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Abstract Execution of pluripotency requires progression from the naı̈ve status represented by

mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is

coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We

identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn),

that modulates the dynamics of exit from naı̈ve pluripotency. Eprn deletion delays the extinction of

ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a

expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de

novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition,

correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a.

The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of

naı̈ve pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to

gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network

modulations.

DOI: 10.7554/eLife.23468.001

Introduction
Mouse embryonic stem cells (ESCs), in vitro counterparts of the pre-implantation epiblast, exhibit

dual properties of self-renewal and differentiation (Boroviak et al., 2015; Bradley et al., 1984;

Evans and Kaufman, 1981; Martin, 1981). These properties make them an attractive system for

investigating cell fate decision making. In the embryo, spatially and temporally coordinated signals

direct the rapid and continuous transition of the epiblast towards lineage specification

(Acampora et al., 2016; Smith, 2017). In contrast, ESCs can be suspended in a ground state of plu-

ripotency, where self-renewal is decoupled from lineage specification, using two inhibitors (2i) of gly-

cogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase kinase (MEK1/2), along with

the cytokine leukaemia inhibitory factor (LIF) (Ying et al., 2008). Therefore, ESCs provides a unique
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experimental system to explore the principles and molecular players underlying the developmental

progression of pluripotency (Kalkan and Smith, 2014).

While it is increasingly clear that the ESC state is maintained by a core network of transcription

factors (Chen et al., 2008; Dunn et al., 2014; Ivanova et al., 2006), less is known about how cells

progress from this state to lineage specification (Buecker et al., 2014; Kalkan and Smith, 2014;

Smith, 2017). Loss-of-function screens have highlighted a multi-layered machinery that dismantles

the naı̈ve state transcription factor network (Betschinger et al., 2013; Leeb et al., 2014). The

latency period for transition depends on the clearance kinetics of network components (Dunn et al.,

2014). The orchestration of multiple regulators thus ensures rapid and complete dissolution of this

core network and consequent timely extinction of ESC identity upon 2i withdrawal (Kalkan and

Smith, 2014).

In addition to protein coding genes, accumulating evidence suggests that non-coding RNAs can

contribute to the regulation of cell fate transitions. Within this class, long non-coding RNAs

(lncRNAs) comprise a large fraction of the transcriptome in diverse cell types and exhibit specific

spatio-temporal expression (Carninci et al., 2005; Guttman et al., 2009; Necsulea et al., 2014).

The genomic distribution of lncRNAs is non-random (Luo et al., 2016). A subclass of lncRNAs are

divergently transcribed from neighbouring genes and thought to regulate proximal gene expression

in cis, either due to the process of transcription (Ebisuya et al., 2008; Engreitz et al., 2016;

Martens et al., 2004) or through local lncRNA-protein interactions that recruit regulatory complexes

(Lai et al., 2013; Lee, 2012; Luo et al., 2016; Nagano et al., 2008). However, the functions and

mode of action of the vast majority of lncRNAs remain unknown and require case-by-case experi-

mental determination. In mouse ESCs, knockdowns of a number of lncRNAs have been reported to

exert effects on the transcriptome (Bergmann et al., 2015; Dinger et al., 2008; Guttman et al.,

2011; Lin et al., 2014; Sheik Mohamed et al., 2010) and in some cases impair self-renewal

(Lin et al., 2014; Luo et al., 2016; Savić et al., 2014).

We investigated the potential involvement of lncRNAs in transition from the naı̈ve ESC state and

identified a dynamically regulated lncRNA (linc1281) that we named Ephemeron (Eprn). We present

functional evaluation of Eprn and delineation of a downstream genetic interaction network, which is

an additional component of the regulatory machinery driving the irreversible and rapid progression

from naı̈ve pluripotency in rodent.

Results

Identification of lncRNAs associated with transition from naı̈ve
pluripotency
Post-implantation epiblast derived stem cells (EpiSCs) represent a primed state of pluripotency

developmentally downstream of naı̈ve state ESCs (Brons et al., 2007; Nichols and Smith, 2009;

Tesar et al., 2007). To identify lncRNA candidates with a possible role in ESC transition, we analysed

in silico the effect of genetic perturbation on expression of ESC and EpiSC states based on pub-

lished data. We first selected genes that are over ten-fold differentially enriched in ESCs (182 genes)

and EpiSCs (131 genes) relative to each other as molecular signatures to represent these two states

(Tesar et al., 2007). Using published data, we investigated the impact on these two signature sets

when individual lncRNAs (147 in total) and known protein coding regulators (40 in total) were

knocked down in ESCs grown in LIF/serum (Guttman et al., 2011) (Figure 1A, Figure 1—source

data 1). Serum culture supports a heterogeneous mixture of naı̈ve, primed and intermediate cells

(Chambers et al., 2007; Kolodziejczyk et al., 2015; Marks et al., 2012). Therefore, analysis in this

condition could potentially reveal regulators of the ESC and EpiSC states. The effect of each gene

knockdown was plotted based on the percentage of genes significantly altered within ESC and

EpiSC signature sets (FDR < 0.05 and fold change >2 or<0.5 over negative control defined by the

original study). We validated the approach by analysing the knockdown effects of known ESC self-

renewal regulators. As predicted, depletion of factors that maintain the ESC state, such as Stat3,

Esrrb, Sox2 and Klf4, led to a decrease in ESC and increase in EpiSC signature (Figure 1A), while

knockdown of Oct4 gave rise to a decrease in both ESC and EpiSC signatures, consistent with its

requirement in both states (Niwa et al., 2000; Osorno et al., 2012). With this system, we identified
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Figure 1. Dynamic expression of lncRNA Ephemeron during exit from naı̈ve pluripotency. (A) Bioinformatic analysis of potential lncRNA candidates in

naı̈ve state regulation based on published transcriptome data for lncRNA and pluripotency related gene knockdowns. Each dot represents the effect on

ESC (x-axis) and EpiSC (y-axis) gene signatures when a given gene is knocked down. (B) RT-qPCR detection of Eprn expression relative to b-actin upon

2i/LIF withdrawal. Mean ±SD, n = 3. (C) Northern blotting of Eprn, Nanog and b-actin in ESCs in 2i/LIF or withdrawn from 2i/LIF for 24 hr, EpiSCs and

MEF. * indicates a cross-hybridising RNA species since part of the probe region overlaps with LINE1-L1 and ERVK TEs. (D) RNA-FISH for Eprn upon 2i/

LIF withdrawal with quantification of average hybridisation signals per cell. Mean value of total hybridisation signals for all cells ± SD, n = 2. (E) Eprn

expression relative to b-actin upon 2i/LIF component withdrawal quantified by RT-qPCR. Cells cultured in 2i/LIF and were transferred to N2B27

containing indicated single or dual factors for 24 hr. Mean ±SD, n = 3. F, Eprn expression relative to b-actin upon PD/LIF withdrawal quantified by RT-

qPCR. Mean ± SD, n = 3.

DOI: 10.7554/eLife.23468.002

The following source data and figure supplements are available for figure 1:

Source data 1. Bioinformatics analysis of all lncRNAs and protein coding genes plotted in Figure 1A.

DOI: 10.7554/eLife.23468.003

Source data 2. Expression of potential lncRNA candidates in facilitating naı̈ve state exit.

DOI: 10.7554/eLife.23468.004

Figure supplement 1. Molecular characterisation of Ephemeron.

DOI: 10.7554/eLife.23468.005

Figure supplement 2. Eprn expression and promoter methylation.

DOI: 10.7554/eLife.23468.006
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lncRNAs that increased ESC and decreased EpiSC signatures when knocked down, suggestive of a

possible role in transition from the ESC state (Figure 1A bottom right quadrant).

We examined expression profiles of these candidate lncRNAs during exit from self-renewal in

defined conditions, exploiting the Rex1::GFP (RGd2) reporter ESC cell line (Kalkan et al., 2017;

Wray et al., 2011) (Figure 1—source data 2). Upon 24 hr of 2i withdrawal, Rex1 expression status

can discriminate subpopulations of cells with distinct functional properties, with Rex1-GFP high cells

corresponding to undifferentiated ESCs and loss of GFP marking extinction of ESC identity

(Kalkan et al., 2017). Amongst the 16 candidates analysed, linc1281 (Refseq entry D630045M09Rik)

(Figure 1—figure supplement 1A) was the third highest expressed lncRNA across all time points.

Notably this lncRNA showed a distinctive profile during the first 24 hr, with differential expression

observed between Rex1-GFP high and low cells (Figure 1B, Figure 1—figure supplement 1B). Due

to its dynamic and transient expression profile, we designated linc1281 as Ephemeron (Eprn). Ribo-

somal profiling analysis indicated that Eprn is indeed a non-coding RNA, with the longest predicted

open reading frame (80 amino acids) possessing a ribosome release score typical of a non-coding

sequence (Guttman et al., 2013). Eprn is located in a region of high transposable element (TE) con-

tent, with its exons comprised of 76.4% annotated TE sequences (including ERV-K, LINE L1, and

SINE B2 elements, Figure 1—figure supplement 1A). This genomic region exhibits minimal

sequence conservation in mammals (Figure 1—figure supplement 1A) and we failed to identify any

human homologue either within the syntenic region or elsewhere in the human genome. However, a

positionally conserved spliced transcript (CA504619) that shares 79% sequence identity to exon 3 of

mouse Eprn is present within the rat syntenic region (Figure 1—figure supplement 1C). Therefore,

it is likely that Eprn is conserved in rodents over 30 million years since the mouse-rat lineage

divergence.

We conducted RT-qPCR, Northern blotting and RNA-FISH to evaluate expression, transcription

variants and subcellular localisation of Eprn in ESCs. Eprn showed strong induction within 12 hr of

2i/LIF withdrawal, but decreased subsequently (Figure 1B–D). In EpiSCs or mouse embryonic fibro-

blasts (MEFs), Eprn expression was below the detection limit (Figure 1C). Consistent with the UCSC

gene annotation, Northern blotting of total ESC RNA confirmed the expression of a single Eprn tran-

script over 1 kb in length (Figure 1C, Figure 1—figure supplement 1D). Transcription start and end

sites of Eprn mapped by 5’ and 3’ RACE were in agreement with the annotation (Figure 1—figure

supplement 1E,F). After 24 hr of 2i/LIF withdrawal, Eprn RNA-FISH hybridisation signals displayed

predominantly cytoplasmic localisation, but from 48 hr onwards the remaining signals were mostly in

the nucleus (Figure 1D).

To explore the regulation of Eprn, two inhibitors and LIF were withdrawn singly or dually for 24

hr. In conditions lacking Gsk3 inhibitor CHIRON99021 (CH), Eprn was upregulated (Figure 1E).

When transferred to non-supplemented N2B27 medium from PD/LIF, Eprn expression was main-

tained for 24 hr before declining (Figure 1F). The addition of CH to LIF/serum culture reduced Eprn

expression within 24 hr irrespective of the presence of MEK inhibitor PD0325901 (PD) (Figure 1—

figure supplement 1G,H). Therefore, Eprn is suppressed by CH in self-renewing ESCs.

Through analysis of published data, we found that during early mouse development, Eprn expres-

sion peaked at E4.5 and was present in both epiblast and primitive endoderm of the mature blasto-

cyst, but absent or low in E5.5 post-implantation epiblast (Figure 1—figure supplement 2A) and

later stages between E7 and E17 (Figure 1—figure supplement 2B). Amongst adult tissues ana-

lysed, Eprn was only detected in kidney, and at a much lower level than in ESCs. We also observed

that Eprn expression is restored upon naı̈ve state resetting from EpiSCs (Guo et al., 2009;

Yang et al., 2010) (Figure 1—figure supplement 2C,D). We conclude that Eprn expression is highly

specific to ESCs and the early mouse embryo.

LINE and ERVL-MaLR elements are present within the Eprn proximal promoter region (2 kb

upstream of TSS) (Figure 1—figure supplement 1A). Such repetitive elements gain DNA CpG meth-

ylation dramatically during pre- to post-implantation transition (Smith et al., 2014). By examining

published data from embryos (Seisenberger et al., 2012; Wang et al., 2014) and ESC progression

in vitro (Kalkan et al., 2017), we found that CpG methylation gain at the Eprn promoter was more

extensive in the primed E6.5 epiblast (3% to 80%) than the average changes across all promoters

(9% to 35%) or the genome (24% to 70%) (Figure 1—figure supplement 2E). In contrast, no major

CpG methylation gain at Eprn promoter was present 24 hr post 2i withdrawal. These data suggest
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that promoter methylation does not initiate Eprn repression, but could contribute to maintain silenc-

ing in later epiblast.

Loss of Ephemeron delays exit from naı̈ve pluripotency
Initiation of ESC differentiation in defined media upon withdrawal of self-renewal factors recapitu-

lates features of peri-implantation epiblast development (Kalkan et al., 2017). The latency of naı̈ve

state exit varies, however, according to the starting self-renewal condition (Dunn et al., 2014;

Wray et al., 2011). Higher activity of the core network in PD/LIF compared with 2i results in slower

network dissolution, reflected in later onset of RGd2 downregulation (Dunn et al., 2014). These two

conditions feature different levels of Eprn due to CH mediated suppression in 2i (Figure 1E). We

generated Eprn knockout (KO) ESCs via sequential gene targeting (Figure 2—figure supplement 1)

and examined the phenotype in each condition. In steady state self-renewal, Eprn loss did not affect

the Rex1-GFP profile in either case (Figure 2A,B). Upon transfer to N2B27, Eprn KO cells displayed

delayed downregulation of GFP compared to parental cells, measured at 24 hr from 2i culture and

40 hr from PD/LIF culture (Figure 2B). By 72 hr, however, GFP expression was fully extinguished

from either starting condition (Figure 2—figure supplement 2A). A transient delay in GFP downre-

gulation in both culture conditions was also evident upon Eprn knockdown using siRNAs (Figure 2—

figure supplement 2B). To assess the effect of Eprn depletion functionally, we conducted colony

forming assays. Cells maintained in PD/LIF were subjected to 40 hr culture in N2B27 and then

replated at clonal density in 2i/LIF to assay the persistence of ES self-renewal potential

(Betschinger et al., 2013). Eprn KO and knockdown cells both gave rise to substantially more undif-

ferentiated colonies than wild type controls (Figure 2C,D, Figure 2—figure supplement 2C). Con-

sidered together, these results indicate that Eprn deficiency impairs timely exit from naı̈ve

pluripotency.

Molecular consequences of Ephemeron loss
We performed RNA-sequencing and compared the transcriptome of wild type and Eprn KO ESCs

using three independently targeted KO ESC lines and three subclones of the parental wild type

ESCs. Sixteen genes were differentially expressed between wild type and Eprn KO cells both in PD/

LIF and after 8 hr withdrawal (Benjamini-Hochberg adjusted p<0.05, fold change >1.5 or<0.7) (Fig-

ure 2—figure supplement 2D) (Figure 2—figure supplement 2E). These include Tcf15, which has

been associated with transition from the naı̈ve state and has an inverse expression pattern compared

to naı̈ve pluripotency factors (Davies et al., 2013). Lin28a was the most differentially expressed

gene in the group, with Eprn KO cells displaying a twofold reduction in mean expression level

(Figure 2E). Although Lin28a is commonly considered as a core pluripotency factor, its expression is

actually increased when cells transition out of the naı̈ve state in vivo and in vitro (Boroviak et al.,

2015; Kalkan et al., 2017; Kumar et al., 2014; Marks et al., 2012). Attenuated downregulation of

members of the naı̈ve transcription factor network is one explanation for delayed exit from the ESC

state (Kalkan and Smith, 2014). We hypothesised that Lin28a could be a negative regulator of the

network. We examined expression of naı̈ve pluripotency transcription factors in Eprn KO cells and

found a higher level of Nanog mRNA (Figure 2E, Figure 2—figure supplement 2F). To characterise

the profile of naı̈ve pluripotency dissolution further in Eprn KO cells, a PD/LIF withdrawal time course

was monitored over 24 hr. The two-fold reduction in Lin28a mRNA in Eprn KO cells was constant

throughout this time course (Figure 2F). Conversely, Nanog transcript and protein levels remained

higher at 16 hr and 24 hr respectively (Figure 2F, see also 3E,F for protein). Mean Klf2 transcript lev-

els appeared higher in Eprn KO cells, but below statistical significance. Other members of the naı̈ve

network showed similar expression profiles in wild type and Eprn KO cells (Figure 2—figure supple-

ment 2F). Among peri-implantation epiblast markers, upregulation kinetics for Fgf5 were unchanged

in Eprn KO cells, but transcripts for Dnmt3a, Dnmt3b and Oct6 remained lower from 16 to 24 hr

(Figure 2—figure supplement 2F). Although not statistically significant, Otx2 transcripts appeared

modestly reduced throughout the time course, which could be related to the elevated expression of

Nanog (Acampora et al., 2016).

We restored Eprn expression in KO cells by inserting the Eprn genomic region under control of

the human EF1a promoter into the deleted locus (Figure 2—figure supplement 3A,B). The rescue

cells displayed a wild type exit profile as measured by GFP profile 40 hr post PD/LIF withdrawal
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Figure 2. Absence of Ephemeron delays exit from naı̈ve pluripotency. (A) Experimental scheme for analysing naı̈ve state exit using Rex1GFPd2 reporter

cells. (B) Rex1-GFP flow cytometry profiles of wild type and Eprn KO cells in 2i and PD/LIF and during transition from these starting conditions. Two

independent clones for wild type and Eprn KO cells were analysed. Percentage of GFP high cells were quantified. (C) Experimental scheme for colony

formation assay. (D) Colony formation assay for wild type and Eprn KO cells in 2i/LIF 40 hr post PD/LIF withdrawal. Colonies were stained with alkaline

phosphatase (AP), with representative images shown. Percentage clonogenicity was calculated by the number of AP positive colonies divided by the

total number of cells plated. Mean ± SD, n = 3. (E) Lin28a and Nanog expression relative to b-actin in three independent wild type and Eprn KO cell

lines measured by RT-qPCR. Mean ± SE, n = 3. *p<0.05, **p<0.01, student’s t-test. (F) Nanog and Lin28a expression kinetics upon PD/LIF withdrawal in
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DOI: 10.7554/eLife.23468.007

The following figure supplements are available for figure 2:

Figure supplement 1. Generation of Eprn KO ESCs.

DOI: 10.7554/eLife.23468.008

Figure supplement 2. Phenotypic and molecular characterisation of Eprn KO during naı̈ve state exit.

DOI: 10.7554/eLife.23468.009

Figure supplement 3. Generation of Ephemeron KO rescue ESCs.

Figure 2 continued on next page
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(Figure 2G). Lin28a and Nanog expression levels were similar to wild type cells (Figure 2—figure

supplement 3C).

To explore the differentiation capacity of Eprn KO cells, we conducted in vitro differentiation

assays directing ESCs towards EpiSCs and somatic lineages (Figure 2—figure supplement 4). Both

wild type and Eprn KO ESCs could be differentiated into EpiSCs using N2B27 supplemented with

ActivinA/Fgf2/XAV939 (Sumi et al., 2013) on fibronectin. Such in vitro differentiated EpiSCs could

be stably propagated over multiple passages, and displayed typical morphology and gene expres-

sion irrespective of genotype (Figure 2—figure supplement 4A,B). We also applied neuronal, mes-

endoderm and definitive endoderm differentiation protocols to Eprn KO ESCs and found that

lineage markers were induced, with a slight delay for mesendoderm (Figure 2—figure supplement

4C–E). Thus retarded naı̈ve state exit does not notably impair subsequent lineage commitment

capacity.

The Ephemeron genetic network includes Lin28a and Nanog
Based on the preceding data, we hypothesised that Lin28a could be a downstream effector of Eprn,

acting to reduce expression of Nanog. To characterise further the relationship between Eprn, Lin28a

and the naı̈ve transcription factor network, we carried out a series of genetic perturbation experi-

ments and measured both Rex1-GFP reporter dynamics and colony formation upon withdrawal from

PD/LIF. In Eprn KO cells, Nanog knockdown partially restored downregulation of Rex1-GFP 40 hr

after PD/LIF withdrawal, and colony formation was reduced to the low level observed in wild type

cells subjected to Nanog siRNA (Figure 3A). Knockdown of Klf4 had no effect on exit kinetics from

PD/LIF in either wild type or Eprn KO cells. Knockdowns of other naı̈ve transcription factors, Esrrb,

Tfcp2l1 and Klf2, accelerated exit in wild type cells but in contrast to Nanog depletion this pheno-

type was attenuated in Eprn KO cells (Figure 3—figure supplement 1B). Resistance of Eprn KO

cells to accelerated transition upon Esrrb, Tfcp2l1 and Klf2 knockdown could be attributed to ele-

vated Nanog. We therefore conducted dual knockdown experiments (Figure 3—figure supplement

1C). Simultaneous depletion of Esrrb, Tfcp2l1 or Klf2 together with Nanog largely abolished the

effect of Eprn KO on GFP downregulation (Figure 3—figure supplement 1C,D). These data are con-

sistent with Eprn acting, at least in part, via modulation of Nanog expression.

We investigated whether lowered expression of Lin28a contributes to the slower exit from naı̈ve

pluripotency and the increased Nanog expression. We manipulated Lin28a dosage by either overex-

pression or knockdown in Eprn KO cells. In wild type cells, Lin28a overexpression had no significant

effect. In Eprn KO cells, however, it restored normal transition kinetics (Figure 3B). Conversely,

Lin28a knockdown phenocopied Eprn loss, delaying exit from naı̈ve pluripotency (Figure 3C). Con-

comitant knockdown of Nanog and Lin28a abolished this effect (Figure 3C). Lin28a knockdown cells

exhibited marginally elevated Nanog mRNA in PD/LIF and persistence at higher levels after 8 hr of

PD/LIF withdrawal (Figure 3D). At the protein level, Eprn null cultures displayed more cells with high

Nanog and low Lin28a expression at the 24 hr time point as quantified by co-immunostaining

(Figure 3E,F, Figure 3—figure supplement 1E). Interestingly, Lin28a was detected as concentrated

foci in the nucleus and also in the cytoplasm (observed with two independent antibodies), and both

nuclear and cytoplasmic expression were increased after PD/LIF withdrawal (Figure 3—figure sup-

plement 1F). During early embryo development, expression of Lin28a and Eprn are positively corre-

lated, while Lin28a and Nanog are negatively correlated (Figure 3—figure supplement 1G)

(Ohnishi et al., 2014). These data are consistent with the proposition that Lin28a is genetically

downstream of Eprn and may facilitate exit from naı̈ve pluripotency by accelerating downregulation

of Nanog.

To assess whether Eprn could regulate Lin28a or Nanog expression directly, we employed chro-

matin isolation by RNA purification (ChIRP) (Chu et al., 2011). Using this method, we were able to

selectively pull down endogenous Eprn RNA (Figure 3—figure supplement 2A). However, we did

Figure 2 continued

DOI: 10.7554/eLife.23468.010

Figure supplement 4. Differentiation capacity of Eprn KO ESCs.

DOI: 10.7554/eLife.23468.011
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Figure 3. Lin28a is downstream of Ephemeron and regulates Nanog expression. (A) Rex1-GFP flow cytometry profiles (Left) and colony formation

capacity (Right) 40 hr post PD/LIF withdrawal for wild type and Eprn KO cells transfected with indicated siRNAs. (B) Rex1-GFP flow cytometry profiles

and colony formation capacity 40 hr post PD/LIF withdrawal for wild type and Eprn KO cells transfected with Lin28a expression vector. (C) Rex1-GFP

flow cytometry profile and colony formation capacity 40 hr post PD/LIF withdrawal with Nanog and Lin28a single or dual knockdowns in wild type cells.

Quantification of percentage of GFP high cells were shown in (A-C). Percentage clonogenicity in (A-C) is measured by the number of AP positive

colonies divided by the total number of cells plated, with representative AP staining images shown. Mean ± SD, n = 3. (D) Lin28a and Nanog

expression relative to b-actin upon PD/LIF withdrawal in Lin28a knockdown and control cells. Mean ± SD, n = 3. *p<0.05, Student’s t-test. (E)

Correlation of Nanog and Lin28a protein expression immunostaining in wild type and Eprn KO cells 24 hr post PD/LIF withdrawal. (F) Representative

images of cells co-immunostained with Nanog and Lin28a and quantified in E.

DOI: 10.7554/eLife.23468.012

The following figure supplements are available for figure 3:

Figure supplement 1. Characterisation of Eprn, Nanog and Lin28a genetic interaction.

DOI: 10.7554/eLife.23468.013

Figure supplement 2. Eprn does not act on chromatin.

DOI: 10.7554/eLife.23468.014
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not detect chromatin enrichment at the Lin28a or Nanog promoter regions (Figure 3—figure sup-

plement 2B–D). Indeed, no significant enrichment genome-wide was observed in wild type com-

pared to Eprn KO cells (Figure 3—figure supplement 2E). Thus we found no evidence that Eprn

functions by chromatin association (Rinn and Guttman, 2014).

The H3K4me3 modification was reduced at the Lin28a promoter in Eprn KO cells, in line with

reduced transcription (Figure 3—figure supplement 2F). One explanation for anti-correlated

expression could be direct negative regulation of Lin28a by Nanog. We inspected two published

Nanog chromatin immunoprecipitation (ChIP) sequencing datasets (Chen et al., 2008;

Marson et al., 2008) but observed no localisation of Nanog at the Lin28a locus (Figure 3—figure

supplement 2G). Furthermore, we did not observe Lin28a upregulation in Nanog knockdown cells

(Figure 3—figure supplement 2H). Therefore, Nanog does not appear to be a direct upstream reg-

ulator of Lin28a.

The function of Lin28a in ESC transition may be mediated by
suppression of let-7g
Lin28a is an RNA binding protein with a well-established function in suppressing maturation of let-7

family miRNAs (Cho et al., 2012; Viswanathan et al., 2008). We investigated whether the role of

Lin28a in naı̈ve state exit is let-7 dependent. We profiled mature miRNA expression of let-7 family

members using RT-qPCR. Expression of let-7a, let-7d, let-7e, let-7g and let-7i decreased 24 hr after

2i/LIF withdrawal, coincident with the increase in Lin28a expression (Figure 4A). Mature miRNA let-

7c expression was unaffected, suggesting that let-7c expression is independent of Lin28a. This

observation is in agreement with a recent finding that let-7c-2, the major let-7c isoform expressed in

mouse ESCs, bypasses Lin28a regulation due to lack of a GGAG recognition motif in its loop region

(Triboulet et al., 2015). The Lin28a regulated let-7 miRNAs, but not let-7c, are expressed at higher

levels in ESCs in 2i/LIF than in LIF/serum (Pandolfini et al., 2016) (Figure 4—figure supplement

1A), consistent with lower Lin28a in 2i/LIF.

To examine the role of Lin28a regulated let-7 miRNAs in naı̈ve state exit, we first transfected

ESCs with mature let-7g mimic. We used let-7g as a representative member since all apart from let-

7e share the same seed sequence (Figure 4—figure supplement 1B). Forced expression of let-7g in

RGd2 cells resulted in delayed GFP downregulation upon both 2i and PD/LIF withdrawal

(Figure 4B). Elevated ESC colony formation capacity post PD/LIF withdrawal was also observed

(Figure 4C). To identify downstream targets of let-7g, we curated genes that are upregulated upon

2i withdrawal in our RNA-sequencing dataset and searched for known or predicted let-7g targets

using the RNA22 tool (Miranda et al., 2006). DNA methyltransferases Dnmt3a and Dnmt3b

emerged as prime candidates, as has previously been proposed (Kumar et al., 2014). Expression of

both increases during ESC transition (Kalkan et al., 2017). Dnmt3a/3b transcript levels were lower

in Eprn KO cells than wild type control (Figure 2—figure supplement 2F). Multiple let-7g target

sites were predicted by RNA22 within the Dnmt3a 3’UTR and one site in the Dnmt3b 3’UTR

(Figure 4D, Figure 4—figure supplement 1C). ESCs were co-transfected with mature let-7g mimic

and luciferase constructs containing the entire 3’UTRs of Dnmt3a and Dnmt3b. let-7g reduced lucif-

erase expression by more than 60% relative to scrambled control (Figure 4E), suggesting that

Dnmt3a/3b transcripts are indeed let7-g targets. To test specificity of this repression, we generated

two Dnmt3b 3’UTR luciferase reporter constructs with the let-7 seed recognition site mutated (Fig-

ure 4—figure supplement 1D). These mutant reporters escaped repression by the let-7g

mimic (Figure 4—figure supplement 1D).

Dnmt3a and Dnmt3b methylate the Nanog promoter during naı̈ve state
exit
Epiblast progression is associated with genome-wide de novo methylation during pre-to post-

implantation development (Auclair et al., 2014). This phenomenon is recapitulated when naı̈ve ESCs

are withdrawn from 2i (Kalkan et al., 2017). Previous studies demonstrated hypomethylation of the

Nanog promoter in mouse ESCs compared to lineage committed cells (Farthing et al., 2008;

Yu et al., 2007). We speculated that impeded de novo DNA methylation could allow perdurance of

Nanog expression at the onset of naı̈ve state exit. To investigate this hypothesis, we carried out

bisulfite sequencing analysis across the Nanog proximal promoter region, 1 kb upstream of the TSS,
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Figure 4. Lin28a function is mediated via members of let-7 miRNAs. (A) Mature let-7 family microRNA expression quantified by RT-qPCR in 2i/LIF, 24 hr

post 2i/LIF withdrawal, and EpiSCs. (B) Rex1-GFP flow cytometry profile upon forced expression of mature let-7g mimic during transition from 2i and

PD/LIF. Quantification of percentage of GFP high cells was shown. (C) Colony formation assay in 2i/LIF of cells with forced expression of let-7g mimic

and control 40 hr post PD/LIF withdrawal. Colonies were stained with alkaline phosphatase (AP). Percentage clonogenicity was calculated by the

number of AP positive colonies divided by the total number of cells plated. Mean ± SD, n = 3. (D) Predicted target sites of let-7g in 3’UTRs of Dnmt3a

and Dnmt3b by RNA22. (E) Dual luciferase assay measuring repression by let-7g mediated through 3’UTRs of Dnmt3a and Dnmt3b. Fold repression of

Luc/Rluc relative to scramble was plotted. Mean ± SD, n = 3. (F) Relative expression normalised to b-actin of naı̈ve and peri-implantation epiblast

associated genes in ESCs with forced expression of let-7g mimics. Mean ± SD, n = 3.

DOI: 10.7554/eLife.23468.015

The following figure supplement is available for figure 4:

Figure supplement 1. let-7 family mature miRNA expression, sequence and predicted let-7g sites in the 3’UTRs of Dnmt3a and Dnmt3b.

DOI: 10.7554/eLife.23468.016
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after siRNA knockdown of Dnmt3a/3b singly or together (Figure 5A). We observed a marked reduc-

tion of CpG methylation in the �1 kb to �761 bp region (region 1) 40 hr after PD/LIF withdrawal

(Figure 5A). Cells transfected with scrambled control siRNA exhibited 40% CpG methylation at

scored sites, whereas Dnmt3b depleted cells displayed 18% CpG methylation and Dnmt3a or

Dnmt3a/b double knockdown cells showed only around 8%. Effects were less obvious in the �538

bp to +18 bp region (region 2), which was barely methylated at this time point. These data suggest

that Dnmt3a and Dnmt3b have overlapping roles in mediating de novo methylation at the Nanog

proximal promoter. Eprn KO cells also exhibited reduced methylation at the Nanog promoter, with

region one again showing a more prominent reduction (Figure 5—figure supplement 1A).

To explore the role of de novo DNA methylation in ESC transition, we investigated functional

consequences of Dnmt3a and Dnmt3b depletion. We created Dnmt3a and Dnmt3b single and com-

pound knockouts in RGd2 ESCs using CRISPR/Cas9. Using two guide RNAs (gRNAs), we generated

deletions of highly conserved PC and ENV motifs (motifs IV and V) within the catalytic domain for

both Dnmt3a and Dnmt3b, recapitulating the previously characterised Dnmt3b and Dnmt3b mutant

gene structures (Okano et al., 1999) (Figure 5—figure supplement 1B). Dnmt3a and Dnmt3b sin-

gle and double KO cells exhibited delayed Rex1-GFP downregulation (Figure 5B). Colony formation

capacity of the single and double KO cells 40 hr post PD/LIF withdrawal confirmed slower extinction

of ESC identity (Figure 5C). Interestingly, however, as with Eprn KO, the delay in GFP downregula-

tion did not endure (Figure 5—figure supplement 1C). Absence of Dnmt3a and Dnmt3b singly or

together was associated with transient perdurance of Nanog expression (Figure 5D). At 8 hr after

PD/LIF withdrawal, Nanog mRNA in Dnmt3a and/or Dnmt3b mutants was equivalent to wild type

cells in PD/LIF, whereas wild type cells had downregulated Nanog expression by 50% (Figure 5D).

We also observed elevated expression of Tfcp2l1, Klf2, Klf4 and Tbx3 in Dnmt3a/3b single or com-

pound KO cells (Figure 5—figure supplement 1E). The promoters of these genes are methylation

refractory in the 2i withdrawal time course (Kalkan et al., 2017). Therefore, the elevated expression

should be secondary to some other factor(s) such as increased Nanog. Dnmt3a/3b compound KO

also resulted in impeded upregulation of peri-implantation markers Fgf5, Oct6 and Otx2 at 24 hr

post PD/LIF withdrawal (Figure 5—figure supplement 1F). These data indicate that de novo DNA

methylation facilitates timely progression from the ESC state. Importantly, however, methylation by

Dnmt3a/3b is not essential for the exit from naı̈ve pluripotency.

Discussion
Mouse ES cell self-renewal is robust due to recursive wiring of a core transcription factor network

(Dunn et al., 2014; Martello and Smith, 2014; Young, 2011). Rapid developmental progression

from such a resilient state is achieved through parallel mechanisms. In this study, we find that a

lncRNA, Ephemeron, participates in the timely dissolution of naı̈ve identity. Genetic interactions link

Eprn with known players in post-transcriptional and epigenetic regulation (Figure 5E). Eprn lies

upstream of Lin28a/let-7g and Dnmt3a/3b, and ultimately contributes to timely downregulation of

the pivotal naı̈ve transcription factor Nanog. Eprn depletion reduces Lin28a expression, although the

molecular mechanism underlying this effect remains unclear. Lower Lin28a stabilises expression of

the let-7 miRNAs whose targets include de novo DNA methyltransferases Dnmt3a and Dnm3b.

Resulting decreased Dnmt3a/3b reduces Nanog proximal promoter CpG methylation, correlating

with transiently perduring expression. This lncRNA/miRNA/DNA methylation module provides an

additional layer in the multi-layered machinery that enforces transition from naı̈ve to formative pluri-

potency (Acampora et al., 2016; Jang et al., 2017; Kalkan et al., 2017; Kalkan and Smith, 2014;

Smith, 2017).

Eprn promotes ESC transition and is suppressed by Gsk3 inhibition during ground state self-

renewal in 2i or 2i/LIF. ESCs cultured without Gsk3 inhibition can self-renew in the presence of PD/

LIF or LIF/serum. In these conditions they express Eprn and higher levels of Lin28a. The lack of overt

consequence is presumably due to the dominant self-renewal environment provided by Stat3 activa-

tion and MEK inhibition that sustain expression of Nanog and other naı̈ve factors. Nonetheless, loss

of Eprn in PD/LIF resulted in elevated Nanog and delayed transition kinetics.

We observed a Mendelian ratio of homozygous Eprn mutant mice from heterozygous intercrosses

(5:18:7, wild type: heterozygous: homozygous offspring). Therefore, in common with Lin28a

(Shinoda et al., 2013), Eprn is dispensable for development of laboratory mice. Some protein-
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Figure 5. Loss of Dnmt3a and Dnmt3b delays naı̈ve state exit associated with transient persistence of Nanog expression. (A) Bisulfite sequencing

analysis of Nanog proximal promoter CpG island DNA methylation in Dnmt3a and Dnm3b single and dual knockdown cells at 40 hr post PD/LIF

withdrawal. The positions of cytosines analysed (mm10) are indicated on the left panel. Black and while circles represent methylated and unmethylated

cytosine respectively. (B) Rex1-GFP flow cytometry profiles of Dnmt3a and Dnmt3b single and dual KO cells withdrawn from 2i or PD/LIF for 24 and 40

hr respectively. Percentage of GFP high cells were quantified. (C) colony formation capacity 40 hr post PD/LIF withdrawal for Dnmt3a and Dnmt3b

single and compound KO cells. Percentage clonogenicity was measured by the number of AP positive colonies formed divided by the total number of

cells plated, with representative AP staining images shown. Mean ± SD, n = 3. (D) Expression of Nanog relative to b-actin in Dnmt3a and Dnmt3b single

Figure 5 continued on next page
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coding genes that exhibit demonstrable loss-of-function phenotypes in ESC self-renewal or transition

also show no early embryo phenotype (Leeb et al., 2014; Martello and Smith, 2014). Our interpre-

tation is that ESCs provide a sensitised platform for identifying components whose functions may be

compensated during in vivo development.

The majority of lncRNAs are not phylogenetically conserved (Necsulea et al., 2014). Due to their

rapidly evolving nature, it is thought that lncRNAs are likely to acquire species or lineage-restricted

functions and several examples have recently been described (Durruthy-Durruthy et al., 2016;

Paralkar et al., 2014; Rani et al., 2016). The presence of Eprn exclusively in rodent may be associ-

ated with rapid embryonic progression from pre-implantation epiblast to gastrulation (Rossant and

Tam, 2017), which necessitates acute extinction of the naı̈ve pluripotency programme (Smith, 2017).

LncRNAs are more tolerant to TE integration than protein coding genes, which could drive more

rapid evolution (Kelley and Rinn, 2012; Necsulea et al., 2014). Non-coding transcripts harbouring

TE sequences are enriched in ESCs and early embryo development in both mouse and human

(Fort et al., 2014; Göke et al., 2015; Kelley and Rinn, 2012) and in several instances have been

proposed to regulate pluripotency (Durruthy-Durruthy et al., 2016; Fort et al., 2014; Lu et al.,

2014). Eprn is comprised of 76.4% TEs, compared to the average of 41.4% TE composition in the

mouse genome and 33% reported for mouse multi-exon lincRNA sequences (Kelley and Rinn,

2012). The aligned sequence between Eprn and the rat transcript from the syntenic region includes

ERVK LTR and SINE B2 elements. These sequences have been preserved for over 30 million years

since the mouse-rat lineage divergence.

Lin28a is known as a human somatic cell reprogramming factor (Yu et al., 2007). However,

Lin28a is expressed at a lower level in ground state mouse ESCs (Marks et al., 2012) and pre-

implantation epiblast, than in post-implantation epiblast and EpiSCs (Boroviak et al., 2015). The

expression pattern is consistent with our evidence that up-regulation of Lin28a at the onset of mouse

ESC differentiation functions to facilitate transition from the naı̈ve state. During human iPSC genera-

tion, Lin28a may promote acquisition of primed pluripotency, the endpoint for current human

somatic cell reprogramming. Lin28a itself is a target of let-7 miRNAs (Kumar et al., 2014;

Melton et al., 2010) and the reciprocal negative feedback loops can act as a bimodal switch. Our

findings are consistent with the recent report that loss of Lin28a reduced ESC heterogeneity in

serum/LIF, favouring a more naı̈ve state (Kumar et al., 2014). This effect was attributed to let-7g.

We note, however, that Lin28a can post-transcriptionally regulate the expression and/or translation

of many RNAs independently of let-7 (Cho et al., 2012; Zhang et al., 2016) that could also contrib-

ute to ESC transition.

De novo methyltransferases Dnmt3a/3b have previously been proposed as targets of let-7g

(Kumar et al., 2014). Our results show that loss of Dnmt3a and Dnmt3b, individually and in combi-

nation, delays naı̈ve state exit. Naı̈ve ESCs (Ficz et al., 2011; Habibi et al., 2013; Leitch et al.,

2013) and pre-implantation epiblast (Monk et al., 1987; Sanford et al., 1987) have low expression

of Dnmt3a/3b and display global DNA hypomethylation. However, the post-implantation epiblast

rapidly acquires global DNA methylation and this process is dependent on Dnmt3a/3b

(Auclair et al., 2014). A similar acute trend is observed upon naı̈ve ESC withdrawal from 2i

(Kalkan et al., 2017). Early de novo methylation may have functional consequences for specific naı̈ve

pluripotency associated factors, such as Nanog, enduring rapid downregulation. It is noteworthy,

however, that the Dnmt3a/3b KO phenotype is transient and ESC identity still collapses. Therefore,

although de novo DNA methylation facilitates ESC transition it is not mandatory for the exit from

naı̈ve pluripotency.

Human naı̈ve pluripotency shares molecular and cellular features with mouse, consistent with a

conserved core pluripotency programme in mammals (Guo et al., 2017, 2016; Smith, 2017;

Figure 5 continued

and compound KO cells quantified by RT-qPCR. Mean ± SD, n = 2. (E) Schematic representation of the inferred Eprn pathway. Legends for Figures and

Source Data.

DOI: 10.7554/eLife.23468.017

The following figure supplement is available for figure 5:

Figure supplement 1. Phenotypic and molecular characterisation of Dnmt3a/3b KO in naı̈ve state exit.

DOI: 10.7554/eLife.23468.018
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Takashima et al., 2014; Theunissen et al., 2014). However, species-specific differences are evident.

Notably, Gsk3 inhibition has less impact on human naı̈ve state maintenance (Guo et al., 2017;

Theunissen et al., 2016). This is partly explained by the lack of ESRRB expression in human pluripo-

tent cells (Blakeley et al., 2015; Martello et al., 2012; Takashima et al., 2014; Theunissen et al.,

2014), but absence of Eprn may be an additional factor that reduces requirement for Gsk3

inhibition.

In summary, we have mapped a genetic interaction module consisting of a novel lncRNA, proteins

and miRNAs that is integrated into the multi-pronged molecular machinery that propels mouse ESCs

towards lineage competence. The fine-tuning effect of Eprn could be representative of lncRNA

actions in the regulation of molecular networks and illustrative of their potential contribution to spe-

cies diversification.

Materials and methods

Targeting, expression and gRNA vector construction
BAC RP24-353A19 (C57BL/6J background) was obtained from Wellcome Trust Sanger Institute for

constructing the Eprn knockout targeting vectors by recombineering using bacterial strain EL350

(Lee et al., 2001). Floxed drug resistant cassettes containing hygromycin B phosphotransferase

gene (Hygro) or Blasticidin S-resistance gene (Bsd) were PCR amplified using chimeric primers miniU

and miniD (Supplementary file 1A) harbouring 80 bp mini-homologies to the genomic region flank-

ing Eprn locus. The purified PCR fragments loxP-PGK-Hygro-bghpA-loxP and loxP-PGK-Bsd-bghpA-

loxP were used to replace the entire genomic region of Eprn locus with the drug resistant cassettes.

The retrieval homology arms were PCR amplified using primers ReUF and ReUR for upstream and

ReDF and ReDF for downstream mini-arms (Supplementary file 1B). The mini arms were subse-

quently cloned into pBS-MC1-DTA vector by 3-way ligation using restriction enzymes, SpeI, HindIII

and XhoI. The mini-arm containing vector was linearised by HindIII and used to retrieve the targeting

vectors from the modified BACs, giving rise to the final targeting vectors, HygroTV and BsdTV.

Lin28a overexpression vector was constructed by PCR cloning mouse Lin28a from cDNA using

forward primer AATTGTCGACATGGGCTCGGTGTCCAACCAGCAGT and reverse primer AA

TTGCGGCCGCTCAATTCTGGGCTTCTGGGAGCAG and cloned into pENTR2B vector. It was subse-

quently cloned into PiggyBac-based expression vector using Gateway LR clonase (Thermo

Fisher Scientific, Waltham, MA, USA, 11791020) to generate pCAG-Lin28a-pA:PGK-hygro-pA

plasmid.

The gRNA design was conducted using online CRISPR gRNA design tool https://www.atum.bio/

eCommerce/cas9/input. The chosen gRNAs were based on minimal off-target scores. Deletions

were designed to recapitulate the original Dnmt3a and Dnmt3b KO mutations (Okano et al., 1999),

excising the highly conserved PC and ENV motifs (motifs IV and V) within the catalytic domain. The

gRNAs were generated by annealing the indicated oligos (Supplementary file 2A), which were sub-

sequently ligated into pX458 vector (Addgene) digested with BbsI. The constructs were sequence

validated before transfection.

Cell culture
ESCs were cultured on 0.1% gelatin in 2i/LIF medium (homemade N2B27 base medium, supple-

mented with 1 mM PD0325901, 3 mM CHIR99021, and 20 ng/ml LIF) as described (Ying et al., 2008).

For gene targeting, ESC were maintained with serum containing medium supplemented with 2i/LIF

as above (KO-DMEM high glucose, 15% FCS, 2 mM L-Glutamine, NEAA, 1 mM Sodium Pyruvate

(Thermo Fisher Scientific), 100 mM b-Mercaptoethanol (Sigma Aldrich, St. Louis, MO, USA). Cor-

rectly targeted clones were transferred to N2B27 based 2i/LIF medium for expansion and experi-

mentation. The RGd2 reporter wild type subclones and Eprn KO ESC clones are of V6.5 origin

(RRID:CVCL_C865). An independent wild type RGd2 reporter line is of E14 origin (RRID:CVCL_

C320). All cell lines are mycoplasma negative by PCR screening in house.

Naı̈ve pluripotency exit assays
ESCs were plated at 1 � 104/cm2 in 2i without LIF or PD/LIF. The next day, cells were carefully

washed with PBS before switching to N2B27 medium. Rex1-GFP profile was analysed at indicated
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time points in at least two independent experiments using a Cyan or Fortessa FACs analyser. Live

dead discrimination was performed using TO-PRO-3 (Thermo Fisher Scientific, T3605). For clonal

assay, post 24 hr or 40 hr 2i or PD/LIF withdrawal respectively, 300–500 cells were plated per well of

a 12 well plate coated with Laminin (1:100 dilution, Sigma Aldrich, L2020) and cultured in 2i/LIF for 6

days. Alkaline Phosphatase staining (Sigma Aldrich, 86R-1KT) was conducted to visualise ES colonies.

AP-stained plates were imaged using an Olympus IX51, DP72 camera with CellSens software and

subsequent colony counting was conducted manually using ImageJ software.

EpiSC derivation from ESCs and EpiSC resetting
ESCs were plated at 1 � 104/cm2 in 2i/LIF on a gelatin coated plate. The next day, cells were washed

with PBS before medium switch to N2B27 medium supplemented with 20 ng/ml Activin A and 12

ng/ml Fgf2 together with 2 mM XAV939 (Sigma Aldrich, X3004), A/F/X. Cells were then passaged to

fibronectin coated plate in A/F/X medium. EpiSCs were passaged for at least seven times before

gene expression analysis and resetting. For EpiSC resetting, EpiSCs were stably transfected with

GY118F construct by piggyBac transposition (Yang et al., 2010). 1 � 104 cells were plated in a one

well of a 12 well plate in A/F/X, the next day, 2i plus GCSF was supplied to initiate resetting.

Differentiation assays
For neuronal differentiation, ESCs were plated at 1 � 104/cm2 in N2B27 medium on laminin (1:100

in PBS) for up to 4 days for gene expression analysis. For mesendoderm differentiation, cells were

plated at 0.6 � 104/cm2 in N2B27 based medium containing 10 ng/ml ActivinA, 3 mM CHIR99021 on

Fibronectin for up to 4 days for gene expression analysis. For definitive endoderm differentiation,

cells were plated at 1.5 � 104/cm2 in N2B27 based medium containing 20 ng/ml ActivinA, 3 mM

CHIR99021, 10 ng/ml FGF4, 1 mg/ml Heparin, 100 nM PI103. On day 2, the media was switched to

SF5 based medium containing 20 ng/ml ActivinA, 3 mM CHIR99021, 10 ng/ml FGF4, 1 mg/ml Hepa-

rin, 100 nM PI103 and 20 ng/ml EGF2. Per 100 ml SP5 basal medium, it contains 500 ml N2, 1 ml B27

without VitaminA supplement, 1% BSA, 1 ml L-glutamine and 100 ml b-mercaptoethanol. Detailed

protocols can be found in Mulas et al (Mulas et al., 2017).

siRNA, miRNA mimics and plasmid transfection
siRNAs and miRNA mimics were obtained from Qiagen and the catalogue numbers are listed in

Supplementary file 3. Transfection was performed using Dharmafect 1 (Dharmacon, Lafeyette, CO,

USA, T-2001–01) in a reverse transfection protocol with the final siRNA or miRNA mimics concentra-

tion to be 10 nM. Two siRNA combination were used per transfection for each target gene

knockdown.

Plasmid transfection was performed using Lipofectamine 2000 (Thermo Fisher Scientific,

11668027) following the manufacturers protocol. For piggyBac based stable integration, a piggyBac

transposon and hyperactive PBase (hyPBase) ratio of 3:1 was used.

Generation of Dnmt3a and Dnmt3b KO ESCs with CRISPR/Cas9
A pair of gRNA containing plasmids based on px458 backbone (Ran et al., 2013) were transfected

using Fugene HD (Promega, Madison, WI, USA, E2311). 100 ng of each plasmid were transfected

with 0.6 ul Fugene HD (1:3 ratio) to 2 � 105 ESCs in suspension in 2i/LIF medium overnight. The

next day, the media was refreshed and 48 hr post transfection, 1,000 GFP high cells were sorted

into a well of a six well plate for colony formation. Individual colonies were picked and genotyping

was conducted from extracted genomic DNA by triple primer PCR to identify clones with designed

deletion (Supplementary file 2B). For Dnmt3a KO, deletion resulted in genotyping PCR product

shift from 760 bp representing the wild type allele to 1132 bp. For Dnmt3b KO, deletion resulted in

shift from 344 bp representing the wild type allele to 653 bp. Only homozygous mutants were cho-

sen for subsequent experimentation.

Southern blotting
Genomic DNA of individually picked ESC clones was extracted and digested with XmnI, size-frac-

tionated on a 0.8% agarose gel and transferred to Hybond-XL blotting membrane (GE Healthcare,

Chicargo, IL, USA, RPN20203) using standard alkaline transfer methods. The 5’ and 3’ external
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probes were generated by PCR with primer sequences shown in Supplementary file 4A. Southern

blot hybridization was conducted as described previously (Li et al., 2011).

Northern blotting
10 mg of purified RNA was resolved by denaturing formaldehyde agarose gel electrophoresis with

MOPS buffer. RNA was transferred to Hybond-XL membrane in 1xSSC buffer overnight by capillary

transfer. RNA was UV cross-linked to the membrane and pre-hybridised with Expresshyb (Clone-

Tech, Mountainview, CA, USA, 636831) for 2 hr at 65˚C. The DNA probe was generated by PCR (pri-

mers are shown in Supplementary file 4B) and 25 ng of probe DNA was labelled with [32P]-dCTP

using Radprime DNA labeling system (Thermo Fisher Scientific, 18428–011). The free-nucleotide was

removed from labelled probe using G-50 column (GE Healthcare, 27-5330-01), and was heat-dena-

tured followed by snap cooling. The probe was added to the pre-hybridised membrane and incu-

bated overnight at 65˚C in a rolling incubator. Membrane was washed with wash buffer containing

0.1 x SSC and 0.1% SDS 3 times at 65˚C with 10 min intervals. The membrane was placed in a phos-

phoimager and exposed for at least overnight at �80˚C before scanned using Typhoon 9410 phos-

phoimager system (GE Healthcare).

5’ and 3’ RACE
5’ RACE was conducted using 5’-Full RACE Core Set (Takara, Kusatsu, Japan, #6122) following man-

ufacture’s protocol. The sequences for RT-primer and nested PCR primers A1, A2, S1, and S2 are

shown in Supplementary file 5A. 3’ RACE was conducted by using a polyT RT-primer with a unique

sequence tag to synthesis cDNA. The 3’ end region was PCR amplified using a primer specific to the

RT-primer and a gene specific primer. The primers are shown in Supplementary file 5B. Both 5’ and

3’ RACE PCR products were cloned into plasmids using Zero blunt TOPO PCR cloning kit

(Thermo Fisher Scientific, 451245) for subsequent sequencing.

RNA extraction, reverse transcription and Real-time PCR
Total RNA was isolated using Trizol (Thermo Fisher Scientific, 15596026) or RNeasy kit (Qiagen, Hil-

den, Germany, 74136) and DNase treatment was conducted either after RNA purification or during

column purification. cDNA was transcribed from 0.5 ~ 1 ug RNA using SuperScriptIII (Thermo Fisher

Scientific, 18080044) and oligo-dT priming. Real-time PCR was performed using StepOnePlus

machine (Applied Biosystems) with Fast Sybrgreen master mix (Thermo Fisher Scientific, 4385612).

Target gene primer sequences are shown in Supplementary file 6. Expression level were normalised

to Actinb. Technical replicates for at least two independent experiments were conducted. The

results were shown as mean and standard deviation calculated by StepOnePlus software (Applied

Biosystems). The cDNA library for E7-E17 embryos and adult tissues were purchased from Clontech

(Mouse Total RNA Master Panel, 636644).

RNA-FISH
RNA-FISH was conducted using ViewRNA ISH Cell Assay for Fluorescence RNA In Situ Hybridization

system (Thermo Fisher Scientific, QVC0001) with modifications and imaged on a DeltaVision Core

system (Applied Precision), as described in Bergmann et al. (2015). The probe set used for Ephem-

eron was VX1-99999-01.

Mature miRNA expression profiling
Total RNA was extracted using Trizol. 1 ug RNA was reverse transcribed using Taqman MicroRNA

Reverse Transcription Kit (Thermo Fisher Scientific, 366596). Mature miRNA expression was analysed

using Taqman Array Rodent MicroRNA A + B Cared Set V3.0 (Thermo Fisher Scientific, 444909).

Luciferase assay
The Entire 3’UTR of both Dnmt3a and Dnmt3b were PCR cloned downstream of the firefly luciferase

coding region into pGL3 vector. For Dnmt3a 3’UTR, forward primer AATTGGCCGGCCGGGACA

TGGGGGCAAACTGAAGTAG and reverse primer AATTGGATCCGGGAAGCCAAAACATAAAGATG

TTTATTGAAGCTC were used for PCR cloning. For Dnmt3b 3’UTR, forward primer AA

TTGGCCGGCCTTCTACCCAGGACTGGGGAGCTCTC and reverse primer AATTGGATCCTTA
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TAGAGAAATACAACTTTAATCAACCAGAAAGG were used for PCR cloning. To generate mutant

Dnmt3b reporter constructs, let-7g binding site was mutated to include BsrGI (mutation V1) and

EcoRI (mutation V2) sites by PCR cloning. Each firefly luciferase construct (500 ng) together with

Renilla luciferase construct (10 ng) were con-transfected with either let-7g mimic or scrambled con-

trol (20 nM). The firefly and Renilla luciferase activity was determined by dual luciferase assay (Prom-

ega, E1960) 48 hr post-transfection.

Immunostaining
Cells were fixed in 4% paraformaldehyde for 10 min at room temperature and were blocked with

blocking buffer (5% semi-skimmed milk with 0.1% Triton in PBS) for 2 hr at room temperature. Pri-

mary antibodies were diluted in blocking buffer and incubated at 4˚C overnight. Primary antibody

was carefully washed away with 0.1% Triton in PBS three times with 10 min incubation between each

wash. Secondary antibody diluted in blocking buffer (1:1000) was incubated at room temperature

for 1 hr followed by 3 washes with 0.1% Triton in PBS. Nuclei were counterstained with DAPI. Pri-

mary antibodies used were Nanog (eBioscience, 14–5761, RRID:AB_763613, 1:200) and Lin28a (Cell

signalling, 3978, RRID:AB_2297060, 1:800; 8706, RRID:AB_10896850, 1:200). Images from random

fields were taken with Leica DMI3000 and the images from different fields at each time point were

combined and analysed using CellProfiler software (Broad Institute, RRID:SCR_007358) to conduct

nuclear and cytoplasmic compartmentalisation and total fluorescent intensity for each sub-cellular

compartments as well as the whole cell for each cell was extracted for correlation analysis.

Chromatin isolation by RNA purification (ChIRP)
The antisense oligo probes were selected with GC content in the range of 40–50% in regions of the

Eprn exons without repetitive sequences (Figure 1—figure supplement 1A). The probes sequences

are in shown in Supplementary file 7. CHIRP was conducted following published protocol

(Chu et al., 2011). The data is available at the NCBI Gene Expression Omnibus (accession number:

GSE90574). The link to the data is as follows: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE90574.

ChIP
The experimental procedure was conducted as described previously (Betschinger et al., 2013). 2 ug

of H3K4me3 antibody (Diagenode, Ougrée, Belgium pAb-003–050) and IgG control (Santa Cruz,

Dallas, TX, USA, sc-2345) was used for 4 � 106 cells per ChIP. qPCR was performed with primers

shown in Supplementary file 8.

Nanog promoter DNA methylation analysis
Genomic DNA was extracted using GenElute Mammalian Genomic DNA miniprep kit (Sigma

Aldrich, G1N70-1KT). 500 ng purified genomic DNA was treated with sodium bisulfite to convert all

unmethylated cytosine residues into uracil residues using Imprint DNA modification Kit

(Sigma Aldrich, MOD50-1KT) according to the manufacturer’s protocol. Nanog proximal promoter

regions (Region 1 and 2 as indicated in Figure 5a) were amplified using a nested PCR approach with

KAPA HiFi Uracil + Readymix (KapaBiosystems/Roche, Basel, Switzerland, KK2801). The PCR condi-

tion for both nested rounds of PCR is as follows: denaturation at 98˚C for 5 min followed by 10

cycles of gradient PCR, 98˚C for 15 s, 62˚C (starting annealing temperature) for 15 s with annealing

temperature reduced by 1˚C per cycle and 72˚C for 1.5 min. Followed by this, a 35 cycles of 98˚C for

15 s, 58˚C for 15 s and 72˚C for 1.5 min were conducted. 2 ml first round PCR product was used as

template for the nested PCR. All primer sequences are shown in Supplementary file 9. The PCR

products were verified and purified by gel electrophoresis and subsequently subcloned by TOPO

cloning. Reconstructed plasmids were purified and individual clones were sequenced (Eurofins).

Transcriptome sequencing and analysis
Total RNA was isolated with RNeasy RNA purification. Ribo-zero rRNA depleted RNA was used to

generate sequencing libraries for wild type and Ephemeron knockout cells in PD/LIF and 8 hr with-

drawal from PDL from three independent cell lines. Single end sequencing was performed and the

reads were mapped using NCBI38/mm10 with Ensembl version 75 annotations. RNA-seq reads were
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aligned to the reference genome using tophat2. Only uniquely mapped reads were used for further

analysis. Gene counts from SAM files were obtained using htseq-count with mode intersection non-

empty, -s reverse. Differential gene expression analysis was conducted using Bioconductor R pack-

age DESeq2 version 1.4.5. DESeq2 provides two P-values, a raw P-value and a Benjamini-Hochberg

P-value (adjusted p value). An adjusted p-Value threshold of 0.05 was used to determine differential

gene expression (95% of the results are not false discoveries, error rate 0.05 = 5%). The data is avail-

able at the NCBI Gene Expression Omnibus (accession number: GSE90574, https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE90574).

Eprn promoter CpG methylation analysis
Using published genome-wide bisulpite sequencing data (Kalkan et al., 2017; Seisenberger et al.,

2012; Wang et al., 2014), Eprn promoter region was defined as the 2 kb region upstream of the

TSS and the percentage of CpG methylation within the region was quantified. For promoter aver-

age, percentage of CpG methylation around the 2 kb promoter region of each annotated gene was

quantified and averaged for all values. For genome average, percentage of CpG methylation of all

50 kb tiling windows was quantified and averaged all values.
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