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Abstract 
Learning the sounds of a new language depends on the ability 
to learn novel auditory categories. Multidimensional 
categories, whether speech or nonspeech, can be learned 
through feedback and different category structures are 
proposed to recruit separate cognitive and neural mechanisms. 
There is substantial individual variability in learning; however, 
it is rare to compare learning of different categories in the same 
individuals. Understanding the sources of variability has 
theoretical implications for category learning. In this study, we 
trained the same participants on three types of 
multidimensional auditory categories. Participants learned 
nonspeech rule-based, nonspeech information-integration, and 
Mandarin speech categories. Learning of all category types was 
related across individuals and differences in working memory 
similarly supported learning across tasks. There was 
substantial variability in learning outcomes and strategies used 
to learn the categories. There are multiple paths to successful 
learning and appreciation of individual variability is essential 
to understanding the mechanisms of learning.   

Keywords: category learning; audition; working memory; 
individual differences 

Introduction 
Complex natural categories, such as speech sound categories, 
are often multidimensional (Hillenbrand et al., 1995). 
Learning the sounds of a new language requires mapping 
these multidimensional inputs into novel categories (Holt & 
Lotto, 2010). The structure of categories in multidimensional 
space has been proposed to be a key factor driving the 
cognitive and neural mechanisms that support successful 
learning (Ashby et al., 1998; Ashby & Maddox, 2011). 

Specifically, according to a dual systems framework 
initially proposed by Ashby et al. (1998), at least two systems 
support category learning. Originally developed in the visual 
modality, this theory has recently been expanded to the 
auditory modality (Chandrasekaran, Yi & Maddox, 2014). 
The dual systems framework proposes that an explicit system 
supports learning of categories that can be described as rule-
based (RB) categories. RB category learning requires 
selective attention to individual stimulus dimensions and 
relies on hypothesis generation and testing (Ashby et al., 
1998). In contrast, the implicit system supports optimal 

learning of information-integration (II) categories. II 
category learning requires pre-decisional integration along 
multiple stimulus dimensions and relies on procedural 
learning processes (Ashby et al., 1998). RB and II categories 
can both be multidimensional. A key feature that is thought 
to differentiate the two types of categories is that RB 
categories can be distinguished by rules that are easy to 
describe verbally and II categories are difficult to describe.  

Typically, RB and II categories studied in the lab are 
artificial categories, generated by experimenters to examine 
novel learning. However, it has also been proposed that 
natural categories like speech categories can be thought of as 
II categories (Yi et al., 2016). Many of the world’s languages 
are tonal languages, meaning that pitch-related information 
of a syllable or word is lexically distinctive. For example, in 
Mandarin, the same syllable (e.g., /ma/) produced with four 
different tones has four unique meanings. Mandarin tone 
categories vary across multiple pitch-related dimensions, 
cannot easily be described by speakers of non-tonal 
languages and, thus, can be difficult to learn. Research has 
demonstrated that Mandarin tone learning may rely on 
similar neural mechanisms as II learning (Yi et al., 2016) and 
is affected by the same manipulations that affect II learning 
(Chandrasekaran et al., 2014; Maddox et al., 2014; but see 
Maddox et al., 2013). However, learning of Mandarin and 
artificial II or RB categories has never been compared in the 
same individuals.  

Even in the same task, there is often a wide variability in 
performance (e.g., Llanos et al., 2020; Shamloo & Hélie, 
2020) – while some individuals learn the categories quickly 
and quite well, others struggle to learn. Studies of RB and II 
learning tend to focus on the differences between the tasks, 
rather than comparing how the same individuals approach the 
tasks. To better understand the sources of individual 
variability during learning, we compare final block 
accuracies of the same individuals across tasks as measures 
of learning outcomes. One possibility is that individuals who 
succeed in one task may also succeed in the other tasks. 
However, if Mandarin is more similar to an II problem, II and 
Mandarin learning may be more strongly related to one 
another than to RB learning. 
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Individual differences in cognitive abilities have also been 
proposed to differentiate RB and II learning. Specifically, the 
role of working memory (WM) has been proposed to be 
vitally important for RB learning and either minimally or not 
involved in II learning (Ashby et al., 1998). The evidence for 
a differential role of WM in II and RB learning is quite mixed 
(DeCaro et al., 2008; Lewandowsky et al., 2012; Miles & 
Minda, 2011; Miles, Matsuki, & Minda, 2014; Newell et al., 
2013; Newell, Dunn, & Kalish, 2011; Roark & Holt, 2019; 
Zeithamova & Maddox, 2007). A competing perspective 
argues that WM supports successful learning, regardless of 
the underlying category structure (Kalish, Newell, & Dunn, 
2017). In this study, we examine how individual differences 
in WM are related to learning outcomes. If, as the dual 
systems perspective predicts, WM is more relevant for 
successful RB learning compared to II or Mandarin tone 
learning, we should see a stronger relation between WM and 
RB learning outcomes than II or Mandarin learning 
outcomes. If instead, WM supports successful learning 
regardless of category structure, we should see a similar 
relation between WM and learning outcomes of all tasks. 
Assessing these alternative hypotheses in the same 
individuals will provide a better understanding of the role of 
WM in learning categories with different structures. 

Finally, we compare the types of strategies individuals use 
to learn the categories. During learning, individuals can use 
different strategies to separate stimuli into categories. They 
can separate the categories optimally based on the component 
dimensions and attending only to relevant information. 
Alternatively, they may use suboptimal strategies, attending 
to the underlying dimensions in a way that is not aligned with 
the task. Individual differences in strategies determine what 
information is encoded and remembered and is related to how 
well an individual learns. The strategies that individuals use 
across different tasks has not been explored. It is possible that 
successful learners are successful because they can flexibly 
shift their strategies based on what is optimal for the task. 
However, it is also possible that individuals may be 
successful despite using suboptimal strategies. 

Methods 
Across two sessions separated by at least one week, 
participants learned nonspeech RB, nonspeech II, and 
Mandarin speech categories. The order of the two nonspeech 
tasks was counterbalanced across sessions. After the first 
task, participants completed an automated version of the 
operation span task as a measure of WM capacity.  

Participants 
Participants were recruited through Prolific 
(www.prolific.sc) and the experiment was administered using 
the online Gorilla Experiment Builder (www.gorilla.sc; 
Anwyl-Irvine et al., 2019). One hundred participants ages 18-
35 (45 F, M 25.3 years, sd 5.05 years) completed one session 
and 90 returned for a second session. Of these 90 participants, 
86 (36 F, M 25.4 years, sd 5.04 years) completed all three 
tasks and four did not complete the Mandarin task. The 

analyses included participants who completed all three tasks. 
All participants were native speakers of non-tonal languages 
and reported no prior experience with any tonal languages 
including Mandarin. Participants received $10/hour for their 
participation for a total of $20 across two sessions. 

Stimuli 
All three category types required participants to use 
multidimensional information to distinguish four possible 
sound categories. Stimuli for the nonspeech tasks were 
nonspeech ripples varying in temporal modulation and 
spectral modulation (Fig. 1A-B). These dimensions are 
thought to be fundamental properties of complex sounds, 
including speech (Woolley et al., 2005). The nonspeech 
categories were created by sampling from a bivariate normal 
distribution and had 300 total stimuli (75 stimuli/category). 

 
Figure 1: A. Nonspeech Rule-Based and B. Information-

Integration category structures varying in temporal 
modulation (Hz) and spectral modulation (cyc/oct). C. 
Mandarin tone (T) speech categories varying in relative 
pitch (arbitrary units) and pitch change (arbitrary units). 

 
Stimuli for the Mandarin category learning task were 

natural speech productions recorded from native speakers of 
Mandarin Chinese and varying along relative pitch and pitch 
change dimensions (Fig. 1C). The lexical tone stimuli were 
produced in five syllable contexts (/bu/, /di/, /lu/, /ma/, and 
/mi/) by four speakers (2F, 2M) for a total of 80 stimuli (20 
stimuli/category). The stimuli from two speakers (1F, 1M) 
were used during training and the other two speakers (1F, 
1M) were used in the generalization test. The stimuli are 
clearly perceived as speech and were duration-normalized to 
440 ms and RMS amplitude matched to 70 dB. 

Procedure 
Participants completed two sessions, separated by at least one 
week. In session 1, participants completed one of the 
nonspeech learning tasks (RB or II) followed by an 
automated version of the operation span task (OSPAN, 
Unsworth et al., 2005) as a measure of WM capacity. In 
session 2, participants completed the other nonspeech 
learning task followed by the Mandarin tone learning task. 
Before the first task in each session, participants completed a 
sound check to ensure that they could hear the sounds and 
that they were wearing headphones. Specifically, three 1000 
Hz sounds played with an ISI of 100 ms in one ear at a time. 
Participants reported in which ears the sounds played. 
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Category Learning Participants were instructed to learn the 
four equally likely categories by listening to the sounds and 
using feedback to become more accurate. Participants learned 
the RB and II categories across five 100-trial blocks and the 
Mandarin categories across six 40-trial blocks. There were 
fewer trials in the Mandarin task because there are fewer 
category exemplars. Stimuli were presented dichotically for 
a duration of 1 sec (II/RB) or 440 ms (Mandarin). Participants 
pressed one of four buttons (1, 2, 3, or 4) and received 
feedback ("Correct"/"Incorrect") for 1 sec followed by a 1 sec 
ITI. After Mandarin training, participants categorized 40 
speech tokens from two novel speakers (1M, 1F) and no 
longer received feedback. 
 
Working Memory To assess WM capacity, participants 
completed an automated version of the operation span task 
(OSPAN, Unsworth et al., 2005). Participants were shown 
simple arithmetic problems (e.g., ( 9 + 5 ) x 1 = 15), reported 
whether the presented solutions were correct or incorrect, and 
were then shown a letter on the screen (e.g., W). After a full 
sequence was presented, participants recalled the letters 
presented in order. Participants saw 15 letter sequences that 
spanned from three to seven letters. The OSPAN score was 
calculated as the sum of the length of all of the correctly 
recalled spans. For instance, if a participant correctly recalled 
the sequence of four letters, four points were added to their 
score. We did not filter the scores on the basis of accuracy 
(Đokić, Koso-Drljević, & Đapo, 2018). 

Results 
We examined how learning outcomes were related across 
tasks, how WM capacity is related to learning outcomes, and 
the strategies participants used within and across tasks. 

Learning within and across tasks 
Participants were successful at both nonspeech and speech 
learning, with substantial variability across individuals (Fig. 

2A). We ran a 2 (II, RB) x 5 (block) repeated measures 
ANOVA to assess differences in II and RB learning. 
Accuracy generally improved across blocks (F(1, 340) = 
67.7, p < .001, hp2 = .44) and was higher for the II task (M = 
49%) than the RB task (M = 43%; F(1, 85) = 27.8, p < .001, 
hp2 = .25). There was no interaction between block and 
category (F(4, 340) = 0.54, p = .71, hp2 = 0.006). 

To assess learning in the speech task, we ran a 6-level 
repeated measures ANOVA to assess learning across blocks. 
Performance generally improved across blocks (F(5, 425) = 
35.5, p < .001, hp2 = .30). Participants were also able to 
generalize their category knowledge to two novel speakers 
(M: 48%, one-sample t(85) = 8.45, p < .001, d = 0.91). 

After confirming that participants learned the categories 
and that there was substantial individual variability in 
learning, we compared how learning outcomes were related 
across tasks by examining the correlations between final-
block accuracies across tasks (Fig. 2B). 

Final block accuracy was significantly positively 
correlated across all tasks (RB-II: r(84) = .67, p < .001; RB-
Mandarin: r(84) = .54, p < .001; II-Mandarin:  r(84) = .50, p 
< .001). We compared the strengths of these correlations 
using the cocor package in R (Diedenhofen & Musch, 2015). 
There were no significant differences in the correlations 
between RB-Mandarin and II-Mandarin (z = 0.47, p = .64) or 
RB-II and RB-Mandarin (z = 1.63, p = .10). However, the 
correlation between II-RB was significantly stronger than the 
correlation between II-Mandarin (z = 2.08, p = .037). 

Working memory and learning outcomes 
A separate question regards the association between WM 
capacity (indexed by the OSPAN score) and learning 
outcomes in each of the three tasks (Fig. 2C).  

WM capacity was significantly positively correlated with 
accuracy in all three tasks (RB: r(84) = .46, p < .001, II: r(84) 
= .35, p < .001, Mandarin: r(84) = .47, p < .001). There were 
no significant differences in the correlations of any task’s 

Figure 2: A. Block-by-block accuracy for the nonspeech Rule-Based (RB) and Information-Integration (II) tasks and 
Mandarin speech learning task relative to chance performance (25%) shown as a dashed-line. Lines reflect the mean and 

error bars reflect SEM. B. Correlations between final block accuracy in all three tasks individually. C. Correlations 
between OSPAN working memory score and final block accuracy in all three tasks individually. 
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final block accuracy and WM capacity (WM-II vs. WM-RB: 
z = 1.37, p = .17; WM-II vs. WM-Mandarin: z = 1.24, p = .21; 
WM-RB vs. WM-Mandarin: z = 0.12, p = .91). WM was not 
differently associated with RB, II, or speech learning. 

Strategies during learning 
To understand the strategies individuals use when learning 
different kinds of categories, we applied several classes of 
decision-bound computational models (Ashby, 1992; 
Maddox & Ashby, 1993). These models assume that 
participants divide the categories in the two-dimensional 
space with decision boundaries that can rely on implicit or 
explicit learning processes. We fit classes of models that 
make different assumptions: implicit model, explicit 
multidimensional and unidimensional models, and a random 
responder model. We chose these models because they allow 
for assessment of different dimension-based strategies during 
RB and II learning (Ashby & Maddox, 2011).  

The implicit Striatal Pattern Classifier reflects procedural 
learning mechanisms and assumes that participants use 
feedback to learn stimulus-response associations (Ashby et 
al., 1998; Ashby & Waldron, 1999) and can be thought of as 
a complex implementation of an exemplar model (Ashby & 
Rosedahl, 2017). This model has nine free parameters: eight 
that determine the location of hypothetical ‘striatal’ units in 
perceptual space and one that represents the noise associated 
with the placement of the units. 

The second class of models represents explicit, hypothesis-
testing mechanisms and includes multidimensional (MD) and 
unidimensional (UD) models. Explicit-MD models assume 
that the participant places two decision boundaries (one along 
each dimension) that are combined to determine category 
membership and have three free parameters: two for the 
boundaries along the x and y-dimensions and one noise 
parameter. Explicit-UD models assume that the participant 
sets three decision boundaries along only one of the 
dimensions (x-dimension or y-dimension) and have four free 
parameters: three for boundaries along the relevant 
dimension and one noise parameter.  

The random responder model that assumes that the 
participant guesses on each trial. 

Model parameters were estimated using maximum 
likelihood procedures (Wickens, 1982) and model selection 
used the Bayesian Information Criterion (BIC), which 
penalizes models with more free parameters: BIC = r*lnN - 
2lnL, where r is the number of free parameters, N is the 
number of trials in a given block for a given participant, and 
L is the likelihood of the model given the data (Schwarz, 
1978). For each block for each participant, the model with the 
lowest BIC value was selected as the best-fitting model. 

Participants can use different kinds of strategies and be 
successful in these tasks. However, each category type has an 
Optimal strategy that is particularly suited for learning and 
allows participants to achieve the highest possible accuracies. 

Figure 3: A. Strategies across all blocks with the movement of participants between strategies shown in shaded regions. 
B. Strategy type (Optimal/Suboptimal/Random) in the final block of each of the three tasks. The Optimal strategy was 

Explicit-MD for the Rule-Based task and Implicit for the Information-Integration and Mandarin tasks. 
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All other kinds of strategies are Suboptimal. Suboptimal 
strategies (except for Random strategies) may still lead to 
above-chance learning but are not associated with the highest 
accuracy. The Implicit strategy is Optimal for the II and 
Mandarin tone categories and the Explicit-MD strategy is 
Optimal for the RB categories. 

We first examined the strategies participants used within 
the three tasks (Fig. 3A). Within each task, participants used 
a variety of strategies. The most common strategies were the 
Optimal, Explicit-MD strategy for the RB task, the 
Suboptimal, Explicit-UD strategy for the II task, and a 
Random strategy for the Mandarin task. Within each task, 
participants commonly switched between different strategies 
across blocks (RB: M = 1.86, Mdn = 2 switches; II: M = 1.35, 
Mdn = 1; Mandarin M = 1.86, Mdn = 2 across the first five 
blocks). The number of switches was statistically different 
across the tasks (non-parametric Friedman test, c2(2) = 8.60, 
p = .014, W = 0.050). Bonferroni-corrected pairwise 
Wilcoxon signed rank tests indicated that there were 
significantly more strategy switches in the Mandarin task 
than II task (p = .032), but no differences between the II and 
RB tasks (p = .11) or RB and Mandarin tasks (p = 1.0).  
 We next examined the strategies in the final block across 
the three tasks (Fig. 3B) and grouped strategies by whether 
they were Optimal, Suboptimal, or Random. As expected, 
participants had higher accuracies when they used Optimal 
compared to Suboptimal strategies across all three tasks (RB: 
Optimal 53%, Suboptimal 46%, t(70.5) = 2.35, p = .021, d = 
0.51; II: Optimal 68%, Suboptimal 50%, t(66.8) = 7.00, p < 
.001, d = 1.47; Mandarin: Optimal 77%, Suboptimal 45%, 
t(43.8) = 6.68, p < .001, d = 1.93). Assessing strategies across 
tasks gives a better understanding of how participants are able 
to flexibly shift their strategies based on the demands of the 
tasks. If participants are able to flexibly shift their attention, 
they will use an Optimal strategy across tasks. If instead, they 
have difficulty shifting their attention, they may use 
Suboptimal strategies or a mix of Suboptimal and Optimal 
strategies across tasks.  
 For the RB and II tasks, 20% of participants used an 
Optimal strategy in both nonspeech tasks, 32% used a 
Suboptimal strategy in both tasks, and 40% used a 
Suboptimal strategy in one task and an Optimal strategy in 
the other task. The remaining 9% used a Random strategy in 
at least one task. This does not sum to 100% because of 
rounding of percentages. 

For the RB and Mandarin tasks, 15% used an Optimal 
strategy in both tasks, 10% used a Suboptimal strategy in both 
tasks, and 30% used a Suboptimal strategy in one task but an 
Optimal strategy in the other task. The final 44% used a 
Random strategy in at least one task. This does not sum to 
100% because of rounding of percentages. 

Unlike the other comparisons, the Optimal strategy for II 
and Mandarin tasks is the same Implicit strategy. Among all 
participants, 13% used an Optimal strategy in both II and 
Mandarin tasks, 17% used a Suboptimal strategy in both 
tasks, and 27% used a Suboptimal strategy in one task but an 

Optimal strategy in the other task. The other 43% participants 
used a random strategy in at least one of the tasks.  

The large number of participants using a Random strategy 
in the Mandarin task may be related to the poorer 
performance in this task. Participants using a Random 
strategy had an average accuracy of 29%, which is near 
chance (25%). In contrast, participants using an Optimal 
strategy had an average accuracy of 77%. It is not the case 
that individuals cannot learn these categories or that there is 
an inherent difficulty in the ability of the models to account 
for the data. Rather, many participants struggled to learn. 

These results demonstrate that participants use a variety of 
strategies to learn auditory categories. While accuracy in one 
task is correlated with accuracy in the other tasks, participants 
do not necessarily use Optimal strategies across tasks to 
achieve that performance.  

Discussion 
We compared learning of three types of multidimensional 
auditory categories in the same individuals. Performance was 
related across tasks, but there was substantial variability in 
learning outcomes and strategies. Individual differences in 
WM were related to individual differences in learning 
outcomes to similar extents in all three tasks. These results 
highlight the importance of consideration of individual 
differences in learning, both within and between tasks.  

Generally, if a participant succeeded in one task, they 
succeeded in the other tasks. However, we found that 
performance in the two nonspeech tasks was more strongly 
correlated than performance in the II and Mandarin tasks. 
Mandarin tone categories have been proposed to be a type of 
II task based on similarities in their structure (Yi et al., 2016; 
Fig. 1). However, our results indicate that other similarities 
between tasks are also important for understanding how an 
individual will learn. The dimensions or nonspeech nature of 
the RB and II tasks may have led them to be more similar to 
one another than the II and Mandarin tasks. Further, many 
participants struggled to learn the Mandarin categories. This 
indicates that components other than the category structure 
affect learning outcomes. For these speech stimuli, 
information about talker or syllable may have factored into 
participants’ categorization decisions. In all, elements that 
support similarities in learning outcomes across tasks must be 
considered.  

Understanding the role of individual differences in 
cognitive abilities, like WM, is important for understanding 
the mechanisms that support learning. We found that WM 
was similarly positively correlated with learning outcomes in 
all three tasks. This finding is counter to the proposal that 
WM supports successful learning of RB, but not II, categories 
(Ashby et al., 1998) and instead aligns with the perspective 
that WM supports successful learning, regardless of category 
structure (Kalish et al., 2017; Lewandowsky et al., 2012). 
While our results do not differentiate between single system 
or dual systems accounts, they suggest a role for individual 
differences in WM contributing to individual differences in 
learning outcomes, regardless of category structure. 
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Finally, examining the strategies participants use during 
category learning provides a novel perspective on individual 
variability during learning. While some individuals flexibly 
shifted towards Optimal strategies across different tasks, 
many individuals used an Optimal strategy in one task and a 
Suboptimal strategy in another. There are multiple paths to 
success during learning and consideration of individual 
differences in strategy use is critical for understanding 
individual differences in category learning. Theories of 
category learning should focus on explaining the factors that 
determine whether individual will be successful in category 
learning, demonstrate selective advantages, or be 
unsuccessful in learning regardless of category structure.  

In sum, there is substantial variability in learning outcomes 
during auditory category learning. To understand what drives 
the individual variability in learning, we examined learning 
of three types of auditory categories in the same individuals. 
Learning outcomes for nonspeech RB, nonspeech II, and 
Mandarin speech categories were all positively correlated. 
WM capacity was positively correlated with learning 
outcomes across all three tasks, with no differences among 
tasks. Finally, individuals demonstrated substantial 
variability in the strategies they used to learn the categories. 
These results highlight the importance of consideration of the 
sources of individual variability in category learning. 

Acknowledgments 
This research was supported by the National Institute on 
Deafness and Other Communication Disorders 
(R01DC013315A1 to B.C. and F32DC018979 to C.L.R.). 
This work used the Extreme Science and Engineering 
Discovery Environment (XSEDE, Towns et al., 2014), which 
is supported by NSF (ACI-1548562). Specifically, it used the 
Bridges system (Nystrom et al., 2015) which is supported by 
NSF (ACI-1445606) at the Pittsburgh Supercomputing 
Center.  

References  
Anwyl-Irvine, A., Massonnié, J., Flitton, A., Kirkham, N., & 

Evershed, J. (2019). Gorilla in our Midst: An online 
behavioral experiment builder. Behavior Research 
Methods, 438242.  

Ashby, F. G. (1992). Multidimensional models of 
categorization (F. G. Ashby, Ed.; pp. 449–483). Lawrence 
Erlbaum.  

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & 
Waldron, E. M. (1998). A neuropsychological theory of 
multiple systems in category learning. Psychological 
Review, 105(3), 442–481.  

Ashby, F. G., & Maddox, W. T. (2011). Human category 
learning 2.0. Annals of the New York Academy of 
Sciences, 1224, 147–161.  

Ashby, F. G., & Rosedahl, L. (2017). A Neural Interpretation 
of Exemplar Theory. Psychological Review, 124(4), 472–
482.  

Ashby, F. G., & Waldron, E. M. (1999). On the nature of 
implicit categorization. Psychonomic Bulletin & 
Review, 6(3), 363–378.  

Chandrasekaran, B., Yi, H.-G., & Maddox, W. T. (2014). 
Dual-learning systems during speech category 
learning. Psychonomic Bulletin & Review, 21, 488–495.  

DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). 
Individual differences in category learning: Sometimes less 
working memory capacity is better than 
more. Cognition, 107, 284–294. 

Diedenhofen, B. & Musch, J. (2015). cocor: A 
Comprehensive Solution for the Statistical Comparison of 
Correlations. PLOS ONE, 10(4), e0121945.  

Đokić, R., Koso-Drljević, M., & Đapo, N. (2018). Working 
memory span tasks: Group administration and omitting 
accuracy criterion do not change metric 
characteristics. PLOS ONE, 13(10), e0205169.  

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. 
(1995). Acoustic characteristics of American English 
vowels. The Journal of the Acoustical Society of 
America, 97(5 Pt 1), 3099–3111. 

Holt, L. L. & Lotto, A. J. (2010). Speech perception as 
categorization. Attention, Perception, & 
Psychophysics, 72(5), 1218–1227.  

Kalish, M. L., Newell, B. R., & Dunn, J. C. (2017). More Is 
Generally Better: Higher Working Memory Capacity Does 
Not Impair Perceptual Category Learning. Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 43(4), 503–514. 

Lewandowsky, S., Yang, L.-X., Newell, B. R., & Kalish, M. 
L. (2012). Working memory does not dissociate between 
different perceptual categorization tasks. Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 38(4), 881–904.  

Llanos, F., McHaney, J. R., Schuerman, W. L., Yi, H. G., 
Leonard, M. K., & Chandrasekaran, B. (2020). Non-
invasive peripheral nerve stimulation selectively enhances 
speech category learning in adults. Npj Science of 
Learning, 5(1), 12. 

Maddox, W. T. & Ashby, F. G. (1993). Comparing decision 
bound and exemplar models of categorization. Perception 
& Psychophysics, 53(1), 49–70. 

Maddox, W. T., Chandrasekaran, B., Smayda, K., & Yi, H.-
G. (2013). Dual systems of speech category learning across 
the lifespan. Psychology and Aging, 28(4), 1042–1056.  

Maddox, W. T., Chandrasekaran, B., Smayda, K., Yi, H.-G., 
Koslov, S., & Beevers, C. G. (2014). Elevated depressive 
symptoms enhance reflexive but not reflective auditory 
category learning. Cortex, 58, 186–198.  

Miles, S. J., Matsuki, K., & Minda, J. P. (2014). Continuous 
executive function disruption interferes with application of 
an information integration categorization 
strategy. Attention, Perception, & Psychophysics, 76(5), 
1318–1334.  

Miles, S. J. & Minda, J. P. (2011). The effects of concurrent 
verbal and visual tasks on category learning. Journal of 

159



Experimental Psychology: Learning, Memory, and 
Cognition, 37(3), 588–607. 

Newell, B. R., Dunn, J. C., & Kalish, M. (2011). Systems of 
Category Learning Fact or Fantasy? Psychology of 
Learning and Motivation, 54, 167–215.  

Newell, B. R., Moore, C. P., Wills, A. J., & Milton, F. (2013). 
Reinstating the Frontal Lobes? Having More Time to 
Think Improves Implicit Perceptual Categorization: A 
Comment on Filoteo, Lauritzen, and Maddox 
(2010). Psychological Science, 24(3), 386–389. 

Nystrom, N. A., Levine, M. J., Roskies, R. Z., and Scott, J. 
R. (2015). Bridges: A Uniquely Flexible HPC Resource for 
New Communities and Data Analytics. In Proceedings of 
the 2015 Annual Conference on Extreme Science and 
Engineering Discovery Environment (St. Louis, MO, July 
26-30, 2015). XSEDE15. ACM, New York, NY, USA. 

Roark, C. L. & Holt, L. L. (2019). Auditory information-
integration category learning in young children and 
adults. Journal of Experimental Child Psychology, 188, 
104673.  

Schwarz, G. (1978). Estimating the Dimension of a 
Model. The Annals of Statistics, 6(2), 461–464. 

Shamloo, F. & Hélie, S. (2020). A study of individual 
differences in categorization with redundancy. Journal of 
Mathematical Psychology, 99, 102467.  

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., 
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., 
Peterson, G.D., Roskies, R., Scott, J.R. and Wilkens-Diehr, 
N. (2014). XSEDE: Accelerating Scientific Discovery. 
Computing in Science & Engineering, 16(5):62-74.  

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. 
(2005). An automated version of the operation span 
task. Behavior Research Methods, 37(3), 498–505. 

Wickens, T. D. (1982). Models for Behavior: Stochastic 
Processes in Psychology. W. H. Freeman. 

Woolley, S. M. N., Fremouw, T. E., Hsu, A., & Theunissen, 
F. E. (2005). Tuning for spectro-temporal modulations as a 
mechanism for auditory discrimination of natural 
sounds. Nature Neuroscience, 8(10), 1371–1379. 

Yi, H.-G., Maddox, W. T., Mumford, J. A., & 
Chandrasekaran, B. (2016). The Role of Corticostriatal 
Systems in Speech Category Learning. Cerebral 
Cortex, 26(4), 1409–1420.  

Zeithamova, D. & Maddox, W. T. (2007). The role of 
visuospatial and verbal working memory in perceptual 
category learning. Memory & Cognition, 35(6), 1380–
1398. 

160




