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ABSTRACT

Disentangling the effects of cyclical variability in environmental forcing and long-term climate change on natural communities
is a major challenge for ecologists, managers, and policy makers across ecosystems. Here we examined whether the vertical
distribution of rocky intertidal taxa has shifted with sea-level variability occurring at multiple temporal scales and/or long-term
anthropogenic sea-level rise (SLR). Because of the distinct zonation characteristic of intertidal communities, any shift in tidal
dynamics or average sea level is expected to have large impacts on community structure and function. We found that across the
Northeast Pacific Coast (NPC), sea level exhibits cyclical seasonal variability, tidal amplitude exhibits ecologically significant
variability coherent with the 18.6-year periodicity of lunar declination, and long-term sea-level rise is occurring. Intertidal taxa
largely do not exhibit significant vertical distribution shifts coherent with short-term (monthly to annual) sea-level variability
but do exhibit taxa-specific vertical distribution shifts coherent with cyclical changes in lunar declination and long-term SLR at
decadal timescales. Finally, our results show that responses to cyclical celestial mechanics and SLR vary among taxa, primarily
according to their vertical distribution. Long-term SLR is occurring on ecologically relevant scales, but the confounding effects
of cyclical celestial mechanics make interpreting shifts in zonation or community structure challenging. Such cyclical dynamics
alternatingly amplify and dampen long-term SLR impacts and may modify the impacts of other global change related stressors,
such as extreme heat waves and swell events, on intertidal organisms living at the edge of their physiological tolerances. As a
result, intertidal communities will likely experience cyclical periods of environmental stress and concomitant nonlinear shifts in
structure and function as long-term climate change continues. Our results demonstrate that consistent, large-scale monitoring of

marine ecosystems is critical for understanding natural variability in communities and documenting long-term change.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
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1 | Introduction

The rocky intertidal zone is a model system for exploring inter-
actions between ecology and the physical environment, in part
because it is characterized by patterns of ecological zonation in
the form of distinct banding along the tidal elevation gradient.
Intertidal community zonation has classically been identified
as driven by spatially and density-dependent ecological mech-
anisms including competition (Connell 1961; Menge 1976), mu-
tualism (Menge 1995), predation (Menge 1976; Paine 1969, 1974,
1980), facilitation (Johnson and Brawley 1998; Readdie 2004),
and larval supply (Gaines and Roughgarden 1985; Johnson and
Brawley 1998; Roughgarden, Gaines, and Possingham 1988) and
physical drivers such as waves, tides, and nearshore currents
(Connell 1961, 1972; Dayton 1971; Doty 1946; Harley, Helmuth,
and Carolina 2003; Lewis 1964; Paine 1974). Generally, accord-
ing to Connell's rule, in the intertidal zone the lower limits of
distribution are set by biotic factors, and the upper limits are
set by abiotic factors, namely desiccation rates determined by
average sea-level conditions (Connell 1961). Sea level varies on
multiple spatiotemporal scales that each may have significant
consequences for the structure of rocky intertidal ecosystems
through modifying physical environmental conditions, includ-
ing emersion time and desiccation stress (Figure 1; Table 1;
Chelton and Davis 1982; Stommel 1963). Despite this, both sea-
level and vertical distribution (the observed occupancy by inter-
tidal organisms of distinct elevations in reference to any fixed
point at a field site) are largely assumed to be temporally sta-
ble in ecological studies (Readdie 2004). This is at least partly a

result of the short time frames over which data are typically col-
lected in experimental and observational studies relative to the
time frames over which physical drivers of vertical distribution
vary. Experimental manipulations of ecological players, such
as Paine's removal of the keystone predator Pisaster ochraceous
(Brandt 1835), can induce rapid, observable changes in vertical
distribution (Paine 1974). In contrast, changes in physical en-
vironmental conditions that are consequential for patterns of
vertical distribution are challenging to simulate experimentally
and naturally occur over time scales that are not amenable to
observational studies (i.e., multi-annual to multi-decadal scales;
Figure 1; Table 1).

To date, few studies have examined the effects of sea-level vari-
ability on intertidal vertical distribution because the inherent
complexity and spatial and temporal scale of sea-level variability
pose substantial logistical challenges to identifying its ecological
impacts (Denny and Paine 1998). To detect ecological responses
to sea-level variability and fully understand community dynam-
ics, it is necessary to pair long-term and large-scale physical and
ecological datasets (Denny and Paine 1998). But these datasets
must have certain characteristics. Tide gauges that produce
sea-level time series must record conditions near the open coast
within a reasonable proximity of locations where ecological
monitoring occurs. Ecological monitoring must be spatially ex-
plicit and capable of providing vertical distribution data in as-
sociation with species identifications. Ecological data must also
be geographically and temporarily resolved and at least multi-
decadal in temporal extent to capture the major fluctuations in
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FIGURE 1 | Schematic diagram of approximate scale of spatiotemporal drivers of sea-level variability experienced in the rocky intertidal zone
(adapted from Stommel 1963). On the x-axis is the logarithm of the temporal scale P, in seconds, and on the y-axis is the logarithm of the spatial scale
L, in centimeters, over which variation in these drivers have effects on rocky intertidal organisms. The approximate scales of variation examined in

this paper are highlighted in blue.
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tidal conditions driven by long-term celestial mechanics (Denny
and Paine 1998; Haigh, Eliot, and Pattiaratchi 2011; Menéndez
and Woodworth 2010). Data matching all these criteria are rare.

The few studies that have documented changes in vertical dis-
tribution of intertidal organisms linked to causal mechanisms
at different temporal scales suggest that the paradigm of spatial
heterogeneity, but temporal stability, deserves further scrutiny.
Seasonal shifts in foliose algae, upward in the spring, then back
down again as production decreases, have been documented in
Australia (Underwood 1980; Underwood and Jernakoff 1984).
At Tatoosh Island, Washington, USA, Denny and Paine (1998)
documented a long-term (1971-1988) downward shift of ~0.20m
in the upper limit of Mytilus californianus Conrad, 1837 that
was proposed to be driven by 18.6-year periodicity fluctuation
in tidal exposure linked to oscillation in the plane of the moon’s
orbit (lunar declination) (Denny and Paine 1998). Also at Tatoosh
Island, Harley and Paine (2009) found that over 30years, the upper
limit of Mazzaella parksii (Setchell & N.L. Gardner) Hughey, P.C.
Silva & Hommersand 2001 did not track gradual changes in air
temperature and dropping relative sea level associated with conti-
nental uplift, but rather exhibited consistent seasonal fluctuations
of approximately 3.0cm upward in the winter and downward in
the summer, and two large downward displacements of approxi-
mately 0.10-0.20m during two summers (1995, 2004) associated
with unusually calm wave conditions combined with unusually
warm air temperatures (Harley and Paine 2009). Using data at
eight long-term monitoring (LTM) sites in south central California,
Readdie (2004) documented significant (+ 0.06—0.63m) shifts in
the upper limits of the Chthamalus/Balanus, Endocladia, and
Silvetia zones over the course of a decade (1992-2002), attributed
to facilitated ecological succession (Readdie 2004). Although
they did not explicitly document shifts in distribution, Burnaford,
Nielsen, and Williams (2014) documented a change in percent
cover of the canopy forming intertidal kelp Saccharina sessilis (C.
Agardh) Kuntze 1891 over 14years (1998-2012) in fixed plots at
San Juan Island, WA, USA, in response to changes in emersion
time associated with the lunar declination cycle (Burnaford,
Nielsen, and Williams 2014). This could have represented a change
in abundance of S. sessilis at that site, or potentially a shift in the
distribution of the algae to a different elevation. Together, these
results suggest that both cyclical and punctuated, stochastic shifts
in vertical distribution of 10's of cm over seasonal to multi-decadal
timescales may be an important characteristic of intertidal eco-
systems and their ecological dynamics. As a result, any attempt
to examine the effects of long-term climatic trends on intertidal
communities, such as anthropogenic sea-level rise (SLR), must
consider both cyclical and stochastic variation in physical drivers
of community structure at multiple (i.e., multi-annual to multi-
decadal) time scales.

Anthropogenic warming of the atmosphere and oceans and re-
sultant deglaciation is causing sea-level rise (Cazenave et al. 2014;
Chen et al. 2017; Church and White 2006; National Research
Council 2012; Rahmstorf 2010; Sweet et al. 2017). Unlike the cycli-
cal rise and fall in the vertical distribution of intertidal organisms
documented in the past, SLR is hypothesized to drive a long-term
nonlinear upward shift in the vertical distribution of intertidal
organisms through time. Although estimates remain uncer-
tain, some studies project up to 2.5m of SLR on the NPC by 2100
(Church and White 2006; Sweet et al. 2017). This large-magnitude

SLR is expected to have drastic ecological impacts on rocky shores
on the NPC, because it is expected to lead to an upward shift in the
vertical distribution of intertidal organisms (Figure 2). Yet stud-
ies documenting long-term shifts in zonation associated with SLR
are almost entirely lacking. Using historical photographs at the
Hopkins Marine Station in Pacific Grove, CA, USA, Hunt (2006)
documented an upward shift in the upper limits of Endocladia
muricata (Endlicher) J. Agardh, 1847 of comparable magnitude
to rising sea level over the course of a century (1896-2006), but
occurring in a single large step from 1963 to 1970, and attributed
to intraspecific facilitation (Hunt 2006). Studies modeling the fu-
ture impacts of SLR on intertidal communities suggest that when
backed by steep cliffs, large-magnitude SLR associated upward
shifts will result in coastal squeeze as the total surface area asso-
ciated with any tidal elevation range is reduced, ultimately leading
to substantial habitat loss, intensified competition, and declines in
populations of intertidal taxa (Hollenbeck, Olsen, and Haig 2014;
Jackson and Mcilvenny 2011; Kaplanis et al. 2020; Schaefer
et al. 2020; Thorner, Kumar, and Smith 2014). Addressing the
question of how rocky intertidal communities have responded to
SLR in the past is valuable, as past periods of elevated sea level may
serve as a proxy for future conditions and the resultant community
response.

The Northeast Pacific Coast (NPC) is an ideal study location
for examining the effects of SLR on vertical distribution of in-
tertidal organisms because of its long history of monitoring of
both sea-level and rocky intertidal biota. The National Oceanic
and Atmospheric Administration Center for Operational
Oceanographic Products and Services (NOAA CO-OPS) man-
ages a network of over 75 tide gauge stations across the West
Coast that provide detailed sea-level data, with some time se-
ries starting in the 1800s (Figure 3). These time series have both
a short sampling interval (high resolution) and long temporal
extent and thus allow characterization of sea-level variability
from hourly to multi-decadal scales. The Multi-Agency Rocky
Intertidal Network (MARINe) has monitored rocky intertidal
communities at sites across the NPC for over two decades. This
program provides detailed, spatially explicit community com-
position data at nearly 200 rocky intertidal field sites from Baja
California, México, to Alaska, United States (Figure 3). The
MARINe Coastal Biodiversity Survey (CBS) has been carried
out since 2001, spanning a complete 18.6-year lunar declination
cycle and its associated variability in tidal amplitude, as well as
two decades of long-term SLR. The pairing of these datasets pro-
vides a unique opportunity to examine sea-level variability and
its consequences for rocky intertidal organisms at scales com-
mensurate with those at which variability occurs.

The purpose of this study was to (1) characterize spatiotemporal
sea-level variability on rocky shores of the NPC and (2) determine
the relationship between this sea-level variability and the distri-
bution of rocky intertidal organisms over the past two decades.
Specifically, we asked the questions: (1) What are the seasonality
and long-term trends in sea level across the NPC and through the
long-term monitoring period? (2) Does the vertical distribution
of rocky intertidal organisms shift coherently with sea-level vari-
ability? To address Question 1, we characterized seasonality and
long-term trends for tide gauge stations in eight regions across the
NPC, from Southern California to Southeast Alaska. To address
Question 2, we evaluated whether the upper limits of vertical
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FIGURE2 | Schematic diagram of change in vertical distribution of intertidal organisms under SLR. As sea-level rises, zonation patterns remain
constant in reference to the actual observed average sea-level conditions experienced at the site (observed mean lower low water, MLLW), but
intertidal organisms exhibit an upward shift in reference to both the fixed, antiquated tidal datum (tidal datum MLLW), and to any fixed point
on the shore. In this theoretical example, Mytilus californianus occupies 0.5 vertical m in both states with an upper limit 1.0m above sea level but
shifts from a range of 0.5-1.0m+Datum MLLW to a new range of 1.5-2.0m+Datum MLLW under the influence of 1.0m of sea-level rise. The
Mpytilus californianus distribution is also observed to move from below to above a fixed reference bolt, like those found at MARINe CBS sites. If the
magnitude of sea-level rise is sufficiently large, and the slope at the heights occupied is steeper than in the past, then organisms experience a loss of
habitat availability, termed “coastal squeeze.”
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FIGURE 3 | Study map of the Northeast Pacific Coast. Locations of 26 National Oceanic and Atmospheric Administration (NOAA) tide gauge
stations (light blue) and Multi-Agency Rocky Intertidal Network (MARINe) Coastal Biodiversity Survey (CBS) sites (dark blue) shown. Study region
names are written.
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distribution of dominant benthic intertidal taxa at 77 MARINe
CBS sites has shifted coherently with sea-level variability across
a range of temporal scales. We hypothesized that intertidal taxa
would exhibit shifts in vertical distribution in response to the
long-term (multi-decadal) sea-level trends (S) at stations nearest
the CBS survey sites. We expected this response to be spatially
variable but that most taxa would exhibit upward shifts in verti-
cal distribution as sea-level rises, on the order of a few cm. We ex-
pected that lunar declination (1d) would have different effects on
intertidal taxa depending on their vertical distribution and the re-
spective influence of the components of the tidal cycle and overall
tidal amplitude (Greater Diurnal Range, gt) modified by variability
in lunar declination (sensu Denny and Paine 1998; Menéndez and
Woodworth 2010; Haigh, Eliot, and Pattiaratchi 2011). We hypoth-
esized that upper intertidal taxa would have a positive correlation
with lunar declination, shifting upward as mean higher high
water MHHW) and gt increase toward the lunar declination max-
ima. Conversely, we hypothesized that taxa occurring at low to in-
termediate tidal heights (below approximately mean lower high
water (MLHW)) would shift upward toward the lunar declination
minima, when the MLHW values are elevated, causing a second
period of tidal submersion or wetting in each day. We hypothesized
that whether this effect dampens or amplifies the sea-level rise ef-
fect would depend on whether the cycle is in or out of synch with
SLR during the CBS surveys. We expected the magnitude of the
1d effect would be similar to that of the long-term sea-level trend,
but that it would be spatially variable, decreasing with increasing
latitude (sensu Haigh, Eliot, and Pattiaratchi 2011). Finally, we ex-
pected that the long-term responses would be modified by shorter
term sea-level variability (monthly deviations (d), preceding an-
nual minimum (L) and maximum (M) deviations, and preceding
year annual mean of deviations (d) from the long-term trend (S)).
We expected that life history differences across taxa would deter-
mine to some extent the strength of the relationships with these
predictor variables, with shorter lived taxa (e.g., Balanus glandula
Darwin, 1854, opportunistic algae) responding more readily to
short-term variability. We expected geographic location (latitude
(y) and longitude (x)) would modify the relationships due to differ-
ences in various site characteristics, including site geomorphology
(e.g., habitat availability, slope, and aspect), environmental condi-
tions (e.g., wave exposure, air and water temperatures), and the
interactions between these characteristics. Generally, we hypoth-
esized that upper limits would increase upcoast toward the north-
west, due to increases in wave exposure, cooler air temperatures,
and generally damper air conditions.

2 | Materials and Methods

2.1 | Characterizing Sea-Level Variability—
Seasonality and Long-Term Trends

We analyzed verified monthly mean sea-level (MMSL) values
calculated from hourly tidal-height readings each month at 26
NOAA CO-OPS tide gauge stations within eight regions in the
NPC from Southeast Alaska to Southern California (Figure 3).
MMSL values are referenced to mean lower low water (MLLW)
at each station, the arithmetic mean of all lower low water
tidal heights observed over the National Tidal Datum Epoch
(NTDE) from 1983 to 2001 (NOAA 2001). MMSL data from
these stations were constrained to the 2001/01-2022/09 period

(261 months, or 21.75years) to match the temporal extent of
the MARINe CBS data available up to the time of analysis.
Only stations with a data extent of at least 15years and that
are located on or near the open coast were used. To visualize
sea-level data, we created time-plots of the series at each sta-
tion (e.g., Figure 4). To visualize fluctuations driven by lunar
declination, a sinusoidal function with a period of 18.61years
was fitted to the monthly great diurnal range (gt) values for
each tide gauge station using ordinary least squares regression
(Figure 5).

To understand seasonality, we first used autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) plots to
visualize temporal autocorrelation and confirm that a seasonal
cycle was present in each series (Figure S1). Although sea level is
known to fluctuate in response to El Nifio Southern Oscillation
(ENSO) forcing, with sea levels generally higher during periods
of positive Oceanic Nifio Index (ONTI) and lower during periods
of negative ONI, the autocorrelation structure of the time series
did not suggest regular multi-annual ENSO driven cycles were
present.

To visualize seasonal sea-level variability, we plotted the mean
of MMSL residuals from the long-term trend for each month of
the year at each station (e.g., see Figure 6). We then calculated
the average seasonal range for each station by subtracting the
minimum average MMSL deviation value from the maximum
average MMSL deviation value. We also calculated the annual
total of the magnitude of average monthly change (C) for each
station using the equation: C = X! |D; - D,,,|, where D is
the average MMSL residual values for month i (Table 2). To
characterize long-term trends, we used ordinary least squares
regression to model linear trends in MMSL across the mon-
itoring period (Figure 4; Table 3; Figures S2 and S3). To vi-
sualize interannual variability, we plotted MMSL values with
the average seasonal cycle and linear sea-level trend removed
(Figure 7).

2.2 | Long-Term Biological Monitoring Dataset
and Site Selection

The MARINe Coastal Biodiversity Survey has been conducted
at 190 sites, with each site surveyed consistently every 3-5years
since 2001. Survey protocols are described in detail on the
MARINe website (Multi-Agency Rocky Intertidal Network
(MARINe) Survey Methods n.d.). Briefly, the CBS typically
consists of 11 cross-shore transects placed uniformly to form
a single large plot at each site (~30m along-shore x20-100m
across-shore), along each of which 100 pts. are sampled uni-
formly. Plots are also topographically mapped so all biological
data are linked to tidal elevation. Elevations along every tran-
sect were measured using a Trimble GPS system referencing
NAVDS88 and were converted to MLLW using NOAA's VDatum
Tool (NOAA's Vertical Datum Transformation Tool (VDatum
v. 4.7) n.d.). Surveys either are “first point contact,” in which
species identifications of the top layer are collected, or “full
point contact,” in which up to two additional layers are iden-
tified below the top layer. Coastal Biodiversity Surveys are
conducted by field teams with advanced taxonomic expertise,
and identifications are typically made for all benthic species to
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FIGURE4 | Time series plots of monthly mean sea-level values at seven tide gauge stations (one per region) during the Coastal Biodiversity Survey
Monitoring Period (2001-2022). Data values are in reference to mean lower low water (MLLW) at each station, and mean sea level (MSL) is shown
(dotted line). Stations with the largest significant sea-level trend for each region are plotted.
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(2001-2022). Data values are in reference to mean lower low water (MLLW) at each station, gt is shown with the black line, and the fitted curve
representing lunar declination is shown in blue. The same stations from Figure 4 are plotted (one for each region).
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FIGURE 6 | Average seasonal cycle of sea level for 3 of 26 west coast tide gauge stations. Bars indicate mean of the deviation of monthly mean
sea-level (MMSL) from the long-term trend estimate for each month of the year (+1.96 X SE).
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the species level, though coarser taxonomic identifications are
sometimes used.

To explore the ecological consequences of sea-level variabil-
ity, we utilized data from 77 CBS sites (of 190 potential sites)
within eight defined regions distributed across 25.5° of latitude
(Figure 3). We selected sites that had a minimum of 10years be-
tween initial and final sampling dates. This criterion ensured
data were appropriately spread across the temporal extent of
interest while also maximizing the number of survey sites. We
extracted data for the 10 most abundant benthic taxa (hereafter
termed dominant taxa) based on mean percent cover data from
each CBS site. Mean % cover was calculated using full point con-
tact data; first point contact data were used only when full point
contact samples were not conducted. Of the 245 taxa encoun-
tered in the CBS dataset from the 77 sites, 65 were included in
the dominant taxa across sites. Identifications included lumped
(i.e., functional group) and species level identifications, and
three non-biological identifications (rock, sand, tar). This data-
set consisted of over half a million (521,510) observations.

This dataset was further filtered based on other data quality cri-
teria before analysis. All surveys in which a taxon was observed
fewer than 10 times were dropped to ensure upper limit calcu-
lations accurately represented a true limit. All surveys in which
tide gauge data from the nearest tide gauge station for the survey
month were missing were also dropped. Taxa with limited spa-
tial distributions (only represented by a single tide gauge station
or with a latitudinal range < 3°) were dropped. Lumped identifi-
cations (i.e., multiple genera within an identification) were also
dropped. Fucus spp. was retained, as this group contained only
species within the same genus that do not have clear geographic
delineation and are often indistinguishable in the field. The
final dataset contained 22 taxa (plus bare rock and sand) and
977 unique site X survey X taxa combinations. From this dataset,
we analyzed 11 taxa targeted by MARINe for monitoring (listed
here in order of decreasing available modeling data: Mytilus cali-
fornianus, Endocladia muricata, Balanus glandula, Phyllospadix
torreyi S. Watson, 1879, Silvetia compressa (J. Agardh) E.
Serrdo, T.O. Cho, S.M. Boo & Brawley, 1999, Egregia menzie-
sii (Turner) Areschoug, 1876, Fucus spp., Tetraclita rubescens
Nilsson-Cantell, 1931, Phyllospadix scouleri W.J. Hooker, 1838,
Anthopleura elegantissima (Brandt, 1835), and Anthopleura xan-
thogrammica (Brandt, 1835)). The full criteria for selecting target
species are available on the MARINe website but include the fol-
lowing: species ecologically important in structuring intertidal
communities competitive dominants, or major predators; spe-
cies that are abundant, conspicuous, or large; and species whose
presence provides numerous microhabitats for other organ-
isms (Pacific Rocky Intertidal Monitoring: Target Species n.d.).
Although A. xanthogrammica met our filtering criteria, it was
not encountered in enough surveys to produce a model. We also
reported results for the upper limit of bare rock as a proxy for the
upper limit of biology, as this value is indicative of the elevation
of the splash zone above the distribution of most marine species.

2.3 | Changes in Vertical Distribution

Multiple linear regression was used to evaluate whether the
upper limits of vertical distribution of the dominant taxa of
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Note: Statistical significance codes: 0 “***”,0.001 “**”, 0.01 “*”, 0.05 “.”. Rows in gray have nonsignificant trends. Trend equivalents are as follows: cm of sea-level change in one century, and cm of sea-level change in the monitoring

period (2001/01-2022/09, 261 months). Model expressed as sea-level change

m x month + intercept.

interest have shifted in response to sea-level variability during
the monitoring period. For response variables, we calculated
two metrics from CBS survey point contact data to describe the
upper limit of distribution (Z) of each taxon during each CBS
survey date at each site. We utilized metrics describing the upper
limits of distribution based on the widely supported idea that the
upper limits of distribution of intertidal taxa are primarily de-
termined by abiotic factors (i.e., “Connell’s Rule,” Connell 1961).
For taxa that occupy middle to upper intertidal zones and whose
vertical distribution is wholly captured by the CBS sampling,
we calculated 90th percentile tidal elevation values in reference
to MLLW. For taxa that occupy the lower intertidal zone and
whose vertical distribution extends below the CBS sampling, we
ranked the tidal elevation values in descending order, then cal-
culated the average of the top 10 elevation values in reference
to MLLW, as there is no way to calculate an accurate percentile
value without observing the lower limit of distribution.

We decomposed the sea-level time series from tide gauge sta-
tions nearest the CBS sites into multiple components to serve
as potential predictor variables. Sea-level anomalies on the NPC
are spatially coherent over large scales (100's of km) so linking
CBS data to tide gauge data from the nearest stations is justified
(Enfield and Allen 1979). The predictor variables were as fol-
lows: the fitted value from the long-term linear trend for the sur-
vey month (S), the residual from the long-term linear trend for
the survey month (d), the mean of the residuals from the long-
term linear trend for the 12 months preceding the survey month
(d), the maximum MMSL value from the 12months preceding
the survey month (M), and the minimum MMSL value from
the 12months preceding the survey month (L). To account for
the effect of lunar declination, we fit a sinusoidal function with
a period of 18.61years to the monthly great diurnal range (gt)
values for each tide gauge station using ordinary least squares
regression (Figure 5). Great diurnal range is a standard NOAA
COOPS datum that is the difference between the arithmetic
mean of all higher high water (MHHW) values and the arithme-
tic mean of all lower low water values (MLLW) values observed
in any period. The fitted values from this function (termed lunar
declination, 1d) were extracted for each survey month as an ad-
ditional predictor variable. To account for variation associated
with geography, longitude (x) and latitude (y) were also used
as predictor variables. Although other climatic variables, such
as sea-surface temperature, wave height, air temperature, and
precipitation, also exhibit cyclicity and long-term trends, the
focus of this study was on differentiating between the effects
of long-term sea-level rise and cyclical variation in sea level at
multiple temporal scales. Obtaining local, small-scale climate
data matched to each of our survey sites was not possible. As a
result, we were not able to include these other climatic variables
as potential predictor variables. To some extent, spatial variation
in these environmental predictors is accounted for by including
longitude and latitude in our model. Multiple regression models
were initially built for Z varying as a function of all eight of these
predictor variables.

Using variance-inflation factors (VIFs), we found substantial
collinearity among predictor variables. Therefore, principal
component analysis with varimax rotation was used to develop
independent predictor variables (PC Factors) from the data used
in the model for each taxon. From the original eight predictor
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FIGURE 7 | Interannual variability of monthly mean sea level at 26 tide gauge stations. Plots show monthly mean sea-level (MMSL) values with
the average seasonal cycle and linear sea-level trend (S) removed, and with the y-axes limited to —0.2 to +0.2M in reference to mean sea level (MSL).
Interannual variability is known to be caused by irregular fluctuations in coastal oceanographic conditions such as ocean temperatures, salinity, and
currents. Interannual variability is also tied to the El Nifio Southern Oscillation (ENSO).
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variables, two principal component axes (PC1 and PC2) were
explanatory (eigenvalue > 1) in all cases, except for T. rubes-
cens, where three principal component axes were explanatory.
Loadings varied by taxa (Table 4). For eight of the eleven mod-
els run, S, M, L, and 1d loaded strongly positively on PC1, and
a combination of these variables, but not all of them, loaded
strongly positively on PC1 for the other three models. As a re-
sult, PC1 represents the effect of lunar declination and the long-
term sea-level trend with negative values being small average
tidal amplitudes and lower sea levels and positive values being
large average tidal amplitudes and higher sea levels. Latitude
loaded strongly positively, and longitude loaded strongly nega-
tively on PC2 for three models. Thus, PC2 represents the CBS
site geographic location, with negative values being south-
easterly and positive values being north-westerly. The residual

values (d and @) were orphan variables in all models, not loading
strongly (value close to 0) on PC axes, except for in the T. ru-
bescens model, where d loaded strongly positively on PC3, along
with M. Longitude was an orphan variable in all cases in which
it did not load on PC2 (Table 4). We used a stepwise regression
approach to model simplification (both directions), selecting the
most parsimonious model with the lowest Aikaike-information
criterion (AIC) score for each of the taxa (Table 4). The results
from these final models are reported (Tables 5 and 6). Partial
residual plots were created for the models with multiple sig-
nificant terms to visualize the effects of each significant term
on upper limits individually (Figures 8-12). We conducted all
quantitative data summaries, analyses, plotting, and mapping
using R (R Core Team 2021). All data and code for these analy-
ses are openly available online (Kaplanis 2024).

TABLE 4 | Principal component loadings for all taxa models. Table shows where explanatory variables load on principal component axes and
whether the loading is + or —, the orphan variables for each model, and the terms retained in the final stepwise regression models as well as their

AIC scores.
Principal Variable loadings
Taxa component axis + - Orphans Final model AIC
Balanus glandula PC1 y,S,L, M, 1d x,d, d Z~PCl+x+d+d —75.04
Bare Rock PC1 y,S, L, M, 1d x,d,d Z~PCl+x —-120.6
Endocladia muricata PC1 y,S,L,M, 1d x,d,d Z~PCl+x+d+d -137.9
Fucus spp. PC1 y,S,L, M, 1d x,d, d Z~PCl+x+d —59.66
Mpytilus californianus PC1 v, S, L, M, 1d X, d, d Z~PCl+x+d+d -205.4
Anthopleura elegantissima PC1 v, S, L, M, 1d x,d, d Z~PCl+x —21.88
Tetraclita rubescens PC1 S,L d,1d Z~PC2 —-51.81
pC2 y X
PC3 M, d
Silvetia compressa PC1 S,L,M d,d,1d Z~PC1+PC2+1d —-70.2
PC2 y X
Phyllospadix scouleri PC1 y,S,L, M, 1d x,d, d Z~X —69.19
Egregia mengziesii PC1 S,L,M, 1d d,d Z~PC2 -56.93
PC2 y X
Phyllospadix torreyi PC1 y,S,L, M, 1d x,d, d Z~PCl+x —89.51
Variable Symbol Class
Latitude y Explanatory
Longitude X
Long-term linear trend S
Preceding year minimum MMSL L
Preceding year maximum MMSL M
Survey month residual d
Preceding year residual mean d
Lunar declination 1d
Species upper limit Z Response
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Intercept
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sk
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Note: Statistical significance codes: *** <0.001, **<0.01, *<0.05, . <0.1.

3 | Results
3.1 | Sea-Level Variability—Seasonality

All stations exhibit seasonal sea-level variability, and the timing
of seasonal peaks and troughs varies geographically (Table 2).
From Arena Cove south, sea level is lowest in the spring upwell-
ing season (March-April) and highest during the late summer
(September, except for Arena Cove, that peaks in December).
Moving from northern California to Washington, the timing of
the seasonal low shifts progressively later, from May in North
Spit to Port Orford to July in Garibaldi to Neah Bay. In Southeast
Alaska, the seasonal low occurs in May, except for in Elfin Cove,
where sea level is lowest in July. The seasonal high occurs in
December between Arena Cove and South Beach and then
shifts to January from Garibaldi to Elfin Cove, with the excep-
tion of Toke Point, Ketchikan, and Sitka, where the high occurs
in December, November, and December, respectively (Table 2).
The magnitude of seasonal sea-level variability also varies geo-
graphically. The greatest seasonal variability occurs at La Push
(35cm (range), 74cm (total change), Table 2), while the least
occurs at San Francisco (13cm (range), 30cm (total change),
Table 2). Regionally, seasonal sea-level variability is largest in
Washington and smallest in South Central California (Table 2).

3.2 | Sea-Level Variability—Long-Term Trends

Twenty of twenty-six tide gauge stations had significant sea-level
trends (Table 3). All tide gauge stations in California and Oregon
had significant SLR except Crescent City and Port Orford. Over
the course of the monitoring period, the greatest significant SLR
occurred at North Spit, in North California (trend equivalent:
14cm/monitoring period of 21.75years or 261 months, from
01/2001 to 09/2022), followed by San Diego, South California
(13cm), then Oil Platform Harvest, South Central California
(12cm). The least SLR (4cm) occurred at Charleston, Oregon.
Only one station in Washington (La Push) had significant SLR
(8cm). Three of four tide gauge stations in Southeast Alaska ex-
hibited significant drops in relative sea level because of continen-
tal uplift, from 10cm at Port Alexander to 47 cm at Elfin Cove.

3.3 | Changes in Vertical Distribution—Sea-Level
Trend and Lunar Declination (PC1)

The upper limits of vertical distribution were significantly posi-
tively correlated with lunar declination and long-term sea level
(PC1) for four taxa (B. glandula, E. muricata, Fucus spp., and M.
californianus) and bare rock (Figure 8; Table 5). Upper limits
were significantly negatively correlated with PC1 for two taxa
(A. elegantissima and P. torreyi; Figure 8; Table 5) and signifi-
cantly negatively correlated with lunar declination (1d) and sea-
level trend (S) separately for S. compressa (Figure 9; Table 5).

3.4 | Changes in Vertical Distribution—
Geography (PC2) and Longitude (x)

The upper limits of vertical distribution were significantly
positively correlated with geography (PC2) for three taxa (T.
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upper limit is the mean of the top 10) of six taxa and bare rock, ordered from highest to lowest average upper limit.
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FIGURE 9 | The lower intertidal species S. compressa exhibits negative relationships with sea-level trend and lunar declination separately. Plots

depict the effect of the long-term sea-level trend (PC1), and lunar declination (Id) on the partial upper limit (90th percentile elevation in meters) of

S. compressa.

rubescens, S. compressa, and E. mengziesii; Figure 10; Table 5).
Upper limits were significantly positively correlated with lon-
gitude (x) alone for seven taxa (B. glandula, E. muricata, Fucus
spp., M. californianus, A. elegantissima, P. scouleri, and P. torreyi)
aswell as with bare rock (Figure 11; Table 5). Note, that although
the sign of the relationship is negative, the correlation is positive
from E to W, as longitude is presented with negative values.

3.5 | Changes in Vertical Distribution—Residuals
(d) and Preceding Year Residual Mean (d)

The upper limits of vertical distribution were significantly neg-
atively correlated with residuals (d) for four taxa (B. glandula,

E. muricata, Fucus spp., and M. californianus; Figure 12;
Table 5). Taxa showed a mixed response to the preceding year
residual mean (d), with B. glandula and M. californianus ex-
hibiting a significant positive relationship, and E. muricata ex-
hibiting a significant negative relationship (Figure 12; Table 5).

4 | Discussion
4.1 | General Conclusions
The ecological impacts of large-scale, long-term sea-level

variability have not been thoroughly examined (Burnaford,
Nielsen, and Williams 2014; Denny et al. 2004; Denny and
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Silvetia compressa
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FIGURE10 | The upper limits of intertidal taxa are higher moving upcoast. Plots depict the effect of geographic location (PC2) on the upper limits
(90th percentile elevation in meters, partial 90" percentile elevation, and mean elevation of the top 10 in meters) of T. rubescens, S. compressa, and E.
mengziesii. The plots are ordered from highest to lowest average upper limit.

Paine 1998). This paper provides a characterization of the
spatiotemporal scales of sea-level variability on rocky shores
of the NPC, new perspective on how rocky intertidal ecosys-
tems respond to this environmental variability, and insight
into how these communities may respond to SLR in coming
years. This work also demonstrates the value of long-term
and large-extent environmental and biological monitoring
programs for understanding the ecological impacts of long-
term climate change and cyclical environmental variability.
The rocky intertidal zone of the NPC is one of the most thor-
oughly monitored ecosystems in the world in terms of spatial

and temporal extent and resolution of ecological data, and
of the numerous programs that have collected data in this
area, MARINe has the most expansive and resolved dataset
(Kaplanis et al. 2020). Detecting vertical distribution shifts
was only possible due to the high resolution and broad spatial
and temporal extent of this dataset. Without these long-term,
large-scale data, differentiating the effects of anthropogenic,
long-term climate change, and natural cyclical dynamics
would be impossible (Harley et al. 2006; Hughes et al. 2017;
Kaplanis 2023; Lindenmayer et al. 2012, 2015; Mieszkowska
et al. 2014, 2021).
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4.2 | Sea-Level Variability—Seasonality

This paper describes sea-level variability observed at tide gauge
stations across the west coast, from seasonal to multi-decadal
scales. We found that seasonal variability (13-74cm) occurs at
all stations (Table 2). This seasonal variability is larger in magni-
tude than the total change exhibited in the long-term trend over
the monitoring period for most locations. Yet in our analysis we
saw little evidence of a significant correlation between short-
term sea-level variability (as represented by residual, d) and
upper limits of distribution. Other spatially and temporally vari-
able factors may buffer against the expected effects of short-term
sea-level variability on upper limits. From Southeast Alaska to
Oregon, sea levels are highest in the winter, but upper limits
may not increase due to the counteracting effect of seasonal
freezing and nighttime timing of the lowest tides, when the risk
of freezing is highest (Stickle et al. 2016). In southern Oregon
and California, MMSL values are lowest during the spring up-
welling season, and although this drop would be expected to
drive down upper limits, the early morning timing of the lowest
tides, drops in sea-surface temperature, and wetting by wind-
carried spray common during this season may counteract the
seasonal sea-level effects (Mislan, Wethey, and Helmuth 2009;
Stickle et al. 2016). In North Central to Southern California,
sea level is highest in late summer, which would be expected
to raise upper limits, but this may be partly counteracted by the
coincidental timing of factors that increase the physiological
stress associated with low tide emersion including: the small-
est waves and swell conditions of the year, peaks in seasonal air
temperatures, and the seasonal occurrence of dry, strong, Diablo
and Santa Ana winds (Helmuth et al. 2006; Mislan, Wethey, and
Helmuth 2009). Ultimately, organisms may not rapidly respond
to short-term seasonal sea-level variability due to their physio-
logical tolerances to stress and sessile life histories.

4.3 | Sea-Level Variability—Long-Term Trends

Our results are consistent with long-term tide gauge monitor-
ing results and published projections of sea-level rise on the
NPC (Cazenave et al. 2014; Chen et al. 2017; Church et al. 2013;
Church and White 2006; National Research Council 2012;
NOAA Tides and Currents, Relative Sea-Level Trends n.d.;
Sweet et al. 2014, 2017), with most tide gauge stations exhibit-
ing substantial sea-level rise during the monitoring period. The
magnitude of the SLR during the monitoring period is potentially
ecologically relevant. For example, in San Francisco the 8 cm of
SLR is 61% of the total seasonal range and 4.5% of the great diur-
nal range. Interestingly, in southeast Alaska, continental uplift
has led to a recorded fall in relative sea level. Further research
on whether these trends are causing intertidal species to shift
downward would be interesting, but few sites have been consis-
tently monitored within this region due to difficulty of access
(Kaplanis 2023).

4.4 | Changes in Vertical Distribution
This paper is the first to quantitatively document that intertidal

taxa exhibit shifts in vertical distribution in correlation with
multiple components of sea-level variability across the NPC.

Few ecologists have attempted to address this question due to
the inherent complexity of sea-level variability and the spatial
and temporal extent of data needed to encompass its scales of
variability (Burnaford, Nielsen, and Williams 2014; Denny and
Paine 1998; Harley and Paine 2009). We found significant re-
lationships between upper limits and multiple components of
sea-level variability for a variety of taxa, including sessile in-
vertebrates, brown and red algae, and surfgrasses, that occupy
distinct distributions at varying levels across the rocky inter-
tidal zone.

Our most significant finding was that upper intertidal taxa
have a significant positive relationship with SLR and lunar
declination, while lower intertidal taxa have a significant neg-
ative relationship. Unfortunately, disentangling the effects of
these two drivers was not possible with our data. Although
one would expect a uniform increase in upper limits with
SLR, the negative relationship of lower intertidal taxa sug-
gests that, at least for these taxa, variation in tidal amplitude
driven by lunar declination may have an overwhelming influ-
ence on average sea-level conditions, since their upper limits
were observed to be lower when you would expect them to be
higher based solely on SLR. We believe the mechanism behind
the relationships between lunar declination and upper limits
is changes in the relative influence of MHHW and MLHW as
they vary with lunar declination. Upper taxa likely move up-
ward with the increase in MHHW associated with increasing
lunar declination (early and late in the time series, with max-
ima in 2006 and 2025). Above a certain height on the shore,
only MHHW provides submersion that influences upper
limits. Lower taxa likely move upward with the increase in
MLHW associated with decreasing lunar declination (minima
in 1997 and 2015), which imparts an additional period of sub-
mersion or wetting at intermediate to low tidal heights that
counteracts the decrease in expected submersion time associ-
ated with MHHW dropping.

These results are consistent with those of Denny and
Paine (1998), who demonstrated that variation in tidal emersion
with changing lunar declination varied substantially with height
on the shore. Our results also provide an alternative explana-
tion for the observed upward shifts of E. muricata from 1963 to
1970 by Hunt (2006) and of B. glandula and E. muricata from
1992 to 2002 by Readdie (2004)—that they were driven by shifts
from lunar declination minima to maxima in 1959-1968 and
1997-2006. It is worth noting that the taxa exhibiting negative
relationships with lunar declination and trend (A. elegantissima
and P. torreyi) have southerly distributions where the effects of
lunar declination on tidal amplitude are more pronounced, and
thus may more strongly overwhelm any influence of SLR alone
(Figures 5 and 13).

The strong influence of cyclical celestial mechanics demon-
strated here strengthens the argument previously made against
concluding that changes in intertidal community structure or
function detected through sampling at disparate timepoints
are driven solely by anthropogenic climate change (Burnaford,
Nielsen, and Williams 2014; Denny and Paine 1998; Harley and
Paine 2009). Cyclical processes at a range of temporal scales
can obscure or overwhelm the impacts of long-term climate
change. For example, Mislan, Wethey, and Helmuth (2009)
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FIGURE 13 | Latitudinal distribution of intertidal taxa. Plots depict the probability of occurrence of taxa as a locally estimated scatterplot
smoothing (LOESS) curve fit to presence data collected across all Multi-Agency Rocky Intertidal Network (MARINe) sites.
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demonstrated that the frequency of “risky days,” in which in-
tertidal organisms experience elevated heat stress due to low
tides paired with high air temperatures, exhibits spatial and
cyclical temporal variability. In addition, stochastic depar-
tures from mean conditions associated with extreme events
such as storms and aerial heat waves, alone or in combination,
can have significant effects on community composition and
vertical distribution entirely independent of SLR and lunar
declination (Harley and Paine 2009; Hawkins, Burrows, and
Mieszkowska 2023; Hesketh and Harley 2023; Littler and
Littler 1987; Mieszkowska et al. 2021; Wethey et al. 2011). For
example, Harley and Paine (2009) show that vertical limits of
upper intertidal algae exhibit distinct drops when unusually
calm seas occur in combination with aerial heat waves, caus-
ing dieback in the upper limits. Using long-term data from
intertidal sites across the United Kingdom, Mieszkowska
et al. (2021) showed that the abundance of invertebrates and
macroalgae generally decreased with increasing frequency
of winter cold spells and summer heat waves (Mieszkowska
et al. 2021). These examples and others suggest that spatially
and temporally variable extreme events can complicate or
counteract long-term trends. In the future though, the relative
influence of SLR may come to dominate over the short-term
stochastic events and the lunar declination effect if the rate
of SLR accelerates according to forecasts (Chen et al. 2017;
Church and White 2006; Sweet et al. 2017). Only continued
monitoring of multiple environmental conditions, such as air
and water temperatures, in association with biological mon-
itoring will allow us to understand the changing influences
of these drivers (Kaplanis 2023). The relationships we found
between geography (PC2) and longitude and upper limits are
intuitive and already known, but still valuable for understand-
ing the distribution patterns of intertidal species. Upper limits
are higher moving Northwest up the coast due to lower air
temperatures, larger tidal amplitude, more extreme wave en-
vironments, and more constant wetting by rain, fog, and spray.
The detection of higher upper limits in the Northwest also may
in part reflect a response to interannual variability, which re-
sults in particularly large-magnitude peaks in sea level in the
time series in the Northwest (Figure 4). Including PC2 and its
component variables within the models allowed us to account
for variation contributed by other variables that influence ver-
tical distribution that are associated with geographic location
- namely slope, aspect, and wave environment - for which data
are simply not available at so many field sites. Our ability to
account for variation associated with geography in our model
through the inclusion of these terms speaks to the strength of
the MARINe program's site selection methods. The CBS sam-
ples the entire rocky intertidal zone with the same method-
ology across sites, and plot locations were carefully selected
to minimize variation associated with differences in habitat
availability among sites. In a general sense, MARINe selects
sites that are comparable in their habitat availability by having
contiguous rocky benches spanning the entire tidal range that
also have rocky habitat above the sampled extent (i.e., above
the upper limit of marine biology at the site). The relation-
ship between slope, aspect, and vertical distribution would be
driven by the interaction between those features and the local
wave climate, and this type of information is not available at
most of the sites. By eliminating variation in sampling design,
effort, and expertise, CBS survey data can address questions

related to biogeography and species shifts at the scale of the
entire coastline.

The lack of a significant correlation between our other predictor
variables (residuals (d) and preceding year residual mean (d))
and upper limits for most taxa suggest that intertidal taxa largely
may not respond to short-term sea-level variability. Still, the in-
clusion of these variables in our model essentially as nuisance
variables allowed us to account for regular short-term variation.
A negative correlation was found between upper limits of four
taxa and residuals, but regardless, a positive correlation with
lunar declination and long-term sea-level trend was also found.
No significant correlations were found for the other taxa, which
are generally longer lived and would not be expected to respond
to short-term variability as readily.

4.5 | Potential Ecological Consequences

Shifts in the vertical distribution of taxa modeled here may
have ecosystem level effects. Mytilus californianus is known
to dominate benthic space in the middle intertidal zone across
the NPC and modify patterns of biodiversity through both
outcompeting other species for space and harboring high
levels of infaunal diversity (Paine 1966, 1969, 1974; Ricketts
and Calvin 1939; Suchanek 1992). Although mussel bed dis-
tribution may be modified by short-term stressors such as
extreme wave events, long-term studies suggest boundaries re-
main somewhat constant though time (Paine 1974; Paine and
Levin 1981). Any shift in the distribution of M. californianus
will have significant impacts on the rest of the community.
Studies have documented long-term declines in abundance of
M. californianus populations in much of southern California
believed to be associated with increasing sea-surface tem-
peratures and changing upwelling regimes (Smith, Fong,
and Ambrose 2006b), and climate change may be leading
to declines in mussel bed infaunal diversity across much of
California (Smith, Fong, and Ambrose 2006a). Further stress
to this species because of accelerating SLR may have signif-
icant ecosystem level effects. Endocladia muricata is one of
the most common algae in the upper intertidal zone in much
of California, sheltering a high diversity of infaunal organ-
isms (Glynn 1965), and facilitating recruitment of species
such as M. californianus in its lower range and S. compressa
in its upper range (Johnson and Brawley 1998; Readdie 2004).
Fucus spp. forms dense canopies in the middle and upper in-
tertidal zones and play an important role in limiting desicca-
tion stress to other species, and individual adults are believed
to live between 2 and Syears, depending on wave exposure
(Pacific Rocky Intertidal Monitoring: Target Species n.d.).
Balanus glandula forms dense bands in the upper intertidal
zone where few other invertebrates and algae are present, and
adults can live longer than 10years. It is also known to facil-
itate the recruitment of E. muricata through reducing limpet
grazing (Farrell 1991; Readdie 2004). Because of their signif-
icant ecological roles, shifts in the distribution of these taxa
may have widespread ecosystems impacts.

Inherent differences in life history (such as the life expectancy
of sessile adults) and mobility of these organisms may cause
shifting competitive hierarchies as they move upward on the
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shore, which can result in changes in the relative abundance
of foundation species and their associated epibionts. Previous
work suggests that recruitment to upper shore levels, which
would be required to allow intertidal populations to shift their
distributions upward in response to SLR, requires the presence
of a facilitator (Johnson and Brawley 1998; Readdie 2004). Our
research further informs how SLR might impact the intertidal
zone of the NPC through a combination of shifting environmen-
tal conditions across the landscape and successional, habitat
cascade processes. In the upper intertidal zone, the annual re-
cruitment and shorter adult life expectancy of B. glandula and
Fucus spp. may allow them to shift more readily to short-term
pulses of sea level. The upward shift in B. glandula could fa-
cilitate the recruitment of E. muricata to higher levels, which
in turn could facilitate the movement of S. compressa and M.
californianus.

4.6 | General Conclusions and Future Directions

An upward shift does not necessarily pose a threat to intertidal
species if rocky substrate is available at higher elevations for spe-
cies to colonize. But if intertidal reefs are backed by steep cliffs,
soft sediments, or anthropogenic structures, and the magnitude
of SLR is substantial, species may experience coastal squeeze as
sea-level rise, leading to substantial habitat loss (Doody 2013;
Hollenbeck, Olsen, and Haig 2014; Jackson and Mcilvenny 2011;
Kaplanis et al. 2020; Schaefer et al. 2020; Vaselli et al. 2008). As
habitat area is compressed, biotic interactions structuring this
system will change. Increased competition for space may cause
declines in abundance, biodiversity, and community net produc-
tion, changes which pose considerable conservation challenges
for these species (Kaplanis et al. 2020; Rilov et al. 2021; Vaselli
et al. 2008).

Continued monitoring of these populations by MARINe and
others will allow tracking of these shifts and determination
of subsequent ecosystem impacts of SLR. Our ability to detect
changes in vertical distribution may be limited by the temporal
extent and resolution of data, in comparison with the temporal
scales over which vertical distribution shifts occur, but investing
in further monitoring can provide crucial data for understand-
ing global change impacts (Kaplanis 2023). Although upper
limits may be shifting on average in response to the long-term
trends, our results suggest that cyclical forcing at multiple tem-
poral scales (from seasonal to multi-decadal) is also important.
Through changing emersion time, cyclical variation in lunar
declination drives changes in vertical distribution on its own,
but it may also cause alternating periods of susceptibility or buff-
ering to global change associated extreme events such as storms
or aerial heat waves (Burnaford, Nielsen, and Williams 2014;
Harley, Helmuth, and Carolina 2003; Helmuth et al. 2006;
Hesketh and Harley 2023). Our results can help researchers and
managers interpret the impacts of these extreme events, which
may have more pronounced impacts than gradual changes in
average environmental conditions (Denny et al. 2009; Gaines
and Denny 1993; Hawkins, Burrows, and Mieszkowska 2023;
Hesketh and Harley 2023; Mieszkowska et al. 2021; Mislan,
Wethey, and Helmuth 2009; Raymond et al. 2022; Wethey
et al. 2011). Continued sampling over a long temporal extent
will be crucial to disentangling the effects of natural variation

in environmental drivers from those associated with anthropo-
genic global climate change.

Although the results found here are broadly applicable, the rel-
ative influence of the long-term drivers of vertical distribution
discussed here vary across locations that experience different
tidal regimes and rates of SLR, and this remains an under-
studied area of research (Haigh, Eliot, and Pattiaratchi 2011;
Menéndez and Woodworth 2010). Few studies have documented
long-term impacts of SLR on rocky intertidal organisms, as the
data required to address this question are difficult to obtain.
Multiple studies have documented impacts linked to the 18.6-
year cycle of lunar declination on the NPC, but we were not
able to find studies evaluating the impact of this cycle in other
locations (Burnaford, Nielsen, and Williams 2014; Denny and
Paine 1998; Harley and Paine 2009). In locations with mixed
and diurnal tides, the 18.6-year cycle significantly modifies tidal
amplitude, but the magnitude of variation within and across
these regions is spatially variable (Figure 5) (Haigh, Eliot, and
Pattiaratchi 2011; Menéndez and Woodworth 2010). In addition,
perigean (4.4-year) cycles can also cause significant variation in
tidal amplitude, sometimes exceeding that caused by the 18.6-
year cycle, especially in areas with semidiurnal tides (Haigh,
Eliot, and Pattiaratchi 2011; Menéndez and Woodworth 2010).
In locations with large amplitude tides, such as the sea of
Okhotsk, New England, Newfoundland, and northern Europe,
variation in tidal amplitude associated with both the 18.6 and
4.4-year cycles is greater than that observed on the NPC (Haigh,
Eliot, and Pattiaratchi 2011; Menéndez and Woodworth 2010).
Fortunately, excellent, large-scale long-term monitoring pro-
grams exist in regions around the globe that now provide multi-
decadal, large-scale data comparable to those used here, from
which future studies can determine the relative influence of
short and long-term drivers on vertical distribution of intertidal
organisms (Coletti et al. 2016; Gilbane et al. 2022; Hawkins,
Burrows, and Mieszkowska 2023; Kaplanis 2023; Mieszkowska
et al. 2014).
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