ∆(r), we have σ ( η(r)(σ) and
∣∣η(r)(σ) \ σ

∣∣ = 1.

Proposition 4.3. [12, a specialization of Theorem 4.2] If ∆ is k-fold acyclic, then its algebraic
shifting S(∆) is also k-fold acyclic.

Proposition 4.4. If ∆ is shifted and k-fold acyclic, then ∆ is a k-fold cone.

Proof. Since ∆ is shifted, ∆ = S(∆). By [2, Theorem 4.3],

βi(∆) = |{facets T ∈ ∆ : |T | = i+ 1 and 1 6∈ T}|

Since ∆ is assumed to be k-fold acyclic, it is in particular acyclic. Thus βi(∆) = 0 for all i,
which implies that ∆ = 〈1〉 ? Γ1 for some complex Γ1. By [7, Proposition 2.3], Γ1 is shifted
on the remaining vertices, and we also know that Γ1 is (k − 1)-fold acyclic. Repeating this
argument, we see that ∆ = 〈1〉 ? 〈2〉 ? · · · ? 〈k〉 ?∆′ = 〈12 . . . k〉 ?∆′ for some subcomplex ∆′,
i.e., ∆ is a k-fold cone.

We are now able to prove the following relaxation of Conjecture 1.3.

Theorem 4.5. Let ∆ be k-fold acyclic. Then ∆ can be written as a disjoint union of boolean trees
of rank k. Furthermore, the minimal faces of these boolean trees together form a subcomplex ∆′.
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Proof. The proof is similar to the proof of [8, Corollary 3.5]. We will make use of Theorem 4.2,
and we will use the notation of that theorem.

By Propositions 4.3 and 4.4, S(∆) = 〈1 . . . k〉 ? ∆′ for some complex ∆′. Since S(∆) is
a k-fold cone, init(T ) > k for all facets T ∈ S(∆), and thus βi[r](∆) = 0 for r < k by
Proposition 4.1.

Step 0: Note that all faces of ∆ = ∆(0) form rank 0 boolean trees.
We will perform the following step k times: Assume this step has been completed i <

k times, so the minimal elements of boolean trees of rank i are all of the faces of ∆(i). By
Theorem 4.2,

∆(i) = ∆(i+1) tB(i) t Ω(i+1)

= ∆(i+1) t Ω(i+1)

with the second equality by Theorem 4.2 (2) since i < k. For each face σ ∈ ∆(i+1), we combine
the rank i boolean trees with minimal elements σ and η(i+1)(σ) to form rank (i + 1) boolean
trees. Since B(i) = ∅, there are no rank i boolean trees remaining after this step.

Furthermore, if we stop this process after k iterations, we see that the minimal elements of
the resulting boolean trees are precisely the faces of ∆(k+1) tB(k). We know that

∆(k+1) tB(k) ⊆ ∆(k) ⊆ ∆(k−1) ⊆ · · · ⊆ ∆(0) = ∆

as subcomplexes, therefore the minimal elements of these boolean trees together form a sub-
complex ∆′ = ∆(k+1) tB(k).

The subcomplex ∆(k+1) t B(k) described in Theorem 4.5 is a combinatorial witness to the
subcomplex in [15, Proposition 2.3]. This shows that a correct generalization of Stanley’s acyclic
matching is to boolean trees rather than boolean intervals.

We note the similarity between the resolution of this conjecture and the Partitionability Con-
jecture (see, e.g., [6, 14]). A complex ∆ is partitionable if its face poset can be written as the
disjoint union of boolean intervals whose maximal faces are the facets of ∆. Though there exist
Cohen–Macaulay complexes which are not partitionable [5], all Cohen–Macaulay complexes do
have a similar decomposition if “boolean interval” is replaced in the definition of partitionable
with “boolean tree” [8, Theorem 5.4].

5. d-fold Acyclic Complexes

In this section, we will show that Conjecture 1.3 holds for d-fold acyclic complexes where
d = dim ∆. We first show that Conjecture 1.3 holds for stacked complexes. We then show
that d-dimensional d-fold acyclic complexes must be stacked. Thus Conjecture 1.3 holds when
k = dim ∆.

Our interest in this case was sparked by the following result.

Theorem 5.1. [Duval–Klivans–Martin, unpublished] If ∆ is 2-dimensional and 2-fold acyclic,
then ∆ is stacked.
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Theorem 5.1 together with the following proposition shows that Conjecture 1.3 holds if
dim ∆ 6 2.

Proposition 5.2. Let ∆ be a d-dimensional stacked simplicial complex. Then ∆ is d-fold acyclic
and ∆ can be written as the disjoint union of rank d boolean intervals, the minimal elements of
which form a subcomplex ∆′ ⊆ ∆. Furthermore, Conjecture 1.3 holds for stacked complexes.

Proof. We will first show that stacked complexes are d-fold acyclic by induction on d. As a base
case, notice that if dim ∆ = 1, then ∆ is stacked if and only if ∆ is a connected acyclic graph
(i.e., a tree), and thus is 1-fold acyclic.

Assume the result holds for lower dimensions. Let σ ∈ ∆ such that |σ| < d. We note that
link∆ σ has a stacked shelling order induced from the stacked shelling of ∆. If σ 6= ∅, then
dim link∆ σ < dim ∆, and since link∆ σ is stacked and of lower dimension, it is also acyclic
by assumption. If instead σ = ∅, then link∆ σ = ∆, which is acyclic following a standard
argument about the homology of shellable complexes. Thus ∆ is d-fold acyclic by induction on
dimension.

Given a stacked complex ∆, its stacked shelling F1, . . . Fj gives rise to the following decom-
position:

∆ = [∅, F1] t [v2, F2] t [v3, F3] t · · · t [vj, Fj]

For any vertex v1 ∈ F1, we can write [∅, F1] = [∅, F1 \ {v1}] t [v1, F1]. Therefore ∆ can be
decomposed as

∆ = [∅, F1 \ {v1}] t [v1, F1] t [v2, F2] t [v3, F3] t · · · t [vj, Fj]

and ∆′ = {∅, v1, v2, . . . , vj} is a subcomplex of ∆. For any choice of k 6 d, a stacked complex
can be decomposed into a refinement of the above decomposition so the parts are rank k boolean
intervals and the minimal elements of these intervals form a subcomplex. One way to do this is
to totally order the vertices by their order of appearance in the shelling, and take the appropriate
lex-least faces to be the minimal faces. Thus Conjecture 1.3 holds for stacked complexes.

Lemma 5.3. Let ∆ be d-dimensional and d-fold acyclic. Then the f-polynomial of ∆ is f(∆, t) =
(1 + t)d(1 + nt) where n is the number of facets of ∆.

Proof. This follows immediately from [15, Proposition 2.3].

Lemma 5.4. Let ∆ be d-dimensional and d-fold acyclic. Then ∆ is pure and its facet-ridge
graph is connected.

Proof. LetF(∆) denote the facet-ridge graph of ∆, the graph whose vertices are facets of ∆ and
whose edges are pairs of facets of the same dimension whose intersection is a face of dimension
one smaller than each of the facets. By definition, this graph is disconnected if there are facets
of different dimensions.

Suppose F(∆) is disconnected. Let C1 be the collection of d-dimensional facets in one
component of F(∆). Let C2 be a different collection of facets in a component of F(∆) so that
I = 〈C1〉 ∩ 〈C2〉 has maximum dimension among all choices of C2. Let σ be a facet of I . In
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F(∆), the components containing C1 and C2 are not connected, so every face of I must be of
dimension at most d−2. Otherwise that face would appear inF(∆) as either a vertex or an edge
in bothC1 andC2. In particular, σ is at most (d−2)-dimensional. Since σ is in I , link〈C1〉 σ has at
least one 1-dimensional face and link〈C2〉 σ is nonempty. Since σ is a facet of I , the intersection
link〈C1〉 σ∩ link〈C2〉 σ = linkI σ is the empty face. In fact, for any other component Ci of F(∆),
link〈C1〉 σ ∩ link〈Ci〉 σ is the empty face. Therefore link∆ σ is disconnected and of dimension
at least 1. Since ∆ is d-fold acyclic, link∆ σ must be acyclic. This is a contradiction, so F(∆)
must be connected.

Since F(∆) is connected, ∆ must be pure.

We prove the following theorem using combinatorial methods, but we note that it is ripe for
proof with other methods, including a more algebraic approach using quasi-forests, Hochster’s
formula, and Dirac’s theorem on chordal graphs.

Theorem 5.5. Let ∆ be d-dimensional and d-fold acyclic. Then ∆ is a stacked complex.

Proof. Let T be a spanning tree ofF(∆). Assume ∆ has j facets and order its facets F1, . . . , Fj
so that T restricted to F1, . . . , Fi is connected for all i ∈ [j]. We will show that this order is a
stacked shelling of ∆.

Each edge in T corresponds to a ridge of ∆. For each 1 < i 6 j, T restricted to F1, . . . Fi
differs from T restricted to F1, . . . , Fi−1 by only the vertex Fi and the edge that connects it to
the rest of the tree. We will call this edge Ri and note that Ri = Fi ∩ F` for some ` < i. We
derive from this a collection of intervals in ∆. One special interval is [∅, F1]. The rest of the
intervals are [vi, Fi], where vi = Fi \Ri for 1 < i 6 j.

Let i < j, let σ be a face in 〈F1, . . . , Fi〉, and let Fm be the first facet in the facet order which
contains σ. We note that Rm is contained in F` for some ` < m, and σ 6⊆ F` for any ` < m.
Therefore it must be that σ 6∈ [∅, Rm] and instead σ ∈ [vm, Fm]. This means that any initial
collection of intervals contains the complex generated by the corresponding facets.

Since there are j facets in the total facet order, this gives a formula for the sum of the f -
polynomials of each interval as (1+t)d+1+(1+t)d((j−1)t), which simplifies to (1+t)d(1+jt).
By Lemma 5.3, this is exactly the f -polynomial of ∆. By the converse of the addition principle,
the intervals must be disjoint.

The facet order F1, . . . , Fj determines a collection of intervals such that the bottom element
of each interval is a vertex, the intervals are disjoint, and any initial segment is the complex
generated by those facets. Therefore F1, . . . , Fj is a stacked shelling order, and ∆ must be a
stacked complex.

Applying Proposition 5.2 and Theorem 5.5, we see that a d-dimensional complex ∆ is stacked
if and only if it is d-fold acyclic. This leads immediately to our main result of this section.

Corollary 5.6. Conjecture 1.3 holds when k = dim ∆.

6. Open Questions

While our construction gives a counterexample to Conjecture 1.3, our result in Theorem 4.5
provides an explicit witness to the structure of the f -polynomials of k-fold acyclic complexes.
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Perhaps the most interesting questions in light of Remark 3.5 are in determining any additional
conditions that would make the conjecture hold. We know that Ω3 is the lowest dimensional
counterexample possible, but we have no reason to suspect that is in other senses the smallest.

Question 6.1. What is a minimal counterexample to Conjecture 1.3 with respect to the total
number of faces, vertices, or facets, respectively?

Though our counterexample is three-dimensional, it cannot be embedded into R3. It is un-
known if non-embeddability is necessary to be a counterexample.

Question 6.2. Is it possible to find a counterexample to Conjecture 1.3 that embeds into R3? In
general, is it possible to find a d-dimensional counterexample that embeds into Rd?

It is also unknown whether complexes with additional topological or combinatorial structure
could be counterexamples.

Question 6.3. Do all k-fold acyclic simplicial balls have a rank k boolean interval decomposi-
tion? If they do, must there be a decomposition so that the bottoms of these intervals forms a
subcomplex?

Although a bit further afield from the techniques developed in this paper, one can ask about
random simplicial complexes.

Question 6.4. For a fixed triple of k, d, v, there are finite k-fold acyclic complexes of dimension
d with v vertices. Sampling from this set with the uniform distribution, what is the probability
the chosen complex has a rank k boolean decomposition? What is the limiting probability as v
goes towards∞?
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