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Abstract 

Deep learning–based mammographic evaluations could noninvasively assess response to breast cancer chemoprevention. We eval
uated change in a convolutional neural network–based breast cancer risk model applied to mammograms among women enrolled in 
SWOG S0812, which randomly assigned 208 premenopausal high-risk women to receive oral vitamin D3 20 000 IU weekly or placebo 
for 12 months. We applied the convolutional neural network model to mammograms collected at baseline (n¼109), 12 months 
(n¼ 97), and 24 months (n¼ 67) and compared changes in convolutional neural network-based risk score between treatment groups. 
Change in convolutional neural network-based risk score was not statistically significantly different between vitamin D and placebo 
groups at 12 months (0.005 vs 0.002, P¼ .875) or at 24 months (0.020 vs 0.001, P¼ .563). The findings are consistent with the primary 
analysis of S0812, which did not demonstrate statistically significant changes in mammographic density with vitamin D supplemen
tation compared with placebo. There is an ongoing need to evaluate biomarkers of response to novel breast cancer chemopreventive 
agents.

Women at high risk for breast cancer are eligible for chemopre

vention with selective estrogen receptor modulators or aroma
tase inhibitors, which have been shown in randomized controlled 

trials to reduce the incidence of invasive breast cancer by up to 
50%-65% (1-6). However, chemoprevention uptake remains as 

low as 5% among high-risk women (7,8), and rates of early treat
ment discontinuation are as high as 40% (9), for reasons includ

ing treatment side effects (10,11).
Another potential barrier to the use of breast cancer chemo

prevention is the lack of a short-term pharmacodynamic 
response biomarker that could demonstrate efficacy to patients 

(ie, reduction in breast cancer risk). With validation, a short-term 
biomarker of response might also serve as a surrogate for breast 

cancer incidence in chemoprevention trials, which could improve 
trial efficiency. Because high-risk women standardly receive 

annual mammography, mammography-based evaluations could 

serve as noninvasive biomarkers of response to chemopreven

tion. For example, mammographic density, or the proportion of 
radiodense glandular tissue on mammography, is a strong pre

dictor of breast cancer risk (12,13). Short-term reduction in mam
mographic density might serve as a predictive biomarker of 

response to chemoprevention with tamoxifen (14). However, the 
use of mammographic density is limited by variability in radiolo

gists’ visual interpretations (15), as well as lack of observed 
change in mammographic density among postmenopausal 

women who receive aromatase inhibitors (16-18).
Deep learning technologies applied to mammographic images 

might refine breast cancer risk prediction through evaluation of 
unique features beyond those visible to the human eye. Using a 

screening mammographic dataset of patients with known breast 
cancer (cases) and patients without breast cancer (controls), we 

developed a novel, fully automated convolutional neural 
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network–based breast cancer risk model that evaluates unique 
mammographic features to provide a breast cancer risk score 
(19). The convolutional neural network model was a more accu
rate, independent predictor of breast cancer risk than mammo
graphic density, with an overall accuracy of 72% in predicting 
breast cancer. Among a racially and ethnically diverse screening 
population, we observed that a hybrid model incorporating the 
convolutional neural network-based breast cancer risk model 
and the Breast Cancer Surveillance Consortium risk calculator 
more accurately predicted breast cancer than the Breast Cancer 
Surveillance Consortium model alone among Black and Hispanic 
women (20). We also applied the convolutional neural network 
model to serial mammograms among high-risk women and 
observed that women who received anti-estrogen chemopreven
tion compared with those who did not have a greater mean 
decrease in convolutional neural network score from baseline to 
3-5 years of follow-up (21).

Further investigation requires application of the convolutional 
neural network-based breast cancer risk model to mammo
graphic datasets among high-risk women, including those 
enrolled in clinical trials evaluating novel chemopreventive 
agents. In an exploratory analysis of a completed early phase 
chemoprevention trial of vitamin D, we hypothesized that vita
min D supplementation is associated with a greater decrease in 
convolutional neural network-based risk score compared with 
placebo among premenopausal women at high-risk for breast 
cancer. SWOG S0812 was a multicenter, randomized, double- 
blind, placebo-controlled trial among premenopausal women 
who met high-risk criteria for breast cancer, based on 5-year risk 
of invasive breast cancer of at least 1.67% and/or lifetime risk of 
at least 20%, history of atypical hyperplasia, lobular or ductal 
carcinoma in situ, prior stage 0–II breast cancer, a hereditary 
breast cancer syndrome, or high mammographic density (22). 
Participants had baseline serum 25-hydroxyvitamin D (25[OH]D) 
of no more than 32 ng/mL and were randomly assigned 1:1 to 
receive oral vitamin D3 20 000 international units (IU) weekly or 
placebo for 12 months. The primary endpoint was change in 
mammographic density at 12 months, measured using the 
Cumulus technique (23). Digital mammograms were collected at 
baseline, 12 months, and 24 months after random assignment, 
and serum biomarkers including vitamin D metabolites (25[OH] 
D), insulin-like growth factor 1 (IGF-1), and IGF binding protein3 

were assessed at baseline, 6 months, and 12 months. This trial 
was approved by the SWOG central institutional review board, 
and informed consent was obtained for all participants.

We applied the convolutional neural network breast cancer 
risk model, as previously described (19,21), to bilateral mammo
grams obtained during S0812 to assess for absolute change in 
convolutional neural network score from baseline to 12 and 
24 months. The output of the convolutional neural network 
model is expressed as a continuous variable (range ¼ 0-1), with 
higher scores indicating higher predicted risk of breast cancer. 
This risk score does not incorporate clinical risk factors. We used 
2-sample t tests to compare change in convolutional neural net
work score from baseline to 12 and 24 months among women 
who received vitamin D supplementation vs placebo. We calcu
lated Pearson correlation coefficients to assess for correlation 
between change in convolutional neural network score at 
12 months and change in mammographic density and serum bio
markers at 12 months. We conducted multivariable linear regres
sion analyses to assess factors associated with 1) baseline 
convolutional neural network-based breast cancer risk score and 
2) change in convolutional neural network-based risk score. We 
also assessed the relationship by treatment arm and change in 
convolutional neural network-based risk score, adjusting for age, 
body mass index (BMI), race and ethnicity, mammographic den
sity, and serum biomarkers. The level of statistical significance 
was a P value less than .05 for all analyses. Analyses were con
ducted using SAS OnDemand for Academics (Cary, NC, USA).

Baseline characteristics of the 208 enrolled participants were 
previously reported (22). Median age was 44.6 years (range ¼ 21- 
50 years), and 77.4% of participants identified as non-Hispanic 
White, 6% as Black, and 8% as Hispanic. Median BMI was 25.9 kg/ 
m2 (range ¼ 18.6-46.5 kg/m2). Baseline characteristics were simi
lar between treatment arms.

Baseline convolutional neural network scores, mammo
graphic density, and serum biomarkers, and change in these 
measures at follow-up, are shown in Table 1. Among the 208 
enrolled women, 109 had evaluable baseline mammograms for 
analysis using the convolutional neural network model of whom 
97 had evaluable mammograms at 12 months and 67 had evalu
able mammograms at 24 months. Mean baseline mammographic 
density was similar between vitamin D and placebo groups 
(38.1% vs 35.4%, P¼ .332) as were mean baseline convolutional 

Table 1. Convolutional neural network-based breast cancer risk scores, mammographic density, and serum biomarkers at baseline and 
change from baseline to follow-up among women enrolled in SWOG S0812, stratified by treatment arm

Outcome Timeframe

Vitamin D Placebo

PaNo. Mean (SD) No. Mean (SD)

Convolutional neural network-based risk score Baseline 57 0.219 (0.167) 52 0.190 (0.113) .234
Change at 12 months 50 0.005 (0.092) 47 0.002 (0.120) .875
Change at 24 months 30 0.020 (0.143) 37 0.001 (0.114) .563

Mammographic density, % Baseline 84 38.12 (17.16) 73 35.44 (17.26) .332
Change at 12 months 81 −0.55 (7.66) 73 −0.12 (7.95) .732
Change at 24 months 67 −1.39 (8.22) 58 0.96 (10.38) .160

Serum 25-hydroxyvitamin D, ng/mL Baseline 96 25.43 (10.73) 91 24.19 (8.59) .382
Change at 6 months 85 18.03 (17.85) 77 4.30 (9.11) <.001
Change at 12 months 62 18.66 (18.32) 57 3.38 (9.91) <.001

Serum insulin-like growth factor 1, ng/mL Baseline 96 15.89 (30.69) 92 17.14 (31.66) .783
Change at 6 months 85 −6.47 (41.80) 78 6.72 (34.29) .029
Change at 12 months 63 −10.86 (46.21) 57 −0.37 (34.65) .166

Serum insulin-like growth factor binding protein 3, mg/mL Baseline 96 5.10 (1.02) 92 5.04 (0.96) .640
Change at 6 months 85 0.06 (0.68) 78 0.11 (0.64) .660
Change at 12 months 63 −0.20 (0.74) 57 0.07 (0.81) .056

a Using 2-sample t tests. Bolded value indicates P value <.05, considered statistically significant.
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neural network scores (0.219 vs 0.190, P¼ .234). There was no 
statistically significant difference between groups in change in 
convolutional neural network risk score from baseline to 
12 months (0.005 vs 0.002, P¼ .875) or in change in convolutional 
neural network risk score from baseline to 24 months (0.020 vs 
0.001, P¼ .563). As previously reported (22), the differences in 
change in mammographic density from baseline to follow-up (12 
or 24 months) between groups were not statistically significant. 
Receipt of vitamin D supplementation was not statistically signif
icantly associated with change in convolutional neural network 
risk score at 12 months after adjusting for age, BMI, race and eth
nicity, and change in mammographic density at 12 months.

We also evaluated if baseline convolutional neural network 
risk score and change in convolutional neural network risk score 
at 12 months were associated with age, BMI, mammographic 
density, and serum biomarkers. There was a statistically signifi
cant positive correlation between baseline convolutional neural 
network-based risk score and age (correlation coefficient R ¼
0.288, P¼ .0024) but no significant correlation between baseline 
convolutional neural network-based risk score and BMI or base
line mammographic density. There was no significant correlation 
between baseline convolutional neural network-based risk score 
and baseline serum 25(OH)D, IGF-1, or IGF binding protein 3. In a 
multivariable linear regression model adjusting for BMI, baseline 
mammographic density, and baseline serum 25(OH)D (Table 2), a 
1-year increase in age was associated with a 0.007 increase in 
baseline convolutional neural network score (P¼ .002). However, 
there was no statistically significant association between change 
in convolutional neural network-based risk score and age, BMI, 
change in mammographic density, or change in serum 25(OH)D 
at 12 months in univariable or multivariable analyses, adjusting 
for baseline convolutional neural network-based risk score.

In summary, we applied the convolutional neural network– 
based breast cancer risk model to prospectively obtain mammo
grams from high-risk premenopausal women enrolled in SWOG 
S0812 and found that change in convolutional neural network- 
based breast cancer risk score at 12 months was not statistically 
significantly different between women who received vitamin D 
supplementation compared with placebo. Our findings are con
sistent with the primary results of S0812, which did not find a 
statistically significant difference in short-term change in mam
mographic density with vitamin D supplementation compared 
with placebo (22).

Although the lack of observed change in the convolutional 
neural network-based risk score could support the primary con
clusion of S0812 that there is insufficient evidence for the use of 

vitamin D supplementation for breast cancer risk reduction, it 
remains unknown whether nonhormonal interventions result in 
change in mammography-based assessments, including convo
lutional neural network-based risk score and mammographic 
density and whether these assessments should be used as surro
gates for breast cancer risk to assess novel chemopreventive 
agents. Given that a barrier to the development of novel breast 
cancer chemoprevention strategies is the large sample sizes and 
years of follow-up required to report outcomes such as breast 
cancer incidence, future studies utilizing prospectively obtained 
mammograms from chemoprevention trials are necessary to 
evaluate potential short-term biomarkers of response to nonhor
monal chemopreventive agents.

We did not observe any statistically significant association 
between change in convolutional neural network score at 
12 months and change in serum biomarkers, including IGF-1, IGF 
binding protein3, and vitamin D metabolites. Baseline convolu
tional neural network-based risk score had a statistically signifi
cant positive correlation with patient age, consistent with the 
known increase in breast cancer risk with increasing age (24). We 
did not find statistically significant associations between base
line convolutional neural network-based risk score and baseline 
mammographic density or between changes in convolutional 
neural network-based risk score and mammographic density, 
possibly because the convolutional neural network model evalu
ates mammographic features beyond quantification of mammo
graphic density . Further investigation of potential associations 
between convolutional neural network-based risk score and 
imaging- and/or blood-based biomarkers of breast cancer risk 
could provide potential insight into convolutional neural net
work–based risk prediction but will require larger patient 
cohorts.

Our analysis also highlights the need for improved systems to 
collect breast imaging for translational substudies within pro
spective multicenter clinical trials. Only approximately half of 
participants in S0812 had evaluable mammograms for analysis 
using the convolutional neural network-based model at baseline 
and 12 months. Notably, only approximately two-thirds of partic
ipants had evaluable mammograms for analysis of change in 
mammographic density at 12 months, the primary endpoint of 
S0812. Although we do not have patient-level information on rea
sons for the greater proportion of unevaluable mammograms 
using the convolutional neural network-based model compared 
with mammographic density, inadequate image quality for anal
ysis using the convolutional neural network-based model and 
issues with central upload and transfer of images to the 

Table 2. Multivariable linear regression analyses evaluating associations between baseline convolutional neural network-based breast 
cancer risk score and change in convolutional neural network risk score at 12 months and other variables, including age, 
mammographic density, and serum 25-hydroxyvitamin D [25(OH)D]a

Variable

Baseline convolutional neural  
network-based risk score

Change in convolutional neural network-based risk  
score at 12 months

Estimate (95% CI) P Estimate (95% CI) P

Age, y 0.007 (0.003 to 0.012) .002 −0.002 (−0.006 to 0.434) .056
Body mass index, kg/m2 0.004 (−0.001 to 0.008) .132 −0.002 (−0.005 to 0.002) .410
Baseline convolutional neural network-based risk score −0.450 (−0.618 to -0.282) <.001
Baseline mammographic density 0.001 (0.001 to 0.003) .108
Baseline serum 25(OH)D, ng/mL −0.002 (−0.005 to 0.001) .246
Change in mammographic density at 12 mo, % −0.001 (−0.004 to 0.001) .257
Change in serum 25(OH)D, at 12 mo, ng/mL −0.001 (−0.003 to 0.002) .470

a CI ¼ confidence interval. Bolded value indicates P value <.05, considered statistically significant.
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analyzing center might have contributed. Efficient methods for 
collection of breast imaging among participants in clinical trials 
will be essential to the evaluation of potential imaging-based bio
markers of response to chemoprevention.

Additional limitations of our analysis that could limit general
izability include use of digital mammograms but not digital 
breast tomosynthesis, which is increasingly used in the clinical 
setting. We do not have information on mammography vendors 
for available images. Also, participants in S0812 were predomi
nantly non-Hispanic White women, which could limit generaliz
ability to diverse populations. Overall, the small sample size of 
participants with evaluable mammograms limited the statistical 
power of our analyses and might have contributed to the lack of 
observed associations between change in convolutional neural 
network-based risk score and vitamin D supplementation, as 
well as change in serum biomarkers and mammographic den
sity.

In conclusion, vitamin D supplementation did not result in a 
statistically significantly different change in convolutional neu
ral network-based breast cancer risk score compared with pla
cebo among high-risk premenopausal women enrolled in S0812. 
Further evaluation of the convolutional neural network model as 
a potential biomarker of response to breast cancer chemopreven
tion will require use of large, prospectively obtained mammo
graphic datasets among high-risk women who receive selective 
estrogen receptor modulators or aromatase inhibitors, as well as 
nonhormonal chemopreventive agents. There is still an unmet 
clinical need to evaluate potential short-term biomarkers of 
response to nonhormonal chemopreventive agents, which could 
be used to accelerate development of novel prevention strat
egies.
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