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Abstract—As we enter the exascale computing regime, powerful supercomputers continue to 

produce much higher amounts of data than what can be stored for offline data processing. To 

utilize such high compute capabilities on these machines, much of the data processing needs to 

happen in situ, when the full high-resolution data is available at the supercomputer memory. In 

this article, we discuss our MFiX-Exa simulation, which models multiphase flow by tracking a 

very large number of particles through the simulation domain. In one of the use cases, the carbon 

particles interact with air to produce carbon dioxide bubbles from the reactor. These bubbles are 

of primary interest to the domain experts for these simulations. For this particle-based 

simulation, we propose a streaming technique that can be deployed in situ to efficiently identify 

the bubbles, track them over time, and use them to down-sample the data with minimal loss in 

these features.  
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 EVERY YEAR, supercomputers continue to 

become more powerful in terms of their computing 

capabilities. Compared to such high compute 

power, the I/O capabilities of the machines have not 

scaled proportionately. This creates a mismatch 

between the amount of data that can be computed 

by these supercomputers and how much data can be 

moved over to persistent storage for future data 

analysis and exploration tasks. Therefore, most of 

the important data analysis tasks for large-scale 

scientific simulations must occur while the data is 

still available at the supercomputer memory. 

Compared to the post-hoc analysis pipeline, this 

new streaming data analysis regime is referred to as 

in-situ or online processing. 

For scientific simulations, data can be divided 

primarily into two groups: (1) grid-based and (2) 

particle-based. For grid-based data, generally the 

values of the variables (e.g., pressure, temperature) 

are defined on grid locations over a computational 

domain. For particle-based data, a collection of 

particles is simulated by the physics codes that 

move through space and time. Depending on the 

simulation, individual particles with some local 

properties (e.g., energy transport via eddies in flow 

simulations) or a collection of particles with some 

global properties (e.g., particles forming halos in 

cosmological simulations) can be of interest to the 

domain experts.  

In this article, we focus on a particle-based 

simulation, named MFiX-Exa. Starting from a set of 

particles, the domain experts for this simulation 

want to formulate and extract bubble statistics in 

each time step. Given that these bubbles get created, 

move over time, and get released into the air, 

Figure 2. Conversion from particle 

dataset to density field. a) For timestep 

150, an example of spatial histogram 

creation is shown. b) The visualization 

of the same data after conversion to its 

density field using a higher number of 

histogram bins. The high-density 

regions are shown in red. 

Figure 1. Example outputs from MFiX-

Exa simulation. All the particles are 

shown for a) time step 150 and b) time 

step 408. 
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domain experts need to have efficient tracking of 

these features over time. But lots of particles are 

tracked over these time steps, and experts want to 

reduce the number of particles without losing the 

bubbles from the data. Due to the scale of the 

simulation, all these data analyses and reductions 

need to happen in batches, as the data becomes 

available in-situ. In this work, we propose a 

lightweight streaming bubble detection and 

tracking method and demonstrate a bubble-

preserving particle-sampling algorithm. This 

algorithm is designed to handle the in-situ use case 

where data is distributed across multiple 

processors and the time steps are generated and 

analyzed in a streaming setting. 

 The manuscript is organized as follows: In the next 

section, we provide a brief overview of the existing 

works that relate to this paper. Next, we discuss the 

simulation and its data output. Then, we provide the 

details of our in-situ feature (bubbles, in this case) 

detection method. Next, we discuss our in-situ 

feature tracking algorithm. After that, we provide 

details on our feature-driven particle down-

sampling approach. Finally, we conclude this 

manuscript with a summary of the proposed in-situ 

approaches. 

RELATED WORK 

The need for data reduction techniques for an in-

situ environment has grown significantly in recent 

years, and various approaches to in-situ data 

reduction techniques have been proposed. While 

several scientists have explored data sub-sampling 

as one of the potential techniques [7], others have 

used distribution-based data representations as a 

suitable approach for in-situ data reduction [10]. 

Also, data reduction techniques such as wavelet-

based data modeling techniques and data 

compression techniques [2,8] have been shown 

effective. For a comprehensive list of data reduction 

techniques, please refer to the state-of-the-art 

report by Li et al. [3]. 

Feature tracking is an important data analysis 

problem for scientific datasets. One of the earliest 

works in feature tracking was by Samataney et al. 

[5] where feature correspondence was used to track

the features over time. Volume overlapping-based 

feature tracking was proposed by Silver and Wang

[6]. Feature tracking in particle datasets was 

investigated by Sauer et al., and the tracking was 

done in joint particle/volume datasets [9]. A 

predictor–corrector based feature tracking 

algorithm was proposed by Muelder et al. [11], and 

an in-situ application of a similar method was 

demonstrated in [4]. A broad survey of feature 

tracking techniques can be found in [12] by Post et 

al. Compared to the above works, here we focus on 

feature tracking techniques that can be deployed in 

an in-situ setting. 

DESCRIPTION OF THE DATASET 

The simulation represents a small-scale, pseudo 

two-dimensional (0.15m × 0.0032m × 0.0508m) 

system where a constant density (1.205 kg/m3), 

constant viscosity (1.8 × 10-5 Pa-sec) gas is used to 

fluidize spherical particles of uniform size (148 × 

10-6 m diameter) and density (1300 kg/m3). A

pressure outflow is prescribed at the top of the

domain, while a constant velocity gas inlet (0.0342

m/sec) is specified along the bottom. The remaining

boundaries are modeled as solid walls. The domain

is decomposed into 672 × 10 × 228 computational

cells and initialized with solids by randomly

distributing approximately 3.6 million particles.  As

the simulation progresses, particles settle in the

direction of gravity, forming a bubbling fluidized

bed (Figure 1).

Time-averaged particle statistics (e.g., averaged 

particle velocities) and transient field properties

(e.g., bubble size and velocity) are commonly used

to compare experimental data and model results

[1]. Similar analysis could be employed in assessing

reactor designs whereby bubble (and/or cluster) 

statistics would provide engineers insight into flow

phenomena that adversely impact multiphase

reactor performance (e.g., gas by-passing via bubble

formation).

BUBBLE DETECTION IN IN-SITU SCENARIO 

For this dataset, the bubble features are vaguely 

defined as low-density regions or voids in the data. 

To detect such features, we first need to compute 

the density field from the point dataset. Since the 

application mandates the algorithms be suitable for 

an in-situ environment where the data is 

distributed across multiple processors, we propose 

a histogram-based density estimate.  

Histograms are essentially counts of values falling 

into each bin, and these counts are efficiently 
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parallelizable because they can be added up across 

different processors. In our case, we use a histogram 

over the spatial domain. Each processor is 

responsible for the advection of a subset of 

particles, and it has the knowledge of the complete 

spatial domain of the simulation. For each 

processor, we divide the domain into the same 

three-dimensional regular grid (e.g., as shown in 

Figure 2a). Now, each processor can compute a local 

histogram by computing how many particles are 

falling into each bin. These local histograms can be 

summed together to derive the final density 

histogram. Since the size of the histogram is very 

small compared to the size of the original data, we 

now perform all the operations on this histogram 

for bubble identification and tracking. Further, 

because each bin is spread across the domain, 

simply visualizing the density field will give us 

information regarding where the bubbles are 

located. We can think of this spatial histogram as a 

regular discretization of space, and it can be used as 

a regular grid dataset for analysis and visualization 

purposes. 

For identification of the bubbles, we apply a 

thresholding (K) on the density field to produce our 

feature field (Ffeature) which is essentially a binary 

version of the density field of same size:  

𝐹𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  {
1 =  if 𝐹𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≥  𝐾

0 = otherwise 
(1

) 

Essentially, for all locations where the density field 

value Fdensity ≥K, we set the locations to zero. 

Otherwise, the value is set to 1. This step assigns all 

the locations that are part of a bubble as 1, signifying 

that this is the feature of interest.  

At this stage, although the bubbles can be visualized 

(Figure 2b), they cannot be distinguished from each 

other because all the bubbles are assigned a value of 

1. To prepare each bubble for tracking and

collecting statistics individually, we mark each

bubble region with a unique identifier. To achieve

this, we perform a connected components 
algorithm on this binary field (Figure 3a). Primarily 

used for images, this algorithm finds the total

number of components in the field. We apply a

flood-fill-based connected component algorithm for

identifying all the bubbles. This method is

performed on only one processor because we are

not applying it to the particles, rather it is applied to

the binary version of the density histogram.

After this stage, we need to make one correction to 

the detected bubbles. The top layer of air will be

detected as one bubble, which in fact, should not be

considered a bubble at all. To fix this, we determine

which bubble has a top layer that is the same as the

data domain. We remove that bubble from our list

of bubbles (Figure 3b) and then move on to track

them over time.

Figure 3. Individual bubble identification 

from the binary labeled field. a) Schematic 

example showing how a connected-

components algorithm changes the binary 

field to assign individual bubbles a unique 

identifier at each time step. b) The 

visualization of time step 150 after 

identifying individual bubbles.  
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BUBBLE TRACKING IN IN-SITU SCENARIO 

Understanding how bubbles evolve is an important 

aspect of the exploration process for this dataset. 

Bubbles get created; move over time; and merge, 

split, or die. Domain experts want to explore such 

events associated with the bubbles for the course of 

the simulation time. In the previous section, we 

described how the individual bubbles can be 

assigned a unique identifier. But when such a 

method is applied independently for each time step, 

the same bubble might be assigned a different 

identifier when it moves from time step t to t + 1. 

Tracking ensures that the same bubbles always get 

the same tag or id irrespective of which time step 

they belong to. 

Tracking consists of the following scenarios: 

1. Born: A new bubble is born.

2. Move: A bubble has moved to a new location

with or without changing shape.

3. Split: An existing bubble has split into two or

more smaller bubbles.

4. Merge: Two (or more) smaller bubbles have

merged to form a larger bubble.

5. Die: A bubble moves out of the particles and

gets mixed into the air.

Identification of these events in-situ can be 

challenging due to the streaming nature of the 

problem—the time steps come one at a time and as 

we move to the next time step, the previous time 

step no longer exists in the memory. To alleviate 

these constraints, we retain the bubble information 

from the previous time step to match with the next 

one. Because the bubble information generated 

from the spatial histograms is much smaller in size 

compared to the full-scale particle data, we can 

carry it from a given time step to the next.  

To resolve the tracking scenarios (Figure 4a), we 

first try to detect the move event. For this event, we 

use the spatial overlap criteria. For a given bubble, 

we attempt to search for another bubble in the next 

time step that has maximum overlap. Because all the 

bubbles in this dataset are primarily moving 

upwards, we use the predictor–corrector method 

[11]. We first predict that the bubble will be moving 

upwards given the average speed of the 

surrounding particles of that location and then find 

the bubble with maximum spatial overlap with this 

predicted bubble location. When a move event is 

found, the bubble id from the previous time step is 

assigned to the moved bubble of the new time step. 

This way we can be consistent with the bubble ids 

over time.   

Next, we check for split/merge events. For detecting 

split events, we check the bubble data of the current 

time step against the previous one. For each bubble 

of the current time step, we perform a location-

based overlap comparison with the bubbles from 

the previous time step. If we observe there were 

overlaps with more than one bubble, we conclude a 

merge event occurred. Merge and split can be 

thought of as similar events except reversed in time 

direction; that is, a merge event in the forward 

comparison of time t with t + 1 can be thought of as 

a split event when comparing time t + 1 with time t. 

We can use this idea to detect merge events similar 

to detecting split events in situ, except we compare 

time t with time t + 1 for bubble overlaps, as 

mentioned in the split detection earlier. 

After the application of this tracking algorithm, 

bubbles can be efficiently assigned corresponding 

Figure 4. Illustration of proposed in-situ 

bubble tracking method. a) From one time-

step to the next, existing bubbles can move 

(change shape), split, or merge with other 

bubbles. A new bubble can also be born 

with a new id. b) After applying bubble 

tracking, visualization from time step 150. 

Compared to Figure 3b, we see the bubble 

ids are now more numerous in Figure 4b 

because they are uniquely assigned to each 

bubble moving over time. 

Id 1 Id 1 

Id 1 

Id 2 

Id 1 

Id 2 

Id 1 

Id 1 
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identifiers that are consistent over time. In Figure 

4b, we show the outcome of applying this method 

on the MFiX-Exa time step 150. Compared to Figure 

3b, where our method is not applied, we observe 

that the bubble ids are more numerous when using 

our tracking method. An increased number is 

intuitive given that after tracking bubbles for 

approximately 150 time steps, many bubbles have 

appeared or disappeared. Since unique ids are 

assigned over time steps, we see that the minimum 

bubble id in Figure 4b starts at 292, whereas in 

Figure 3b, all the bubbles have local ids, resulting in 

a range of numbers from zero to 19. 

As we track the bubbles over time, we can further 

collect their statistics and life-span summary 

reports. For each bubble, we can track its time 

history (Figure 5) and compute properties—such as 

volume—as it moves through time. 

BUBBLE-AWARE PARTICLE SAMPLING IN 

IN-SITU SCENARIO 

For exascale simulations such as MFiX-Exa, one of 

the primary needs is to reduce the datasets such 

that they can also be explored in a post-hoc analysis 

pipeline. For in-situ data reduction, there are a few 

popular choices available to domain experts, such as 

random and regular sampling. For a particle dataset 

such as this one, regular sampling often generates 

less useful results because it can produce 

visualization artifacts. Random sampling, on the 

other hand, is generally a safe choice given that the 

selection of particles is random, thereby avoiding 

sampling artifacts.  

One drawback of using such generic sampling 

methods for a dataset where the experts are 

interested in preserving the features (in this case, 

bubbles) stems from the fact that random methods 

cannot ensure the features of the dataset will be 

preserved with high fidelity. In this manuscript, we 

propose feature-based sampling for this dataset so 

that the features of the data are better preserved.  

In our approach, we first perform the bubble 

detection as mentioned in Section “BUBBLE 

DETECTION IN IN-SITU SCENARIO”. Since bubble 

information is contained in a histogram-like derived 

product, when performing sampling, we use this 

density histogram. To ensure the bubbles of the 

data are preserved as best as possible given the 

Figure 6. Sampling results for the particles 

from time step 150. Five percent of samples 

have been taken using a) random sampling 

and b) our proposed bubble-preserving 

sampling. As seen from the results, the 

bubbles are more prominent and better 

preserved (refer to the zoomed-in view) with 

our method. 

time 

B
u

b
b

le
 id

 

Figure 5. Bubble statistics: visualization 

of evolution of bubbles over time. 
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storage limitation, our primary goal is to preserve 

the density histogram. For example, if the original 

time step consisted of 1 million particles and we 

need to select 100,000 particles from that time step, 

the selections are made such that the resulting 

density histogram from the sampled data looks very 

similar to the histogram from the original data. To 

ensure this, we devise a two-pass algorithm over 

the data where first the density histogram is 

created. Then, the bubble regions are left empty and 

particles from the non-bubble regions are selected 

proportionate to the original density. Again, since 

we are applying the analysis primarily to a 

histogram that is much smaller in size compared to 

the data, this histogram is shared across all the 

processors. This enables distributed sampling of the 

particles. 

An example of such sampling is shown in Figure 6. 

In this case, we take 5% of samples from the original 

data using both the random method (Figure 6a) and 

our proposed method (Figure 6b). Looking closely 

into the zoomed-in views, it can be observed that 

the bubbles are better preserved with our data-

sampling method. 

DISCUSSION 

In this section, we briefly discuss a few of the design 

choices and reproducibility aspects that will 

facilitate porting this workflow to the parallel and 

distributed setting. 

Histogram Creation: Creation of density histogram 

from the particles is an important step. For 

scalability, histograms can be created efficiently by 

the local processors and then MPI_Reduce like 

operation can be applied to collect all the local 

histograms into a global histogram. This keeps the 

data communication quite low and scale to a large-

scale data simulation. 

Memory Footprint: Global histograms are used by 

each processor for sampling and bubble detection. 

Generally, given 3.6 million particles that need x,y,z 

locations to be stored, a density histogram bin 

resolution of 128x8x64 produces almost two orders 

of magnitude smaller memory overhead. 

Data Storage: While sampling the particles, each 

processor operates individually, resulting in good 

scaling. When writing out the reduced set of 

particles, parallel I/O modules such as HDF5 can be 

incorporated in future. 

Reproducibility: The software package MFiX is 

available at https://mfix.netl.doe.gov (password-

protected repository); however, to date no public 

releases of MFiX-Exa have been made available. 

MFiX-Exa will be made publicly available in the 

future, but no release schedule has been established. 

The particle-tracking software was developed in Los 

Alamos National Laboratory and is currently in the 

process of being released as an open source code. Due 

to national laboratory rules, open sourcing of code is a 

time-consuming process. We would like to make the 

code available to the readers as soon as the open-source 

release process is completed. 

FUTURE WORK 

In the future, we plan to deploy these in-situ-ready 

algorithms in a real in-situ setting with MFiX-Exa 

simulations and conduct a detailed performance 

analysis. We would like to explore generic feature-

detection approaches that can apply to a variety of 

particle/grid-based simulations. Additionally, we 

would like to apply both unsupervised (e.g., 

clustering) and semi-supervised (e.g., collecting 

some expert labeled data and training a classifier) 

machine learning techniques for more robust and 

automated feature extraction and tracking. Finally, 

we would like to explore the possibilities of new 

data reduction schemes that can be incorporated 

into the in-situ scenario. 

CONCLUSION 

In this manuscript, we discussed a feature-based 

analysis of MFiX-Exa particle simulations for 

various in-situ use cases. We described a 

lightweight bubble-detection algorithm based on 

spatial histograms for particle density computation. 

As the time steps arrive one by one in the in-situ 

scenario, we discussed a bubble-tracking approach 

from these individually detected bubbles. With a 

reliable bubble extraction method, we discussed 

how that can be used for collecting efficient samples 

from the original set of particles. This will enable in-

situ data reduction with high fidelity feature 

preservation. Our proposed in-situ-ready 

approaches are primarily geared towards MFiX-Exa 

simulations, but it can still be useful to other 

particle-based simulations with similar feature-

driven analysis needs. 

https://mfix.netl.doe.gov/
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