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ABSTRACT OF THE DISSERTATION

Synthesis and Characterization of Several Fullerene Polyadducts

Nicholas Scott Knutson
Doctor of Philosophy in Chemistry
University of California, Los Angeles, 2017

Professor Yves F. Rubin, Chair

This dissertation describes the synthesis and characterization of several types of
fullerene polyadducts including: 6,9,12,15,18-pentakisorgano-1-hydro[60]fullerenes,
6,9,12,15-tetrakisorgano[60]fullerenes, and 1,4-bisbenzyl[60]fullerenes as well as the
performance of several in photovoltaic devices. Several of these projects are collaborations

with material scientists and some are original research projects.

Chapter 1 describes the synthesis of a variety of pentakisorgano fullerenes
containing a potentially labile addend that could be selectively removed to produce a
fulvene substructure containing aryl tetrakisfullerene adduct as well as its potential

application in photovoltaic devices.



Chapter 2 describes the performance of a series of electron-accepting methoxylated
1,4-bisbenzyl fullerene adducts blended with several electron-donating polymers in

photovoltaic devices.

Chapter 3 describes how different regiosiomeric bis-N,N-dimethyl[60]fuller-
pyrrolidinium cations can co-assemble in water with micelle-forming cationic
semiconducting polymers to create photoinduced electron-transfer cascades, producing

long-lived polarons.
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1. Towards the Synthesis of Four-Feathered Fullerene Shuttlecocks

Introduction

Organocopper additions to Ceo

6,9,12,15,18-pentaorgano-1-hydro[60]fullerenes, informally referred to as
fullerene shuttlecocks (due to their resemblance to badminton shuttlecocks) and
abbreviated here as Ceso(Org)sH or 5FSC, are the product of the addition of an excess
(>15 eq.) of alkyl, alkenyl or aryl organocopper reagents to [60]fullerene (Ceo).13%5
Standing in stark contrast to the monoaddition of Grignard or organolithium reagents,®
this novel class of fullerenes, first discovered by Sawamura et. al., has a five-fold
pseudosymmetry resulting from a pentaaddition pattern to [60]fullerene. These
pentadducts are usually orange to red solids, and can be obtained in up to 96% yield. The
structure of the first member of this class, 6,9,12,15,18-pentaphenyl-1-hydro[60]fullerene
(CeoPhsH), was determined by x-ray crystallography. Following this initial discovery, a
wide panorama of fullerene shuttlecocks has been synthesized, including, with some
modification to the original procedures, alkyl and alkenyl shuttlecocks. It was also
discovered that in the presence of pyridine, higher additions up to octa- and deca-

additions could be achieved, Figure 1.01.



10FSC 1

RCu (15 eq)
RCu (15 eq) THF/0-DCB
THF/o-DCB Pyridine
- 10FSC 2
8FSC

Figure 1.01 Addition of organocopper reagents to Ceo. Left: pentaaddition pattern (5FSC)
shown from two different angles. Right: octa- (8FSC) and decaaddition (10FSC) patterns.

The mechanism of this addition pattern is believed to occur via a stepwise
addition/oxidation/radical mechanism, Figure 1.02. High performance liquid
chromatography (HPLC) monitoring of the organocopper addition reveals that the addition
occurs rapidly once started, as no intermediates are observed; however, a strong

argument can be made for this mechanism if one considers that:

1. Two substituents larger than hydrogen, prefer to undergo 1,4- rather than a 1,2-

addition



2. Grignard and organolithium reagents, in the absence of an oxidant, produce only
the monoaddition product while in the presence of an oxidant (such as O2) produce
the 1,7-bisaddition products.

3. The addition of certain organometallic reagents, in the absence of oxygen
otherwise affording the 1,7-bisorgano adduct, produce 1-hydro-6,9,12-trisorgano
adducts in a highly selective manner.

4. The addition of organocopper reagents to fullerene 9-organo-1-hydro-1,7-bisaryl-,
and 6,9,12-trisadducts gives the corresponding “mixed” fullerene shuttlecocks:
Ce0XnY (5-n)H

5. Other radical reactions with [60]fullerene give analogous tetra-, penta-, and

hexaaddition patterns

e ENGSSEN Ss N a3
oy Oy T\

1,4 adduct

K N e
O %.9 %‘9

5FSC 4FSC

Figure 1.02. Proposed mechanism of organopeantaaddition to Ceo.



Fullerene Shuttlecock Self-Assembly

The size and shape of the cavity created by the five substituent “feathers” on the
fullerene shuttlecocks have been shown to influence their aggregation in the solid state,
which can be broadly divided into stacked and non-stacked motifs.”® The stacked motifs
occur when the fullerene (ball) of each shuttlecock positions itself into the cavity of a
neighboring shuttlecock, which has been described as 1D Nanowires. These columnar
stacks can be further subdivided into “straight” and “zig-zag” formations, depending on
how each sequential fullerene in the stack orients itself, Figure 1.03. In contrast, non-
stacked motifs occur when the fullerene ball of each shuttlecock prefers to orient itself
outside the feather-cavity of its neighboring fullerenes, which can produce a dimeric,

feathered or feather-in-cavity formation.

Fullerene Straight Zigzag Dimeric
Shuttlecock

Figure 1.03. Straight, zigzag, and dimeric stacking patterns of 5FSCs.
4



When the shuttlecock substituents are aryl groups with large, roughly spheroidal
para substituents (e.g. tert-butyl), a deep, well-defined cavity is formed which promotes
straight-stacking and is usually crystallization-solvent independent. If, however, the cone
size is reduced, or wider and less well-defined, the next fullerene in the stack has more
degrees of freedom and can either kink to produce the zig-zag-stacking motif or
aggregate into one of the non-stacking motifs, and is much more dependent on
crystallization and solvent conditions. The dimeric motif appears to be preferred when the

feathers are “rod-shaped” and able to intercalate with each other feather-to-feather.

Bulk Heterojunction Organic Solar cells

Organic photovoltaic devices (OPVs), utilizing various fullerene/polymer blends
have now, under the right processing conditions, surpassed power conversion efficiencies
of 10%.° Most of these OPVs are fabricated using a blend cast (BC) method, where the
polymer donor and fullerene acceptor are mixed in solution together before being cast
into a film, which forms the active layer of these organic solar cells. The fullerene and
polymer components of these films must be sufficiently blended together to allow charge
transfer while also being phase-separated enough to allow these charges to efficiently
transport themselves to their respective electrodes. Hence the morphology of these films

heavily dictates their overall power conversion efficiency.

The morphology, in turn, is highly dependent on processing conditions (solvent
choice, drying kinetics, additives, etc.) which can be difficult to control and thus leads to
high variability/reproducibility in the overall performance of these photovoltaic devices.

One strategy to help control the morphology is to use self-assembling components such



as the fullerene shuttlecocks, which have a propensity to stack into predictable
orientations based on their “feather” substituents. This idea was explored by the labs of
Rubin, Tolbert, and Schwartz, which compared the device efficiency of BHJs made from
blends of the polymer P3HT with pentaaryl shuttlecocks substituted at the para position
with: Me, Et, i-Pr, and t-Bu groups.” It was found that while the Vo of all four devices were
similar, the Jsc of the Me, and Et shuttlecocks were dramatically (6x) lower than the i-Pr
and t-Bu ones, which it was suggested was due to difference in film morphology. The Me
and Ethyl SCs were more crystalline and phase segregated, resulting in a poor fullerene
network causing higher charge recombination and trapping and poorer overall device
performance. While this work demonstrated that morphology and hence device
performance can be controlled by self-assembly, the best performing device (i-Pr) still
only gave a paltry PCE of 0.97%, compared to the >2% of similar devices made from

P3HT:[60]JPCBM or [70]JPCBM.

It has been suspected that the reason for this overall poor device performance is
poor LUMO overlap of the SCs with each other in their columnar stacks. Calculations of
the LUMO density show that there is very little LUMO density inside the aryl cavity of the
SCs, Figure 4.1° Therefore, even though they have a tendency to self-assemble into 1D
“‘nanowires”, an electron in the LUMO of a SC sitting in the cavity of an adjacent

shuttlecock is not able to efficiently transfer to the next fullerene in the “wire.”

This poor LUMO density in the SC cavity is likely due to the lack of conjugation
between the 5-member ring inside the cavity and the rest of the fullerene cage. If,
however, one of the aryl feathers is removed, creating a fulvene moiety with a double

bond connecting the inner cavity to the rest of the fullerene pi-system, calculations of the

6



LUMO density show that these four-feather fullerene shuttlecocks have much better
LUMO density inside their feather cavity, Figure 1.04.1° Based on the LUMO orbital
distribution of the four-feathered shuttlecock shown in Figure 4, it was proposed by
professor Rubin that four-feather shuttlecocks may have superior electron mobility in PVs
to their five-feather counterparts while still taking advantage of a propensity to self-

assemble.

Poor LUMO Orbital Overlap Between Shuttlecock Molecules
May Be at the Origin of Low Electron Mobility

Pentakis adducts
(shuttlecocks)

LUMO Proposed solution: LUMO density

tetrakis adducts
(“defeathered” shuttlecocks)

Figure 1.04. Comparison of calculated LUMO and LUMO densities between 4FSC and
5FSC.10



Four-feathered Shuttlecocks (4FSC)

While conditions to selectively synthesize the mono-,' 1,7-bis-, and 6,9,12-
trisaddition'2*2 products with aryl groups on the fullerene cage are known, there are only
a few spurious examples of the 6,9,12,15-tetrakisadduct (four-feathered shuttlecock,
4FSC), containing the desired fulvene moiety or its corresponding epoxide in the
literature, Figure 5.141516.17.18 A|| these reactions suffer from at least one of the following

drawbacks:

1. The resulting product of the reaction is unique to that particular addend and
produces widely different results when the addend is changed

2. The reaction is not selective and yields a mixture of regioisomers that often
require further purification by HPLC

3. The product is unstable, or in the case of some of the epoxides, does reduce

to the desired fulvene moiety

N A

monoaryladduct

Aryl Aryl

Al’yl A t'\ Me Me .t ryl /.t ryl
R eCo I <o T s« W 425

1,4-bisaryladducts Trisaryldducts Four-feathered Shuttlecocks Four-feathered Shuttlecock epoxides
(4FSC) (4FSCO)

Figure 1.05. Known mono, bis, tris, tetra, and tetra epoxy aryl fullerene adducts.



The first reported four-feathered shuttlecock, the tetrakis(9-fluorenyl) adduct of
Ceo, Was synthesized from Ceo and a 3:2 mixture of potassium fluorenide and fluorene in
THF, that was allowed to stir for a prolonged period of time (72 h) under inert
atmosphere.'® The course of the reaction is interesting in that rather than merely stopping
after the fourth fluorenyl group addition, it actually first adds five fluorenyl addends,
demonstrated by acidically quenching the reaction during the initial 24 h, producing the
pentakis(9-fluorenyl) adduct as the major product. It is only after the reaction is allowed
to stir for an additional 48 hours that the four-feathered tetrakisadduct becomes the
dominant product. It is suggested by the authors that a small amount of oxygen present
in (or that seeps into) the reaction is responsible for this particular ‘defeathering.” The
oxygen oxidizes the pentakis anion to its radical, which then causes the fragmentation of
a fluorenyl radical, Figure 1.06. This is supported by the fact that when oxygen is
exhaustively excluded from the reaction, the tetrakisadduct is not formed. In this example,
it is both the steric crowding of the bulky fluorenyl groups as well as their propensity to

stabilize a radical that produces the resulting four-feathered shuttlecock.



: Q@g

Figure 1.06. Loss of a fluorenyl group (defeathering) from the fluorenyl 5FSC to form the
corresponding 4FSC in the presence of oxygen.

After an extensive search of the literature, the only other example of a four-
feathered shuttlecock produced as a major product that could be found was the
tetrakis(methoxy) adduct.'® This adduct was synthesized from the reaction of CeoCls with
MeOH in DMSO/chlorobenzene in air at 85 °C. The CeoCles starting material shares the
same substitution pattern as the protonated five-feathered shuttlecock, Figure 1.07.

10



Unfortunately, CsoCls does not selectively give the desired four-feathered product with

other nucleophiles, Figure 1.07.20.21.22

RSH, Hunig's base
toluene, r.t.

FeCI3
DMSO/MeOH Benzene
Air, 85 °C reflux
_~_-TMs
TiCly, DCM. r.t.

Figure 1.07. Reaction of various nucleophiles with CeoCle.

Similar to the fluorenyl 4FSC, although by a different mechanism, the p-
(diphenylamino)phenyl four-feathered epoxide 2 is generated when the anion of the five-
feathered precursor 1 is exposed to oxygen, leading to the loss of one of the addends.!8
The reduction of a fullerene epoxide with triphenyl phosphine is known,?® and it is
conceivable that the four-feathered epoxide could also be reduced under similar

conditions. However, the clean and high yielding, oxygen-induced defeathering seems to

11



be unique to the diphenylaminophenyl addend.*® When the reaction conditions are
attempted with other less electron-rich addends, a mixture of several oxidized products is
formed in addition to both a symmetrical and asymmetrical four-feathered epoxide, Figure

1.08.%4

Asymmetric

7

Figure 1.08. Synthesis of 4FSC epoxides and reduction of fullerene epoxide with PhsP.

The final class of four-feathered shuttlecocks discussed here, is that of the full or
partial amino tetraadduct epoxides.?>” These tetraadducts are generated when pristine
Ceo or lower fullerene adducts are treated with a primary or secondary amine in

DMSO/chlorobenzene in the presence of oxygen. The reaction is assumed to proceed

12



via a series of oxidation and single electron transfers. The amine will add up to four times,
before the fulvene-containing tetradduct intermediate is oxidized by hydrogen peroxide
(generated during the course of the reaction) or another oxidant. In principle, the epoxide
formation is in competition with the addition of a fifth amino group; however, it is believed
that the relative steric bulkiness of the amines favors reaction with the oxidant. In addition
to this reaction being limited to an addend with a lone pair capable of single electron
transfer with the fullerene, attempts at reduction of epoxide products results in at least

partial removal of the amine addends.?®

R,NH, O,
Ceo
DMSO/PhCI

Figure 1.09. Synthesis of tetramino four-feathered epoxide and deamination of amino
aryl tatra epoxide fullerene adducts in the presence of triphenyl phosphine and iodine.

13



Reactivity of the Fulvene Moiety in the Four-feathered Shuttlecocks

Not surprisingly, the known fulvenes containing four-feathered shuttlecocks react
similarly to fulvene, with nucleophiles attacking the exocyclic methylene position and
cycloadditions selectively reacting with the exocyclic double bond, Figure 1.10.5%19
When the tert-butylphenyl and tolyl 4FSCs were synthesized in our group, it was quickly
discovered that they were unstable in air, light, and even methanol, oxidizing to form the

corresponding 4FSC epoxides, or adding MeOH to form the methoxy addition product,

respectively.?’

LiC=C-Hex /THF

or NaCN/DMF/oDCB

Figure 1.10. Nucleophilic and cycloaddition reactions of known 4FSCs showing a strong
selectivity for the fulvene double bond position.

14



General Monoadduct/Protecting Group Strategy to Synthesize Four-feathered

Shuttlecocks

Since it is known that aryl copper additions to either the fullerene mono-, bis-, and
trisadduct derivatives produce the five-feathered shuttlecock addition pattern,® and that
the addition is difficult to reliably terminate at the tetraaddition stage, and that certain
addends can be coaxed to leave to produce four-feathered shuttlecocks from the
pentaaddition stage, it was decided to pursue a strategy where the initial, single addition
of a labile addend, before aryl copper addition, would act as a “protecting group.” After
aryl copper addition, the labile addend of the mixed shuttlecock (MSC) intermediate could
then be selectively defeathered to produce the desired four-feathered aryl shuttlecock,

Figure 1.11.

15



Mixed Fullerene Shuttlecock (MSC)
(One of three possible regioisomers)

L.G.:

Be

HN |
¥ - j@/\; ¥
\ MeO

\: Y oy Ny

Figure 1.11. Mixed shuttlecock protecting group strategy.
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In order to function as a protecting group, this addend must be stable enough to
survive the conditions of the aryl-copper addition while also being labile enough to be
selectively removed to produce the four-feathered shuttlecock, which is anticipated to be
somewhat reactive/unstable at the newly formed alkene position. Hence a variety of

potential protecting groups were synthesized and screened, Figure 1.11.

Analysis of Fullerene Shuttlecock Systems

Analysis of the fullerene SC structures is not a trivial task in itself, particularly in
the case of MSCs, where more than one regioisomer is present. Ideally, for pure
compounds, x-ray crystallographic data (if obtainable) greatly aids in the confirmation of
the fullerene structure. However, when this is not achievable, one must glean what one
can from the H and 3C NMR data, despite a woeful lack of protons directly attached to
the fullerene cage. Nevertheless, consideration of the symmetry of the molecule as well
as several characteristic SC peaks can often narrow down the possible structures to only
a few choices, if not one choice, and can indicate the presence of one more isomers in

more complex mixtures.

For example, in Figure 1.12, note the 'H NMR spectra of three 5FSCs differing
only in the substituent at the para position of their aryl rings (methoxy, methyl, and tert-
butyl). The 5FSCs contain a single mirror plane and belong to the Cs point group.
Therefore, the five aryl substituents can be divided into three chemically distinct groups
differing only in their relative distance from the lone Ceo-H in the SC aryl cavity with an
integration ratio of 2:2:1. In more complex mixtures, the aryl region can often become

indecipherable, but it is usually still possible to see distinct substituents on the aryl

17



feathers. Additionally, the lone Ceo-H of the aryl SCs shows up in a relatively barren region
of the spectrum between 5.0-5.5 ppm, and has a unique chemical shift for each SC,
allowing it to be used as a “fingerprint” for the presence (or absence) of individual 5FSCs,

even when the rest of the spectrum is muddied by the presence of multiple products.

I
[rel]

14

NKE_V_35=1 1 1 "E:\NMR DATA\nmr500a‘\WdSER\Nick\nmr" [

R=tBu [

3 [a

__UJ.UM | J . A -k_JLJ ,_g

7 6 5 4 3 2 [ppm]

Figure 1.12. *H NMR comparison of the pentakis 4-anisyl (5), 4-tolyl (3), and 4-tBu-phenyl
(4) 5FSCs. Ceso-H and aryl substituent proton peaks are highlighted in grey.

Figure 1.13 shows a comparison of a 4FSC, and its two (symmetric and
asymmetric) corresponding 4FSC epoxides. In contrast to the 5FSCs, the 4FSCs
obviously lack the Ceo-H. While the 4FSC and the symmetric 4FSC epoxide both share
the Cs point group of the 5FSCs, the relative placement of the epoxide group in the

18



asymmetric 4FSC epoxide means that each substituent has a unique set of chemical
shifts giving a 1:1:1:1 integration ratio. One can also see that the *H NMR spectra of the
4FSC and symmetric 4FSC epoxide, are very similar. However, comparison of the 3C
NMR spectra reveals the difference in the number of fullerene sp? carbons that appear

between 60-80 ppm, the epoxide having an additional two lines due to the epoxide ring,

Figure 1.14.
E
Hz0
=
2 peaks
(Symmetric)
A Mo /
. .—AIIL._'-—-II'I!\_)!\Jit_ - _/—/
<_III_ A\Nmr5008
4
DCM
4 peaks
(Asymmetric)
o~
H tBu ﬂ L r
tBu 1Bu ME_III_85-1 1 1 "E:\NMR DATA\nmrSO0aNH3EE\Nick\nmr" ’
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~1BuU
DCM
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Figure 1.13. 'H NMR comparison of the 4FSC (23), symmetric (6), and asymmetric (7)
4FSC epoxide. t-Butyl group proton signals are highlighted in grey.
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Figure 1.14. 13C NMR comparison of the 4-t-butyphenyl 4FSC (23) and the symmetric 4-
t-butylphenyl 4FSC epoxide (6).

Fluorenyl Group as a Potential Defeathering Element

It was thought that, analogously to the pentakis-fluorenyl fullerene prepared by
Komatsu, a mixed shuttlecock containing a fluorenyl group would also show propensity
to defeather under conditions similar to Komatsu's work,?® to produce a fulvene-
containing four-feathered shuttlecock. The hydro fluorenyl fullerene was synthesized by
reacting pristine Ceo with the fluorenyl anion produced in situ by reaction with n-butyl
lithium (Figure 1.15). Consistent with other organolithium additions to Ceo, the fluorenyl
group selectively adds once, producing only the mono fluorenyl hydro fullerene 8 after

guenching of the reaction with acid. However, attempts at organocopper additions with

20



the fluorenyl fullerene did not cleanly yield (if at all) any desired mixed fullerene products.

Instead, a large number of inseparable isomers was produced, Figure 1.15.

1. fluorene, n-BulLi
2. TFA

Figure 1.15. Attempted synthesis of the fluorenyl MSC and possible isomeric products.

While it is not feasible to determine the structure of each of these isomers, some
basic information can still be gleaned from the *H NMR spectrum, Figure 16. The large
number of peaks around 1.5 ppm corresponds to the aryl tert-butyl groups added to the
fullerene. The three desired regioisomeric products should give a combined total of 10
peaks: 2 from the symmetric isomer, and 4 from each of the two asymmetric isomers.
Instead, there appears to be more than 30 peaks. Likewise, the shuttlecock proton directly
connected to the fullerene cage should appear around 5.3 ppm. There should be one for
each of the three desired products and yet there are over 15 peaks in the mixture.

Although the aromatic protons of the fluorenyl group cannot be seen over the vast number

21



of peaks in the aromatic region, it is likely that it is still attached, because otherwise, the
five-feathered shuttlecock would likely be a dominant (or only) product. Unfortunately,
without further information, it is impossible to know exactly why the 5FSC pattern is not
observed. It is possible that the fluorenyl group, being simply too bulky, promotes the aryl
copper addition to initiate at a different location of the cage. Whatever the reason, the

fluorenyl protecting group did not produce the desired MSC, and was thus abandoned.

Account No. yfr5e6l
NE_111_p25=2

Figure 1.16. *H NMR of the mixture of inseparable products isolated from the reaction of
the 9-fluorenyl-1-hydrofullerene with the t-butylaryl copper reagent.

22



Cyano Group as a Potential Defeathering Element

It was thought that, if a cyano-substituted mixed fullerene could be synthesized,
the cyano group could then be hydrolyzed to the corresponding carboxylic acid and
subsequently decarboxylated to give the dihydro 4FSC. This dihydro intermediate would
then be oxidized with DDQ to yield the desired product. Cyanofullerene was already
known and was synthesized according to the literature procedure.?® Treatment of
cyanofullerene with aryl copper reagents, however, yielded only the corresponding 5FSC,
Figure 1.16. Since there was no Ceo in the starting cyano fullerene, the cyano group must
be removed at some point during the aryl additions, most likely by binding with copper(l)
to give insoluble CuCN, and the reaction proceeds to the pentaaddition product without

it. The cyano group was therefore deemed a poor protecting group due to this lability.

Ar = p-tolyl
tBuPh

(One of three isomers)
Not isolated

3or4 9

5FSC
only isolated product

Figure 1.17. Attempted cyano MSC synthesis and deprotection.
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Hydroxyl Group as a Potential Defeathering Element

An interesting reaction was found in the literature that installs both an aryl and a
hydroxyl group in a 1,4-addition pattern.®° Since the copper addition proceeds through
the monoaryl intermediate, the aryl copper addition was attempted on this compound but,
like the cyano group, resulted in only the 5FSC, being apparently too labile to survive the

copper addition, Figure 1.18.

p-tolyl

Ar = p-tolyl

4 (One of three isomers)
Not isolated

5FSC
only isolated product

Figure 1.18. Reaction of p-tolylfullerenol (10) with aryl copper reagents.

Acetylene Group as a Potential Defeathering Element

The alkynyl fullerene adduct is also known in the literature. It was found that this
adduct reverts back to pristine Ceo in the presence of Pd(OAc)2, P(o-tol)z and heat.3! The
alkynyl mixed shuttlecock was made cleanly in high yield but the mixed shuttlecock failed
to de-alkynylate under the same conditions as the alkynyl monoadduct. Thus, further

attempts with this deprotection route were not further pursued, Figure 1.19.
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Pd(OAc),
P(o-tol)3
Toluene, 100 °C
12 hrs

Pd(OAc),
P(o-tol)s
Toluene, 100 °C
12 hrs

Figure 1.19. De-alkynylation of an alkynylfullerene, and synthesis of alkynyl MSCs.

Indole Group as a Potential Defeathering Element

The 1,2-(3-indole)(hydro)[60]fullerene 12 is also known in the literature.®?
Interestingly, while the reaction appears to also contain several side products, the Cso-H
region of the *H NMR only has two, rather than the three major peaks one would expect
for each of the three possible regioisomer, Figure 1.21. It's also possible that two of the
regioisomers have nearly identical chemical shifts. This is corroborated by two sets of two
peaks that appear to be, based on comparison to the starting indole fullerene, indole
peaks of two isomers, Figure 1.22. There is also some of the corresponding 5SFSC which,

upon inspection of the starting material 13*C NMR, was due to residual Ceo.
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only two isomers?

Figure 1.20. 1,2-(3-indole)(hydro)[60]fullerene 12 and corresponding MSCs 18a,b.

(el

18a,b Cso0-Hb
Ce0-Ha

0s

[ L]

0.2

18a.,b isomers?

R F ]

Figure 1.21. *H NMR of the Ceso-H region (5.16-5.22 ppm) of a mixture of the 1,2-(3-
indole)(hydro)[60]fullerene MSCs 18a,b. Unlike the other MSCs, there are only two
major peaks, instead of the expected three.
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9.0 8.8 8.6 8.4 [ppm]

Figure 1.22. 'H NMR comparison (8.3 to 10 ppm) of the indole fullerene 12 and its
corresponding MSCs 18a,b.

Indoles are well known for their addition-elimination chemistry at the 3-position of
the indole ring.33 It was envisioned that after addition of an electrophile to the indole ring
of 12 or 18a,b, the indole substituent would eliminate from the fullerene cage to produce
the corresponding fullerene-alkene double bond, Figure 1.23. However, as of this

writing, the chemistry of the indole-fullerenes has not been explored.
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R = H or alkyl
E* = electrophile

Figure 1.23. Proposed electrophilic addition to the 3-postion of an indole-fullerene
followed by a proposed elimination to from the corresponding alkene.

Allyl and Benzyl Groups as a Potential Defeathering Element

Unlike the other PGs above that are installed via nucleophilic addition to the
fullerene cage, the allyl and benzyl substituents were added by first reducing the fullerene
to its dianion, followed by nucleophilic substitution with the corresponding alkyl halide.
One potential drawback of this approach is that, typically, a mixture of both the mono and
bisadducts are formed, and depending on the polarity of the substituents, may not be

easily separated, Figure 1.24.

The allyl group was envisioned to be removed thermally via a retro-ene reaction.
Heating the allyl fullerene in refluxing o-DCB for 24 hours under inert atmosphere was not
sufficient to induce the retro-ene reaction and this group was not pursued further.
However, selective placement of electron donating/withdrawing groups on the allyl

system or transition metal catalysts may help lower the reaction energy barrier.
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0-DCB, reflux
24 hrs

DDQ or CAN
toluene, reflux

4-MeO 14
3,4-diMeO 15
2,3,4-triMeO 16

Figure 1.24. Synthesis of allyl and benzyl fullerenes via the fullerene dianion and removal
of methoxybenzyl group to reproduce pristine Ceo.

The most promising class of potential protecting groups were the methoxybenzyl
adducts. These benzyl addends proved to be stable to both Grignard and arylcopper
reagents, could be removed from benzylfullerene with DDQ or CAN to reproduce pristine
Ceo In high yield, and are available with a variety of different substituents that might be
taken advantage of to give a wide range of reactivity/lability and other desirable

properties, Figure 1.24.
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Debenzylation Reaction

It was initially found that the p-methoxybenzyl adduct of the mixed shuttlecock
could be removed, by heating in chloronaphthalene at 200 °C in a sealed tube with an
excess of iodine to produce the desired 4FSC but in low yield (5-10%).?” Not surprisingly,
the 4FSC was not air or light stable, and would readily oxidize in air to the corresponding
symmetric epoxide, as well as react with weak nucleophiles, such as methanol to from
the addition product, Figure 1.25. Although demonstrating the proof of concept, these

debenzylation conditions, being low yielding and difficult to scale, were less than ideal.

12 (10 eq)
Chloronapthalene
200 °C, 48hrs
(sealed tube)

5-10%

R=Me 24 R =tBu 23
OMe =tBu 23 MeOH

R =Me 19a,b,c
=tBu 26a,b,c

(One of 3 regioisomers)

Figure 1.25. Debenzylation of p-methoxybenzyl MSCs to produce the 4FSCs. Aryl 4FSCs

are unstable to air and react with weak nucleophiles.

In order to improve the yield of the debenzylation reaction, other oxidants as well
as well as 3,4-dimethoxy- and 2,3,4-trimethoxy benzyl MSC were explored. Both DDQ
and CAN have been commonly used to cleave benzyl ethers and it was promising to find

that the 4-methoxy-, 3,4-dimethoxy-, and 2,3,4-trimethoxybenzyl-1-hydrofulleres were all
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reverted to pristine Ceo when treated with DDQ of CAN in refluxing toluene for 4 h in
guantitative yield, Figure 24. However, under the same conditions, the benzyl MSCs did

not produce any 4FSC, table 1.1.

When the p-methoxybenzyl MSCs were treated with an excess of DDQ at
25 °C, only starting material was recovered after 4 h. Surprisingly, when the reaction was
refluxed for up to several hours, the corresponding 5FSC was recovered in 36 yield, table
1: rxn 1. While it was initially suspected that this was merely due to 5FSC impurity in the
starting material, both its clear absence as well as relatively high yield (up to 38%),
suggest instead that, after debenzylation, the 4FSC is being arylated by another SC in

the solution.

When the 3,4-dimethoxybenzyl t-butylphenyl MSC was treated under the same
conditions, three new TLC spots appeared. While the structure of some of the new
compounds has not been determined, some information could still be gleaned from the

'H NMR and 13C NMR.

The most nonpolar spot is the corresponding tolyl 5FSC. It is interesting to note
that the recovered yield of the corresponding 5FSC was only 5%, significantly lower than
the same reaction with the monomethoxybenzyl MSC. One might expect that if the
debenzylation was occurring via oxidation of the benzylic position, that the more electron-

rich dibenzyl system would have at least a comparable yield.
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Table 1.1. Debenzylation attempts on the benzyl MSCs.

Rxn R n Solvent oxidant temp time Results
1 tBu 1 toluene DDQ (10eq) 25°C 4 No reaction
2 tBu 1 toluene DDQ (10eq) 110 8 5FSC (36)
3 tBu 2 toluene DDQ (10eq) 25°C 2 No reaction

5FSC (5)
4 tBu 2 toluene DDQ (10eq) 110

Spot 2 (~17%)
Spot 3 (17%)
5 tBu 2 toluene CAN (10eq) 25°C 2 No reaction
6 tBu 2 toluene CAN (10eq) 110 8 degraded
7 tBu 2 ODCB DDQ (10eq) 180 8 5FSC (30)
8 tBu 2 OoDCB None 180 2 No reaction
. 5FSC (10)

9 tBu 2 CH2Cl2 {MnO4 (1leq) 25°C 72

S.M. (26)
10 tBu 3 chlorobenzene DDQ (10eq) 25°C 3 No reaction
11 tBu 3 chlorobenzene DDQ (10eq) 80 48 5FSC (10)

5FSC (18)
12 Me 3 ODCB DDQ (1eq) 180 12

S.M. (28)
13 Me 3 OoDCB DDQ (10eq) 140 16 5FSC (38)
14 Me 3 OoDCB DDQ (1eq) 140 16 5FSC (20)
15 Me 3 OoDCB DDQ (2eq) 140 16 5FSC (50)
16 OMe 3 OoDCB DDQ (10eq) 140 16 5FSC (53)
17 OMe 3 OoDCB I2 (10eq) 140 12 5FSC (26)
18 Me 1 1-chloronaphthalene I2 (10eq) 200 48 4FSC (5)
19 tBu 1 1-chloronaphthalene I2 (10eq) 200 48 4FSC (6)

*yield estimated by assuming mass for 5FSC.
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The next most non-polar spot appears to be one compound that is an asymmetric
SC that still contains the dimethoxy benzyl group. One can clearly see the two benzyl
methoxy groups present in the *H NMR, Figure 1.26. Examination of the Ceo-H chemical
shifts also clearly shows that this is a new compound and not simply one of the
asymmetric starting material regioisomers, Figure 1.27. Curiously, a distinct peak for the
benzyl hydrogens is absent. However, one of the methoxy benzyl peaks has a relative
integration of 4 H’s, suggesting that there is a single benzylic hydrogen overlapping with
the methoxy group at 3.74 ppm, Figure 1.26. This would be consistent with DDQ oxidation
at the benzylic position, but it is not clear why this would lead to only one regioisomer.
Furthermore, the most likely position of the Ceso-H is at the position closest to the benzyl
substituent, because placement at either of the other two possible positons would lead to

a set of diastereomers, Figure 1.28.
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Figure 1.26. 'H NMR of spot 2, showing proposed overlap of a single benzyl hydrogen
peak with the methoxy peak at 3.74 ppm.
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Figure 1.27. *H NMR comparison of the Cso-Hs of dimethoxybenzyl t-butylphenyl MSC,
spot 2, and spot 3.

Figure 1.28. One of two possible enantiomers for spot 2 showing that any Ceo-H position,
other than the one closest to the benzyl substituent (open circle), would lead to a set of
two diastereoisomers: ‘a’-side (dark circle) vs. ‘b’-side (dark square)
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Examination the 3C NMR also indicates that this is a single, asymmetric
regioisomer with a new substituent at the benzylic position. In the aryl region, the 54
chemically distinct fullerene sp?-C peaks, as well as the four unique sets of aryl “feather”
peaks, confirms that compound is asymmetric, Figure 1.29. The methoxy, benzyl, and
sp? fullerene carbons (indicating the number of substituents that are attached) all appear
between 50-75 ppm, Figure 1.30. There is a total of nine peaks in this region,
corresponding to the two methoxy carbons, one benzylic carbon, and the six fullerene
carbons, which clearly shows that this new compound is not the result of a new addition
to the fullerene cage, confirming that the alteration could only have occurred at the
benzylic position. The absence of any additional unaccounted for aryl peaks eliminates
DDQ or the solvent from being the new substituent, and it is proposed that this new
substituent is most likely a hydroxy group from adventitious water, which is consistent

with the DDQ benzyl ether cleavage mechanism.
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Figure 1.29. 13C NMR (100-160 ppm) of spot 2 (25a) showing the expected number of
aryl and sp?-Ceo signals for an asymmetric MSC and no addition carbon signals.

Finally, the most polar TLC spot, which has almost the same polarity as the starting
material, appears to be a mixture of three isomers. Comparison of the aryl, Ceso-H,
benzyl/methoxy, and aryl tert-butyl *H NMR regions, shows that, while similar to the
starting mixture of isomers, these isomers are not the same set of compounds, Figure
1.27. Unfortunately, a 13C NMR could not be obtained, so with only the *H NMR available,

it was not possible to determine what exact chemical change had occurred.
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Figure 1.30. 13C NMR Comparison of methoxy, benzyl, and sp3-Ceo carbon signals from
3,4-dimethoxybenzyl fullerene 15 (top) and spot 2, 25a (bottom).

When the solvent was changed to 0-DCB and the temperature was increased to
180 °C, only the 5FSC was isolated, but now with a 30% yield, Table 1: rxn 7. Replacing
the dimethoxy benzyl group with the 2,3,4,-trimethoxybenzyl group also gave similar

results, Table 1.1, rxns 13-16.

In the absence of an oxidant under inert atmosphere, both the MSC and the 5FSCs
do not react under the reaction conditions, Table 1.1: Rxn 8 and Table 2: Rxn 1 and 4.
For the 5FSCs, when DDQ is present, most of the material degrades, Table 1.2: Rxn 2
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and 4. The small amount of recoverable material appears by *H NMR to be a large mixture
of products. MALDI-MS of the reaction shows a shift of the base peak from 1255 m/z
(5FSC MW = 1257.33), Figure 31, to 1165 (4FSC epoxide MW = 1165.19), Figure 32,
suggesting that the presence of DDQ induces loss of at least one aryl feather from the
5FSC. When the reaction was repeated in the presence of Ceo, Table 1.2: Rxn 3, about
20% of the 5SFSC and 20% of pristine Cso were recovered, as well as a large mixture of
other products. MALDI-MS of this mixture of products shows an increase in the relative
intensity of the peaks at m/z 828 (ArCesoH MW = 8282.8) and m/z 1041 (ArzCeoH MW =
1043.06). While not conclusive, this is at least a consistent transfer of several aryl groups

from the 5FSC to Ceo.

Table 1.2. Reaction were carried out in 0-DCB at 140° C for 6 h.

RX SC Conditions Results
N
1 Tolyl 5FSC No oxidant No Reaction
2 Tolyl 5FSC DDQ (10eq) Complex mixture of products
3 Tolyl 5FSC + Ceo DDQ (10eq) Isolated Ceo but no 5FSC
4 Anisoyl 5FSC No oxidant No reaction
5 Anisoyl 5FSC DDQ (10eq) Complex Mixture of Products
(~10%)
6 Anisoyl 5FSC + Ceo DDQ (10eq) Ce0 (20%)
(1eq) 5FSC (20%)
Other (16%)
7 Tolyl MSC + Ceo (1eq) DDQ (10eq) Ce0 (18%)
5FSC (18%)
8 Tolyl MSC (1eq) DDQ (20eq) Tolyl 5FSC (10%)
Anisoly MSC (1eq) Anisoyl 5FSC (10%)
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Figure 1.31. MALDI-MS spectrum of p-methoxy 5FSC, m/z 1255 (MW = 1257.33).
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Figure 1.32. MALDI-MS of the reaction of p-methoxyphenyl 5FSC after being treated with
DDQ (10eq) at 140° C in 0-DCB for 16 h.
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Figure 1.33. MALDI-MS of the reaction of p-methoxyphenyl 5SFSC after being treated with
DDQ (10eq) and Ceo (1eq) at 140° C in 0-DCB for 16 h.

Based on these results, a tentative general mechanism for the aryl debenzylation
and aryl transfer reactions is proposed, Figure 1.34: DDQ (or another oxidant) induces
the net loss of a hydride anion from the benzylic position of the MSC to produce a benzyl
cation. Water or another nucleophile then adds to the benzylic position. The benzyl group
is cleaved from the MSC to produce a dihydro 4FSC which is then oxidized by a second

equivalent of DDQ to the 4FSC. The oxidant can also oxidize one of a fullerene’s aryl
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groups, producing an aryl radical cation. The aryl cation is then cleaved by elimination to
an aryl radical and a dearylated fullerene SC. This aryl radical can then add to another

fullerene. In the case of the 4FSC, this addition occurs selectively at the fulvene position,

producing the 5FSC radical, which then abstracts a proton to product the 5FSC.

R R
R
@ @
- CeoRn .
_CeoRn

o
-RH
H

Figure 1.34. Proposed mechanism of SC fullerene aryl transfer in the presence of an
oxidant.
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To further test this mechanism, the reaction was repeated with a 1:1 mixture of the
tolyl and anisoyl MSCs. If an aryl transfer is occurring, it would be expected that a mixture
of MSCs with two different aryl groups should produce a mixture of 5FSCs, Figure 1.35.
Unfortunately, while both the corresponding 5FSCs were produced, no mixed 5FSCs
were detected. However, more experiments are needed before any conclusion can be

drawn.

OMe

Ar1 =

expected mixed aryl products

Figure 1.35. Diagram showing the four expected 5FSCs resulting from aryl mixing of two
MSCs with different aryl groups.

44



Conclusion

It has been demonstrated here that certain addends, at least those that form
carbon-carbon bonds with the fullerene cage, i.e. alkynyl, N-indolyl, allyl, and benzyl
groups, are sufficiently stable to survive the aryl copper addition and produce MSC
products. In the case of the methoxybenzyl MSC, the benzyl group can be removed at
high temperature with iodine, and under the right conditions produces the corresponding
4FSC albeit in a very low yield. Unfortunately, due to the “mercurial” nature of many
fullerene derivatives and the difficulty analyzing them, the DDQ induced debenzylation of
benzyl MSCs remains inconclusive. While not ultimately producing the desired 4FSCs,
oxidative cleavage does remove the benzyl group and potentially induces an
unprecedented aryl transfer that should be explored further. Should removal of the benzyl
system ultimately prove itself to be too difficult, removal of an alkynyl, indole or allyl group
may not have been exhaustively explored, and may yield more fruitful results as a general

method for synthesizing 4FSCs.
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Experimental

General Experimental Details: All reactions were performed under argon
unless otherwise stated. THF was dried by distillation over calcium hydride and stored
over activated 4 A Mol. Sieves. o-Dichlorobenzene was purchased anhydrous from
Sigma-Aldrich. Proton and carbon nuclear magnetic resonance (1H and 13C) spectra
were recorded in deuterated solvents on Bruker AV-500 (500 MHz) or DRX-400 (400
MHz) spectrometers at 298 K (20 “C) unless specified otherwise. Chemical shifts are

reported in ppm, relative to residual CHCIs (& 7.26). Mass spectra were recorded on a

Bruker Ultraflex MALDI TOF-TOF.

MALDI-TOF MS data is only provided here for several compounds. The fullerene
SCs are sensitive to choice of matric and produce widely different results with choice of
matric. Often exchanging aryl groups to produce a wide range of masses, even with pure
SCs (confirmed by NMR). It was found that the best matrix was 9-nitroanthracene, which

was used to acquire all MALDI-TOF data.

6,9,12,15,18-Pentakis(N,N-diphenylamino-4-phenyl)-1-hydro[60]fullerene (1): The
procedure given here for the synthesis of 1 deviates from the literature procedure due to
difficulties forming the Grignard of 4-bromo-N,N-diphenylaniline.’® It was found that
bromol/lithium exchange using 2 eq of tert-Butyl lithium gave more reliable results. In a
dry round-bottomed flask, 4-bromo-N,N-diphenylaniline (676 mg, 2.09 mmol, 15 eq) was
dissolved in dry THF and cooled to -78 °C. tert-Butyl lithium (1.6 M pentane, 2.6 mL, 30
eq) was added dropwise and the reaction was allowed to stir at -78 °C for 1 h. The reaction

was warmed to 0 °C and then added to a solution of CuBr-SMe2 (429 mg, 2.09 mmol, 15
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eq) in 1 mL of THF. The reaction was allowed to stir for 30 min at 0 °C, warmed to 25 °C
and then a solution of Ceo (100 mg, 0.139 mmol, 15 eq) dissolved in 5 mL of dry 0-DCB
was added. The reaction was allowed to stir for 8 h at 25 °C before being quenched with
saturated ammonium chloride. The organic layer was separated and the crude product
was precipitated with methanol. After filtration, purification through silica gel
chromatography (hexane/toluene 1:1) afforded 122 mg (50%) of 1 as a red powder. 'H
NMR (500 MHz, CDCls) & 7.64 (d, J = 8.5 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.39 (d, J =
8.6 Hz, 1H), 7.30 — 6.85 (m, 60H), 5.31 (s, 1H); 3C NMR (126 MHz, CDCl3) & 156.05,
152.58, 152.26, 151.76, 148.72, 148.64, 148.62, 148.34, 148.21, 148.03, 147.81, 147.80,
147.67,147.46, 147.44,147.34,147.19, 147.11, 147.03, 146.90, 146.81, 146.01, 145.94,
145.72,145.38, 144.46, 144.33, 144.26, 144.16, 144.10, 144.04, 143.85, 143.13, 134.13,
133.93, 132.56, 130.50, 129.26, 129.22, 129.19, 129.16, 129.03, 129.00, 128.73, 128.20,
127.67,127.27,125.27,124.41, 124.26, 124.20, 124.12, 124.05, 123.95, 123.82, 122.99,

122.84, 122.76, 122.62, 63.02, 60.51, 58.51, 58.33.

6,12,15,18-Tetrakis(N,N-diphenylamino-4-phenyl)-1,9-epoxy[60]fullerene (2).
Synthesis of 2 followed the literature procedure.® Fullerene 1 (500 mg, 0.258 mmol, 1
eq) was dissolved in 20 mL of o-DCB. In air, potassium tert-butoxide (1M THF, 33 uL, 1.3
eq) was added and the reaction was allowed to stir for 8 h. The solvent was evaporated,
the residue dissolved in carbon disulfide an purified through silica gel chromatography
(carbon disulfide/DCM 9:1) to afford 220mg (100%) of 2 as a red powder. 'H NMR (500
MHz, CDClz) & 7.74 — 7.69 (m, 4H), 7.51 — 7.47 (m, 1H), 7.20 — 7.12 (m, 8H), 7.09 — 6.92
(m, 16H); ¥3C NMR (126 MHz, CDCIs3) d 156.81, 152.50, 151.14, 149.24, 148.95, 148.15,

147.96, 147.87,147.80, 147.72,147.62, 147.52, 147.46, 147.43, 147.28, 146.76, 146.49,
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146.45, 146.36, 145.53, 145.27, 144.69, 144.66, 144.17, 144.04, 143.44, 139.85, 138.16,
133.27,133.24,129.31, 129.26, 129.12, 128.96, 124.36, 124.17, 124.16, 124.07, 123.04,

122.92, 75.58, 72.81, 62.42, 59.13.

General procedure for the synthesis of 6,9,12,15,18-pentakisaryl-1-
hydro[60]fullerenes:* To a dry round-bottomed flask was added freshly ground
magnesium turnings (15 eq). Dry THF (0.2M) and a small crystal of lodine was added
and the reaction vessel was flushed with argon. Phenyl bromide (15 eq) was added
dropwise and heating was applied if necessary. The reaction was allowed to proceed until
all of the magnesium turnings were consumed. The reaction mixture was then cannulated,
slowly, into another dry round-bottomed flask containing CuBr-SMe2 in 0-DCB (15 eq)
cooled to 0 °C. The reaction was allowed to stir at 0 °C for 1 h, and then a sparged solution
of Ceo (1 eq) in 0-DCB was added. The reaction was allowed to warn to room temperature
stirred for 4-8 h before being quenched with saturated ammonium chloride. The organic
layer was separated and either methanol or pentane was added to precipitate the crude
product. After filtration, the crude solid was dissolved in carbon disulfide and purified
through silica gel chromatography (pentane/DCM 1:1 to DCM 100%) to afford the desired

shuttlecock as a red solid.

6,9,12,15,18-Pentakis(4-tert-butylphenyl)-1-hydro[60]fullerene (3): Synthesis of 3
follows the general procedure to afford (71%).% *H NMR (500 MHz, CDCI3) 5 7.67 (d, J =
8.6 Hz, 4H), 7.48 (d, J = 8.6 Hz, 4H), 7.32 (d, J = 8.6 Hz, 4H), 7.28 (d, J = 8.6 Hz, 2H),
7.17 (d, J = 8.6 Hz, 4H), 7.10 (d, J = 8.6 Hz, 2H), 5.20 (s, 1H), 1.34 (s, 18H), 1.29 (s,
18H), 1.25 (s, 9H); 13C NMR (126 MHz, CDCl3) & 156.44, 152.41, 151.88, 150.57, 150.27,

149.92, 148.73, 148.67, 148.38, 148.23, 148.07, 148.05, 148.02, 147.72, 147.19, 147.08,
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146.88, 146.35, 146.07, 145.79, 145.53, 144.65, 144.33, 144.28, 144.22, 144.10, 144.04,
144.00, 143.10, 142.86, 136.90, 132.56, 130.53, 128.00, 127.90, 127.70, 127.48, 125.62,

125.44, 125.34, 62.93, 60.71, 58.67, 58.56, 34.53, 34.43, 34.33, 31.31, 31.26, 31.20.

6,9,12,15,18-Pentakis(4-methylphenyl)-1-hydro[60]fullerene (4): Synthesis of 4
follows the general procedure to afford (71%). *H NMR (400 MHz, CDCI3) 8 7.65 (d, J =
8.1 Hz, 4H), 7.48 (d, J = 8.2 Hz, 4H), 7.29 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 7.9 Hz, 4H),
7.00 (d, J = 7.9 Hz, 4H), 6.96 (d, J = 8.0 Hz, 2H), 5.22 (s, 1H), 2.38 (s, 6H), 2.33 (s, J =
7.3 Hz, 6H), 2.28 (s, J = 8.0 Hz, 3H); 3C NMR (126 MHz, CDCls) & 156.24, 152.65,
152.45,151.76, 148.70, 148.65, 148.36, 148.22, 148.05, 148.00, 147.72,147.19, 147.09,
146.90, 146.29, 145.96, 145.76, 145.49, 144.55, 144.35, 144.29, 144.20, 144.07, 143.98,
143.82,143.08, 142.92, 137.30, 137.03, 136.89, 136.84, 136.75, 132.16, 129.48, 129.38,
129.23,129.10, 128.18, 128.00, 127.86, 127.60, 62.94, 60.73, 58.68, 58.61, 21.13, 21.06,

20.91. MALDI-TOF MS (1176)

6,9,12,15,18-Pentakis(4-methoxyphenyl)-1-hydro[60]fullerene (5): Synthesis of 5
follows the general procedure to afford (71%). *H NMR (500 MHz, CDCI3) & 7.68 (d, J =
8.7 Hz, 4H), 7.51 (d, J = 8.8 Hz, 4H), 7.32 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.8 Hz, 4H),
6.74 (d, J = 8.8 Hz, 4H), 6.70 (d, J = 8.8 Hz, 2H), 5.21 (s, 1H), 3.84 (s, 6H), 3.79 (s, 6H),
3.76 (s, 3H); 13C NMR (126 MHz, CDCls) & 159.08, 158.89, 158.58, 156.25, 152.56,
152.40,151.77, 148.73, 148.67, 148.65, 148.38, 148.23, 148.07, 147.93, 147.72, 147.19,
147.09, 146.19, 145.96, 145.71, 145.40, 144.49, 144 .41, 144.31, 144.25, 144.11, 144.00,
143.78,143.11, 138.08, 131.99, 131.90, 130.53, 129.26, 129.10, 128.82, 127.73, 127.70,
127.01, 114.22, 114.11, 113.96, 113.81, 113.72, 113.48, 113.41, 67.97, 63.01, 60.30,

58.31, 58.20, 55.44, 55.40, 55.37, 55.27. MALDI-TOF MS (m/z 1256)
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9,12,15,18-Tetrakis(4-tert-butylphenyl)-1,9-epoxy[60]fullerene (6) and 6,9,12,18-
tetratakis(4-tert-butylphenyl)-1,2-epoxy[60]fullerene (7): Synthesis of epoxides 6 and
7 followed the same procedure as the synthesis of compound 2 starting from compound
3 instead of compound 1.8 The crude mixture containing epoxides 6 and 7 was purified
through silica gel chromatography (CS2 100% to DCM 100%) eluting first 6 followed by 7

to afford:

Compound 6, 14mg (8%) as a red solid. *H NMR (500 MHz, CDCI3) & 7.77 (d, J = 8.3 Hz,
4H), 7.45 (d, J = 8.4 Hz, 4H), 7.40 (d, J = 8.4 Hz, 4H), 7.16 (d, J = 8.4 Hz, 4H), 1.34 (s,
18H), 1.27 (s, 18H); *C NMR (126 MHz, CDCls) & 157.07, 152.83, 151.11, 150.68,
150.62, 149.20, 148.93, 148.15, 148.12, 148.06, 147.84, 147.80, 147.61, 147.44, 147.27,
146.78, 146.54, 146.44, 146.37, 145.57, 145.54, 145.42, 144.76, 144.64, 144.59, 144.12,
144.03, 143.40, 139.73, 138.19, 136.32, 136.29, 127.86, 127.74, 125.91, 125.61, 75.61,

72.77,62.62, 59.30, 53.44, 34.57, 34.45, 31.33, 31.22.

Compound 7, 10 mg (5%) as a red solid. *H NMR (500 MHz, CDCl3) 5 7.87 (d, J = 8.4
Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.36
(d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 1.35 (s, 9H), 1.35
(s, 9H), 1.32 (s, 9H), 1.23 (s, 9H); **C NMR (126 MHz, CDCIlz) d 155.85, 154.73, 152.69,
152.31,151.11, 150.98, 150.94, 150.25, 150.20, 149.31, 149.22,149.18, 149.01, 148.88,
148.74,148.42,148.17, 148.05, 148.02, 147.89, 147.83, 147.77,147.58, 147.49, 147.39,
147.33,147.28, 147.09, 147.04, 146.99, 146.47, 146.43, 145.50, 145.43, 145.13, 145.04,
144.82,144.63, 144.55, 144.29, 144.26, 143.99, 143.82, 143.75, 143.71, 143.61, 143.51,

143.05, 143.04, 142.84, 137.95, 137.43, 136.53, 136.44, 136.21, 135.70, 135.31, 128.48,
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127.83, 127.48, 127.32, 126.14, 125.96, 125.91, 125.37, 73.27, 70.33, 60.17, 58.94,

58.92, 56.78, 53.44, 34.63, 34.58, 34.38, 31.37, 31.32, 31.31, 31.21.

1-(9H-Fluoren-9-yl)-9-hydro[60]fullerene (8):1* To a dry solution of fluorene (23 mg,
0.139 mmol, 1 eq) in 5 mL of THF was added dropwise a solution of MeLi (1.6M Et20, 90
uL, 1 eq). The reaction was stirred for 30 minutes before a solution of Cso (100 mg, 0.139
mmol, 1 eq) in 10 mL o-DCB was added. The reaction was stirred for 1 h and eventually
turned from purple to dark green. The reaction was quenched with saturated ammonium
chloride. The organic layer was separated and the crude material was precipitated from
solution with methanol. After filtration, the material was purified through silica gel
chromatography (CS:) to afford 41 mg (19%) 8 as a brown solid. *H NMR (500 MHz,
CDCls) 8 8.41 (d, J = 7.6 Hz, 2H), 8.16 (d, J = 7.5 Hz, 2H), 7.72 (t, J = 7.4 Hz, 2H), 7.64
(dd, J=10.8, 4.0 Hz, 2H), 5.63 (s, 1H), 5.36 (s, 1H). **C NMR (126 MHz, CDCIlz) & 155.14,
154.77,147.60, 147.34,146.97, 146.52, 146.42, 146.31, 146.26, 146.19, 145.82, 145.69,
145.54,145.48, 145.28, 144.82, 144.61, 143.38, 143.11, 142.63, 142.59, 142.44, 142 .41,
142.06, 142.04, 141.77, 141.49, 141.43, 140.18, 140.02, 137.72,136.17, 129.09, 127.78,

127.56, 120.56, 67.79, 59.54, 57.99, 55.07.

1-(Cyano)-9-hydro[60]fullerene (9):2° odium cyanide (681 mg, 1.389 mmol, 20 eq) in 14
mL of DMF was added to a solution of Ceo (500 mg, 0.694 mmol, 1 eq) in 40 mL of o-
DCB. The reaction was stirred for 20 min and then quenched with 1 mL of trifluoroacetic
acid. The crude solution was put directly onto a silica gel chromatography
(hexanes/toluene 9:1) to afford 9 in 93 mg (18%) as a brown solid. *H NMR (500 MHz,
CDCI3) d 7.20; 3C NMR (126 MHz, CDCI3) d 149.19, 147.84, 147.51, 146.79, 146.59,

146.50, 146.37, 145.79, 145.76, 145.74, 145.54, 145.38, 145.08, 144.84, 144.41,143.41,
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143.17,142.95,142.84, 142.25, 142.20, 142.11, 141.92, 141.89, 141.32, 140.92, 140.55,

136.50, 135.47, 120.25, 59.22, 52.84, 50.92.

7-(4-Methylphenyl)-1-(hydroxyl)[60]fullerene (10): Cso (100 mg, 0.139 mmol, 1 eq), p-
tolylhydrazine (44 mg, 0.278 mmol, 2 eq), and sodium nitrite (19 mg, 0.278, 2 eq) were
dissolved in 70 mL of toluene/water (25:1). The reaction was heated to 50 °C for 48 h
after which the solvent was evaporated. The crude material was dissolved in carbon
disulfide and purified through silica gel chromatography (hexanes 100% to toluene 100%)
to afford 92 mg (16%) of 10 as a brown solid. *H NMR (500 MHz, CDCIz) § 8.22 (d, J =
8.1 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 2.53 (s, 3H); 3C NMR (126 MHz, CDCls) & 154.186,
153.99, 152.46, 150.58, 149.09, 148.59, 147.96, 147.49, 147.43, 147.30, 147.09, 147.05,
146.82, 146.65, 145.93, 145.87, 145.78, 145.67, 145.16, 144.99, 144.66, 144.61, 144.41,
144.39, 144.31, 144.30, 144.26, 144.19, 144.18, 144.05, 143.95, 143.65, 143.57, 143.51,
143.48,143.44, 143.42, 143.38, 143.25, 143.20, 143.18, 143.08, 143.04, 142.89, 142.84,
142.65,142.52, 142.42,142.25, 141.42, 141.14, 140.97, 140.02, 139.10, 138.41, 138.30,

137.60, 137.37, 130.48, 129.10, 128.33, 127.76, 125.42, 75.61, 61.36.

9-Hydro-((trimethylsilyl)ethynyl)-1-hydro[60]fullerene (11): To a dry solution of
trimethylsilylacetylene (1.48 mL, 10.4 mmol, 15 eq) in 20 mL of dry THF, at -78 °C, was
added dropwise 4.2 mL of n-butyl lithium (2.5 M pentane, 10.4, 15 eq). The reaction was
stirred for 30 min at -78 °C before being allowed to warm to 0 °C and stirred for an
additional 30 min. The solution was then added, dropwise, to a refluxing solution of Ceo
(500 mg, 0.694 mmol, 1 eq) in 500 mL of toluene. After the addition was complete, the

reaction was cooled to 25 °C and quenched with 3 mL of trifluoroacetic acid. The crude
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product was then precipitated from solution with methanol, filtered and purified through

silica gel chromatography (pentane/CS21:1) to afford 83 mg (15%) of 11 as a brown solid.

IH NMR (500 MHz, CDCls) & 7.04 (s, 1H), 0.48 (s, 9H); 13C NMR (126 MHz, CDCls) &
151.58, 151.41, 147.70, 147.44, 146.78, 146.53, 146.50, 146.35, 146.33, 145.93, 145.85,
145.79, 145.60, 145.55, 145.47, 144.81, 144.63, 143.34, 143.17, 142.74, 142.70, 142.21,
142.17, 142.15, 141.97, 141.81, 141.75, 140.47, 136.19, 135.23, 107.78, 88.48, 62.21,

55.61, 0.28.

9-Hydro-1-(1H-indole-3-yl)[60]fullerene (12):%? Ceso (500 mg, 0.694 mmol, 1 eq) and
indole (98 mg, 0.833 mmol, 1.2 eq) were dissolved in 130 mL of o-DCB/DMSO 6:1. Under
argon atmosphere, 1.735 mL of a solution of potassium tert-butoxide (1M THF, 2.5 eq)
was added and the reaction was allowed to stir at 25 “C for 20 min. The reaction was
guenched with 1 mL of trifuoroacetic acid, the crude material precipitated with methanol,
and after filtering, purified through silica gel chromatography (CS2/DCM 1:1) to afford 76
mg (13%) of 12 as brown solid. *H NMR (500 MHz, CDCIz) & 8.91 — 8.85 (m, 1H), 8.40
(s, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.64 (dd, J = 6.5, 2.7 Hz, 1H), 7.49 — 7.45 (m, 2H), 7.06
(s, 1H); 3C NMR (126 MHz, CDCI3) 6 154.09, 153.06, 147.35, 147.15, 146.74, 146.26,
146.23, 146.15, 146.07, 146.02, 145.72, 145.39, 145.36, 145.28, 144.62, 144.48, 143.12,
142.88,142.48, 142.45,142.13, 141.99, 141.90, 141.87, 141.59, 141.57, 140.34, 140.18,
137.25,136.24, 135.30, 130.31, 127.40, 125.70, 124.14, 123.54, 121.85, 120.95, 119.41,

111.98, 62.37, 61.73.

General procedure for the allyl addition and benzylation of Ceo. Ceo (500 mg, 0.694
mmol, 1 eq), Ce2CO3 (950 mg, 2.917 mmol, 4.2 eq), and 100 mL of DMSO were added

to a round-bottomed flask and sparged with argon. Propane thiol (265 uL, 2.917 mmol,
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4.2 eq) was added and the reaction was allowed to stir at 25 °C for 2 h. The desired allyl
or benzyl chloride/bromide (15eq) was added and the reaction was allowed to stir for up
to 1.5 h. The reaction was then quenched with saturated ammonium chloride and the
crude material was precipitated from solution with methanol. After filtration, the crude
material was purified through silica gel chromatography (pentane 100 % to DCM 100%)

to afford the desired product:

1-Allyl-9-hydro[60]fullerene (13): Synthesis of 13 followed the general procedure with
allyl bromide. Recovered 24 mg (45%) of 13 as a brown solid. *H NMR (500 MHz, CDClz)
5 6.93 — 6.79 (m, 1H), 6.54 (s, 1H), 5.94 (d, J = 16.9 Hz, 1H), 5.80 (d, J = 10.0 Hz, 1H),
4.21 (d, J = 6.9 Hz, 2H); 13C NMR (126 MHz, CDCI3) & 155.65, 155.50, 153.89, 147.11,
146.51, 146.34, 146.29, 146.26, 145.91, 145.64, 145.56, 145.51, 144.82, 144.68, 143.36,
142.68, 142.33, 142.15, 142.08, 142.04, 141.76, 140.39, 140.35, 137.67, 137.39, 136.47,
136.24, 135.60, 133.53, 129.11, 128.34, 125.44, 121.86, 64.41, 58.72, 51.25. MALDI-

TOF MS (m/z 861).

1-(4-Methoxybenzyl)-9-hydro[60]fullerene (14): Synthesis of 14 followed the general
procedure using 4-methoxybenzyl chloride. Recovered 114 mg (20%) of 14 as a brown
solid. H NMR (500 MHz, CDCls) 8 7.74 (d, J = 8.7 Hz, 2H), 7.11 — 7.02 (m, 2H), 6.62 (s,
1H), 4.71 (s, 2H), 3.89 (s, 3H); *C NMR (126 MHz, CDCIlz) d 159.15, 155.62, 154.03,
147.51,147.37, 147.06, 146.49, 146.46, 146.42, 146.29, 146.22, 145.86, 145.49, 145.43,
144.75,144.62, 143.26, 143.11, 142.60, 142.28, 142.08, 142.02, 141.98, 141.68, 141.62,

140.19, 139.98, 136.40, 136.07, 132.52, 127.89, 114.15, 66.30, 59.08, 55.34, 52.25.

1-(3,4-Dimethoxybenzyl)-9-hydro[60]fullerene (15): Synthesis of 15 followed the

general procedure using 3,4-dimethoxybenzyl chloride. Recovered 133 mg (15%) of 15

54



as a brown solid. *H NMR (500 MHz, CDClz) 8 7.40 (d, J = 7.0 Hz, 1H), 7.32 (s, 1H), 7.04
(d, J = 8.1 Hz, 1H), 6.62 (s, 1H), 4.72 (s, 2H), 3.96 (d, J = 7.3 Hz, 6H); 13C NMR (126
MHz, CDClsz) 6 155.61, 154.01, 148.84, 148.62, 147.48, 147.32, 147.02, 146.42, 146.41,
146.27,146.19, 145.82, 145.46, 145.41, 145.37,144.72, 144.57, 143.24, 142.58, 142.22,
142.04,141.99, 141.87, 141.65, 141.59, 141.56, 140.18, 139.91, 136.30, 135.94, 128.36,

123.79, 114.51, 111.20, 66.21, 59.07, 56.11, 55.89, 52.66.

1-(2,3,4-trimethoxybenzyl)-9-hydro[60]fullerene (16): Synthesis of 16 followed the
general procedure using 2,3,4-trimethoxybenzyl chloride. Recovered 272 mg (30%) of 16
as a brown solid. *H NMR (500 MHz, CDCI3) 5 7.40 (d, J = 8.5 Hz, 1H), 6.79 (d, J = 8.6
Hz, 1H), 6.75 (s, 1H), 4.73 (s, 2H), 4.08 (s, 3H), 3.94 (s, 3H), 3.93 (s, 3H); 13C NMR (126
MHz, CDClz) 6 156.03, 154.33, 153.48, 152.81, 147.46, 147.30, 147.14, 146.51, 146.39,
146.34,146.21, 146.16, 145.87, 145.38, 145.35, 145.34, 144.71, 144.60, 143.23, 142.53,
142.25,142.08, 142.03, 141.98, 141.95, 141.63, 141.54, 140.11, 139.82, 136.43, 135.75,

127.24, 121.52, 106.86, 66.34, 61.16, 60.84, 59.27, 55.96, 46.31.

6,12,15,18-Tetrakis(4-tert-butylphenyl)-9-((trimethylsilyl)ethynyl)-1-

hydro[60]fullerene (17a), 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-
((trimethylsilyl)ethynyl)-2-hydro[60]fullerene (17b), and 6,12,15,18-tetrakis(4-tert-
butylphenyl)-9-((trimethylsilyl)ethynyl)-3-hydro[60]fullerene (17c): Synthesis of
17a,b,c follows the same general procedure as the aryl copper pentaaddition starting
from ethynyl fullerene 11 to afford a mixture of 17a,b,c (20%) as a red solid. *H NMR (500
MHz, CDCls) & 8.01 (d, J = 8.1 Hz, 3H), 7.90 (t, J = 7.8 Hz, 5H), 7.81 (d, J = 8.2 Hz, 3H),
7.79 — 7.74 (m, 5H), 7.56 (d, J = 8.1 Hz, 4H), 7.50 (d, J = 8.2 Hz, 3H), 7.45 — 7.42 (m,

4H), 7.40 (d, J = 8.2 Hz, 3H), 7.28 (s, 4H), 7.22 (d, J = 7.9 Hz, 4H), 7.20 — 7.18 (m, 4H),
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7.16 (d, J = 7.8 Hz, 6H), 7.09 (d, J = 7.9 Hz, 4H), 7.03 (d, J = 7.9 Hz, 3H), 6.99 — 6.95 (m,
7H), 6.93 (d, J = 7.9 Hz, 3H), 5.49 (s, 1H), 5.15 (s, 1H), 4.95 (s, 1H), 2.42 (s, 5H), 2.41
(s, 5H), 2.40 (s, 4H), 2.38 (s, 6H), 2.37 (s, 4H), 2.36 (s, 6H), 2.31 (s, 4H), 2.30 (s, 9H),
2.24 (s, 4H), 0.37 (s, 9H), 0.37 (s, 9H), 0.33 (s, 9H), 0.33 (s, 9H), 0.32 (s, 13H), 0.32 (s,
12H); 3C NMR (126 MHz, CDCI3) & 157.44, 157.44, 157.42, 156.37, 156.37, 154.18,
154.18, 153.74, 153.74, 153.69, 153.69, 153.34, 153.34, 152.93, 152.93, 152.89, 152.74,
152.74, 152.02, 151.98, 151.98, 151.94, 151.74, 151.74, 150.90, 150.90, 150.86, 149.48,
149.30, 149.30, 149.01, 149.01, 148.90, 148.90, 148.79, 148.79, 148.70, 148.70, 148.63,
148.63, 148.55, 148.55, 148.44, 148.44, 148.39, 148.39, 148.29, 148.29, 148.22, 148.22,
148.13, 148.13, 148.06, 148.06, 148.02, 148.02, 147.97, 147.97, 147.89, 147.89, 147.77,
147.77, 147.64, 147.64, 147.27, 147.16, 147.16, 147.15, 147.14, 147.11, 147.09, 147.09,
147.07, 147.01, 147.01, 146.97, 146.90, 146.90, 146.86, 146.82, 146.82, 146.20, 146.18,
146.18, 146.15, 146.08, 145.91, 145.91, 145.89, 145.84, 145.84, 145.82, 145.79, 145.79,
145.75, 145.75, 145.72, 145.44, 145.39, 145.39, 145.35, 145.23, 145.23, 145.11, 145.11,
144.82, 144.82, 144.74, 144.74, 144.71, 144.70, 144.64, 144.64, 144.57, 144.57, 144.45,
144.45, 144.44, 144.42, 144.40, 144.39, 144.37, 144.36, 144.30, 144.30, 144.27, 144.27,
144.26, 144.20, 144.20, 144.18, 144.13, 144.13, 144.11, 144.11, 143.95, 143.95, 143.89,
143.89, 143.79, 143.79, 143.64, 143.64, 143.61, 143.57, 143.57, 143.48, 143.48, 143.38,
143.38, 143.20, 143.20, 143.06, 143.06, 142.97, 142.95, 142.95, 142.88, 142.88, 142.78,
142.78, 142.50, 142.50, 141.07, 141.07, 137.62, 137.62, 137.55, 137.55, 137.40, 137.40,
137.37, 137.37, 137.27, 137.27, 137.22, 137.22, 137.20, 137.20, 137.16, 137.16, 137.07,
137.07, 137.04, 137.02, 137.02, 136.98, 136.98, 136.81, 136.81, 136.75, 136.75, 136.71,

136.71, 136.52, 136.52, 136.46, 136.46, 136.44, 129.69, 129.69, 129.58, 129.58, 129.52,
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129.52,129.49, 129.49, 129.47,129.47, 129.43, 129.43, 129.29, 129.29, 128.30, 128.30,
128.00, 128.00, 127.94,127.94,127.87,127.87, 127.74,127.74,127.71, 127.71, 127.61,
127.61, 127.56, 127.56, 127.32, 127.32, 87.87,87.72,87.43, 77.27, 77.02, 76.76, 62.19,
62.19, 61.87,61.87, 60.93, 60.93, 60.83, 60.83, 60.70, 60.70, 60.67, 60.67, 58.91, 58.71,
58.71, 58.58, 58.58, 47.45, 46.72, 45.93, 34.68, 34.53, 31.60, 29.71, 26.92, 25.29, 22.67,

21.24, 21.19, 21.15, 21.14, 21.08, 20.89, 20.71, 14.14.

6,12,15,18-Tetrakis(4-tert-butylphenyl)-9-(1H-indole-3-yl)-1-hydro[60]fullerene

(17a), 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-(1H-indole-3-yl)-2-hydro[60]fullerene
(17b), and 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-(t1H-indole-3-yl)-3-
hydro[60]fullerene (18c): Synthesis of 18a,b follows the same general procedure as the
aryl copper pentaaddition starting from ethynyl fullerene 11 to afford a mixture of 18a,b
(15%) as a red solid. *H NMR (500 MHz, CDCls3) 6 9.01 — 8.88 (m), 8.48 (d, J = 38.7 Hz),
8.33 —7.98 (m), 7.87 — 7.47 (m), 7.41 - 7.22 (m), 7.16 — 6.81 (M), 5.24 (s), 5.22 (s), 2.46
—2.18 (m). 13C NMR (126 MHz, CDCIl3) 5 156.26, 154.44, 152.68, 152.47, 151.79, 148.67,
148.38, 148.25, 148.08, 147.74, 147.23, 147.11, 147.00, 146.48, 146.32, 146.25, 145.99,
145.79, 145.58, 145.52, 144.57, 144.31, 144.22,144.10, 144.01, 143.10, 142.11, 141.80,
137.33,137.06, 136.92, 136.87, 136.79, 132.58, 130.55, 129.51, 129.44, 129.26, 129.14,
129.05, 128.23, 128.17,128.02, 127.89, 127.72,127.63, 126.81, 123.52, 122.16, 120.96,
119.52,115.16, 114.52, 113.08, 112.28, 72.53, 62.96, 61.87, 60.76, 58.71, 58.64, 58.10,

53.44.

6,12,15,18-Tetrakis(4-tert-butylphenyl)-9-(4-methoxybenzyl)-1-hydro[60]fullerene
(19a), 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-(4-methoxybenzyl)-2-

hydro[60]fullerene (19b), and 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-(4-
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methoxybenzyl)-3-hydro[60]fullerene (19c): Synthesis of 19a,b,c follows the same
general procedure as the aryl copper pentaaddition starting from 4-methoxybenzyl
fullerene 14 to afford a mixture of 19a,b,c (58%) as a red solid. *H NMR (500 MHz, CDCls)
57.89 (d, J=8.6 Hz), 7.81 (d, J = 8.6 Hz), 7.78 (d, J = 8.6 Hz), 7.72 (dd, J = 11.7, 8.6
Hz), 7.61 (d, J = 8.6 Hz), 7.48 (dd, J = 8.5, 5.8 Hz), 7.45 — 7.42 (m), 7.42 — 7.38 (m), 7.35
(dt, J = 4.5, 2.5 Hz), 7.33 — 7.28 (m), 7.23 (dd, J = 7.8, 4.4 Hz), 7.18 (ddd, J = 5.8, 3.9,
1.7 Hz), 7.17 — 7.14 (m), 7.12 — 7.09 (m), 7.03 (ddd, J = 11.7, 6.9, 3.6 Hz), 6.71 — 6.61
(m), 6.59 — 6.54 (M), 5.19 (s), 5.12 (s), 4.99 (s), 3.80 — 3.68 (m), 3.63 (d, J = 13.4 Hz),
3.49 (s), 1.41 (s), 1.39 (g, J = 2.5 Hz), 1.37 — 1.36 (m), 1.35 (d, J = 1.4 Hz), 1.30 (s), 1.29
(t, J=2.5Hz), 1.26 (d, J = 4.5 Hz); **C NMR (126 MHz, CDCI3) 5 158.54, 158.42, 158.35,
157.09, 156.61, 156.21, 153.43, 153.20, 152.89, 152.86, 152.78, 152.76, 152.35, 152.01,
151.99, 151.68, 151.64, 151.60, 151.58, 151.55, 150.71, 150.62, 150.57, 150.56, 150.42,
150.27,150.25, 150.16, 149.90, 149.88, 148.71, 148.70, 148.66, 148.64, 148.60, 148.59,
148.58, 148.55, 148.51, 148.47, 148.32, 148.27, 148.24, 148.20, 148.16, 148.14, 148.10,
148.02,147.99, 147.77,147.71, 147.67, 147.63, 147.19, 147.13, 147.10, 147.05, 147.01,
146.97,146.83, 146.78, 146.73, 146.46, 146.45, 146.34, 146.23, 146.07, 145.95, 145.85,
145.82,145.77,145.72, 145.62, 145.56, 145.48, 145.42, 145.25, 144.64, 144.63, 144.61,
144.60, 144.43, 144.39, 144.37, 144.25, 144.19, 144.14, 144.13, 144.11, 144.09, 144.07,
144.03, 144.00, 143.96, 143.93, 143.91, 143.87, 143.80, 143.66, 143.56, 143.09, 143.05,
142.94,142.92, 142.88, 142.87, 142.70, 137.41, 137.16, 136.96, 136.88, 136.60, 131.71,
131.38, 131.28, 130.03, 128.59, 128.53, 128.35, 128.10, 128.05, 127.92, 127.56, 127.46,
127.34,127.28, 127.08, 126.41, 126.00, 125.84, 125.82, 125.68, 125.47, 125.31, 113.54,

113.42, 113.37, 67.97, 62.80, 62.54, 60.73, 60.66, 60.60, 60.56, 59.48, 58.92, 58.70,
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58.60, 58.56, 58.54, 58.39, 58.29, 57.22, 56.70, 55.07, 55.04, 55.00, 53.41, 49.19, 44.70,
44.60, 34.63, 34.58, 34.55, 34.51, 34.44, 34.33, 31.58, 31.52, 31.37, 31.34, 31.31, 31.27,

31.21, 29.70, 25.60, 25.27, 22.65, 14.12.

6,12,15,18-Tetrakis(4-tert-butylphenyl)-9-(3,4-dimethoxybenzyl)-1-

hydro[60]fullerene (20a), 6,12,15,18-tetrakis(4-tert-butylphenyl)-9-(3,4-
dimethoxybenzyl)-2-hydro[60]fullerene  (20b), and 6,12,15,18-tetrakis(4-tert-
butylphenyl)-9-(3,4-dimethoxybenzyl)-3-hydro[60]fullerene (20c): Synthesis of
19a,b,c follows the same general procedure as the aryl copper pentaaddition starting
from 3,4-dimethoxybenzyl fullerene 15 to afford a mixture of 20a,b,c (46%) as a red solid.
I1H NMR (500 MHz, CDClz) 5 7.91 (d, J = 8.0 Hz), 7.83 (d, J = 7.9 Hz), 7.79 (d, J = 8.1
Hz), 7.71 (m), 7.61 (d, J = 8.0 Hz), 7.53 — 7.38 (m), 7.33 (m), 7.25 — 7.13 (m), 7.10 (d, J
= 8.0 Hz), 6.85 (d, J = 7.9 Hz), 6.73 (m), 6.66 (M), 6.54 (d, J = 23.3 Hz, 1H), 5.19 (s), 5.13
(s), 5.04 (s), 3.86 — 3.63 (m), 3.54 (m), 1.35 (m); 3C NMR (126 MHz, CDCls) & 157.08,
156.53, 156.29, 155.26, 154.66, 153.31, 153.15, 153.04, 152.77, 152.68, 152.36, 152.04,
151.94,151.72, 151.66, 151.59, 151.43, 151.25, 150.70, 150.61, 150.54, 150.46, 150.35,
150.23, 150.16, 149.98, 149.87, 148.72, 148.63, 148.56, 148.50, 148.48, 148.35, 148.31,
148.27,148.23, 148.18, 148.16, 148.10, 148.05, 147.99, 147.98, 147.90, 147.87, 147.82,
147.77,147.70, 147.64, 147.60, 147.51, 147.09, 147.06, 147.04, 147.00, 146.96, 146.81,
146.78, 146.71, 146.57, 146.42, 146.39, 146.23, 146.15, 146.08, 145.93, 145.81, 145.76,
145.71, 145.68, 145.55, 145.50, 145.49, 145.43, 145.40, 145.24,145.22, 145.05, 144.65,
144.60, 144.53, 144.44,144.37, 144.28, 144.19, 144.12, 144.08, 144.06, 144.03, 144.00,
143.92,143.89, 143.87, 143.84, 143.78, 143.73, 143.62, 143.47,143.13, 143.07, 142.94,

142.89, 142.81, 142.67,137.36, 137.12, 136.95, 136.92, 136.90, 136.57, 132.54, 131.01,
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130.52, 129.18, 129.04, 128.93, 128.05, 127.88, 127.69, 127.52, 127.49,127.41, 127.35,
127.23,127.07,125.99, 125.83, 125.81, 125.67, 125.64, 125.48, 125.32, 123.26, 122.62,
122.29, 113.83, 113.74, 113.55, 110.75, 110.69, 110.44, 67.96, 62.78, 62.45, 60.74,
60.65, 60.54, 59.23, 58.95, 58.70, 58.54, 58.37, 58.18, 56.90, 56.56, 55.74, 55.65, 55.62,
55.60, 55.56, 55.54, 49.73, 45.03, 44.89, 34.63, 34.57, 34.55, 34.53, 34.50, 34.42, 34.39,

34.32, 31.34, 31.30, 31.26, 31.20, 30.92.

6,12,15,18-Tetrakis(4-methylphenyl)-9-(2,3,4-trimethoxybenzyl)-1-

hydro[60]fullerene (21a), 6,12,15,18-tetrakis(4-methylphenyl)-9-(2.3,4-
trimethoxybenzyl)-2-hydro[60]fullerene (21b), and 6,12,15,18-tetrakis(4-
methylphenyl)-9-(2,3,4-trimethoxybenzyl)-3-hydro[60]fullerene (21c): Synthesis of
21a,b,c follows the same general procedure as the aryl copper pentaaddition starting
from 2,3,4-trimethoxybenzyl fullerene 16 to afford a mixture of 21a,b,c (58%) as a red
solid. 'H NMR (500 MHz, CDCl3) & 7.89 — 6.81 (m), 6.74 — 6.55 (m), 5.24 (s), 5.22 (S),
5.17 (s), 4.05 — 3.61 (m), 2.47 — 2.19 (m); 3C NMR (126 MHz, CDCl3) & 157.02, 156.67,
153.49,153.14, 152.94, 152.77, 152.72, 152.69, 152.64, 152.21, 151.76, 151.72, 151.47,
149.38, 148.73, 148.62, 148.59, 148.56, 148.31, 148.21, 148.16, 148.13, 148.09, 148.00,
147.95,147.68, 147.16, 147.07, 146.99, 146.81, 146.38, 146.19, 145.98, 145.90, 145.82,
145.70, 145.49, 144.62, 144.50, 144.36, 144.18, 144.13, 144.01, 143.93, 143.84, 143.02,
141.38,137.89, 137.45,137.31, 137.25, 137.11, 136.95, 136.92, 136.87, 136.82, 136.68,
132.58, 130.56, 129.71, 129.62, 129.57, 129.55, 129.52, 129.50, 129.44, 129.39, 129.33,
129.25,129.22, 129.16, 129.13, 129.06, 128.25, 128.20, 128.17,128.11, 127.95, 127.88,
127.84,127.77,127.74,127.65, 127.61, 127.57,127.53, 127.46, 127.44,127.42, 126.44,

125.32,121.96, 106.78, 106.61, 106.50, 106.27, 68.00, 61.11, 61.00, 60.94, 60.80, 60.66,
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60.64, 60.55, 60.52, 60.37, 59.01, 58.73, 58.60, 58.07, 57.04, 57.01, 56.05, 55.93, 55.60,

55.53, 55.33, 53.46, 21.20, 21.15, 21.11, 20.99, 20.96.

6,12,15,18-Tetrakis(4-methoxyphenyl)-9-(2,3,4-trimethoxybenzyl)-1-

hydro[60]fullerene (22a), 6,12,15,18-tetrakis(4-methyoxyphenyl)-9-(2.3,4-
trimethoxybenzyl)-2-hydro[60]fullerene (21b), and 6,12,15,18-tetrakis(4-
methyoxyphenyl)-9-(2,3,4-trimethoxybenzyl)-3-hydro[60]fullerene (22c): Synthesis
of 21a,b,c follows the same general procedure as the aryl copper pentaaddition starting
from 2,3,4-trimethoxybenzyl fullerene 16 to afford a mixture of 21a,b,c (58%) as a red
solid. H NMR (500 MHz, CDCls) & 7.88 — 7.10 (m), 7.10 — 6.55 (m), 5.24 (s), 5.17 (s),
5.15 (s), 4.05 — 3.60 (m); 13C NMR (126 MHz, CDCI3) 6 159.18, 158.96, 158.81, 158.68,
158.58, 158.45, 156.78, 156.19, 155.55, 154.91, 153.33, 153.16, 153.01, 152.86, 152.75,
152.56, 152.11, 151.82, 151.62, 150.13, 148.89, 148.62, 148.58, 148.53, 148.31, 148.22,
148.15, 148.00, 147.76, 147.65, 147.46, 147.12,147.07, 146.97, 146.92, 146.84, 146.78,
146.14,145.97, 145.75, 145.69, 145.46, 145.38, 145.32, 145.03, 144.70, 144.42, 144.22,
144.17,144.02, 143.98, 143.93, 143.82, 143.67, 143.04, 142.72,141.91, 141.61, 141.34,
138.12,137.89, 136.38, 132.57, 132.48, 132.11, 131.85, 131.64, 130.55, 129.54, 129.49,
129.35,129.24, 129.16, 129.13, 129.05, 129.01, 128.99, 128.86, 128.75, 128.62, 128.24,
127.76,127.74,127.23,126.37, 125.32, 122.09, 121.85, 114.32,114.28, 114.23, 114.14,
114.02,113.98, 113.93,113.88, 113.85, 113.83, 113.78, 106.76, 106.45, 106.26, 100.04,
67.99, 67.05, 63.37, 63.10, 62.85, 61.30, 61.12, 60.94, 60.79, 60.74, 60.58, 60.54, 60.51,
60.21, 59.29, 58.38, 58.33, 58.15, 57.58, 57.03, 56.64, 55.94, 55.42, 55.39, 55.35, 55.30,

55.23, 55.10.
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Debenzylation of methoxybenzyl fullerenes

6,9,12,15-Tetrakis(4-tert-butylphenyl!)[60]fullerene (23): The mixture of 19a,b,c (60
mg, 0.044 mmol, 1 eq) lodine (60 mg, 0.236 mmol, 5.3 eq) were dissolved in 12 mL of 1-
chloronaphthalene, sparged thoroughly with argon and then heated in a sealed pressure
tube at 200 °C for 48 h. The reaction was allowed to cool to 25 *C and the crude material
was precipitated from solution with methanol. After filtration, the crude material was
purified through silica gel chromatography (pentane/CS:2 1:1) to afford 3 mg (5%) as a
brown solid. *H NMR (500 MHz, CDCls) & 7.80 (d, J = 7.9 Hz, 4H), 7.45 (d, J = 8.0 Hz,
4H), 7.39 (d, J = 8.1 Hz, 4H), 7.18 (d, J = 8.1 Hz, 4H), 1.36 (s, J = 16.0 Hz, 18H), 1.29 (s,
18H). 3C NMR (126 MHz, CDCI3) & 163.88, 152.25, 150.72, 150.30, 149.71, 149.26,
148.96, 148.58, 148.19, 148.01, 147.83, 147.38, 147.26, 146.56, 146.44, 146.33, 146.28,
145.56, 145.50, 144.55, 144.44, 144.05, 143.86, 143.51, 143.37,143.12, 142.36, 141.52,
140.15, 137.70, 137.24, 136.69, 127.76, 127.44, 125.91, 125.58, 59.98, 59.69, 34.51,

34.39, 31.39, 31.29, 27.16, 27.07.

6,9,12,15-Tetrakis(4-methylphenyl)[60]fullerene (24): Compound 24 was synthesized
using the same debenzylation conditions used to synthesize compound 23, from a
mixture of regioisomers 20a,b,c to afford compound 24 (8%) as a brown solid. *H NMR
(500 MHz, CDCls) & 7.85 — 7.74 (m, 4H), 7.51 — 7.42 (m, 4H), 7.24 — 7.17 (m, 4H), 7.03
(dd, J = 19.4, 8.8 Hz, 4H), 2.38 (d, J = 10.0 Hz, 6H), 2.32 (s, 6H); 3C NMR (126 MHz,
CDCl3) 6 164.08, 151.82, 151.01, 149.69, 149.23, 148.91, 148.52, 148.04, 147.99,
147.72,147.34, 147.21, 146.53, 146.44, 146.30, 146.25, 145.57, 145.43, 144.56, 144.50,
144.47,144.29, 143.93, 143.79, 143.42, 143.32, 142.37, 141.49, 140.31, 137.79, 137.61,

137.19, 137.07, 136.70, 129.66, 129.41, 127.63, 127.44, 60.04, 59.71, 21.17, 21.08.
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General debenzylation procedure using DDQ. Benzyl fullerenes 14, 15 or 16 (0.036
mmol, 1 eq) and DDQ (82 mg, 0.36 mmol, 10 eq) was dissolved in 4 mL of toluene,
sparged with argon and then refluxed for 4-6 h or until starting material (monitored by
TLC) was gone. The reaction was then cooled to 25 ‘C and methanol was added to
precipitate the crude product. After filtration, the crude material was purified through silica

gel chromatography (pentane/toluene 9:1) to afford 20-22 mg (~77%) of pristine Cso.

Synthesis of unconfirmed spot 2 (25a) and spot 3 (25b). Following the general
debenzylation procedure using DDQ, the mixture of regioisomers 20a,b,c (55 mgQ)

afforded three products after purification through silica gel chromatography:
The first product to elute was the 5FSC 3 2 mg (4%).

The next product was “spot 2” 25a, 9 mg (~16%). *H NMR (500 MHz, CDClz) 5 7.89 (d, J
= 8.4 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H),
7.39 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.4
Hz, 2H), 6.55 (s, 1H), 6.52 (d, J = 8.3 Hz, 1H), 5.08 (d, J = 8.5 Hz, 1H), 3.75 (d, J = 7.7
Hz, 4H), 3.60 (s, 3H), 1.40 (s, 9H), 1.34 (d, J = 2.2 Hz, 18H), 1.20 (s, 9H); 13C NMR (126
MHz, CDCls) 6 157.78, 155.23, 151.63, 151.31, 151.01, 150.80, 150.75, 150.61, 150.31,
149.18, 148.95, 148.89, 148.67, 148.33, 148.23, 148.17, 148.07, 148.00, 147.86, 147.82,
147.70,147.57,147.51, 147.44, 147.40, 147.35, 147.20, 147.07, 146.93, 146.87, 146.75,
146.54,146.51, 146.31, 146.14, 145.87, 145.58, 145.54, 145.36, 145.30, 145.07, 145.03,
144.67,144.58, 144.32,144.11, 144.00, 143.86, 143.52, 143.33, 143.18, 143.13, 138.03,
137.27,136.33, 136.04, 129.03, 128.63, 128.43, 128.22, 127.75, 126.55, 126.49, 125.97,
125.42, 125.37, 125.29, 124.46, 122.55, 112.58, 110.20, 64.29, 62.81, 61.44, 59.07,

58.94, 55.98, 55.44, 55.03, 51.09, 34.60, 34.57, 34.52, 34.09, 31.37, 31.33, 31.31, 31.08.

63



The next set of products “spot 3” 25b, 9 mg (~16%). *H NMR (500 MHz, CDCI3z) 5 7.90 (t,
J=7.8Hz), 7.83 (t,J = 7.5 Hz), 7.78 (d, J = 8.5 Hz), 7.72 (m), 7.61 (d, J = 8.5 Hz), 7.44
(m), 7.32 (m), 7.24 — 7.20 (m, 2H), 7.16 (m), 7.10 (m), 7.06 (d, J = 7.2 Hz), 6.93 (s), 6.87
— 6.82 (M), 6.81 — 6.69 (M), 6.69 — 6.62 (M), 6.55 (M), 5.18 (s), 5.11 (s), 5.04 (Ss), 3.86 —

3.49 (m), 1.42 — 1.27 (m).

6,12,15,18-Tetrakis(4-Methylphenyl)-9-(4-Methoxybenzyl)-1-hydro[60]fullerene

(26a), 6,12,15,18-tetrakis(4-Methylphenyl)-9-(4-methoxybenzyl)-2-
hydro[60]fullerene (26b), and 6,12,15,18-tetrakis(4-Methylphenyl)-9-(4-
methoxybenzyl)-3-hydro[60]fullerene (26c¢): Synthesis of 26a,b,c follows the same
general procedure as the aryl copper pentaaddition starting from 4-methoxybenzyl
fullerene 14 to afford a mixture of 26a,b,c (58%) as a red solid. *H NMR (500 MHz, CDCls)
57.83-7.79 (m), 7.77 — 7.67 (m), 7.55 (d, J = 8.1 Hz), 7.37 (d, J = 8.2 Hz), 7.18 — 6.95
(m), 6.61 (s), 6.61 — 6.57 (M), 6.47 (d, J = 8.6 Hz), 5.23 (s), 5.10 (s), 5.01 (s), 4.70 (S),
3.90 — 3.54 (M), 2.45 (s), 2.43 (s), 2.41 (s), 2.40 (s), 2.39 (S), 2.34 (S), 2.33 (S), 2.33 (S),

2.29 (s).

NMR Spectra

Unless otherwise stated, all spectra were acquired in CDCls.
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Fig. 1.36. *H NMR of compound 1 (CDCls)
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Fig. 1.37. 3C NMR of compound 1 (CDCls)
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Fig. 1.41. 13C NMR of compound 3 (CDClz)
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Fig. 1.42. *H NMR of Compound 4 (CDClz)
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Fig. 1.43. 13C NMR of compound 4 (CDClz)
72

50 40 30 20 10

60

190 180 170 160 150 140 130 120 110 100 aD 80
f1 (ppm)

200



M
8 8 3 8 a 8 8 a 5 5 5 5 <
+ + + + + + + + + + + + ]
1H) 18] L 18] L w w 18] L L 1e) 18] i~
~ i~ ~ i~ i~ — — — o {¥=] T i~ (=] )
1 | i 1 | i | L | i | L 1 L 1 i L
9E~_ @y
BE— = ;'Ess'ul
WE 9%6E
25— —ﬁ = 001
69'%
7%
Pt e
09
G X o
8 B
8e'Y
IE::C'\
gg.i"" * sz
251> = g.:
Lo "
69

Fig. 1.44. *H NMR of Compound 5 (CDClz)
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Fig. 1.45. 13C NMR of compound 5 (CDClz)
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Fig. 1.46. *H NMR of Compound 6 (CDClz)
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Fig. 1.47. 13C NMR of compound 6 (CDClIs)
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Fig. 1.48. IH NMR of Compound 7 (CDCls)
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Fig. 1.49. 13C NMR of compound 7 (CDCls)
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Fig. 1.51. 3C NMR of compound 8 (CDClIs)
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Fig. 1.53. 13C NMR of compound 9 (CDClz)
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Fig. 1.55. 13C NMR of compound 10 (CDCls).
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Fig. 1.57. 3C NMR of compound 11 (CDClz)
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Fig. 1.59. 3C NMR of compound 12 (CDClz)
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Fig. 1.60. *H NMR of compound 13 (CDClIs)
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Fig. 1.61. 13C NMR of compound 13 (CDCls)
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Fig. 1.63. 3C NMR of compound 14 (CDClz)
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Fig. 1.65. 3C NMR of compound 15 (CDClz)
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Fig. 1.66. *H NMR of compound 16 (CDClIs)
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Fig. 1.67. 3C NMR of compound 16 (CDClz)
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Fig. 1.68. 1H NMR of compound 17a,b,c (CDCls)
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Fig. 1.69. 3C NMR of compound 17a,b,c (CDClz)
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Fig. 1.75. 3C NMR of compound 20a,b,c (CDCls)
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Fig. 1.77. 3C NMR of compound 21a,b,c (CDCls)

106

40 30 20 10

50

70

80

220 210 200 190 180 170 160 150 140 130 120 110 100
f1 (ppm)

230



-4E+08

-4E+08
~4E+08
+~3E+08
—2E+08

~2E+08

-2E+08
~1E+08
-5E+07

ST
LT
LTEA
82
S
St
9L
29°¢

L9E
ELE
bLE
WLE
SELE
SLE
SLE
SLE
LEE
LHE
BLEA

BLE
OB'E
08'E
18
¥BE
SB'E
SHE
9B'E
9B'E
LBE
88'E
6B'E

3.6

3.7

74 72 70 68 66
f1 (ppm)

7.6

7.8

59 58 57 56 55 54 53 52 51 5.0

£9°¢-

Fig. 1.78.

H NMR of compound 22a,b,c (CDCl3)

107

00T

[48H
o

= b0
= L0

—8eT1

0.0

0.5

95 90 85 8D 75 70 65 60 55 50 45 40 35 30 25 20 L5 10
f1 (ppm)

10.0



M~
g & 5 5 5 5 5 5 5 5 5 g
+ + + + + + + + + + + o
i i w 18] wi T8} i i i i ] —
T T . % T ¥ i A T o T T !
01557
€255
0€ 551 oSS i
56551 TS5~ - i
66551 0c'ss -
55 SE'58 - 18
#6551 oghed
£0'¢5 'S |~
o185 WSS, "
12'094 ok
15091 85°L5 - 2
4208 ST'ES =G .
85091 EE'BS @ E
pL09 gees- g
64091 6’65 =
e 19 1709 g
66140 1509
BCETTA b5'09 -
CRETT BSIEB =l
SRETT L0
8E'ETT 6£'09 — -
ity 609
06'ETT e -
2011 ”‘:‘9_/r - o
PIBTTA 59,“[
TP 01’9 -3
82'¥114
e
zesen
g
9471 l{'lbl\ -
v a1 T6'TFT
79'821 HOEFT g
S£HET 8'ERT —
08'821 £6'ERT _
56621 86'ERT B
10°621 4 dd
B2t (T B
£1'621 TR —
o1'62T Zb'w[_{,—
Wl 02T B
. 86 5hT—F
Ef.g s 1-f -
¥5'62T 69'SkT -
55 0ET — S5£'SkT
YO TET £6°5T -
g IET P T -
8€'9€T 8091 -
W — | TERT -
g £6°9T
SEERT 40T i
86'c¥1 4 am
0T 59:{?1 - E'
A 00'et a
ety STaT | =
el vl =
e €8T ~
69" 5Bl -
5561 e
¥ T 8vl B
26' 91 sa'arl
46" ET'ost T
L0'HT st - 9
[aves IEst
59°¢HT g5'est 5
008414 SE'EST
ST'BHT 98'es T o
e TOEST B ﬂ
5 814 O9T'EST
85814 EE:ESI _ TE
29°BbT 82951 SB'TET
107514 SEEST o II:ZE['—
95°Z5T ES'EEI\ = avlm\
52251 g:g:} L5'TEI~NE
£6"E5TH —
/a5 BG:EEIf
85 BST 4 8U65T 2
18°851 =
96'55T

Fig. 1.79. 3C NMR of compound 22a,b,c (CDCls)
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Fig. 1.80. *H NMR of compound 23 (CDCls)
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Fig. 1.81. 3C NMR of compound 23 (CDCls)
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Fig. 1.83. 3C NMR of compound 24 (CDCls)
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Fig 1.86. 'H NMR of compound 25b (CDCls)
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Fig. 1.87. *H NMR of compound 26a,b,c (CDCl3)
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Fig. 1.88. MALDI-TOF MS of 5 (matrix: 9-nitroanthracene)
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2. Beyond PCBM: Methoxylated 1,4-Bisbenzyl [60]Fullerene Adducts for

Efficient Organic Solar Cells

Introduction

Organic solar cells have received great attention in recent years as a
potential alternative to silicon solar cells because of their ability to be
inexpensively solution-processed and because they can be lightweight and
flexible.1 The key component of an organic-based photovoltaic system is its
active layer, wherein a p-type conjugated polymer and an n-type acceptor
material mix to form a bicontinuous interpenetrating network that is referred to
as a bulk heterojunction (BHJ).®’ Fullerene derivatives have been used
extensively as the acceptors in BHJ solar cells thanks to their high electron
affinities and electron mobilities.® The power conversion efficiency (PCE) of
polymer/fullerene BHJ solar cells can be as high as 10.8%,° with most of the
recent advances coming from the design of new polymer donors and/or the use
of new device architectures.’®!! In contrast, progress on the design and
synthesis of novel fullerene acceptors for high-efficiency organic photovoltaics
has been much less rapid. Most of the highest performing devices®*? still utilize
the classic fullerene derivative [6,6]-phenyl-C-61-butyric acid methyl ester
(PCBM), synthesized more than twenty years ago,® or its expensive Co
analogue, PC71:BM.**

The PCE of a solar cell is proportional to the product of the short-circuit
current (Jsc), open-circuit voltage (Voc) and fill factor (FF). Thus, one strategy for

improving device efficiency is to increase the Voc, which is directly related to the
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difference between the energy of the highest occupied molecular orbital
(HOMO) of the polymer donor and that of the lowest unoccupied molecular
orbital (LUMO) of the fullerene acceptor. As long as the LUMO of the fullerene
is lower than that of the polymer by an amount sufficient to promote charge
separation, raising the fullerene LUMO level should increase the Voc and thus
the PCE.

To this end, several research groups have synthesized fullerene
derivatives where two or more double bonds of the fullerene cage are
saturated.’®24 Although Voc has been demonstrated to increase with this
method, devices based on most of these new fullerenes fail to maintain high Jsc
and/or FF, and as a result, the overall device efficiency suffers.1%25-27 This is
because altering the chemical structure of a fullerene addend can have
detrimental effects on device performance for two reasons: first, the size and
pattern of the addends can dramatically influence the electronic coupling
between adjacent fullerenes through steric and/or electronic effects, causing a
significant decrease in local electron mobility;?’ and second, changes in the
fullerene addends can alter the degree of phase separation from the polymer,
sometimes caused by a reduction in fullerene crystallinity due to packing
constraints or mixtures of isomers. In cases where fullerene crystallization
drives phase separation, this can dramatically change the morphology of the
bulk heterojunction.?’

There are a few select fullerene derivatives, such as the bisadduct of
PCBM (bis-PCBM)?8, indene Ceo bisadduct (ICBA)'® and its Czo congeners,?°®

dihydronaphthyl-based Ceo  bisadduct (NCBA)3° and di(4-methyl-
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phenyl)methano-Ceo bisadduct (DMPCBA),3! that have shown good
photovoltaic performance when used in combination with the classic crystalline
semiconducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT). However,
when these fullerene derivatives are used in combination with less crystalline
state-of-the-art low-bandgap polymers, the performance of the solar cells is
typically low, with greatly decreased Jsc and FF.?526:32-34 Therefore, despite the
aforementioned efforts to increase the Voc, PCBM (and its C7o analogue) are still
the most successful fullerene acceptors for high-performance polymer-based
photovoltaics to date.

In order to design new fullerene acceptors for high performance polymer-
based solar cells, the following factors need to be considered: 1) The LUMO
level of the fullerene derivative should be carefully tuned so that when paired
with the polymer of choice, an ideal energy level offset between the fullerene
donor and polymer acceptor is attained. Although still under debate,**3° the
generally accepted range of this offset is about 0.3 eV, depending on the
materials.?6:36:37 2) Size-suitable addends are needed to assist close contacts
between fullerene balls, thereby facilitating favorable electronic coupling to
facilitate charge transport within the fullerene domains.?”-38 3) Derivatives must
possess good solubility in organic solvents for solution processing, and must
form reasonable BHJ structures with a variety of polymers. In this paper, we
thus present the synthesis of a series of new fullerene derivatives that satisfy all
of these requirements. We find that when carefully designed, fullerenes with
higher LUMOSs can be prepared that produce devices with higher Voc’'s — without

significant loss of Jsc or FF — and thus higher power conversion efficiencies.
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Our new derivatives are methoxylated 1,4-bisbenzyl fullerene adducts
(MeO-BBF, Table 2.1), i.e. two addends are located at the “para” positions of a
six-membered ring on the fullerene cage.®® These derivatives have a smaller 17-
conjugated system with reduced symmetry40-43 resulting in a slightly higher
LUMO level than the corresponding 1,2-fullerene bisadducts. The LUMO level,
side chain nature and solubility of the 1,4-fullerene bisadducts can be further
tuned by altering each addend independently.®® The molecules we focus on
bear electron-donating methoxy group(s) on the benzyl ring(s). Since these
electron-rich methoxy substituents are not conjugated with the fullerene T1-
system, they would be expected to have negligible electronic interaction.
However, we find through experiments that are supported by DFT calculations
that the relative position and number of methoxy groups can have a dramatic
effect on the performance of these fullerene derivatives in polymer-based solar

cells.
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Table 2.1. Synthesis of symmetric and asymmetric 1,4-bisbenzyl fullerene Ceo
adducts la—k.
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We have investigated the performance of these fullerenes in combination
with both P3HT and the low-bandgap polymer PTB7.44 The best PCE based on
P3HT:1-(2’,5’-dimetho-xybenzyl)-4-(2”,6”-dimethoxybenzyl)[60]fullerene
bisadduct (1i) is 4.1%, which is a > 20% enhancement relative to devices made
from P3HT:PCBM.

Furthermore, devices based on PTB7:1e show a Voc of 0.83 V, a
respectable FF (53%) and a Jsc (12.3 mA/cm?) that is higher than that for devices
based on PTB7:PCBM, resulting in a PCE of 5.4%. Perhaps more importantly,
our results clearly show that the precise nature and degree of substitution of the
methoxy group(s), even on a single benzyl addend, greatly influences both the
Voc and PCE of the BHJ photovoltaic devices. Moreover, the higher
conformational flexibility of the benzyl vs. an aryl substituent in these 1,4-

bisadducts appears to play a significant role in obtaining high PCE values.3°43

Experimental

Synthesis

Our ability to synthesize the MeO-BBF bisadducts is a direct result of the
ease of alkylating the Ceso dianion.*>°° As shown in Table 1, Cso?>~ can be
generated readily in dry degassed PhCN when treated with hydroquinone and
base (S1).51 By adding a large excess of a substituted benzyl bromide to a dark
red solution of Ceo?~, we produced the symmetric 1,4-dibenzyl Cso bisadducts in
relatively good yields (Table 2.1).

The synthesis of asymmetric 1,4-dibenzyl Ceo bisadducts involves a

stepwise alkylation procedure (SI). As shown in Table 2.1, Ceo also can be
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reduced to Ceso?~ with n-PrS—Cs* generated in situ through the reaction of n-
propanethiol and Cs2COsz in DMSO0.%? Ceo?~ reacts with substituted benzyl
chlorides to provide monoadducts 2a,b or 2e in 50-60% yields. The lower
reactivity of benzyl chlorides relative to benzyl bromides towards Sn2 is likely at
the origin of the different outcomes of these two reaction conditions.*® The
subsequent benzylation of deprotonated monoadducts 2a,b or 2e with a benzyl
bromide provides the asymmetric 1,4-bisadducts 1j—k, which bear two different
addends.

The synthesis details of each fullerene derivative and their NMR, mass-
spectrometry and cyclic voltammetry character-istics can be found in the

Supporting Information (SlI).

Photovoltaic Device and Active Layer Fabrication Procedures

We fabricated polymer:fullerene BHJ solar cells by starting with
prepatterned tin-doped indium oxide (ITO)-coated substrates (TFD Inc.) and
cleaning them by successive sonication in detergent solution, deionized water,
acetone and isopropanol for ~10 min each. After drying in vacuum for at least
an hour, we treated the ITO substrates with an air plasma (200 mTorr, 15 min).
A thin layer of poly(ethylene-dioxythiophene):poly(styrenesulfonic acid)
(PEDOT:PSS) (Clevios™ P VP Al 4083) was then spin-coated onto the clean
substrates in air at 5000 rpm for 20 s, and the PEDOT:PSS-covered substrate
was then baked at 150 °C for 20 min in air.

P3HT:fullerene blend solutions were prepared by dissolving solid P3HT
(Rieke Metal Inc. P100) and solid fullerene derivatives in o-dichlorobenzene (o-

DCB) with a weight ratio of 1:0.8. The concentration was 20 mg/mL with respect
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to P3HT. The solutions were stirred at 55 °C overnight on a hot plate in a
nitrogen glovebox before being cooled down to room temperature. The
solutions were spun onto the PEDOT:PSS-covered substrates at 1160 rpm for
20 s. The active layers were still wet when the samples were taken off the spin-
coater. Without covering or any other form of solvent annealing, the wet films
became dry in the nitrogen glovebox after ~2 min. All of the films were then
thermally annealed at 150 °C for 20 min on a hot plate under an argon
atmosphere. The thickness of the polymer:fullerene layers were ~160-180 nm,
as measured with a Dektak 150 Stylus Surface Profiler.

PTB7:fullerene solutions were prepared by dissolving solid PTB7
(Solarmer Energy Inc.) and solid fullerene derivatives in a mixture of 95%
chlorobenzene (CB)/5% 1,8-diiodooctane (DIO) v/v with a polymer:fullerene
weight ratio of 1:1.5 for the fullerene bisadducts and 1:1.34 for PCBM (the
change in weight ratio accounts for molecular weight differences to ensure that
all polymer:fullerene blends were equimolar). The concentration was 10 mg/mL
with respect to PTB7. The solutions were stirred at 55 °C overnight prior to
being spun at 1000 rpm for 60 s onto PEDOT:PSS-covered substrates. The
films were then transferred to the antechamber of the glovebox and held under
vacuum for ~1 hr. Pure methanol was then spun onto the films at a speed of
2500 rpm for 40 s to remove residual DIO. No further treatments were
performed after this step before the deposition of the metal cathode. Cathode
deposition consisted of ~10 nm of Ca evaporated at a rate of ~0.5 A/s followed
by 70 nm of Al at rates below 1 A/s. The resulting device active areas were 7.2

mm?Z.
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Current density—applied voltage (J-V) measurements were performed in
an argon atmosphere using a Keithley 2400 source meter. A xenon arc lamp
and 1-sun-calibrated AM-1.5 filter were used as the excitation source.

External quantum efficiency (EQE) measurements were taken using a
home-built set-up that has been detailed in previous publications by our group.>3

Films for non-device measurements were prepared using identical

procedures to those described above but without deposition of a top electrode.

Structural and Optical Characterization

UV-Visible absorption spectra were collected using a Perkin-Elmer
Lambda 25 UV/Vis Spectrophotometer.

The 2-D grazing incidence wide angle X-ray scattering (GIWAXS)
experiments were performed at the Stanford Synchrotron Radiation Lightsource
on beamline 11-3 using a wavelength of 0.9742 A. Figure 3c in the next section
was obtained by radially-integrating the full 2-D diffractograms. Each data curve
in Fig. 3c is the average of at least three different samples prepared using the
same conditions. The 2-D images were collected on a plate with the detector
400 mm away from the center of the measured sample. The beam spot had a
width of ~150 uym. A helium chamber was used to reduce the noise. The

software package WxDiff was used to analyze the GIWAXS data.

Results and discussion

Material properties

Fullerene derivatives 1la—k all have good solubility in common organic solvents

for solar cell fabrication, such as CHCIs, CS2, CB and o-DCB. The products were
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characterized by mass spectrometry, tH-NMR and *C-NMR (SI) spectroscopy.
The 'H-NMR spectra show that the peaks of methylene groups are split into AB
quartets for the symmetrical 1,4-bisadducts la—f, and mostly split into four
doublets for unsymmetrical 1g-k (see SI), which implies the 1,4-addition
pattern. Single crystals of 1c and 1le were obtained through slow diffusion of
EtOH into a CS2 solution, providing the X-ray structures shown in Fig. 1. Their
structures show a number of short intermolecular C—C contact distances
between fullerene carbons, as shown in Fig. 1b,e; these short packing distances
should favor electron mobility through increased intermolecular orbital
interactions. The shortest contacts are 3.301 A and 3.028 A for 1c and 1e,
respectively. Despite the different short-contact distances, both structures have
a similar 2-D layered structure and an interpenetrating network of methoxylated
benzyl groups. The opposite side of the interpenetrated network of
methoxylated benzyl groups is a fullerene bilayer displaying a number of

fullerene-fullerene close-contacts (Fig. 2.1c,f).
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Fig. 2.01 a,d) ORTEP representations of the single crystal structures for 1,4-
bisadducts 1c and 1le, respectively. b,e) Packing modes and intermolecular C-C
contacts shorter than van der Waals distances (< 0.05 A) for 1c and 1e, respectively.
c,f) Packing structures for 1c down the crystallographic a-axis, and le down the
crystallographic b-axis, respectively. Both are 2-D layered structures. Hydrogens and
CS:2 cocrystallization solvent molecules are omitted for clarity.
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Fig. 2.02 DFT (B3LYP/6-31G(d)) calculated HOMO (red dash) and LUMO (blue dash)
energies and selected LUMOs from experimental CV data (green triangle) for PCBM
and symmetrically substituted 1,4-bisbenzyl [60]fullerene adducts (i.e. Ri=Rz in Table
1) where the compound legend after PCBM and 1,4-bisbenzyl indicates the relative
position(s) of methoxy group(s) on the benzyl substituents.

The green triangles in Fig. 2 show the electrochemical properties of
several selected MeO-BBFs. These cyclic voltammetry (CV) measurements
show that the LUMO levels of our MeO-BBFs are higher than that of PCBM by
~0.05-0.09 eV, depending on the position of the methoxy substituent. Methoxy
substitution at the 2-position results in a slightly higher LUMO level than

substitution at the 3- or 4-positions.
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DFT calculations (B3LYP/6-31G(d)) of the HOMO and LUMO levels of
MeO-BBFs la—f also show the same trend in increasing HOMO and LUMO
energies as the relative placement of the methoxy group changes from the 2- to
the 3- and 4-positions (Fig. 2.02), although the absolute values do not agree
with experiment, as expected for a calculation of this type. Furthermore,
increasing the number of methoxy substituents also steadily raises both the
HOMO and LUMO energies. This effect of substitution can be explained by the
Wheeler-Houk model:>#-¢ since there can be only negligible overlap between
the m-systems of the benzyl substituents and the fullerene, the interaction
between them is primarily electrostatic. Thus, proximal oxygen lone pairs can
increase electron density on the fullerene 1T-system. A methoxy group at the 2-
position has its lone pairs closest to the fullerene 1r-system, while methoxy
groups at the 3- or 4-positions show less interaction as the average distance
increases. Similarly, increasing the number of methoxy groups from one (1a—c)
to two (1d-f or 1,4-bis[2,6-dimethoxybenzyl]) or three (1,4-bis[2,3,6-
trimethoxybenzyl]) results in easier ionization and makes reduction become

more difficult (Fig. 2.02).

Photovoltaic device performance and structural characterization

To examine the performance of the MeO-BBF la—k in BHJ solar cells, we first
blended our new fullerene derivatives with P3HT and fabricated photovoltaic
devices with a structure glass/ITO/PEDOT:PSS (30 nm)/1:0.8 polymer:fullerene
(=160-180 nm)/Ca(10 nm)/Al (70 nm). All of the performance comparisons and
conclusions we draw are based on the study of devices with composition- and

thickness-matched active layers. All active layers were thermally annealed at
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150 °C for 20 min prior to deposition of the cathode, and J-V curves were

measured under AM 1.5G illumination.
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Fig. 2.03 (a) and (b): Current density versus applied bias for photovoltaic devices
based on P3HT:MeO-BBFs where each of the benzyl rings in the MeO-BBFs are
substituted with one side group (a) and two methoxy groups (b). The J-V curve of a
standard P3HT:PCBM-based control device is plotted in (b) as the black
curve/squares. The error bars show 1 standard deviation for measurements over at
least 6 independent devices. (c): Example of radially-integrated 2-D GIWAXS
intensities for three P3HT:fullerene active layers processed on silicon substrates.
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Figure 2.03a and Table 2.2 summarize the performance of P3HT:MeO-
BBF-based devices where the benzyl rings connected to the fullerene ball have
substituents with a single side group (1a—1c, 1j, 1k). We find that non-methoxy
substituents on even one of the benzyl rings resulted in either lower FFs
(P3HT:1k) or lower Jsc’'s (P3HT:1)) than benzyl groups with methoxy
substitution; the PCE’s for devices based on non-methoxylated 1,4-bisadducts
were in the relatively low range of 2.2 to 2.4%. In contrast, methoxy substitution
led to higher-performing devices (PCE’s ranging from 2.3 to 3.1% for P3HT:1a)

depending on the exact position at which the methoxy groups were substituted.
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Table 2.2. Summary of Photovoltaic Device Parameters

BHJ Voc Jsc FF PCE

(mV) | (mA/cm?) (%) (%)
P3HT:PCBM | 613+2 | 8.2+0.2| 66.6+04 | 3.4+0.1
P3HT:1a 716+5|76+03|576+11| 3.1+0.1
P3HT:1b 640+4 |1 6.9+0.2|594+06 | 26+0.1
P3HT:1c 679+2|61+02|554+16| 23+0.1
P3HT:1d 680+1|78+0.1|59.7+11| 3.2%+0.1
P3HT:1e 715+1 | 85+0.2|66.3+0.7| 3.9+0.1
P3HT:1f 588+5|6.0+0.1|554+13| 20+0.1
P3HT:1g 720+1 | 80+0.2|575+01 | 3.3+0.1
P3HT:1h 740+1 | 84+05|550+01| 34+0.2
P3HT:1i 771+2 | 83+03|60.1+08| 3.9+0.2
P3HT:1j 704+1 |57+£03|56.1+15| 22+0.1
P3HT:1k 667+4 | 72+01]492+11| 24+0.1
PTB7:PCBM| 760 +1 |12.1+0.2| 644+0.1 | 59+0.3
PTB7:1e 825+9 |12.3+0.2| 53.3+0.1 | 54+0.1

To understand why such subtle variations in the substitution pattern of
our 1,4-bisadducts led to such widely varying device performance, we studied
the morphology of the solar cell active layers using GIWAXS. The experiments

were performed at the Stanford Synchrotron Radiation Light Source on
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beamline 11-3 with a wavelength of 0.9742 A. For these experiments, we
focused on three selected polymer:fullerene systems: P3HT:PCBM, P3HT:1b
and P3HT:1j (Fig. 3c).

In pure films, P3HT orients with the chains edge-on to the substrate,>’-%°
and based on the relative in-plane and out-of plane scattering intensities, we
see that this preferred chain orientation is maintained upon addition of either
MeO-BBF or PCBM (see SI). However, both the characteristic fullerene
diffraction observed at ~1.4 A-! and the crystallinity of the P3HT (as measured
by the intensity of the (200) peak) are smaller when 1b or 1j are used in the
active layer compared to when PCBM is used. Lower crystallinity materials
should have a poorer carrier mobility, which could explain the lower Jsc and FF
of the photovoltaic devices based on these active layers.®© Another notable
difference is that for P3HT:1j, the fullerene peak is shifted towards lower Q,
which corresponds to an increased spacing between fullerenes. Fullerene 1]
contains a bulky t-butyl group substituted on one benzyl ring, which likely
hinders close packing of the fullerene molecules. Consequently, this increase in
inter-fullerene spacing leads to a decreased electronic coupling between
fullerenes and therefore to a decrease in carrier mobility.?” This is also
consistent with 1j having the lowest Jsc among all the MEO-BBFs.

Figure 2.03a and Table 2.2 also show that when the methoxy group is at
the 2-position of the benzyl group (1a), the corresponding device has a greater
PCE (3.1%) compared to the 3-position (2.6%, 1b), which in turn is greater than

with the 4-position (2.3%, 1c). The changes in Voc (Table 2.2) of these three
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devices track the changes in experimental (CV) and DFT-calculated LUMO
levels of MeO-BBFs la—f (Fig. 2.2).

Although electrostatic interactions can explain the changes in Voc, the
variation in the Jsc of the devices cannot be easily explained by the
electrochemical or computational results. There are two potential reasons for
the sensitivity of the photocurrent to the substitution position. First, the position
of the methoxy group can affect the fullerene-to-fullerene contact distance and
thus the electronic coupling and local carrier mobility. Second, the way the
fullerene interacts with the polymer could be altered by the structure of the
benzyl side chain, which would alter the resultant BHJ morphology. Finally, the
propensity of the fullerene to crystallize could alter the polymer/fullerene phase
separation, again changing the overall BHJ morphology.

To investigate this, we measured the diode ideality factor, nideal, for each
of the MeO-BBF-based devices by fitting their dark J-V curves (Table 2.3); nideal
provides an indicator of the charge carrier recombination mechanism.%%-62 Table
3 in the Sl shows that devices with P3HT:1a have the most ideal (i.e., closest to
bimolecular rather than trap-dominated) recombination among fullerene
derivatives la—c, suggesting that the variations in Jsc predominantly reflect

changes in BHJ morphology.
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Table 2.3. Summary of Photovoltaic Device Parameter

BHJ Nideal Rseires Rshunt
(Q-cm?) (x10° Q-cm?)
P3HT:PCBM 1.34 £0.03 3.2+0.1 20x0.1
P3HT:1la 1.40 £0.02 4404 297
P3HT:1b 1.80+0.15 3.5+0.2 1.2+0.6
P3HT:1c 1.44 +0.03 6.0+0.6 14 +0.8
P3HT:1d 1.39+0.03 4.0+0.3 8.0+0.2
P3HT:1e 1.31+0.01 3.3+0.1 20+6
P3HT:1f 1.63+£0.04 3.8+15 3.5+0.7
P3HT:1g 1.27+0.01 42 +0.8 37+3
P3HT:1h 1.41 £0.02 3.2+0.1 75+0.4
P3HT:1i 1.28 £ 0.03 3.3+x0.1 43 £ 17
P3HT:1] 1.44 +£0.04 6.0+£0.9 16+4
P3HT:1k 1.51 £0.02 3.8+0.6 42 +£12
PTB7:PCBM 1.37£0.01 1.5+0.1 0.1+£0.01
PTB7:1e 1.37+£0.01 3.7£0.4 0.7+£0.2

After establishing that alkyl group substitution on the benzyl ring was
inferior to methoxy group substitution for solar cell performance, we next turned
to study the effects of the number and position of the methoxy substituents. To
this end, we synthesized fullerene derivatives 1d—-1i (Table 1), and fabricated

photovoltaic devices from those derivatives. The performance parameters are
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again summarized in Table 2.2. Examples of the J-V curves for these devices
under AM1.5G illumination are plotted in Fig. 2.03b.

The most striking result of Fig. 2.03b and Table 2 is that 1,4-bisadduct
fullerenes with bismethoxy-substituted benzyl rings lead to improved solar cell
efficiency; in fact, most of the PCEs reach or surpass those of P3HT:PCBM.
Both P3HT:1e and P3HT:1i show a ~20% enhancement in PCE compared to
P3HT:PCBM (black squares in Fig. 3), and P3HT:1d, P3HT:1g and P3HT:1h all
have comparable PCEs to P3HT:PCBM devices. P3HT:1f is clearly an
exception, having the lowest PCE of the group, and we are currently
investigating the morphology of this active layer to understand why.

Compared to the monomethoxy MeO-BBFs la—1c, devices fabricated
using 1d-1i (except for 1f) show both higher Jsc and Voc. We measured nNideal
values for these devices (Table 3), and found the general trend that devices
based on 1d—1i have more ideal charge carrier recombination than those based
on la—1c. This indicates that the nanoscale BHJ morphology is improved by the
addition of the second methoxy group on the benzyl rings of the MeO-BBFs.
This morphology improvement also likely contributes to the increase in both Jsc
and Voc.

Figure 3b and Table 2.2 also reinforce the observation that the position
of the methoxy group(s) has a significant effect on device performance. The
dependence of Voc on methoxy position can be summarized as follows: placing
methoxy groups at the 2- or 2,6-positions increases Voc, Whereas placing
methoxy groups at the 3- or 5- positions lowers the Voc. In fact, fullerenes with

two methoxy groups at the 3- (or 5-) position, such as 1d and 1e, show lower
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Voc than those with fewer, such as 1g, 1h and 1li. When both methoxy groups
are at the 3- and 5- positions, as with fullerene 1f, the resultant device shows
the lowest Voc. With this trend in mind, we then synthesized the MeO-BBF
derivative with methoxy groups at the 2,6-positions of each benzyl ring, which
in principle should be the best-performing derivative. Unfortunately, this
compound was not soluble enough in the solvents needed for device fabrication,

so we could not test it in an organic photovoltaic device.
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Fig. 2.04 a) Current density versus applied bias for photovoltaic devices based on
PTB7:PCBM (open black square) and PTB7:1e (red circle). The error bars show 1
standard deviation for measurements over at least 6 independent devices. b) UV-
visible absorption spectra for the same active layers used in (a).

As mentioned in the introduction, the most successful high-LUMO
fullerenes studied to date (e.g., ICBA and its C70 analog) show poor compatibility
with modern low bandgap push-pull polymers. To see if we could break this
trend with our MeO-BBF derivatives, we investigated the compatibility of one of
our best derivatives (1e) with the high-performance low-bandgap polymer PTB7
(Fig. 4). We employed the same device structure, with the active layer consisting

of PTB7 and 1le at a polymer:fullerene weight ratio of 1:1.5 with a thickness of
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~90 nm. These active layers were used as-cast, without thermal annealing prior
to cathode deposition. For comparison, we also fabricated PTB7:PCBM control
devices, taking care to keep the two sets of devices thickness- and composition-
matched, as shown by UV-Vis absorption (Fig. 2.04b).

Figure 4a and the bottom portion of Table 2.2 summarize the device
performance results. Clearly, fullerene 1e, which showed the best performance
when blended with P3HT, also demonstrates excellent compatibility with PTB7.
PTB7:1e devices show a higher Voc and a similarly high Jsc as PTB7:PCBM
devices. The overall device efficiency of PTB7:1e is slightly lower than
PTB7:PCBM, however, due to a slightly lower FF that may be due to less
efficient crystallization of derivative l1e compared to PCBM, changing the

resultant BHJ morphology.

Conclusions

In summary, we have synthesized a series of methoxylated 1,4-
[60]fullerene bisadducts, 1a—k, which have higher LUMO levels than PCBM. We
evaluated their performance in BHJ solar cells and compared the resulting BHJ
morphologies to those of the workhorse fullerene PCBM. Our best fullerene
derivatives show more than 20% enhancement in device efficiency when
combined with P3HT, largely due to the improved Voc resulting from the higher
LUMO of the 1,4-bis-substituted fullerenes. We found that adding methoxy
groups to the benzyl rings increases the device performance and that the
number and position of these groups has a dramatic effect on the solar cell

efficiency due to morphological changes. Unlike previously-studied fullerene
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bisadducts, which are outperformed by PCBM when combined into BHJs with
low bandgap polymers, our 1,4-bisadduct 1e demonstrated good compatibility
with one of the best performing red polymers, PTB7. We are currently working
on a deeper understanding of both the device physics and active-layer
morphologies for these fullerene derivatives in polymer solar cells to help guide
further synthesis and increase device performance. We believe that 1,4-
bisbenzyl fullerene bisadducts in general and future C7o analogs of these
molecules are promising candidates for replacing PCBM to improve the

performance of conjugated polymer-based solar cells.

Supporting Information

Synthesis of the Fullerene Derivatives
Unless otherwise noted, all materials including dry solvents were obtained

from commercial suppliers and used without further purification. All reactions were
performed with dry solvents under an argon atmosphere in flame-dried glassware
with standard vacuum-line techniques, unless specified otherwise. All work-up and

purification procedures were carried out with reagent-grade solvents in air.

General procedure for the preparation of symmetric 1,4-bisbenzyl

fullerene adducts la-f:

Trimethylhydroquinone (246 mg, 1.6 mmol, 5.4 eq) in 25 mL of benzonitrile
and a suspension of Ceo (216 mg, 0.3 mmol, 1.0 eq) in 25 mL of benzonitrile were
both degassed under reduced pressure over 30 minutes. Tetrabutylammonium
hydroxide (1 M in methanol, 3.3 mL, 11.0 equiv.) was added to the solution of

trimethylhydroquinone at room temperature. The color of the solution immediately
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changed from colorless to red. After stirring for 30 minutes at this temperature, the
resulting red solution was transferred to the purple suspension of Ceo in benzonitrile
via a cannula over a 30-minute time period and stirred for an additional 30 minutes,
giving a dark solution. To this solution, benzyl bromide was added (6.0 mmol, 20 eq)
and the resulting solution stirred overnight at room temperature. The reaction
mixture was treated with 1 mL of aqueous HCI (ca. 1 M), dried over anhydrous
MgSOs, and filtered through a pad of silica gel (eluted with toluene). The filtrate was
concentrated under reduced pressure. Chromatography of the residue gave the

desired 1,4-bisadduct.

1,4-Bis(2-methoxybenzyl)-1,4-dihydro[60]fullerene (1a): The synthesis of
1a follows the general procedure (35%). *H NMR (500 MHz, CDCIls) & 7.54 (dd, J =
7.4, 1.7 Hz, 2H), 7.34 (td, J = 7.4, 1.7 Hz, 2H), 7.08 (td, J = 7.4, 1.0 Hz, 2H), 7.01 (d,
J = 7.4 Hz, 2H), 4.07 (AB-q, J = 12.7 Hz, 2H), 3.88 (AB-q, J = 12.7 Hz, 2H), 3.82 (s,
6H). 13C NMR (125 MHz, CDCI3) & 158.57, 158.11, 152.01, 148.76, 148.57, 147.14,
146.97, 146.86, 146.29, 145.45, 144.88, 144.86, 144.84, 144.79, 144.46, 144.28,
144.22, 144.20, 143.78, 143.75, 143.17, 143.12, 142.93, 142.70, 142.57, 142.09,
141.93, 140.46, 138.90, 137.41, 132.56, 129.05, 124.99, 120.76, 111.27, 60.11,
55.09, 42.34. FAB-HRMS m/z calculated for C76H1902 [M+H]*: 963.1380, found

963.1390.

1,4-Bis(3-methoxybenzyl)-1,4-dihydro[60]fullerene (1b): The synthesis of
1b follows the general procedure (40%). *H NMR (500 MHz, CDClz): & (ppm) 7.39 (t,
J=7.9Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.13 (s, 2H), 6.90 (dd, J = 8.2, 1.7 Hz, 2H),
3.86 (s, 6H), 3.77 (AB-q, J = 12.8 Hz, 2H), 3.72 (AB-q, J = 12.8 Hz, 2H). 13C NMR (125

MHz, CDCl3) & 159.58, 157.99, 151.84, 148.67, 148.64, 147.21, 147.00, 146.93,
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146.20, 145.51, 145.02, 144.79, 144.75, 144.71, 144.39, 144.31, 144.26, 144.15,
143.94, 143.76, 143.20, 143.11, 142.99, 142.66, 142.51, 142.02, 140.54, 138.80,
137.86, 137.80, 130.56, 129.47,127.73, 123.60, 117.57, 112.32, 60.44, 55.35, 48.61.

FAB-HRMS m/z calculated for C76H1902 [M+H]*": 963.1380, found 963.1403.

1,4-Bis(4-methoxybenzyl)-1,4-dihydro[60]fullerene (1c): The synthesis of
1c follows the general procedure (30%). *H NMR (500 MHz, CDCls): & (ppm) 7.50 (d,
J = 8.2 Hz, 4H), 7.00 (d, J = 8.2 Hz, 4H), 3.80 — 3.70 (m, 10H). 3C NMR (125 MHz,
CDCls) & 159.00, 158.07, 151.91, 148.76, 148.66, 147.20, 147.09, 146.99, 146.93,
146.28, 145.50, 145.34, 145.01, 144.85, 144.78, 144.72, 144.40, 144.31, 144.27,
144.17, 143.94, 143.75, 143.19, 143.11, 142.97, 142.67, 142.56, 142.51, 142.01,
140.51, 138.87, 137.92, 133.27, 132.10, 128.32, 113.89, 113.53, 60.89, 55.36, 47.85.

FAB-HRMS m/z calculated for C76H1902 [M+H]*: 963.1380, found 963.1390.

1,4-Bis(2,3-dimethoxybenzyl)-1,4-dihydro[60]fullerene (1d): The synthesis
of 1d follows the general procedure (35%). *H NMR (500 MHz, CDCls): 6 (ppm) 7.23
(dd, J = 7.7, 1.5 Hz, 2H), 7.14 (t, J = 7.9 Hz, 2H), 6.91 (dd, J = 8.2, 1.5 Hz, 2H), 4.10
(AB-q, J = 12.7 Hz, 2H), 3.94 (s, 6H), 3.90 (AB-q, J = 15.4 Hz, 2H), 3.88 (s, 6H). 13C
NMR (125 MHz, CDClz) & 158.17, 152.92, 152.07, 148.76, 148.59, 148.11, 147.25,
147.11, 146.97, 146.86, 146.40, 145.41, 145.03, 144.95, 144.91, 144.75, 144.42,
144.24, 144.23, 144.18, 143.79, 143.77, 143.12, 143.09, 142.88, 142.60, 142.53,
142.04, 141.96, 140.42, 138.80, 137.85, 129.86, 124.48, 123.46, 111.86, 60.89,
60.08, 55.75, 42.08. FAB-HRMS m/z calculated for C7sH2304 [M+H]*: 1023.1591,

found 1023.1587.
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1,4-Bis(2,5-dimethoxybenzyl)-1,4-dihydro[60]fullerene (1e): The synthesis
of 1e follows the general procedure (32%). 'H NMR (500 MHz, CDClz): & (ppm) 7.14
(d, J = 3.1 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 6.85 (dd, J = 8.9, 3.1 Hz, 2H), 4.00 (AB-
q, J = 12.7 Hz, 2H), 3.83 (s, 6H), 3.82 (AB-q, J = 12.7 Hz, 2H), 3.77 (s, 6H). 13C NMR
(125 MHz, CDCI3) 6 158.65, 153.45, 152.44, 151.99, 148.74, 148.56, 147.10, 147.08,
146.97, 146.83, 146.27, 145.40, 144.90, 144.81, 144.79, 144.77, 144.41, 144.25,
144.19, 144.17, 143.74, 143.69, 143.12, 143.07, 142.87, 142.63, 142.53, 142.49,
142.08, 141.84, 140.36, 138.84, 137.29, 126.13, 119.20, 112.69, 112.06, 60.02,
55.84, 55.71, 42.44. FAB-HRMS m/z calculated for C7zsHi1902 [M+H]*: 1023.1591,

found 1023.1576.

1,4-Bis(3,5-dimethoxybenzyl)-1,4-dihydro[60]fullerene (1f): The synthesis
of 1f follows the general procedure (40%). *H NMR (500 MHz, CDClz): 6 (ppm) 6.73
(s, 4H), 6.45 (s, 2H), 3.84 (s, 12H), 3.78 (AB-q, J = 14.4 Hz, 2H), 3.74 (AB-q, J = 14.4
Hz, 2H). 3C NMR (125 MHz, CDCI3) d 160.75, 160.72, 157.96, 151.86, 148.67,
148.67, 147.20, 147.00, 146.94, 146.22, 145.51, 145.02, 144.76, 144.71, 144.39,
144.30, 144.26, 144.16, 143.89, 143.76, 143.19, 143.11, 142.97, 142.66, 142.59,
142.51, 142.05, 142.01, 140.57, 138.81, 138.51, 137.81, 109.74, 98.85, 60.35, 55.46,

48.90. FAB-HRMS m/z calculated for C7sH2304 [M+H]*: 1023.1591, found 1023.1581.

Synthesis of the Asymmetric 1,4-Bisbenzyl Fullerene Ceo Adducts 1g—k via
Monobenzylated Adducts 2a,b,e.
1-(2-Methoxybenzyl)-1,2-dihydro[60]fullerene (2a): A suspension of Ceo

(144 mg, 0.2 mmol) and Cs2COs (196 mg, 0.6 mmol) in dry DMSO (25 mL) was
prepared and 1-propanethiol (45 uL, 0.5 mmol) was added to the suspension. The

resulting mixture was stirred for 2 hours under argon at room temperature. 2-
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Methoxybenzyl chloride (250 mg, 1.6 mmol) was added to the resulting dark-red
solution. Stirring continued for another 2 hours and the color of the solution turned
green, indicative of an alkylated Ceo monoanion. Following this, acetic acid (0.5 mL)
was added, and after 5 minutes, the solution was poured into 100 mL of methanol.
The solids were collected by centrifugation and then dissolved in a minimum volume
of CS2. Chromatography, using a mixture of cyclohexane and toluene (2:1 by volume),
gave 1-(2-methoxybenzyl)-1,2-dihydro[60]fullerene 2a (93 mg, 55%). *H NMR (500
MHz, CDCls) & 7.72 (dd, J = 7.5, 1.6 Hz, 1H), 7.40 (ddd, J = 8.2, 7.6, 1.7 Hz, 1H), 7.11
(td, 3 = 7.5, 1.1 Hz, 1H), 7.06 (dd, J = 8.3, 0.6 Hz, 1H), 6.73 (s, 1H), 4.82 (s, 2H), 3.92
(s, 3H). 3C NMR (125 MHz, CDClz) 6 158.21, 156.18, 154.25, 147.50, 147.36, 147.17,
146.47, 146.45, 146.39, 146.26, 146.22, 145.93, 145.50, 145.44, 145.39, 145.35,
144.76, 144.69, 143.32, 143.16, 142.62, 142.61, 142.30, 142.09, 142.03, 141.71,
141.60, 140.21, 139.90, 136.56, 135.48, 133.19, 129.36, 124.64, 121.00, 111.36,
66.01, 59.41, 55.22, 46.74. MALDI-TOF-MS m/z calculated for CesH110 [M+H"]: 843,

found 843.

1-(3-Methoxybenzyl)-1,2-dihydro[60]fullerene (2b): To a suspension of Ceo
(144 mg, 0.2 mmol) and Cs2CO3 (196 mg, 0.6 mmol) in dry DMSO (25 mL) was added
1-propanethiol (45 uL, 0.5 mmol). The mixture was stirred for 2 hours under argon at
room temperature. 3-methoxybenzyl bromide (42 pL, 0.3 mmol) was added to the
resulting dark red solution and the stirring continued for 20 minutes. The color of the
solution turned green, indicative of a substituted Cso monoanion. Acetic acid (0.5 mL)
was added, and after 5 minutes the solution was poured into 100 mL of methanol. The
solids were collected by centrifugation and then dissolved in a minimum volume of

CS2. Chromatography using a mixed solvent of cyclohexane and toluene (2:1 by
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volume) gave 1-(3-methoxybenzyl)-1,2-dihydro[60]fullerene 2b (64 mg, 38%). 'H
NMR (500 MHz, CDCls): & (ppm) 7.49 — 7.38 (m, 2H), 7.34 (s, 1H), 6.96 (d, J = 7.1
Hz, 1H), 6.65 (s, 1H), 4.74 (s, 2H), 3.90 (s, 3H). 13C NMR (125 MHz, CDCl3) & 159.82,
155.41, 153.91, 147.55, 147.39, 147.05, 146.51, 146.48, 146.35, 146.27, 145.88,
145.60, 145.53, 145.49, 145.48, 144.81, 144.67, 143.33, 142.67, 142.30, 142.14,
142.09, 141.99, 141.75, 141.70, 140.33, 140.09, 137.32, 136.43, 136.13, 129.94,
123.89, 117.59, 112.93, 65.82, 59.12, 55.19, 53.16. MALDI-TOF-MS m/z calculated

for CesH110 [M+H"*]: 843, found 843.

1-(2,5-dimethoxybenzyl)-1,2-dihydro[60]fullerene (2e): To a suspension of
Ce0 (144 mg, 0.2 mmol) and Cs2COs3 (196 mg, 0.6 mmol) in dry DMSO (25 mL) 1-
propanethiol (45 uL, 0.5 mmol) was added. The mixture was stirred for 2 hours under
argon at room temperature. 2,5-dimethoxybenzyl chloride (298 mg, 1.6 mmol) was
added to the resulting dark-red solution and stirring continued for another 1.5 hours.
Following this, the color of the solution turned green, indicating the presence of a Ceo
monoanion. Acetic acid (0.5 mL) was added and five minutes later the solution was
poured into 100 mL of methanol. The solids were collected by centrifugation and then
dissolved into a minimum volume of CS2. Chromatography, using a mixed solvent of
cyclohexane and toluene (1:1 by volume), gave 1-(2,5-dimethoxybenzyl)-1,2-
dihydro[60]fullerene 2e (98 mg, 56%). *H NMR (500 MHz, CDCI3): & (ppm) 7.26 (d, J
= 2.2 Hz, 1H), 6.97 (d, J = 8.9 Hz, 1H), 6.89 (dd, J = 8.9, 3.0 Hz, 1H), 6.72 (s, 1H),
4.77 (s, 2H), 3.89 (s, 3H), 3.82 (s, 3H). 13C NMR (125 MHz, CDCls) & 156.06, 154.25,
153.53, 152.37, 147.51, 147.36, 147.17, 146.48, 146.42, 146.39, 146.28, 146.23,
145.94, 145.52, 145.45, 145.41, 145.39, 144.77, 144.70, 143.33, 142.64, 142.63,

142.31, 142.11, 142.02, 141.72, 141.64, 140.25, 139.95, 136.55, 135.57, 129.12,
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128.37, 125.64, 119.49, 113.31, 112.11, 65.90, 59.31, 55.69, 55.57, 46.75. MALDI-

TOF-MS m/z calcd for CesH1302 [M+H]: 873, found 873.

1-(2,5-dimethoxybenzyl)-4-(2-methoxybenzyl)-1,4-dihydro[60]fullerene
(19): To a de-gased solution of 1-(2-methoxybenzyl)-1,2-dihydro[60]fullerene 2a (0.05
mmol, 1 eq) in 10 mL dry benzonitrile, a 1 M THF solution of t-BuOK (75 pL, 0.075
mmol, 1.5 eq) was added via syringe with stirring. After 10 min, 2,5-dimethoxybenzyl
chloride (77 mg, 0.5 mmol, 10 eq) (prepared from the reaction of 2,5-dimethoxybenzyl
alcohol with SOCI2) was added to the solution. The solution was then heated to 70 °C
and stirred for 7 hours. An aqueous solution of NH4Cl (0.1 mL) was added after the
solution was cooled to room temperature. The solution was then poured into 100 mL
methanol. The solids were collected by centrifuging and then redissolved in 1 mL CS..
Chromatography gave 1-(2,5-dimethoxybenzyl)-4-(2-methoxybenzyl)-1,4-
dihydro[60]fullerene (1g) (20 mg, 40%). 'H NMR (500 MHz, CDCls): & (ppm) 7.54
(dd, J = 7.4, 1.7 Hz, 1H), 7.35 (ddd, J = 8.1, 7.6, 1.6 Hz, 1H), 7.12 (d, J = 3.1 Hz, 1H),
7.09 (td, J = 7.4, 1.0 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 6.85
(dd, J = 8.9, 3.1 Hz, 1H), 4.07 (AB-q, J = 12.7 Hz, 1H), 4.00 (AB-q, J = 12.7 Hz, 1H),
3.89 (AB-q, J = 12.7 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.77 (s, 3H), 3.70 (AB-q, J =
12.7 Hz, 1H). 13C NMR (125 MHz, CDCls): & (ppm) 158.75, 158.63, 158.22, 153.37,
152.45, 152.07, 151.99, 148.75, 148.55, 147.10, 146.97, 146.82, 146.37, 146.22,
145.40, 144.90, 144.82, 144.78, 144.76, 144.41, 144.25, 144.19, 144.17, 143.76,
143.73, 143.69, 143.68, 143.11, 143.07, 142.86, 142.63, 142.53, 142.49, 142.07,
141.85, 141.83, 138.84, 138.83, 137.32, 137.27, 132.53, 129.00, 126.13, 125.06,
120.61, 119.30, 112.57, 112.01, 111.34, 60.14, 60.00, 55.87, 55.70, 55.20, 42.40,

42.35. MALDI-TOF-MS m/z calculated for C77H2103 [M+H*]: 993, found 993.
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1-(2,6-dimethoxybenzyl)-4-(2-methoxybenzyl)-1,4-dihydro[60]fullerene
(1h): To a de-gased solution of 1-(2-methoxybenzyl)-2-H-dihydro[60]fullerene 2a (0.05
mmol, 1 eq) in 10 mL dry benzonitrile, a 1.0 M THF solution of t-BuOK (75 uL, 0.075
mmol, 1.5 eq) was added through syringe with stirring. After 10 minutes, 2,6-
dimethoxybenzyl chloride (77 mg, 0.5 mmol, 10eq) (prepared from the reaction of 2,6-
dimethoxybenzyl alcohol with SOCI2) was added. The solution was heated to 70 °C
and stirred for 6 hours. An aqueous solution of NH4CI (0.1 mL) was added after the
solution was cooled to room temperature. The solution was then poured into 100 mL
methanol. The solids were collected by centrifuging and then redissolved in 1 mL CS..
Chromatography gave 1-(2,6-dimethoxybenzyl)-4-(2-methoxybenzyl)-1,4-
dihydro[60]fullerene (1h) (18 mg, 36%). *H NMR (500 MHz, CDClz): 6 (ppm) 7.46 (d,
J = 6.8 Hz, 1H), 7.35 — 7.28 (m, 2H), 7.01 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 8.2 Hz, 1H),
6.75 (d, J = 8.3 Hz, 2H), 4.48 (AB-q, J = 12.7 Hz, 2H), 4.43 (AB-q, J = 12.7 Hz, 1H),
3.96 (AB-q, J = 12.5 Hz, 1H), 3.90 (s, 4H), 3.83 (AB-q, J = 12.5 Hz, 1H), 3.73 (s, 3H).
13C NMR (125 MHz, CDCl3) d 159.53, 159.23, 158.33, 157.94, 152.54, 151.88, 148.99,
148.63, 148.99, 148.48, 147.31, 147.25, 147.07, 147.04, 147.02, 146.97, 146.93,
146.75, 145.75, 145.33, 145.30, 145.09, 145.00, 144.84, 144.79, 144.74, 144.70,
144.65, 144.45, 144.43, 144.23, 144.21, 144.17, 144.16, 144.10, 143.87, 143.65,
143.63, 143.34, 143.16, 143.11, 143.02, 142.92, 142.84, 142.66, 142.62, 142.58,
142.50, 142.46, 142.06, 141.83, 141.70, 140.27, 139.01, 138.70, 137.46, 137.03,
132.31, 129.05, 128.82, 128.70, 124.93, 120.30, 113.71, 111.18, 104.39, 59.90,
55.68, 55.07, 42.41, 35.39. MALDI-TOF-MS m/z calculated for C77H2103 [M+H*]: 993,

found 993.
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1-(2,5-dimethoxybenzyl)-4-(2,6-dimethoxybenzyl)-1,4-
dihydro[60]fullerene (1i): To a de-gased solution of 1-(2,5-dimethoxybenzyl)-2-H-
dihydro[60]fullerene 2e (0.05 mmol, 1 eq) in 10 mL dry benzonitrile, a 1 M THF solution
of t-BuOK (75 pL, 0.075 mmol, 1.5 eq) was added via syringe with stirring. After 10
min, 2,6-dimethoxybenzyl chloride (77 mg, 0.5 mmol, 10 eq) (prepared from the
reaction of 2,6-dimethoxybenzyl alcohol with SOCI2) was added to the solution. The
solution was then heated to 70 °C and stirred for 6 hours. An aqueous solution of
NH4ClI (0.1 mL) was added after the solution was cooled to room temperature. The
solution was then poured into 100 mL methanol. The solids were collected by
centrifuging and then redissolved in 1 mL CS2. Flash chromatography gave 1-(2,5-
dimethoxybenzyl)-4-(2,6-dimethoxybenzyl)-1,4-dihydro[60]fullerene (1i) (20 mag,
40%). H NMR (500 MHz, CDCls): & (ppm) 7.32 (t, J = 8.3 Hz, 1H), 7.05 (d, J = 2.7
Hz, 1H), 6.89 — 6.79 (m, 2H), 6.76 (d, J = 8.4 Hz, 2H), 4.50 (AB-q, J = 12.6 Hz, 1H),
4.44 (AB-q, J = 12.6 Hz, 1H), 3.91 (s, 6H), 3.87 (AB-q, J = 12.6 Hz, 1H), 3.80 (s, 3H),
3.74 (AB-q, J = 12.6 Hz, 1H), 3.68 (s, 3H). 13C NMR (125 MHz, CDCl3) & 159.54,
159.27, 158.24, 153.23, 152.57, 152.18, 151.81, 149.00, 148.59, 148.50, 147.32,
147.26, 147.08, 147.04, 147.03, 146.97, 146.93, 146.76, 145.66, 145.34, 145.31,
145.09, 145.02, 144.84, 144.80, 144.75, 144.72, 144.66, 144.45, 144.43, 144.24,
144.22, 144.17, 144.10, 143.88, 143.67, 143.62, 143.52, 143.34, 143.16, 143.10,
143.03, 142.93, 142.85, 142.67, 142.62, 142.59, 142.50, 142.46, 142.07, 141.85,
141.68, 140.28, 139.00, 138.71, 137.48, 137.04, 129.05, 128.84, 128.24, 126.03,
125.31, 121.26, 119.34, 115.50, 113.76, 112.30, 111.78, 104.44, 59.92, 59.74, 55.95,
55.72, 55.57, 42.54, 35.41. MALDI-TOF-MS m/z calculated for C7sH2304 [M+H]:

1023, found 1023.
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1-(3-methoxybenzyl)-4-(4-t-butylbenzyl)-1,4-dihydro[60]fullerene (1j): To a
de-gased solution of 1-(3-methoxybenzyl)-2-H-dihydro[60]fullerene (2b, 0.05 mmol, 1
eq) in 10 mL of dry benzonitrile, a 1 M THF solution of t-BuOK (75 pL, 0.075 mmol,
1.5 eq) was added through a syringe. After 10 minutes, 4-t-butylbenzyl bromide (mg,
0.5 mmol, 10 eq) was added. The solution was stirred at room temperature for 4 hours.
An aqueous solution of NH4Cl (0.1 mL) was added and the solution was poured into
100 mL methanol. The solids were collected by centrifuge and then redissolved in 1
mL CSo. Chromatography gave 1-(3-methoxybenzyl)-4-(p-t-butylbenzyl)-1,4-
dihydro[60]fullerene (1j, 20 mg, 40%). *H NMR (500 MHz, CDCl3): 6 (ppm) 7.61 (AB-
q, J = 7.9 Hz, 2H), 7.56 (AB-q, J = 7.9 Hz, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.04 (d, J =
7.4 Hz, 1H), 7.00 (s, 1H), 6.85 (d, J = 7.9 Hz, 1H), 4.06 (AB-q, J = 13.1 Hz, 1H), 3.96
(AB-q, J = 13.1 Hz, 1H), 3.84 (s, 3H), 3.30 (s, 2H), 1.28 (s, 9H). 13C NMR (125 MHz,
CDCls) 6 159.26, 158.64, 157.93, 152.34, 151.56, 150.71, 148.78, 148.67, 148.65,
148.63, 147.22, 147.20, 147.00, 146.99, 146.97, 146.93, 146.87, 145.66, 145.50,
145.05, 144.98, 144.84, 144.81, 144.75, 144.73, 144.71, 144.40, 144.33, 144.31,
144.26, 144.18, 144.13, 143.98, 143.86, 143.71, 143.20, 143.17, 143.13, 143.07,
143.04, 142.93, 142.68, 142.66, 142.57, 142.46, 142.15, 142.06, 141.91, 140.49,
138.83, 138.81, 137.87, 137.61, 133.56, 130.91, 129.15, 125.72, 123.61, 117.36,
112.22, 60.94, 60.34, 55.33, 48.27, 48.07, 34.62, 31.33. FAB-HRMS m/z calculated

for C79H250 [M+H]*: 989.1900, found 989.1909.

1-(3-methoxybenzyl)-4-(2-methylbenzyl)-1,4-dihydro[60]fullerene (1k): To
a de-gased solution of 1-(3-methoxybenzyl)-2-H-dihydro[60]fullerene (2b) (0.05 mmol,
1 eq) in 10 mL dry benzonitrile, a 1 M THF solution of t-BuOK (75 pL, 0.075 mmol, 1.5

eq) was added through a syringe. After 10 minutes, 2-methylbenzyl bromide (92 mg,
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0.5 mmol, 10 eq) was added and the solution was stirred at room temperature for 4
hours. An aqueous solution of NH4ClI (0.1 mL) was then added and the solution was
poured into 100 mL methanol. The solids were collected by centrifuge and then
redissolved in 1 mL CS2. Chromatography gave 1-(3-methoxybenzyl)-4-(2-
methylbenzyl)-1,4-dihydro[60]fullerene (1k, 19 mg, 40%). *H NMR (500 MHz, CDCls):
5 (ppm) 7.62 (d, J = 7.3 Hz, 1H), 7.41 — 7.34 (m, 2H), 7.31 — 7.27 (m, 2H), 6.99 (d, J
= 7.5 Hz, 1H), 6.94 (s, 1H), 6.80 (dd, J = 8.3, 1.7 Hz, 1H), 4.20 (AB-q, J = 13.3 Hz,
1H), 4.07 (AB-q, J = 13.3 Hz, 1H), 3.82 (s, 3H), 3.41 (s, 2H), 2.72 (s, 3H). 13C NMR
(125 MHz, CDCls) 6 159.36, 158.30, 157.58, 152.12, 151.54, 148.77, 148.71, 148.68,
148.43, 147.26, 147.24, 147.02, 147.00, 146.97, 146.82, 146.71, 145.65, 145.57,
145.14, 145.08, 144.84, 144.75, 144.64, 144.43, 144.35, 144.30, 144.19, 144.15,
144.11, 143.93, 143.84, 143.73, 143.27, 143.25, 143.19, 143.16, 143.10, 143.02,
142.75, 142.71, 142.65, 142.61, 142.47, 142.22, 142.08, 141.99, 140.67, 138.89,
138.86, 138.03, 137.55, 137.52, 137.46, 134.84, 132.43, 131.43, 129.31, 128.08,
126.41,123.52,117.32, 112.32, 60.68, 60.29, 55.07, 48.64, 45.37, 20.98. FAB-HRMS

m/z calculated for C76H190 [M+H]*: 947.1430, found 947.1433
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UV-Visible Absorption and External Quantum Efficiency (EQE)

N
o

e

F\

| —=— P3HT:PCBM
| —e—P3HT:1e
0-21 —A— P3HT:Af
|—¥— P3HT:1i

Normalized Absorption

Ll

400 500 600 700
Wavelength (nm)

Figure 2.S28. Typical UV-visible absorption spectra for P3HT:fullerene bis-
adduct films.

In Figure S28, together with P3HT:PCBM, we plot the UV-visible absorption
spectra of films made with P3HT:1e, P3HT:1f and P3HT:1i. These examples show
that the absorption profile of the MeO-BBF does not display a well-defined absorption
peak near 340 nm, unlike PCBM. Instead, the bis-adduct peaks are slightly shifted to
the red compared to PCBM. The same trend is observed in the EQE measurements
over the same wavelength range, as shown below in Figure 2.529 for P3HT:1e and

P3HT:PCBM. The current densities obtained by integrating the EQE spectra for
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P3HT:PCBM and P3HT:1e are 8.38 mA/cm? and 8.57 mA/cm?, respectively, which

confirm the Jsc's we obtained directly from the J-V measurements.

Figure S30 is the EQE spectra for PTB7:PCBM and PTB7:1e, which yield
integrated current densities of 11.9 mA/cm?and 11.8 mA/cm?, respectively, confirming

the Jsc's we measured directly from the J-V curves.

—i— P3HT:PCBM
—&®— P3HT:1e

400 500 600 700
Wavelength (nm)

Figure 2.S29. EQE spectra taken on the same P3HT:fullerene devices used in
Figure 2.03 of the main text.
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400 600 800
Wavelength (nm)

Figure 2.S30. EQE spectra taken on the same PTB7:fullerene devices used in
Figure 2.03 of the main text.
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Parameters Summarized from 2D-GIWAXS Measurements

Table 2.81. Summary of GIWAXS Parameters

(200)
Peak

Position

(A)

P3HT:PCBM  0.774

P3HT:1b 0.776

P3HT:1k 0.772

P3HT:1j 0.774

(200)
Peak
Area

(A.U.)

15.9

141

12.9

12.8

(200)
Peak
FWHM

(A.U.)

5.1

5.2

4.9

4.6

Fullerene Fullerene Fullerene

Peak

Position

(A)

1.401

1.404

1.405

1.392

Peak FWHM

Area (A.U.)

(A.U.)
112 28.7
08 29.2
114 29.6
111 30.9

Electrochemical Properties

Two cyclic voltammograms are displayed in Figure 2.S31 to show the typical

electrochemical properties of MeO-BBFs. The peaks located at more negative

voltages are for the fullerenes and the peaks at more positive voltages come from

the oxidation/reduction of ferrocene/ferrocenium (Fc/Fc*). Table 2.S2 summarizes

the results on more MeO-BBFs as well as PCBM.
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Figure 2.S31. Cyclic voltammogram of fullerene 1b and 1e.
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Table 2.S2. Fullerene LUMO Levels Calculated Using Density Functional Theory and
Determined by Cyclic Voltammetry

Method: Theory (DFT) Experimental (CV)

Compound HOMO LUMO Eipvs LUMO

(eV) (eV) Fc/Fc* (V)P (eV)°

PCBM -5.66 -3.09 —-0.98 -3.81
1,4-bisbenzyl -5.62 -3.06

2-(OMe) (1a)? -5.46 -2.93 -1.07 -3.73

3-(OMe) (1b)? -5.55 —2.99 -1.04 -3.76

4-(OMe) (1c)? -5.55 -3.01 -1.05 -3.75
2,3-(OMe)2 (1d)? -5.38 —2.84

2,5-(OMe)2 (1e)? -5.36 —2.87 -1.07 -3.73
3,5-(OMe):2 (1f)? -5.47 -2.92
2,6-(OMe)22 -5.31 -2.79
2,3,6-(OMe)s @ -5.23 -2.72

1j -1.03 -3.77

1k -1.04 -3.76

a Substituent positions of the corresponding 1,4-bisbenzyl derivatives
b The first reduction potential (E12) are listed relative to Fc/Fc*.
¢ The energy level of Fc/Fc* was assumed to be —4.8 eV relative to vacuum.%3
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3. Long-Lived Photoinduced Polaron Formation in Conjugated Polyelectrolyte-

Fullerene Assemblies

In biological photosynthetic systems, energy cascade structures promote the
spatial separation of photogenerated charges created at the reaction center, preventing
their recombination. These energy cascade structures require close proximity of the
electron donors and acceptors, on the scale of ~1 nm, and the corresponding electron
transfer (ET) processes take only a few picoseconds (1). Similarly, photoexcitation in
artificial organic photovoltaic (OPV) cells generates dissociated charges at a donor-
acceptor interface on sub-picosecond time scales. However, OPVs suffer a large degree
of recombination because they rely on phase separation of the conjugated polymer donor
and fullerene acceptor into domains on the length scale of 10 to 20 nm to facilitate efficient
exciton diffusion and charge transfer (2,(3). The high charge densities present in OPVs,
coupled with the low dielectric constant of organic materials, favor carrier recombination
before the charges can be extracted through external electrodes. If OPVs could be
designed to use ET cascade structures that are reminiscent of photosynthetic complexes,
it should be possible to greatly improve charge separation and reduce recombination

losses (4).

Here we describe how molecular self-assembly can enable dissolved OPV
materials (conjugated polymers and fullerenes) in aqueous solution to mimic the ET
cascade structures of biological complexes and allow us to ‘spatially’ control
photogenerated charges. We demonstrate efficient long-time charge separation following
photoexcitation: the ET cascade produces separated polarons that are exceptionally
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stable for weeks, a lifetime that is unprecedented for OPV materials. Although long
polaron lifetimes have been observed in covalently linked donor-acceptor dyads and
triads (5) and micellar structures (6), it is the fact that we are using standard organic
photovoltaic materials that sets this work apart. In addition, our use of self-assembly
provides potential future advantages in reproducibility and scalability, both of which are
major hurdles for conventional OPVs with kinetically-controlled structures (7-9). Finally,
the photoinduced charge separation we achieve takes place in water, opening

possibilities for the ‘green’ production of artificial photosynthetic devices.

The particular materials used in this study are a combination of a conjugated
polyelectrolyte, poly(fluorene-alt-thiophene) (PFT) (10), and several regioisomers of the
charged fullerene derivatives Ceo-N,N-dimethylpyrrolidinium iodide (Cso(Pl)n), where n is
the number of charged pyrrolidinium iodide groups (11) (Fig. 3.01, Ato C). PFT is a
water-soluble semiconducting polyelectrolyte whose bis-alkylated sp3-hybridized
fluorenyl carbon forms a wedge-shaped monomer that facilitates the assembly of the
charged polymer into rod-like micelles (Fig. 1B); details of how this polymer assembles
have been published previously (10). Because of the charged nature of the polymer, the
electron acceptor(s) must also carry cationic charges to avoid heterocoagulation. The
synthesis of Ceo(PI)n, depending on the reaction conditions, produced multiadducts with
n ranging from 2 to 5, including multiple regioisomers for each n. To avoid confusion, we
will refer to Ceo(PI)n with n = 3-5 as ‘higher’ adducts, and fullerenes with n = 2 will be

referred to as ‘mixed-bis’ adducts.

We achieved control over the solution-phase aggregation of these materials by

exploiting the different solubility properties of the conjugated polyelectrolyte and charged
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fullerene derivatives. Mixed-bis adducts show limited solubility (without PFT) in agueous
solution, while higher adducts are water soluble at high concentration. This difference
suggests that the mixed-bis adducts should co-assemble in aqueous solution with PFT,
a result we confirmed by cryogenic electron microscopy (cryoEM), small-angle X-ray
scattering (SAXS), and luminescence guenching studies. CryoEM images of pure PFT,
PFT:mixed-bis adducts and PFT:high adducts are shown in Fig. 1, D to F. Pure PFT
samples self-assemble into branched micelles that are roughly 4 = 0.5 nm in diameter
and 30 to 50 nm in length. CryoEM images of PFT assembled with mixed-bis adducts
are visually similar to the pure PFT, indicating association of the Ceo(Pl)2 with the PFT
micelles. In contrast, cryoEM images of PFT:high adducts appear blurry because these

solutions contain separate PFT and fullerene agglomerates.

This interpretation of co-assembly of PFT with ‘mixed-bis’ adducts is also
supported by SAXS measurements (Fig. 2, A and B). We radially averaged the SAXS
data and fit it to a power law to extract the exponent a, which is related to the polymer
fractal structure (12, 13). Values of a = 1, 2 and 4 correlate to rigid rod, lamellar, and
spherical structures, respectively, although interactions between molecules cause
deviations from these ideal slopes. Analysis of SAXS data for pure PFT yielded a = 1.5
at low q (rod-like at large size), increasing to a = 3.7 at high q (sphere-like at small size).
Deviation from a = 1 arose from the branched network seen by cryoEM (Fig. 1D) (14).
SAXS power-law slopes for Ceo(PI)n high-adducts correspond to a percolation network at
low g and rod-like behavior at high g, indicating aggregation (12, 15). SAXS data from
the combined PFT:high adducts solution was well approximated as the mass-scaled sum

of the pure PFT and pure fullerene scattering, suggesting a non-assembled mixture,
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similar to that seen by cryoEM. By contrast, mass-scaled SAXS from solutions of PFT
and mixed-bis adducts is nearly identical to the pure PFT. These results provide strong

evidence that Ceo(Pl)2 and PFT coassemble into a single micellar aggregate.

Finally, electronic interactions in the polymer-fullerene assemblies were confirmed
with luminescence quenching, which provides an indirect measure of the photo-induced
charge transfer from the polymer to the fullerenes (16). Solutions of PFT:high adducts
showed relatively little PL quenching, presumably because the donors and acceptors
were not in close physical proximity, but aqueous solutions of PFT with the mixed-bis
adducts had significant PL quenching, indicating both physical and electronic contact (Fig.
3A). The data indicate that over 75% of the PFT excitations were quenched in the

presence of the mixed-bis adducts.

We determined the dynamics of charge separation in these donor-acceptor
assemblies using ultrafast broad-band transient absorption spectroscopy on dilute
aqueous solutions of co-assembled PFT with mixed-bis adducts (17). Representative
transient absorption spectra at different probe delays following excitation at 470 nm are
shown in Fig. 3.03B. We assigned the negative transient absorption peak near 520 nm
to stimulated emission, as the spectral features and the lifetime (Fig. 3.03C) matched the
fluorescence emission. Interestingly, the 690-nm absorption of the PFT hole polaron (P*)
appeared on a sub-picosecond time scale after photoexcitation (18, 19). This ultrafast
appearance of P* confirmed that the Ceo(Pl)2 adducts must be co-assembled with PFT,
because other geometries would require diffusion or other structural rearrangements that

could not occur so quickly. Once formed, Fig. 3.03C shows that about 75% of the PFT
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polarons in these dilute samples decayed back to the ground state in ~200 ps. The

remaining polarons survived past the nanosecond time scale.

To mimic biological charge-separation systems, co-assembly and rapid charge
separation are required, but if they are followed by rapid recombination, the charges
cannot be extracted. A fullerene acceptor that is optimized for charge separation thus
needs to contain one class of compounds that can assemble intimately with the PFT for
efficient charge transfer, and a second class of compounds that can assemble more
loosely, allowing us to pull the electron away from the PFT and prevent recombination.
Fortunately, both types of compounds were already available within our mixed-bis
sample, and their properties could be examined simply by separating Ceo(Pl)2
regioisomers. Our mixed-bis samples were primarily composed of four isomers (10%
trans-1, 39% trans-2, 44% trans-3 and 7% trans-4). Structures of each of the isomers
are shown in Fig. 4, A to D. We partially separated these isomers by silica gel column
chromatography of the neutral pyrrolidine precursors (prior to quaternization), producing
fractions that we refer to as trans-1,2 (29% trans-1 and 71% trans-2), and trans-3,4 (14%
trans-2, 74% trans-3 and 12% trans-4). The full characterization of all of these materials
is found in Figs. S1-S22 of the supporting on-line material (SOM) (17). The trans-1,2
fullerenes have charges on nearly opposite sides of the buckyball, and can be viewed as
isotropically-charged molecules that should not easily insert into a PFT micelle. By
contrast, the angle between charges in trans-3 is ~145° and trans-4 is 103°, suggesting

more amphiphilic molecules that could insert into the PFT micelle.

The co-assembly of PFT with trans-1,2 and trans-3,4 was examined via SAXS.

Raw scattering data for all of the samples looked similar to pure PFT (Fig. 3.02C), but
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Fourier analysis using cylindrical boundary conditions showed subtle variations. In Fig.
3.02D, PFT and PFT:trans-3,4 showed similar probability distributions, supporting the
model of insertion of fullerene into the PFT micelle. Interestingly, PFT:trans-1,2 shows
two peaks, reminiscent of a polymer micelle with a partial “shell” of fullerenes surrounding
the outside. The PFT:mixed-bis data were well fit by a simple linear combination of the
PFT:trans-1,2 and PFT:trans-3,4 probability distributions, further supporting the idea that
trans-3,4 assembles on the inside of the polymer micelle while trans-1,2 surrounds the
outside. The relative locations of the two different sets of fullerenes were also confirmed
via solvatochromic absorption measurements, which are shown in Fig. S25 (17). These
measurements show that the UV absorption of trans-1,2 fullerenes assembled with PFT
matches that of the fullerenes in pure water, indicating that trans-1,2 sits outside of the
PFT micelle. In contrast, the absorption of the trans-3,4 fullerenes assembled with PFT
matches that of the fullerenes in organic solvents, indicating that trans-3,4 sits in a lower

dielectric environment like the micelle interior.

Figs. 3.04, F and G show luminescence guenching measurements that further
support the idea that different isomers of Ceo(Pl)2 assemble in different places in the PFT
micelle. The luminescence decays shown in Fig. 4G were taken using a Kerr-gated time-
resolved fluorescence set-up using CS: as the gate medium, providing a time resolution
of ~1 ps (20). Clearly, the PFT fluorescence is quenched nearly to the instrument limit in
concentrated solutions when assembled with trans-3,4 fullerenes, verifying that the
photoinduced charge transfer to these fullerenes is ultrafast. In contrast, there is almost
no fast quenching of the PFT emission with an equal amount of trans-1,2 fullerenes,

reflecting their assembled position predominantly on the outside of the micelle, out of
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range for fast ET. Fig. 4F shows steady-state luminescence measurements on these
same samples. Consistent with the time-resolved data, assemblies of PFT with trans-1,2
fullerenes showed little luminescence quenching, whereas PFT assembled with trans-3,4
fullerenes had strong quenching. These quenching results suggested that not only can
we selectively associate fullerenes with polymer micelles using the number of charges,
we can also control the position of the fullerene within the micelle by the placement of the

charges (Fig. 3.04E).

Given this degree of control, the next step was to examine long lived excitations in
assemblies of PFT and mixed-bis adducts containing both intimately assembled trans-
3,4 and more isotropically-charged trans-1,2 fullerenes. ldeally, this co-assembly should
permit rapid photo-induced electron transfer from PFT to the trans-3,4 fullerenes, followed
by a second electron transfer step to the trans-1,2 fullerenes. If this type of directed ET
cascade occurs, electrons on the trans-1,2 fullerenes would then be stabilized in the high
dielectric environment of the water surrounding the micelle, preventing recombination with
the PFT. Indeed, we found that photoexcitation of aqueous PFT:mixed-bis adduct
solutions caused a dramatic color change from yellow to dark green over time (Fig. 3D);
once exposed to light, and the color change was essentially permanent, lasting days to
weeks. Dilute solutions, like those used to collect the data in Figs. 3.03B,C, required
extensive light exposure (Fig. 3.0S24 (17)), but when higher concentrations were used,
the color change took place in just a few seconds under room lights, indicating that the
quantum vyield for long-lived charge separation is much higher than the ~25% in dilute

solutions (cf. Fig. 3.03B).
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PFT is a blue-absorbing polymer with an absorption maximum at 430 nm in water
and little to no absorbance past 550 nm (10). The color change from yellow to green was
confirmed to arise from the appearance of the PFT hole polaron (P*) by comparing
steady-state data (Fig. 3D) with both transient absorption data (Fig. 3B) and absorption
from PFT oxidized with iodine, both of which shows absorbs in the sub-gap region at ~690
nm (Fig. S23 (17)) (21). The Fig. 3D inset shows that simultaneously, a substantially
weaker negative (N-) polaron absorption peak caused by the Ceso(Pl)2 molecular anion
was observed at 1180 nm. The low intensity of the N~ absorption has several origins: 1)
the absorption cross-section of fullerene anions is much smaller than that of the polymer
polarons (22); 2) the weak N~ absorption peak sits on top of a broad scattering
background from the co-assembled micelles in solution; and 3) the N~ polaron might react
with impurities in the water, despite our best efforts to deoxygenate the solutions by

freeze-pump-thaw techniques (23).

To further confirm the formation of stable, separated N- and P* polarons after
exposure to light, we performed electron paramagnetic resonance (EPR) experiments.
Figure 3E shows the EPR signal from the green PFT:mixed-bis adducts solution; the g-
factors for the N~ and P* polarons are 2.0004 and 2.0040, respectively, in good agreement
with reported values for many other polymer-fullerene systems (24). The N~ polaron line
width we observed is broader than that in other polymer-fullerene systems, both because
of the interaction of the water dipoles with the polarons and because of different spin-
relaxation times for the electron and hole (25, 26). The critical difference between our co-
assembled system and previous systems, however, is that the previous EPR work

required active photoexcitation (light-induced EPR) in order to observe the polaron
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signals. In contrast, once exposed to light, the polarons created in our PFT:Ceo(Pl)2

solutions remained stable essentially indefinitely.

Final confirmation that the long-lived separated charges resulted from a self-
assembled ET cascade comes by examining the details of absorption and luminescence
for a range of samples in different solvents. As discussed above, aqueous solutions of
PFT and trans-1,2 fullerenes show little PL quenching (Fig. 3.04F,G), but they did briefly
turn green during the course of the dissolution, indicating polaron formation (possibly from
disordered polymer that transiently allowed the fullerene to partly insert into the micelle).
By contrast, despite the efficient luminescence quenching in solutions of PFT co-
assembled with the trans-3,4 fullerenes (Fig. 3.04F,G), the solutions did not turn green
and ultrafast experiments (data not shown) indicate that polarons are formed on sub-ps
time scales (as in Fig. 3.03B), but recombine with 100% yield over the next few hundred
ps. These results indicate that controlling the spatial position of the fullerenes can
dramatically affect carrier dynamics. Moreover, photoexcitation of green-colored
PFT:mixed-bis fullerene solutions results in increased luminescence quenching because
PFT excitons are further quenched by P*-polarons (Fig. 3.03F). However, when
tetrahydrofuran (THF), which is known to disassemble the polymer micelles (27), was
added to the co-assembled green system, the luminescence signal regained its intensity,
indicating a fully reversible system (Fig. 3.03F). These results further support the idea
that intimate assemblies with well-controlled molecular positions are required to facilitate
a charge transfer cascade and avoid recombination. When nanoscale architecture is
optimized, the result is stable polarons that could potentially be applied to improve organic

photovoltaic cells via suppression of charge recombination.
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Fig. 3.01. PFT and charged fullerene structure and assembly. PFT structure (A); cartoon
of a PFT micelle (B); charged fullerenes (C). CryoEM images of pure PFT (D),
PFT:‘mixed-bis’ adducts (E) and PFT:high adducts (F).
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is reasonably approximated by a sum of PFT+high-adducts. B) The PFT:'mixed-bis’
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formation of both excitons and polarons; (C) time decays for the stimulated emission and
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and PFT:trans-1,2 bis samples (G).
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Supplementary Material:

PFT synthesis has been previously reported (10).

Synthesis of Bis-N-methylfulleropyrrolidine isomers:

Bis-N-methylpyrrolidine adducts were synthesized according to published methods (28,
29) and were separated according to the following procedure: The crude product was dry
loaded onto a silica column pre-treated with 2% triethylamine in toluene with an unusually
large ratio of silica gel to product 1:~500 and the column was run with an extremely slow
elution rate (~1-2 mL/min). The column was first eluted with toluene to yield a purple
fraction of Ceo followed by a second brown fraction containing the monoadduct (r = 0.70
2/10/88 TEA/Et2O/PhMe). After elution of the monoadduct, the eluent was changed to
2/10/88 TEA/Et.O/PhMe and two closely spaced fractions. The first fraction gives two
spots by TLC corresponding to the Trans-1 and Trans-2 isomers (rs = 0.50 and r = 0.43
2/10/88 TEA/Et20O/PhMe) and the second fraction gives two spots by TLC corresponding
to the Trans-2 and Trans-3 isomers (rr = 0.43 2/10/88 TEA/Et2O/PhMe rt = 0.33 2/10/88
TEA/Et20/PhMe). Subsequent fractions contain many spots with rr ranging from 0.2 to
0.33 (2/10/88 TEA/Et20/PhMe) corresponding to a complex mixture of Trans-3, 4, e, and
cis-3 isomers which can be separated by HPLC using published methods.(29) *H NMR,
13C NMR and MALDI-TOF spectra for the Trans-1 and Trans-2 and Trans-2 and Trans-3

mixtures match with previously reported spectra for the pure compounds.(29)#
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Synthesis of Bis-N,N-dimethylfulleropyrrolidinium lodide isomeric mixtures:
Bis-N,N-dimethylpyrrollidinium adducts were synthesized from the corresponding bis-N-
methylpyrrolidine adducts according to published methods.®
Bis-N-methylfulleropyrrolidine (trans-1/trans-2 mixture)

Trans-1isomer: *H NMR 500 MHz CS2/CDCIz & (ppm): 4.64 (s, 8H), 3.12 (s, 6H).
13C NMR 125 MHz CS2/CDCls 5 (ppm): 153.48 (8C), 147.72 (4C), 146.18 (8C), 145.58
(8C), 144.30 (8C), 142.39 (4C), 140.88 (8C), 136.64 (8C), 70.28 (4C), 68.99 (4C), 41.66
(2C).

Trans-2 isomer: *H NMR 500 MHz CS2/CDClz d (ppm): 4.62 (d, J = 9.2 Hz, 2H),
4.43 (d, J = 9.2 Hz, 2H), 4.32 (d, J = 9.2 Hz, 2H), 4.28 (d, J = 9.2 Hz, 2H), 3.05 (s, 6H).
13C NMR 125 MHz CS2/CDClz & (ppm): 158.85 (2C), 153.20 (2C), 153.06 (2C), 152.43
(2C), 148.45 (2C) 147.74 (2C), 147.16 (2C), 147.11 (2C), 146.50 (2C), 146.37 (2C),
146.22 (2C), 145.78 (2C), 145.70 (2C), 145.40 (2C), 145.31 (2C), 144.30 (2C), 143.92
(2C) 143.76 (2C), 142.71 (2C), 142.68 (2C), 142.63 (2C), 142.51 (2C), 141.65 (2C),
141.61 (2C), 140.88 (2C), 139.75 (2C), 134.70 (2C), 133.94 (2C), 70.18 (2C), 70.03 (2C),
69.86 (2C), 69.69 (2C), 41.60 (2C)

MALDI-TOF MS: found m/z 833.9539 calc. m/z 834.1157

Bis-N-methylfulleropyrrolidine (trans-2/trans-3 mixture)
Trans-2 isomer: *H NMR 500 MHz CS2/CDCls & (ppm): 4.63 (d, J = 9.2 Hz, 2H),
4.45 (d, J = 9.2 Hz, 2H), 4.33 (d, J = 9.2 Hz, 2H), 4.23 (d, J = 9.2 Hz, 2H), 3.03 (s 6H).

13C NMR 125 MHz CS2/CDCl3 & (ppm): 158.87 (2C), 153.22 (2C) 153.08 (2C), 152.45
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(2C), 148.46 (2C), 147.75 (2C), 147.18 (2C), 147.11 (2C), 146.50 (2C) 146.38 (2C),
146.22 (2C), 145.78 (2C), 145.72 (2C), 145.40 (2C), 145.27 (2C), 144.30 (2C), 143.93
(2C), 143.77 (2C), 142.73 (2C), 142.69 (2C), 142.63 (2C), 142.51 (2C), 141.66 (2C),
141.63 (2C), 141.03 (2C), 139.74 (2C), 134.72 (2C), 133.96 (2C), 70.21 (2C), 70.05 (2C),
69.87 (2C), 69.70 (2C), 41.63 (2C)

Trans-3 isomer: 'H NMR 500 MHz CS2/CDClz d (ppm): 4.39 (d, J = 9.0 Hz, 2H),
4.30 (d, J = 9.0 Hz, 2H), 4.14 (d, J = 9.0 Hz, 2H), 4.04 (d, J = 9.0 Hz, 2H), 2.92 (s, 6H)
13C NMR 125 MHz CS2/CDClsz & (ppm): 158.18 (2C), 155.60 (2C), 155.52 (2C) 154.89
(2C), 149.19 (2C), 149.05 (2C), 149.00 (2C), 148.83 (2C), 148.31 (2C), 148.30 (2C),
146.71 (2C), 145.38 (2C), 145.25 (2C), 145.23 (2C), 144.99 (2C), 144.71 (2C), 144.02
(2C), 143.71 (2C), 142.65 (2C), 141.76 (2C), 141.57 (2C) 141.37 (2C), 141.18 (2C),
139.93 (2C), 136.59 (2C), 135.72 (2C), 129.15 (2C) 128.42 (2C), 79.47 (2C), 70.23 (2C),
70.14 (2C), 69.31 (2C), 41.54 (2C)

MALDI-TOF MS: found m/z 834.0555 calc. m/z 834.1157.

Bis-N,N-dimethylfulleropyrrolidinium Diiodide (trans-1/trans-2 mixture)
Trans-1isomer: *H NMR 500 MHz DSMO-Ds & (ppm): 6.00 (s, 8H) 4.22 (s, 12H).
13C NMR 125 MHz DSMO-Ds d (ppm): 151.49 (8C), 147.36 (4C), 145.47 (8C), 145.21
(8C), 144.93 (4C), 141.56 (8C), 140.04 (8C), 136.19 (8C), 72.89 (4C), 67.20 (4C), 52.26
(4C).
Trans-2 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.99 (d, J = 12,4 Hz, 2H),
5.81 (d, J = 12.4 Hz, 2H), 5.69 (d, J = 12.4 Hz, 2H), 5.65 (d, J = 12.4 Hz, 2H), 4.24 (s,

6H), 4.02 (s, 6H). 13C NMR 125 MHz DSMO-Ds & (ppm): 155.97 (2C), 150.99 (2C), 150.91
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(2C), 150.18 (2C), 147.66 (2C), 147.38 (2C), 146.87 (2C), 146.41 (2C), 146.12 (2C),
145.98 (2C), 145.45 (2C), 145.25 (2C), 145.07 (2C), 144.90 (2C), 143.83 (2C), 143.18
(2C), 143.02 (2C), 142.57 (2C), 142.23 (2C), 141.86 (2C), 141.48 (2C), 141.25 (2C),
140.54 (2C), 139.31 (2C), 138.97 (2C), 134.39 (2C), 133.68 (2C), 128.90 (2C), 72.69
(2C), 72.60 (2C), 67.93 (2C), 67.63 (2C), 52.58 (2C), 52.20 (2C).

Mixture is 17% trans-1 and 83% trans-2 by comparison of the N-CHs integral intensities
in the *H NMR spectrum of the mixture.

ESI-MS: m/z 432.0731, 100% rel. intensity (CesH2-N2I22*) calculated 432.0813. 991.0811,

10 rel. intensity (CesH2-N2I*) calculated 991.0671.

Bis-N,N-dimethylfulleropyrrolidinium Diiodide (trans-2/trans-3 mixture)

Trans-2 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.99 (d, J = 12,4 Hz, 2H),
5.81 (d, J = 12.4 Hz, 2H), 5.69 (d, J = 12.4 Hz, 2H), 5.65 (d, J = 12.4 Hz, 2H), 4.25 (s,
6H), 4.03 (s, 6H). 13C NMR 125 MHz DSMO-Ds d (ppm): 155.96 (2C), 150.99 (2C), 150.90
(2C), 150.17 (2C), 147.69 (2C), 147.40 (2C), 146.89 (2C), 146.43 (2C), 146.12 (2C),
146.02 (2C), 145.48 (2C), 145.28 (2C), 145.10 (2C), 144.92 (2C), 143.86 (2C), 143.26
(2C), 143.05 (2C), 142.60 (2C), 142.25 (2C), 141.90 (2C), 141.53 (2C), 141.31 (2C),
140.56 (2C), 139.38 (2C), 139.01 (2C), 134.47 (2C), 133.75 (2C), 128.94 (2C), 72.68
(2C), 72.60 (2C), 67.95 (2C), 67.66 (2C), 52.60 (2C), 52.22 (2C).

Trans-3 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.76 (d, J = 12,4 Hz, 2H),
5.62 (d, J = 12.4 Hz, 2H), 5.52 (d, J = 12.4 Hz, 2H), 5.39 (d, J = 12.4 Hz, 2H), 4.07 (s,
6H) 3.92 (s, 6H). 13C NMR 125 MHz DSMO-Ds & (ppm): 155.29 (2C), 153.03 (2C), 152.76

(2C), 152.10 (2C), 148.95 (2C), 148.44 (2C), 148.22 (2C), 148.06 (2C), 148.03 (2C),
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147.91 (2C), 146.17 (2C), 145.04 (2C), 144.97 (2C), 144.67 (2C), 144.54 (2C), 143.97
(2C), 143.73 (2C), 143.59 (2C), 143.29 (2C), 143.26 (2C), 141.86 (2C), 141.61 (2C),
141.11 (2C), 140.66 (2C), 140.40 (2C), 138.36 (2C), 136.31 (2C), 135.68 (2C), 128.25
(2C), 72.57 (2C), 71.87 (2C), 68.35 (2C), 68.02 (2C), 52.53 (2C), 52.25 (2C)

Mixture is 28% trans-2 and 72% trans-3 by comparison of the N-CHs integral intensities
in the *H NMR spectrum of the mixture.

ESI-MS: m/z 432.0731, 100% rel. intensity (CesH20N212?*) calculated 432.0813. 849.1381
15% rel. intensity (Ce7H17N2*) calculated 849.1392. 991.1392, 10% rel. intensity (CesH2-

N2l*) calculated 991.0671.

Bis-N,N-dimethylfulleropyrrolidinium  Diiodide (trans-l/trans-2/trans-3/trans-4
mixture)

Trans-1isomer: *H NMR 500 MHz DSMO-Ds d (ppm): 6.00 (s, 8H), 4.22 (s, 12H).

Trans-2 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.99 (d, J = 12,4 Hz, 2H),
5.81 (d, J = 12.4 Hz, 2H), 5.69 (d, J = 12.4 Hz, 2H), 5.65 (d, J = 12.4 Hz, 2H), 4.23 (s,
6H), 4.05 (s, 6H).

Trans-3 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.76 (d, J = 12,4 Hz, 2H),
5.62 (d, J = 12.4 Hz, 2H), 5.52 (d, J = 12.4 Hz, 2H), 5.39 (d, J = 12.4 Hz, 2H), 4.01 (s,
6H), 3.91 (s, 6H).

Trans-4 isomer: *H NMR 500 MHz DSMO-D6 & (ppm): 5.65 (d, J = 12,4 Hz, 2H),
5.51 (d, J = 12.4 Hz, 2H), 5.44 (d, J = 12.4 Hz, 2H), 5.41 (d, J = 12.4 Hz, 2H), 3.88 (s,

6H), 3.80 (s, 6H).
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Mixture is 5% trans-1, 48% trans-2, 42% trans-3, and 5% trans-4 by comparison of the
N-CHs integral intensities in the *H NMR spectrum of the mixture.
ESI-MS: m/z 432.0768, 100% rel. intensity (CesH2-N2I22*) calculated 432.0813. 991.0811,

10 rel. intensity (CesH2-N2I*) calculated 991.0816.

CryoEM

For cryoEM, grids were prepared by placing a small drop (~4 ul) of sample solution onto
glow discharged holy carbon mesh Quantifoil 200 mesh grids with 3.5 um holes spaced
1 um apart. The grids were then blotted and plunged immediately into liquid nitrogen
cooled liquid ethane to rapidly freeze the samples in vitrified ice. The cryo grids were
visualized with an FEI Tecnai F20 transmission electron microscope at an accelerating
voltage of 200 kV. Images were collected on a 16 megapixel CCD camera at ~50,000x

magnification with a defocus value of approximately 3 um.
Small-angle X-ray scattering (SAXS)

Small-angle X-ray scattering (SAXS) experiments were conducted at the Stanford
Synchrotron Radiation Laboratory (SSRL) Beamline 4-2. Using a syringe, 100 uL of each
sample was loaded in a quartz capillary and held at 25°C. Scattered X-rays (at 12 keV)
were collected with a Rayonix MX225-HE detector (sample to detector distance = 1.7 m).
The two-dimensional data was radially averaged to obtain one-dimensional scattering

curves.
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Electron paramagnetic resonance

Electron paramagnetic resonance was performed at UCLA in the Molecular
Instrumentation Center (MIC). Experiments were performed on the Bruker EMX EPR
spectrometer in a nitrogen finger dewar to keep the sample frozen at 95 K. The microwave
frequency was 9.437 GHz, amplitude of 4 G, microwave power of 0.02 mW and a scan

time of 20.972 s for 32 accumulated scans.

Pump-probe transient absorption spectroscopy

A femtosecond Ti:Sapphire amplifier (Coherent, Legend Elite) seeded with a broadband
Ti:Sapphire oscillator (Coherent, Mantis) was used for ultrafast pump-probe transient
absorption experiments. Spectral and kinetic data acquisition was accomplished using a
commercially built spectrometer (HELIOS, Ultrafast Systems LLC). The amplifier output
consisting of 40 fs, 3 mJ pulses centered around 800 nm (at 1 kHz repetition rate) was
split into two beams of roughly equal power. One of the beams was directed to an Optical
Parametric Amplifier (Light Conversion, TOPAS-C) to create 470 nm pump pulses. A
small portion of the amplifier output was focused onto a sapphire crystal to generate white
light continuum (WLC) probe laser pulses. The probe beam was directed onto a
computer-controller translation stage so that the time-delay between the pump and the
probe could be varied. The pump and probe pulses were focused into the sample in a
non-collinear geometry, making it possible to select only the WLC probe pulses for
detection. The probe beam was focused onto the sample such that the spot-size of probe

beam was smaller than the pump beam in order to ensure that the data collected came
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from a uniformly excited region. Solution-phase samples of a concentration of 1mg/ml
were filled in glass cuvettes with 1 mm path-length to ensure sufficient transmission of
the probe light. The transmitted probe beam through the sample was collimated onto a
fiber optic cable using a telescope and then dispersed onto a one dimensional CCD
detector. We chopped the pump beam at a frequency of 500 Hz and recorded the pump
on/pump off signals for each consecutive pair of pulses to calculate the normalized
transient absorption spectrum for a particular probe delay. We used a modest pump pulse
energy of 60 nJ (spot size ~ 5 mm) for excitation and ensured that we were safely in the
linear regime.

Spectra

UV-vis absorption spectra were taken on a Perkin-ElImerLambda25spectrometer in a 0.1
cm glass cell in DMSO. *H and *3C NMR spectra were taken on a 500 MHz Bruker Avance
AV 500 spectrometer equipped with a 5mm dual cryoprobe.

Cyclic Voltammagram

Cyclic Voltammagrams were acquired on a BAS CV-50W cyclic voltammetric analyzer
with a sweep rate of 50 mV/s under Ar atmosphere in PhCN with 0.1 M TBAH, 0.01 M
AgNOs, and 0.05 M Bisfulleropyrrolidinium lodide salt using an Ag/Ag* non-aqueous
reference electrode with platinum working and counter electrodes. Ferrocene was added
as a reference.

Mass Spectrometry

ESI-MS spectra were acquired on a waters LCT premier with Acquity UPLC. MALDI-

TOF MS were acquired on an Applied Biosystems Voyager-DE-STR MALDI-TOF.

219



o S

: o0

el

X

= o

N S

7))

% —

N 8%

h O =

o =

g -
S o

% 3

7)) ©

- <

S S

~ <
Ke)

LLLL B B L L L L -

o) To) < < <t <t OC’O

= = = = = = o

> X X X X P

N S S S S S

- — o0 © < N

(LWo )3
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Fig 3.S2. UV-vis of Trans-2 and Trans-3 Bis-N,N-dimethylfulleropyrrolidinium Diiodide
Mixture (0.72 mM in DMSO 0.1 cm cuvette)
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Fig 2.S3. UV-vis of Trans-1 Trans-2 and Trans-3 Bis-N,N-dimethylfulleropyrrolidinium
Diiodide Mixture (1.9 mM in DMSO 0.1 cm cuvette)
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dimethylfulleropyrrolidinium Diiodide Mixture.
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Fig 3.522. Cyclic Voltammagram of Trans-1, 2, and 3 mixture of Bisfulleropyrrolidinium
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Fig. 3.523. PFT:bis adducts vs. iodine doped PFT absorption. PFT:bis adducts
absorption is at 690 nm, iodine doped PFT absorption at 730 nm.
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Fig. 3.524. PL quenching of concentrated (1 mg/mL) PFT:fullerene samples used in
broad-band transient absorption spectroscopy
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