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Abstract 
 

Consequences of Confinement in Zeolite Acid Catalysis 
 

by 
 

Rajamani Pachayappan Gounder 
 

Doctor of Philosophy in Chemical Engineering 
 

University of California, Berkeley 
 

Professor Enrique Iglesia, Chair 
 
 

The catalytic consequences of confinement within zeolite voids were examined for 
several elimination (alkane cracking and dehydrogenation, alkene cracking, alkanol dehydration) 
and addition (alkene hydrogenation, alkylation and oligomerization) reactions catalyzed by 
Brønsted solid acids. These reactions are mediated by cationic transition states that are confined 
within voids of molecular dimensions (0.4-1.3 nm) and proceed at rates that reflect the Gibbs 
free energies of late ion-pairs at transition states relative to those for the relevant reactants. Ion-
pair stabilities depend on electrostatic interactions between organic cations and catalyst 
conjugate anions and on dispersion interactions between these cations and framework oxygen 
atoms. The former interactions are essentially unaffected by confinement, which influences 
weakly Brønsted acid strength, while the latter depend strongly on the sizes and shapes of voids 
and the species confined within them. The catalytic effects of confinement in stabilizing ion-
pairs are prevalent when transition states are measured relative to gaseous reactants, but are 
attenuated and in some cases become irrelevant when measured with respect to confined 
reactants that are similar in composition and size. 

 
Zeolite voids solvate confined species by van der Waals forces and mediate compromises 

in their enthalpic and entropic stabilities. Confinement is generally preferred within locations 
that benefit enthalpic stability over entropic freedom at low temperatures, in which free energies 
depend more strongly on enthalpic than entropic factors. For example, the carbonylation of 
dimethyl ether (400-500 K) occurs with high specificity within eight-membered (8-MR) zeolite 
voids, but at undetectable rates within larger voids. This specificity reflects the more effective 
van der Waals stabilization of carbonylation transition states within the former voids. In contrast, 
entropic consequences of confinement become preeminent in high temperature reactions. Alkane 
activation turnovers (700-800 K) are much faster on 8-MR than 12-MR protons of mordenite 
zeolites because the relevant ion-pairs are confined only partially within shallow 8-MR side 
pockets and to lesser extents than within 12-MR channels.  

 
The site requirements and confinement effects found initially for elimination reactions 

were also pertinent for addition reactions mediated by ion-pair transition states of similar size 
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and structure. Ratios of rate constants for elimination and addition steps involved in the same 
mechanistic sequence (e.g., alkane dehydrogenation and alkene hydrogenation) reflected solely 
the thermodynamic equilibrium constant for the stoichiometric gas-phase reaction. These 
relations are consistent with the De Donder non-equilibrium thermodynamic treatments of 
chemical reaction rates, in spite of the different reactant pressures used to measure rates in 
forward and reverse directions. The De Donder relations remained relevant at these different 
reaction conditions because the same elementary step limited rates and surfaces remained 
predominantly unoccupied in both directions. 

 
Rate constants for elementary steps catalyzed by zeolitic Brønsted acids reflect the 

combined effects of acid strength and solvation. Their individual catalytic consequences can be 
extricated using Born-Haber thermochemical cycles, which dissect activation energies and 
entropies into terms that depend on specific catalyst and reactant properties. This approach was 
used to show that thermal, chemical and cation-exchange treatments, which essentially change 
the sizes of faujasite supercage voids by addition or removal of extraframework aluminum 
species, influence solvation properties strongly but acid strength only weakly. These findings 
have clarified controversial interpretations that have persisted for decades regarding the origins 
of chemical reactivity and acid strength on faujasite zeolites.  

 
Born-Haber thermochemical relations, together with Marcus theory treatments of charge 

transfer reaction coordinates, provide a general framework to examine the effects of reactant and 
catalyst structure on ion-pair transition state enthalpy and entropy. The resulting structure-
function relations lead to predictive insights that advance our understanding of confinement 
effects in zeolite acid catalysis beyond the largely phenomenological descriptions of shape 
selectivity and size exclusion. These findings also open new opportunities for the design and 
selection of microporous materials with active sites placed within desired void structures for 
reasons of catalytic rate or selectivity. The ability of zeolite voids to mimic biological catalysts in 
their selective stabilization of certain transition states by dispersion forces imparts catalytic 
diversity, all the more remarkable in light of the similar acid strengths among known 
aluminosilicates. This offers significant promise to expand the ranges of materials used and of 
reactions they catalyze. 
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CHAPTER ONE 
 

Introduction to Zeolite Acid Catalysis 
 

1.1 Introduction 
 

Acids are used widely in petrochemical refining and chemical production because they 
catalyze a broad range of organic chemical reactions including isomerization, cracking, and 
alkylation [1]. Corrosive and environmentally-harmful liquid acids, in some cases, have been 
replaced by solid acids (e.g., SiO2-Al2O3, zeolites) because they also cause desired changes in 
catalytic rate or selectivity and improve processing and separation energy efficiencies [2,3]. 
Acidic zeolites are crystalline, microporous forms of silica containing Brønsted acidic protons 
that balance the anionic charges resulting from the replacement of framework Si atoms by 
heteroatoms of lower valence (Al, B, Fe, Ga). Historically, their catalytic allure has reflected the 
geometric and topological diversity of their microporous voids, which are of molecular 
dimensions (0.4-1.3 nm) and can select reactants, products or transition states on the basis of size 
and shape [4,5].  

 
The choice and design of zeolitic solid acids to meet specific catalytic targets have relied 

largely on phenomenological considerations of size exclusion for several reasons. First, the 
interpretation of chemical reactivity on heterogeneous catalysts is invariably more complex than 
on homogeneous systems because catalytic turnovers, which often occur on surfaces with non-
uniform active sites, are coupled with transport and thermodynamic phenomena within external 
fluid phases, within porous solids and at their interfaces [6]. Second, efforts to examine the 
independent consequences of acid strength and confinement in zeolite catalysis have often been 
obstructed by their inextricable contributions to the rate and equilibrium constants of elementary 
steps and by the presence of a diverse range of confining environments within a given 
microporous solid. Third, the solvation effects involved in acid-base interactions and the 
heterogeneity of acid sites in solid media obfuscate experimental protocols to characterize the 
strengths of such sites, precluding an accurate measure of acid strength analogous to the acidity 
functions (e.g., Hammett) defined for liquid acids [7,8]. 
  

The strength of a Brønsted acid (HA) is rigorously reflected in its deprotonation energy 
(DPE), defined as the energy required to separate a proton (H+) and the anionic conjugate base 
(A-) to non-interacting distances, because it is independent of probe and solvation effects. 
Brønsted acid-catalyzed elementary steps involve charge separation into ion-pairs at transition 
states [9,10]; in turn, activation free energies for these steps predominantly reflect the 
electrostatic penalty of separating charge at the relevant transition states. In general, ion-pairs at 
transition states become more stable energetically as acid sites become stronger (lower DPE 
values) and as organic fragments are able to accommodate more charge (higher proton affinity 
values). The exact sensitivities of the corresponding activation barriers to both acid site 
deprotonation energy and reactant proton affinity, however, depend on the amount and 
distribution of positive charge in organic fragments at transition states [11,12].  

 
Brønsted acid sites within aluminosilicates are weaker and less diverse in composition 

and strength than in mesoporous or liquid acids [13-15]; yet, turnover rates on zeolitic acids are 



2 
 

often higher than on stronger acids and depend sensitively on the nanostructure of the confining 
voids. These effects reflect the solvation of transition states by van der Waals forces when 
confined within voids of molecular dimensions. Dispersion forces between framework oxygen 
atoms and species confined within microporous voids, which lead to compromises between 
enthalpies and entropies of the latter, mediate chemical reactions in a manner reminiscent of the 
solvation effects within enzyme pockets and with analogous consequences for catalytic 
specificity. 

 
This research aims to examine how confined species are stabilized by electrostatic and 

dispersion forces in order to understand the fundamental consequences of confinement in zeolite 
acid catalysis. In doing so, it aims to extend the prevailing discourse based on size exclusion to 
include predictive criteria for the remarkable catalytic diversity and, in some cases, the enzyme-
like specificity of zeolite voids. Reaction pathways mediated by intramolecular and 
intermolecular hydride transfer steps, classified generally as elimination and addition reactions, 
are examined here because of their ubiquitous role in the catalysis of organic substrates. Within 
specific contexts, these events are labeled as cracking or alkylation when alkyl groups are 
respectively moved within or between molecules, and dehydrogenation or hydrogen transfer 
when H-atoms are respectively transferred intramolecularly or intermolecularly. In spite of the 
specific nomenclature used to identify and distinguish these pathways from other historical 
elimination reactions in acid catalysis (e.g., alkanol dehydration), they become mechanistically 
related at the molecular level of bond-making and bond-breaking, as transition states for these 
elementary steps require the formation and stabilization of ion-pairs [9,10]. Thus, mechanistic 
details and site requirements for one of these reactions can be used to gain significant insight into 
a more diverse range of acid-catalyzed chemical reactions. 

 
Catalytic turnover rates, within the context of transition state theory, depend on local void 

structure to the extent that confinement influences the Gibbs free energies of transition states 
relative to the relevant reactants. Turnover rates in Brønsted acid catalysis must be normalized 
rigorously by the number of protons, preferably measured directly by chemical titration and if 
possible using in situ methods, because structural surrogates for these active sites (framework Al 
atoms in aluminosilicates) are typically measured ex situ and are present in non-stoichiometric 
amounts. This normalization must occur prior to any attempts to mechanistically interpret the 
origins of catalytic reactivity or any effects of confinement on ion-pair stability, which 
additionally require protocols to unambiguously locate acid sites within different microporous 
structures. These principles are underscored throughout the analysis and discussion in this 
dissertation.   

 
Measured turnover rates of monomolecular alkane activation reflect free energies of 

transition states stabilized within zeolite voids with respect to gaseous reactants. They increase 
systematically (>100-fold) with chain size for cracking of C3-C6 n-alkanes on H-MFI (773 K). 
Yet, this increase does not reflect increasing intrazeolitic concentrations caused by the more 
exothermic adsorption enthalpies of larger alkanes, the prevalent and incorrect notion in previous 
studies. A ubiquitous compensation between adsorption enthalpies and entropies leads to similar 
adsorption equilibrium constants for C3-C6 n-alkanes (<2-fold) at temperatures relevant for 
monomolecular activation. As discussed in Chapter 2, cracking turnover rate differences instead 
reflect predominantly differences in intrinsic activation entropies with n-alkane size. 
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The influence of local zeolite environments around Brønsted acid sites on the stability of 
adsorbed reactants and cationic transition states in monomolecular alkane activation is probed in 
Chapter 3. Born-Haber thermochemical cycles that apply generally to reactions catalyzed by 
Brønsted acids are used to determine the dependence of alkane activation barriers on catalyst and 
reactant properties, such as deprotonation energies and gas-phase proton affinities. Turnover 
rates for cracking and dehydrogenation of propane and n-butane differ markedly on acid sites 
within zeolites of different structure (H-MFI, H-FER, H-MOR) and within the two different void 
environments in H-MOR (8-MR side pockets, 12-MR main channels). Alkane activation 
transition states are only partially confined within 8-MR MOR pockets, leading to entropic gains 
that compensate losses in enthalpic stability to give lower free energies than for transition states 
in 12-MR channels. As a result, alkane cracking and dehydrogenation turnovers occur 
preferentially within small 8-MR pockets. Kinetic preferences for 8-MR pockets and partial 
confinement are stronger for dehydrogenation, with later and looser transition states, than for 
cracking of both propane and n-butane. Alkane cracking-to-dehydrogenation and terminal-to-
central C-C bond cleavage selectivities vary systematically with the distribution of acid sites 
between 8-MR and 12-MR MOR environments. These findings and conclusions provide 
strategies to design microporous solids with acid sites positioned within specific void structures 
and with predictable consequences for catalytic rates and selectivities.  

 
The effects of reactant and void structure on monomolecular alkane activation barriers 

and turnover rates, defined by Born-Haber thermochemical cycles, are generalized to branched 
alkanes in Chapter 4. Monomolecular isobutane cracking and dehydrogenation reactions also 
occur preferentially within 8-MR MOR pockets than in 12-MR channels, yet kinetic preferences 
for 8-MR locations are stronger for isobutane cracking than for dehydrogenation, in sharp 
contrast with the reverse trends found for n-alkanes. Ion-pair transition states for isobutane 
cracking are higher in energy than for dehydrogenation because protonation of C-C bonds form 
less stable cations than protonation of tertiary C-H bonds. Higher energy ion-pairs are also looser 
and occur later along reaction coordinates, consistent with the crossing potential treatments by 
Bell and Marcus for charge transfer reactions. The entropic benefits of partial confinement 
preferentially stabilize later and looser ion-pairs that mediate charge transfer reactions, 
irrespective of reactant identity. 

 
 Gibbs free energy differences between reactants and transition states, however, determine 
turnover rates within the context of transition state theory. The free energies of confined species, 
which are influenced by van der Waals interactions with microporous voids, depend more 
sensitively on enthalpic effects at low temperatures and on entropic effects at high temperatures. 
As discussed in Chapter 5, transition states that mediate low temperature reactions such as 
dimethyl ether carbonylation (400-500 K) prefer a tighter fit and enthalpic stability, while those 
involved in high temperature reactions such as monomolecular alkane activation (700-800 K) 
prefer a looser fit and entropic stability. Comparative studies of alkanes (C3-C6 n-alkanes, 
isobutane) and zeolites (H-FAU, H-FER, H-MFI, H-MOR) of different size and structure, 
together with Born-Haber thermochemical cycles and Marcus theory, are used to rigorously 
connect reactant and catalyst properties to turnover rates and selectivities in solid acid catalysis. 
Relative gas-phase proton affinities of alkane C-C and C-H bonds determine whether cracking or 
dehydrogenation transition states are higher in enthalpy and in entropy. Later and looser 
transition states are selectively stabilized when partially confined within shallow 8-MR MOR 
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pockets; as a result, reactant proton affinities cause changes in reaction selectivity with void 
structure. Additionally, the rotational entropy gained upon C-C bond protonation increases 
systematically with n-alkane size and causes intrinsic cracking turnover rates to increase 
concomitantly. These findings identify how voids of molecular dimensions selectively stabilize 
ion-pair transition states via van der Waals interactions and extend interpretations of confinement 
effects in zeolite catalysis beyond descriptive criteria governed largely by phenomenological 
consequences of size exclusion. 
 

The mechanistic details and site requirements for monomolecular alkane 
dehydrogenation on acidic zeolites are extended to bimolecular alkene-H2 hydrogenation 
reactions in Chapter 6. Ion-pair transition states also mediate propene hydrogenation at high 
temperatures (>700 K) on zeolitic Brønsted acid sites (H-FER, H-MFI, H-MOR) without 
detectable contributions from adventitious metal or cationic species. Rate constants, activation 
energies, and activation entropies for propene hydrogenation and monomolecular propane 
dehydrogenation are uniquely related to each other by thermodynamic constraints of the 
stoichiometric gas-phase reaction. As a result, acid sites or catalytic materials that exhibit high 
turnover rates (e.g., 8-MR MOR pockets) in one reaction direction (alkane dehydrogenation), do 
so to the same extent in the reverse direction (alkene hydrogenation). This kinetic behavior is 
consistent with the De Donder treatments of non-equilibrium thermodynamics, indicating that 
the two reactions proceed via the same sequence of elementary steps in spite of the different 
conditions used to measure respective rates. The De Donder treatments do not rigorously apply 
in such cases unless the same elementary step limits rates and the surface remains predominantly 
unoccupied at the different reaction conditions used to measure rates in forward and reverse 
directions. These findings suggest that direct reactions of H2 with alkoxide species are 
ubiquitously involved in the scavenging of reactive or unreactive surface species during 
oligomerization, alkylation, and cracking reactions and account for H2 effects on product 
selectivity and catalyst stability.  
 

Zeolitic Brønsted acid sites (H-FER, H-MFI, H-MOR) also catalyze the direct alkylation 
of ethene with methane at high temperatures (>700 K), as discussed in Chapter 7. The adherence 
of rate constants for alkene-alkane alkylation and monomolecular alkane cracking to the De 
Donder relations indicate these two paths are connected mechanistically, as in the case of alkane 
dehydrogenation and alkene hydrogenation. Isotopic tracers show that methane-ethene alkylation 
occurs in parallel with ethene dimerization routes, which proceed at rates that can be predicted 
from the De Donder relations, gas-phase thermodynamic data and rate constants measured for its 
reverse reaction (monomolecular butene cracking). The selectivity between alkylation and 
dimerization paths depends on local void structure because their respective ion-pair transition 
states are different in size and structure and, in turn, are stabilized to different extents within a 
given channel environment.  

 
Finally, in Chapter 8, kinetic and spectroscopic evidence is presented indicating that 

thermal and chemical treatments of FAU zeolites, which change the distribution of aluminum 
atoms between framework (Alf) and extraframework (Alex) phases, weakly influence the 
solvation properties of their supercage voids but not the strength of their Brønsted acid sites. 
Chemical titration of H+ sites with Na+, with CH3 groups (from dimethyl ether) and with 2,6-di-
tert-butyl pyridine (during methanol dehydration catalysis) give similar values for the number of 
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protons on each sample, but much smaller values than the number of Alf atoms determined from 
27Al NMR spectra and X-ray diffraction. These findings indicate that the ubiquitous use of Alf 
atoms as structural proxies for H+ sites has led to the inaccurate attribution of the catalytic effects 
of Na+ titration and thermal treatments to minority ‘super-acid’ sites. In fact, isobutane cracking 
and dehydrogenation turnover rates (763 K), normalized rigorously by the number of residual 
protons, are independent of Na+ content on all FAU samples, reflecting the stoichiometric 
replacement of uniform H+ sites by Na+. Methanol dehydration rate constants indicate that 
reactivity differences among FAU samples do not reflect acid strength effects but instead 
solvation properties. The van der Waals stabilization of confined species becomes stronger with 
decreasing supercage void size, as a result of Alex moieties that occlude void space. These 
conclusions challenge previous interpretations of the controversial effects of Na+ titration and 
thermal treatment and illustrate the distractions brought forth by the use of structural proxies for 
Brønsted acid sites in crystalline aluminosilicates. 
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CHAPTER TWO 
 

Entropy Considerations in Monomolecular Cracking of Alkanes on Acidic 
Zeolites 

 
 
Abstract 
 

Compensation between adsorption entropies and enthalpies results in less than a two-fold 
variation in adsorption equilibrium constants for C3-C6 alkanes at temperatures relevant for 
monomolecular cracking; the size-independent activation energy for C-C bond activation in C3-
C6 alkanes indicates that the marked increase in monomolecular cracking turnover rates observed 
with alkane chain size reflects a concurrent increase in activation entropies. Thermodynamic 
treatments for non-ideal systems rigorously describe confinement effects within zeolite channels 
and show that pre-exponential factors depend on solvation effects of the zeolite-host 
environment through variations in the thermodynamic activity of the zeolitic proton. Observed 
differences in rates and selectivities of monomolecular alkane activation with zeolite structure, 
after normalization to intrazeolitic concentrations, reflect differences in intrinsic rate constants. 
 
 
2.1 Results and Discussion 

Monomolecular cracking of alkanes via the Haag-Dessau mechanism prevalent at high 
temperature and low conversions (<1%) is purported to occur via cationic transition states with 
three-center/two-electron bonds that include both carbon atoms in the C-C bond being cleaved 
and a proton acting as a Brønsted acid (Scheme 2.1) [1-4]. In cracking of n-alkanes, Haag et al. 
[5], Narbeshuber et al. [6], Kotrel et al. [2], Babitz et al. [7], and Ramachandran et al. [8] 
attributed differences in turnover rates (per H+) among acidic zeolites with different structures 
and among alkanes of varying size to differences in the prevalent concentration of physisorbed 
alkanes within zeolite channels.  These authors concluded that no residual effects of Brønsted 
acid strength or of zeolite topology were required to account for variations in cracking rates with 
alkane size or zeolite structure. 

 
Scheme 2.1.  Monomolecular cracking of alkanes on H+ sites in zeolites proposed based on computational studies; 
reproduced from [3]. 
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in which †S   and †H   are the entropy and enthalpy of activation, respectively. This 
expression contains pre-exponential (A) and activation energy terms ( †H  ) 
 

†

exp
zP

g

H
r A C

R T

 
   

 



 (2.4) 

 
The parameter A contains the equilibrium constant (Kr) and the ratio of activity coefficients 

†

zPH Z
   ; both depend on the properties of the zeolite channels and of the acid sites within 

them. When the precursor and the transition state are solvated to the same extent by the 
intrachannel environment, as is likely to occur in monomolecular cracking because of the 
chemical resemblance between precursors and transition states, their respective activity 
coefficients fortuitously cancel. Then, only the activity coefficient for the Brønsted acid sites 
remains in the rate equation. This activity coefficient, together with Kr, reflects the role of the 
chemical properties of acid sites and of the channel structure on pre-exponential factors. We note 
that this fortuitous cancellation renders rates rigorously proportional to the concentration of 
adsorbed alkanes within zeolite channels: 
 

† †

exp exp
z z

B
r P PH Z H Z

g g

k T S H
r K C C kC

h R R T
  

    
        

   

 

 (2.5) 

 
in agreement with experiments [1-6].  

 
Narbeshuber et al. [6] noted that cracking rates for C3-C6 alkanes on H-MFI increased 

markedly with size, while apparent activation energies concurrently decreased (Figs. 2.2 and 2.3; 
Supporting Information). The reaction conditions used led to predominantly unoccupied H+ sites 
in H-MFI, in which case Cpz is proportional to alkane pressure (P): 

 
PKkr   (2.6) 

 
In Eq. (2.6), k is the cracking rate constant for alkane-derived intermediates and K is the 
adsorption equilibrium constant for a given alkane. K values measured from adsorption 
isotherms predominantly reflect interactions of alkanes via van der Waals interactions with 
framework oxygen atoms, because of the weak nature of the specific induced-dipole interactions 
of alkanes with protons [13-15]. The temperature dependences of K and k are given by: 
 

( / ) ( / ) ( / )ads ads adsG RT H RT S RK e e e     (2.7) 
 

( / )E RTk Ae   (2.8) 
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Combining Eqs. (2.6), (2.7) and (2.8), we obtain the apparent rate constants (kapp), activation 
energies (Eapp), and pre-exponential factors (Aapp) in terms of the thermodynamic properties of 
adsorbed reactants and transition states: 
 

Kkkapp   (2.9) 

 

adsactapp HEE   (2.10) 

 
     RSAA adsactapp /lnln   (2.11) 

 
Eder and Lercher [13-15] used calorimetry and infrared spectroscopy to show that non-

specific van der Waals interactions of alkanes with framework oxygens led to more negative 
adsorption enthalpies with increasing chain size. Narbeshuber et al. [6] noted that the lower 
apparent activation energies (Eq. (2.10); Fig. 2.2 Supporting Information) measured for larger 
alkanes predominantly reflect their more exothermic adsorption, and consequently that intrinsic 
activation barriers for monomolecular cracking from adsorbed reactants are very similar for C3-
C6 alkanes (Eint = 194-198 kJ mol-1; 7% standard deviation). The selectivity for cleaving the 
various C-C bonds in n-C5H12 was insensitive to temperature, indicating that activation energies 
were similar for all C-C bonds in each alkane. These findings are in marked contrast with the 
strong effects of alkane size and the high specificity for activation of C-C bonds β to tertiary 
carbons for the case of larger alkanes reacting via cyclopropyl carbocationic transition states [9-
11]. The higher monomolecular cracking reactivity of larger alkanes (n-C6H14 is ~120 times 
more reactive than C3H8 at 773 K) has been ascribed to the relative adsorption constants for n-
alkane reactants [6].  

 
The stronger adsorption of larger alkanes within a channel (or of each alkane as channels 

become smaller) also leads to more constrained adsorbed species and to more negative 
adsorption entropies. These compensation effects between Hads and Sads for adsorption of 
alkanes on zeolites (Fig. S.3, Supporting Information), shown by Eder and Lercher [14,15], lead, 
in turn, to much weaker effects of molecular size on K values than expected from measured 
adsorption enthalpies. The data of Eder and Lercher [14,15] on H-MFI (with the reasonable 
approximation that Hads and Sads are insensitive to temperature; see Supporting Information) 
give the K values in Table 2.1 for alkanes of varying size. We note that differences in K, which 
are evident at 373 K, become much smaller at temperatures relevant for monomolecular cracking 
(~773 K). Configurational-bias Monte Carlo simulations also concluded that compensation 
between entropy and enthalpy terms leads to intrazeolitic concentrations that vary by a factor of 
~2 for C3-C6 alkanes adsorbed on MFI at 775 K [16].  Larger differences in intrazeolitic 
concentrations may prevail for larger alkanes (C8-C20) because of their larger heats of adsorption 
and of the lower temperatures at which they crack via monomolecular pathways [17]. At high 
temperatures (945 K), however, very similar intrazeolitic concentrations of C2-C20 alkanes in 
MFI primarily resulting from adsorption enthalpy-entropy compensation were computed by 
Maesen et al. [16]. As a result, differences in K among alkanes cannot account for the large 
differences in cracking rates measured for propane and n-hexane (>100-fold in rate with K 
values differing by less than a factor of 2). Yet, adsorption enthalpies indeed account fully for the 
measured differences in apparent activation energies for the cracking of these two molecules (Eq. 
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(2.10)) [6]. Differences of 30 kJ/mol in the true activation barriers for the monomolecular 
cracking of adsorbed alkanes would be required to account for the measured 100-fold cracking 
rate differences between C3H8 and n-C6H14 in contradiction with the constant values measured 
(194-198 ± 14 kJ mol-1 for C3-C6 alkanes) [6].  

 
 
Table 2.1.  Hads and Sads for C3-C6 alkanes on H-MFI taken from Eder et al. [14,15]. K calculated from Eq. (2.7) 
by assuming Hads and Sads to be independent of temperature.  

Carbon 
Number 

Hads  

[kJ mol-1] 
Sads  

[J mol-1K-1] 
K 

(373 K) 
K (/10-4) 

(773 K) 
3 -45 -102 10 55 
4 -58 -119 78 51 
5 -69 -135 494 46 
6 -83 -152 4410 46 

 
 
Table 2.2.  Pre-exponential factor (A), entropy of activation (Sact) and the fraction of entropy (Sact / |Sads|) 
regained at the transition state for C3-C6 alkane cracking on H-MFI calculated using data from Narbeshuber et al. [6] 
and Eder et al. [14,15] and Eq. (2.6).  Turnover frequencies reported at 773 K. 

Carbon 
Number 

TOF (/10-3) 
[s-1 bar-1] 


[s-1] 

Sact  

[J mol-1K-1] 
Sact / |Sads| 

3 1.31 0.57 -8.6 -0.08 
4 5.80 2.3 3.0 0.03 
5 22.3 6.2 11 0.08 
6 60.0 27 23 0.15 

 
 
Hence, differences in cracking rates (Eq. (2.6)) and rate constants (Eq. (2.9)) among C3-

C6 alkanes at ~773 K must reflect a significant increase in pre-exponential factors (Eq. (2.8)) and 
activation entropies (Eq. (2.11)) with alkane chain size. Table 2.2 shows pre-exponential factors 
and activation entropies calculated from measured rates (after correcting for the number of C-C 
bonds in each molecule) and activation energies [6]. Table 2.2 also shows the fraction of the 
adsorption entropy loss that is ultimately recovered as adsorbed alkanes reach the transition state 
for monomolecular cracking. The size-independent barrier for this transition [6] suggests that the 
extent of charge separation and the C-H-C bond configuration in transition states, relative to 
those in adsorbed alkanes, is essentially independent of chain size. The larger entropy loss upon 
adsorption of larger alkanes ultimately leads to a larger entropy gain as they form higher energy 
complexes along the reaction coordinate towards the transition states required for C-C bond 
activation, as shown by the linear trend of Sact with carbon number in Figure 2.1. 

 
Monomolecular cracking reactions lead to substantial entropy gains as six internal modes 

are incipiently converted into three translational and rotational degrees of freedom in the 
transition state [18]. A part of this entropy gain arises from rocking vibrations of the two 
fragments, which become hindered rotations as C-C bonds are elongated in the transition state, a 
process inferred from ab initio and density functional calculations [19,20]. This process 
decreases the directionality and restoring forces for the movement of one fragment relative to the 
other. We surmise that the entropy gains that favor reactions of larger alkanes arise from an 
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increase in the number of accessible configurations from the adsorbed state to the transition state 
and from the mass of the two fragments involved in these hindered rotations [18]. 

 
The effects of zeolite structure on monomolecular cracking rates have also been ascribed 

to intrazeolitic concentration effects based on adsorption enthalpies for propane [21] and n-
hexane [22], suggesting that activation barriers are unaffected by structure.  We note, however, 
that these effects on measured rates (per H+) cannot be accurately described by mere differences 
in intrachannel reactant concentrations stabilized by the zeolite solvent. Xu et al. [21] measured 
propane cracking and dehydrogenation rates (per H+; 823 K, <5% conversion) on H-MFI, H-
MOR, and H-BEA. Table 2.3 shows these rate data together with Hads and Sads for propane 
adsorption (Fig 2.4, Supporting Information) from Eder and Lercher [14,15]. Equilibrium 
constants (assuming H-BEA and H-MOR to have similar adsorption thermodynamics), apparent 
activation energies, and intrinsic rate constants are also shown for these zeolites in Table 2.3. 
Rate constants for monomolecular cracking of propane are clearly influenced by the structure 
and solvating properties of zeolite channels. These effects of environment on rate parameters 
reflect the thermodynamic activity of zeolitic protons (Eqs. (2.3), (2.4), (2.5)) through pre-
exponential factors, but also possibly because of effects on activation energies. The systematic 
changes in intrinsic activation barriers reported with changes in channel structure have not been 
measured with the precision required to discern whether structural effects on rates arise solely 
from activation entropies or from combined entropy and energy changes induced by channel 
geometry.  

 
 

 
Figure 2.1.  Activation enthalpy (■) and entropy (▲) for C3-C6 alkane cracking in H-MFI from data reported in 
Narbeshuber et al. [6].   
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Table 2.3.  Intrinsic rate constant for propane cracking, kint on H-MFI (Si/Al=39), H-MOR (Si/Al=9.9), H-BEA 
(Si/Al=10.5) calculated using rates and activation energies from Xu et al. [21] and adsorption parameters from Eder 
et al. [14,15].   Turnover frequencies are reported as apparent turnover frequencies at 823 K. 

Zeolite TOF (/10-3) 
[s-1 bar-1] 

Hads  

[kJ mol-1] 
Sads  

[J mol-1K-1] 
K (/10-3) 

(823 K) 
app 

[kJ mol-1] 
kint 

[mol (mol H+)-1 s-1] 
H-MFI 23.6 -45.3 -101.9 3.55 147 6.6 

H-MOR 22.2 -41.3 -84.6 15.9 145 1.4 
H-BEA 6.9 -41.3a -84.6a 15.9 157 0.4 

a Hads and Sads for H-BEA considered to be similar to those for H-MOR 
 

The predominant effects of activation entropy in monomolecular cracking rates of light 
alkanes have not been clearly recognized in previous studies. These effects account for the 
marked effects of chain size on cracking rates and to a large extent for the varying reactivity of 
various zeolite structures. Residual contributions from channel constraints on activation barriers 
cannot be discerned from available data and require more precise measurements of the effects of 
geometry on monomolecular cracking rates. The approach and concepts discussed here are 
applicable to other acid-catalyzed reactions for which the effects of molecular and channel 
structure on the entropy and energy of activation remain unresolved and controversial. 
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2.3 Supporting Information 
 
2.3.1 Variation in Enthalpic and Entropic Adsorption Parameters with Temperature 
 

Entropy and enthalpy of adsorption constitute basic thermochemical data for determining 
the Gibbs free energy and hence adsorption equilibrium parameters. The temperature dependence 
of enthalpic and entropic terms is given by: 

 

0

0

( )
T

o o o
T T P

T

H H C dT     (2.12) 

0

0

( )
T o

o o P
T T

T

C
S S dT

T


     (2.13) 

 

Benson has shown that o
PC  for reactions tends to be very small and changes very little over 

intervals of 500 K [18].  In an effort to determine an upper bound for o
PC  for alkane adsorption 

we considered o
PC  for C3H8 CH4 + C2H4, a reaction that involves carbon-carbon bond 

cleavage and surmise that adsorption of propane should involve a smaller value of o
PC  since no 
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chemical bonds are broken or formed during adsorption.  The o
PC  for propane cracking is 5 J 

mol-1 K-1; furthermore, since o
PC  is small and nearly invariant with temperature, the above 

equations can be integrated and recast in the form: 
 

0 0( )o o o
T T PH H C T T     (2.14) 

0

0

2.303 logo o o
T T P

T
S S C

T

 
     

 
 (2.15) 

 
Substituting T = 773 K, T0 = 323 K, o

PC = 5 J mol-1 K-1, 
0

o
TH = -45 kJ mol-1 and 

0

o
TS = -102 J 

mol-1 K-1, we calculate: 
 

(773 )H K =  - 45 + 2.3 kJ mol-1 (2.16) 
 

(773 )S K =  -102 + 4.4 J mol-1K-1 (2.17) 
 

With this conservative estimate for o
PC , enthalpic and entropic terms change by less than 5% 

over a temperature range of 450 K.  The K value for C3H8 adsorption changes by 15% if the 
above temperature dependence of Hads and Sads is included, however, we note that similar 
changes in K will also pertain to C4-C6 alkanes and the temperature-corrected K values will still 
vary by less than a factor of two across C3-C6 alkanes at temperatures relevant for 
monomolecular cracking. 
 
 
2.3.2 Supplementary Figures 
 
 

 
Figure 2.2.  Apparent rate constants of cracking (▲) and dehydrogenation (■) of linear alkanes over H-MFI at 773 
K vs. the carbon chain length.  Adapted with permission from Narbeshuber et al. [6]. 
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CHAPTER THREE 
 

Catalytic Consequences of Spatial Constraints and Acid Site Location for 
Monomolecular Alkane Activation on Zeolites 

 
 
Abstract 
 

The location of Brønsted acid sites within zeolite channels strongly influences reactivity 
because of the extent to which spatial constraints determine the stability of reactants and of 
cationic transition states relevant to alkane activation catalysis. Turnover rates for 
monomolecular cracking and dehydrogenation of propane and n-butane differed among zeolites 
with varying channel structure (H-MFI, H-FER, H-MOR) and between OH groups within 8-
membered ring (8-MR) side pockets and 12-MR main channels in H-MOR. Measured 
monomolecular alkane activation barriers depended on catalyst and reactant properties, such as 
deprotonation enthalpies and proton affinities, respectively, consistent with Born-Haber 
thermochemical cycles that define energy relations in acid catalysis. Monomolecular alkane 
cracking and dehydrogenation turnovers occurred with strong preference on acid sites contained 
within smaller 8-MR pockets in H-MOR, while rates on sites located within 12-MR channels 
were much lower and often undetectable. This strong specificity reflects transition states that are 
confined only partially within 8-MR pockets; as a result, entropic gains compensate enthalpic 
penalties caused by their incomplete containment to give a lower free energy for transition states 
within small 8-MR side pockets. These effects of entropy are stronger for dehydrogenation, with 
a later and looser transition state, than for cracking in the case of both propane and n-butane; 
therefore, selectivity can be tuned by the selective positioning or titration of OH groups within 
specific environments, the number of which was assessed in H-MOR by rigorous deconvolution 
of their infrared spectra. Specifically, cracking-to-dehydrogenation ratios for propane and n-
butane were much smaller and terminal-to-central C-C bond cleavage ratios for n-butane were 
much larger on 8-MR than on 12-MR acid sites as a result of partial confinement, a concept 
previously considered phenomenologically as pore mouth catalysis. These marked effects of 
spatial constraints and of entropic factors on acid site reactivity and selectivity, also inferred for 
MFI from titration of OH groups by Na+, have not been previously proposed or recognized and 
appear to be unprecedented in hydrocarbon catalysis. These findings and their conceptual 
interpretations open opportunities for the design of microporous solids by the rational positioning 
of acid sites within specific channel locations and with predictable consequences for catalytic 
rates and selectivities. 
 
 
3.1 Introduction 

 
The design and selection of acidic zeolites for specific reactions requires that we consider 

the consequences of the number, structure, and acid strength of active sites, and of intrachannel 
environments, within which sites stabilize adsorbed intermediates and transition states relevant to 
chemical transformations. At an early and defining moment in catalysis by zeolites, cracking 
rates of n-hexane on H-MFI zeolites were reported to depend only on the number of acid sites 
[1,2], irrespective of Al content and, by inference, of the distribution of Al among the twelve 
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crystallographic T-sites in MFI. Quantum chemical descriptions, however, indicated that the 
location of the Al atoms in MFI influenced Brønsted acid strength and reactivity [3]. Later 
studies rigorously accounted for long-range electrostatic interactions and found that 
deprotonation enthalpies (DPE) were instead similar for all Al sites in MFI (1229-1240 kJ mol-1) 
[4,5]. Acid strength, reflected rigorously in these DPE values, strongly influences activation 
barriers for reactions involving cationic transition states that are stabilized by electrostatic 
interactions with framework oxygens, which also stabilize protons removed in deprotonation 
events [6,7]. In contrast, acid strength influences only weakly reactions requiring activated 
complexes with low charge, which are stabilized by covalent bonds with the zeolite framework 
[6,7]. 

 
We have recently reported the remarkable enzyme-like specificity of eight-membered 

ring (8-MR) channels in MOR zeolites for CO insertion into methyl groups, an elementary step 
that involves cationic transition states [8]. In contrast, the exchange of CD4 with OH, which 
proceeds via essentially uncharged covalent transition states, showed similar rates on Brønsted 
acid sites present within 8-MR and 12-MR environments in MOR zeolites [9]. Strong effects of 
the local environment around Brønsted acid sites are not evident in previous studies of 
hydrocarbon catalysis, for which some studies have claimed no effects of Al content and, by 
inference, of their location [1,2]. Any catalytic consequences of site location, however, are 
essential to choose and synthesize inorganic microporous structures with specific reactivity and 
selectivity.   
 

Here, we report evidence for strong effects of local structure on the catalytic cracking and 
dehydrogenation of alkanes on acidic zeolites. These reactions can occur via bimolecular 
pathways involving carbenium-ion chain cycles [10,11] or via monomolecular routes requiring 
penta-coordinated carbonium ions at the transition state. Monomolecular routes prevail at low 
alkane conversions and pressures [12,13] and form H2, smaller alkanes, and the respective 
alkenes as primary products (propane [14]; n-butane [15,16]). Isotopic studies indicate that 
products of monomolecular pathways initiate bimolecular routes mediated by carbenium ions, 
which then propagate via hydride transfer [17,18]. Monomolecular alkane reactions are useful 
probes of the catalytic consequences of confinement in acid catalysis, because they form 
relatively unreactive primary products of cracking (e.g., CH4 and C2H4 from C3H8) and 
dehydrogenation (e.g., C3H6 and H2 from C3H8) events. Deviations from equimolar yields 
provide a rigorous experimental kinetic marker for bimolecular or secondary reactions.   
 

We interpret measured rate parameters here using thermochemical cycles that rigorously 
define the contributions of enthalpy and entropy to chemical reactions catalyzed by Brønsted 
acids. This approach illustrates the essential role of spatial constraints in the stabilization of 
adsorbed reactants and of ion-pairs relevant for the late transition states prevalent in 
monomolecular alkane reactions. Energy-entropy tradeoffs at the transition state, mediated by 
local spatial constraints, are essential contributors to the enzyme-like specificity of certain 
locations within microporous solids for alkane activation on Brønsted acid sites. 
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3.2 Methods 
 
3.2.1 Catalyst Synthesis 
 

MFI, FER and MOR zeolite samples (Table 3.1) in their NH4
+ form were treated in 

flowing dry air (2.5 cm3 g-1 s-1, zero grade, Praxair) by increasing the temperature to 773 K 
(0.0167 K s-1) and holding for 4 h to convert NH4

+ to H+. H-zeolites were pelleted, crushed, and 
sieved to retain 180-250m (60-80 mesh) aggregates. Zeolite samples (~14 g) were exchanged 
with Na+ cations to varying extents using 0.5 L aqueous solutions with different NaNO3 (99%, 
EMD Chemicals, 0.014-2.44 M) concentrations at 353 K for 12 h. The exchanged zeolite 
samples were rinsed with 2 L deionized water, isolated by filtration, and treated in flowing dry 
air as described above. Si, Al, Na and trace metal contents (Table 3.1) were determined by 
inductively coupled plasma optical emission spectroscopy (ICP-OES; Galbraith Laboratories). 
The amounts of Al in framework and extra-framework locations (Table 3.1) were measured by 
27Al MAS NMR spectroscopy. Experimental methods and NMR spectra are shown in Section 
3.6.1 of the supporting information. 
 
Table 3.1.  Elemental composition and site and structure characterization of zeolite samples.  

Zeolite Source Si/Al  
Ratioa 

Na/Al  
Ratioa 

AlEF
b  

(%) 
L1 IR 
Band 
Areac 

L2 IR  
Band 
Areac 

OH8-MR
d 

(%) 
OH12-MR

d

(%) 

H-FER Zeolyst 10.3 0.002 15 2.1 2.9 - -
H-MFI-1 Chevron 19 - 24 0.6  0.1  - -
H-MFI-2 Zeolyst 16.5 0.004 12 0.9  0.5  - -

H85Na15MFI-2 Zeolyst 16.1 0.15 12 -  -  - - 
H-MFI-3 Zeolyst 25 - 11 0.3  < 0.1  - - 
H-MFI-4 Zeolyst 40 - 11 0.2  < 0.1  - - 

H-MOR-T Tosoh 8.9 0.001 19 5.0  8.6  78 22
H-MOR-S Sud-Chemie 10.1 0.001 21 10.4  4.9 60 40
H-MOR-Z Zeolyst 10.0 0.001 22 2.8  3.9  56 44

H83Na17MOR-Z Zeolyst 10.0 0.17 22 -  -  36 64
H73Na27MOR-Z Zeolyst 10.0 0.27 22 -  -  27 73
H59Na41MOR-Z Zeolyst 10.0 0.41 22 -  -  20 80
H45Na55MOR-Z Zeolyst 10.0 0.55 22 -  -  13 87

aDetermined from elemental analysis (ICP-OES; Galbraith Laboratories). 
bExtra-framework Al content (AlEF) determined from 27Al MAS NMR spectra (details given in Section 3.6.1 of the 
supporting information). 
cAreas of L1 (2224 cm-1) and L2 (2196 cm-1) infrared bands for CO adsorbed at 123 K on Lewis acid sites (details 
shown in Section 3.6.2 of the supporting information). Areas (x 103) are normalized to Si-O-Si overtone band areas 
(2100-1750 cm-1). 
dDistribution of acid sites in MOR samples determined from infrared spectral band deconvolution [8]. 
 
 
3.2.2 Infrared Assessment of the Number and Location of Intracrystalline Hydroxyl Groups and 
Lewis Acid Centers 
 

Infrared spectra were collected using a Nicolet NEXUS 670 infrared spectrometer 
equipped with a Hg-Cd-Te (MCT) detector. Spectra were measured with 2 cm-1 resolution in the 
4000-400 cm-1 range by averaging 64 scans. Self-supporting wafers (~20-40 mg) were sealed 
within a quartz vacuum infrared cell equipped with NaCl windows. Samples were treated in 
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flowing dry air (1.67 cm3 s-1, zero grade, Praxair) by heating to 723 K (0.033 K s-1), holding for 2 
h, and then evacuating for at least 2 h at 723 K using a diffusion pump (<0.01 Pa dynamic 
vacuum; Edwards E02) before cooling to 303 K in vacuum and collecting spectra.  

 
Strong (L1) and weak (L2) Lewis acid centers were measured from infrared spectra of CO 

adsorbed at 123 K [19], and specifically from CO bands at 2224 and 2196 cm-1, respectively 
[20]. A constant flow of liquid N2 was used to cool zeolites to 123 K before dosing CO (UHP, 
Praxair) incrementally, without intervening evacuation; spectra were collected 120 s after each 
CO dose. Integrated L1 and L2 band areas (normalized to those for Si-O-Si overtones; 2100-1750 
cm-1) are proportional to the density of Lewis centers (per g) in the sample and are shown in 
Table 3.1. The characterization of Lewis acid centers by these infrared methods is treated in 
more detail in Section 3.6.2 of the supporting information. 

 
 

3.2.3 Catalytic Rates of Monomolecular Alkane Activation 
 
 Steady-state alkane cracking and dehydrogenation rates were measured in a tubular 
packed-bed quartz reactor (7.0 mm inner diameter) with plug-flow hydrodynamics under 
differential conditions (<2% conversion). Catalyst samples (0.02-0.2 g) were supported on a 
coarse quartz frit and the temperature was maintained with a resistively-heated three-zone 
furnace (Applied Test Systems Series 3210). Each zone was controlled independently by Watlow 
controllers (96 Series); catalyst temperatures were recorded using K-type thermocouples 
contained within a thermowell placed at the external surface of the quartz reactor.   
 

Catalysts were treated in a mixture of 5% O2 in He (16.7 cm3 g-1 s-1, 99.999%, Praxair) at 
803 K (0.0167 K s-1) for 2 h before catalytic measurements. The samples were then treated in He 
(16.7 cm3 g-1 s-1, 99.999%, Praxair) for 0.5 h, while propane (10% C3H8, 99.999%, diluted in 5% 

Ar, 85% He, Praxair) or n-butane (10% n-C4H10, 99.99%, diluted in 5% Ar, 85% He, Praxair) 
reactants were sent via heated transfer lines held at 423 K to a gas chromatograph (Agilent HP-
6890GC) for calibration purposes. Reactants and products were separated using GS-AL\KCl 
capillary (0.530 mm ID x 50 m; Agilent) and HayeSep DB packed columns (100-120 mesh, 10 
ft.; Sigma-Aldrich); their respective effluents were measured by flame ionization and thermal 
conductivity detection.   

 
  Reactant pressures were changed by dilution with He (99.999%, Praxair).  Reactant 
flows were varied (10-6-10-4 mol alkane g-1 s-1) to probe primary and secondary pathways and 
any contributions from bimolecular or secondary reactions. The absence of bimolecular 
pathways and secondary reactions was confirmed by the equimolar ratios of cracking products 
(1.0 0.1) measured for C3H8 (C2H4/CH4) and n-C4H10 (C3H6/CH4, C2H4/C2H6) reactants, which 
did not depend on space velocity, and by the absence of hydrocarbons larger than the respective 
alkane reactants. Activation energies and pre-exponential factors were obtained from rate 
constants measured as a function of temperature (718-778 K). Rates and selectivities measured 
after ~100 ks on stream were similar (within 5%) to those at the start of each experiment on all 
catalyst samples. Transport corruptions of measured rates were ruled out using Mears criteria; 
the detailed analysis is shown in Section 3.6.3 of the supporting information. 
 



20 
 

3.3 Results and Discussion 
 
3.3.1 Assessment of Kinetic Parameters for Monomolecular Propane Cracking and 
Dehydrogenation Using Transition State Theory and Thermochemical Cycles 
 

Table 3.2 shows rate constants (per H+) for propane cracking and dehydrogenation and 
cracking-to-dehydrogenation rate ratios at 748 K on H-MFI, H-FER, and H-MOR, together with 
activation energies and entropies calculated from the temperature dependence of these rate 
constants. Monomolecular rate constants differ among these zeolites (by up to factors of 4) and 
even among H-MOR samples with similar Si/Al ratios but of different provenance (by up to 
factors of 2). Measured activation energies for dehydrogenation were consistently higher than for 
cracking (by 25-42 kJ mol-1) on all samples, in contrast with activation energies for C3H8 
dehydrogenation on H-MFI that vary widely among previous reports [21-26]. Measured 
activation entropies were also higher for dehydrogenation than for cracking, consistent with later 
transition states for dehydrogenation, in which the H-H bond is nearly formed at the transition 
state [27]. Rate parameters differ among these zeolites because their transition states differ in 
their energy and entropy relative to the gas-phase alkanes, as we discuss later in the context of 
the relevant thermochemical cycles; as a result, these rate parameters probe specific and subtle 
effects of local environment on the structure and energy of these transition states. 

 
Accepted pathways for monomolecular reactions of alkanes (B) on intrazeolite Brønsted 

acids (H+Z-) are depicted schematically in Scheme 3.1a. Alkanes adsorb from the extracrystalline 
phase (B(g)) onto a Brønsted acid site within zeolite channels (B(z)) in quasi-equilibrated and 
essentially non-activated steps. Transition state formalisms require that monomolecular 
rearrangements of adsorbed alkanes on Brønsted acid sites depend rigorously on the 
thermodynamic activity of reactants [28]. These treatments, shown in greater detail in Section 
3.6.4 of the supporting information, give a rate expression of the form: 

 
†

†
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Table 3.2.  Monomolecular propane cracking and dehydrogenation rate constants (kmeas) and cracking-to-
dehydrogenation (C/D) rate ratios at 748 K and measured activation energies (Emeas) and entropies (Smeas) on acidic 
zeolites. 

Zeolite kmeas  
(/ 10-3 mol [(mol H+)-s-bar]-1)  

C/D 
Ratio 

Emeas 

(kJ mol-1) 
Smeas 

(J mol-1 K-1) 
 Cracking Dehyd.  Crackinga Dehyd.b Crackingc Dehyd.d

H-MFI 2.0 2.1 0.9 158 200 -99 -54 
H-FER 6.2 3.2 2.0 157 195 -91 -57 

H-MOR-T 2.0 3.0 0.7 160 189 -97 -71 
H-MOR-S 1.3 1.9 0.7 167 192 -93 -66 
H-MOR-Z 1.4 2.2 0.7 160 198 -99 -56 

aErrors are  5 kJ mol-1. 
bErrors are  7 kJ mol-1. 
cErrors are  8 J mol-1 K-1. 
dErrors are  10 J mol-1 K-1. 
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 † †1o
i i B Ba K P K P    ,  (3.3) 

 
where ai

o is the thermodynamic activity at the reference state; activity coefficients (Eq. (3.3)) 
include a configurational entropy term that reflects the number of configurations of N molecules 
adsorbed onto M adsorption sites [32]. Reaction rates are strictly proportional to intrazeolite 
alkane concentrations (CBz) when activity coefficients for alkane reactants (Bz) and transition 
states (†) cancel in Eq. (3.1); this occurs in this case, irrespective of their structure and solvation, 
because both species reside on the same site and therefore have identical activity coefficients. 
Moreover, CH

+
Z and H

+
Z approach unity because H+ sites are predominantly unoccupied during 

monomolecular reactions, for which the rates given by Eq. (3.1) become:  
 

† †

exp exp
z

B
B

g g

k T S H
r C

h R R T

      
       

   
.  (3.4) 

 
Intrazeolite concentrations (CBz) become proportional to external pressures (PB) and to 

the adsorption constants (KB) in the low-coverage limit (Eq. (3.2)), where reaction rates (Eq. 
(3.4)) are given by: 

 

int B Br k K P   . (3.5) 

 
Measured activation energies and pre-exponential factors are then given by: 
 

intmeas adsE E H   , (3.6) 

 

intln( ) ln( ) ( / )meas adsA A S R   , (3.7) 

 

intmeas adsS S S     , (3.8) 

 
where Hads andSads are the enthalpy and entropy of adsorption, respectively, and Emeas and 
Ameas (Smeas) are measured rate parameters referenced to gas phase alkanes. Eint and Aint (Sint) 
are intrinsic rate parameters for elementary reactions of adsorbed alkanes relating the properties 
of adsorbed reactants to the corresponding transition states [21,33-36]. We define the measured 
entropy of activation as: 
 

[ln( ) ln( / )]meas meas BS R A k T h    , (3.9) 

 
where Ameas is rigorously normalized by the number of acid sites and by the number of bonds 
available for each type of reaction. These measured activation entropies reflect a mathematical 
manipulation that simply redacts Ameas in terms of thermodynamic properties of reactants and 
transition states.   

 
Table 3.3 shows intrinsic activation energies and entropies for monomolecular propane 

cracking and dehydrogenation on H-MFI, H-FER, and H-MOR; these values were estimated 
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from measured rate constants (Table 3.2), using Eqs. (3.6)-(3.9) and previously reported 
adsorption enthalpies and entropies [29,30]. Intrinsic activation barriers for monomolecular C3H8 
cracking were similar on H-MFI, H-FER and H-MOR (201-208 kJ mol-1; Table 3.3), in 
agreement with previous data for C3H8 cracking on H-MFI (187-200 kJ mol-1) [21-26]. Their 
magnitude and insensitivity to zeolite structure also agree with previous reports for C3H8 
cracking on H-MFI, H-MOR, H-BEA and H-FAU [26] and for the cracking of larger C3-C20 n-
alkanes on H-MFI [21,33,37]. Energies of monomolecular cracking transition states (reflected in 
Emeas) relative to those of adsorbed reactants are independent of chain size and of local channel 
environments, which appear to stabilize adsorbed reactants and transition states identically. As a 
result, intrinsic activation barriers (Eint) for cracking reactions on different zeolite structures are 
similar within the accuracy of the rate and adsorption data used to estimate them (Table 3.3), as 
long as adsorption and rate measurements probe the same intrachannel environment. 
 

Intrinsic activation energies for monomolecular propane dehydrogenation were also 
similar on H-MFI, H-FER, and H-MOR (229-245 kJ mol-1; Table 3.3) and larger than for 
cracking (by 25-42 kJ mol-1). These data contrast previous reports of intrinsic dehydrogenation 
barriers that varied widely for C3H8 among various H-MFI studies (135-205 kJ mol-1) [21-26] 

and which ranged from smaller barriers (by 60 kJ mol-1) [21-23] than for cracking to similar 
values [24,25] or even slightly larger values [26] than cracking barriers. Density functional 
theory (DFT) studies on small T3 zeolite clusters [27] concluded that transition states are ~60 kJ 
mol-1 higher in energy for dehydrogenation than cracking of propane. Figure 3.1 compares the 
temperature dependence of propane cracking-to-dehydrogenation rate ratios on H-MFI with DFT 
estimates [27] and previous data [21,24,26].  Only activation barriers were reported in DFT 
studies [27], so we have used the pre-exponential factors (shown as Smeas in Table 3.2) 
measured in this study to estimate cracking-to-dehydrogenation rate ratios from DFT activation 
barriers. All previous data show weaker temperature effects on rate ratios than reported here and 
predicted by theory (Fig. 3.1). As we discuss below, higher barriers for dehydrogenation relative 
to cracking are also expected from the relative stabilities of protonated C-H and C-C bonds in 
C3H8 to form gas-phase structures resembling those in the respective transition states for these 
two reactions. 
 
Table 3.3.  Intrinsic activation energies (Eint) and entropies (Sint) for monomolecular propane cracking and 
dehydrogenation on acidic zeolites. 

Zeolite Hads 

(/ kJ mol-1) 
Sads 

(/ J mol-1 K-1) 
Eint 

(/ kJ mol-1) 
Sint 

(/ J mol-1 K-1) 
   Crackinga Dehyd.b Crackingc Dehyd.d

H-MFI -45e -102e 204 245 3 47 
H-FER -49f -109f 205 244 17 51 

H-MOR-T -41g -85g 202 229 -12 13 
H-MOR-S -41g -85g 208 234 -8 18 
H-MOR-Z -41g -85g 201 239 -14 28 

aErrors are  7 kJ mol-1. 
bErrors are  9 kJ mol-1. 
cErrors are  10 J mol-1 K-1. 
dErrors are  13 J mol-1 K-1. 
eAdsorption data reported in [29]. 
fAdsorption data reported in [30]. 
gAdsorption data reported only for 12-MR channels of H-MOR in [29].  
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electrostatic interactions that stabilize the ion-pair (H+-Z-) as separation proceeds. Any variation 
in DPE values among zeolite structures reflects predominantly the effects of the local 
environment on the electrostatic stabilization of the ion-pair, because BDE, IE and EA values are 
likely to depend weakly on spatial constraints. Hybrid quantum mechanical and interatomic 
potential methods indicate that DPE values for Brønsted acid sites at different T-sites in H-MFI 
(1229-1240 kJ mol-1) [4] and for the most stable Al location among H-MFI, H-FER, H-MOR 
zeolites (1218-1235 kJ mol-1) [5,40] are in fact similar. These similar deprotonation enthalpies 
reflect the predominant contributions from long-range interactions with the zeolite lattice to the 
electrostatic stabilization of protons, which overwhelm other contributions resulting from subtle 
variations in channel geometry. 

 
Proton affinities reflect the energy required to protonate neutral gas-phase molecules (B) 

to form BH+ complexes, which differ for cracking and dehydrogenation events because the C-C-
H and C-H-H three-center/two-electron complexes formed by protonation of C-C and C-H bonds 
in alkanes differ in energy. Theoretical estimates [41,42] of gas-phase carbonium ion energies 
indicate that protonation of C-H bonds in C3H8 forms C-H-H three-center/two-electron species 
that are less stable by ~20-40 kJ mol-1 than the C-C-H analogues formed via protonation of C-C 
bonds in C3H8. 

 
Transition state energies reflect both electrostatic stabilization of ion-pairs that form as 

BH+ and Z- interact and van der Waals stabilization of the organic cation in the transition state 
complex. Alkane adsorption enthalpies reflect predominantly van der Waals stabilization by 
framework oxygens and, to a lesser extent, any induced dipole interactions with H+, where the 
latter do not depend on the size of alkane reactants or zeolite channels [29-31]. The positive 
charge (+0.9e) at the alkyl fragment in late monomolecular transition states is stabilized by long-
range electrostatic interactions with the zeolite framework [6,7,43,44], rendering subtle effects of 
channel size inconsequential for Estab, the term that accounts for electrostatic stabilization in 
thermochemical cycles; similar long-range electrostatic considerations account for the weak 
dependence of DPE values on Brønsted acid site location or zeolite environment [4,5,40]. In 
contrast, van der Waals stabilization of adsorbed alkanes depends strongly on channel size and 
structure [45]; by inference, such stabilization is essential also for monomolecular transition 
states that resemble in structure their adsorbed alkane precursors. As a result, we conclude that 
differences in transition state stability (Estab) among zeolite locations or structures are almost 
entirely compensated by commensurate differences in reactant stability (Hads), as evidenced by 
intrinsic activation barriers (Eint) that do not change with variations in the size or structure of 
zeolite channels (Table 3.3) or n-alkane reactants [21,33,37].   

 
The intrinsic activation barriers for alkane cracking and dehydrogenation on a given 

zeolite (or a given location within a zeolite) differ from each other primarily in the respective 
affinities for protonation of an alkane at C-C or C-H bonds, because DPE and Hads are 
independent of the specific reaction path for a given alkane and acid site (Eq. (3.11)). The similar 
magnitude (+0.9e) and extent of charge delocalization in the organic fragment at cracking and 
dehydrogenation transition states [6,7,43,44] suggest that electrostatic stabilization (contained in 
Estab) must also be insensitive to reaction path. The differences in intrinsic activation barriers for 
C3H8 dehydrogenation and cracking (estimated from rate data) for a given zeolite (25-42 kJ mol-

1; Table 3.3) must then reflect the calculated energy differences between three-center/two-
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electron C-H-H bonds (dehydrogenation) and C-C-H bonds (cracking) in the gas-phase (~20-40 
kJ mol-1) [41,42], consistent with the thermochemical cycle in Scheme 3.1b and Eq. (3.11). 

 
Thermochemical cycles that relate transition state energies to either gas-phase or 

adsorbed reactants (Scheme 3.1b) can also be used to describe the contributions of various 
catalyst and molecule properties to activation entropies. Measured activation entropies for 
cracking and dehydrogenation reflect differences in entropies between their respective transition 
states, because both are referenced to the same gas-phase reactant. Measured activation entropies 
for propane dehydrogenation are ~40 J mol-1 K-1 larger than for cracking on H-MFI, H-FER, and 
H-MOR (Table 3.2), consistent with later transition states for dehydrogenation, in which H-H 
bonds are nearly formed (0.079 nm vs. 0.074 nm in H2(g)) [27]. The late transition states 
prevalent in monomolecular alkane reactions [27,43,44] lead to hindered rotations and rocking 
vibrations [46] that increase entropy upon formation of the transition state from adsorbed 
reactants. As a result, intrinsic rate constants for monomolecular n-hexane cracking are ~50 
times larger than for propane cracking on H-MFI [36], even though both reactions show similar 
intrinsic activation barriers. We surmise that such late transition states for dehydrogenation allow 
greater rotational and vibrational freedom for C3H7 and H2 fragments than for the corresponding 
C2H5 and CH4 groups at the earlier transition states involved in cracking reactions. 

 
Scheme 3.2 depicts a hypothetical reaction coordinate diagram for acid sites within two 

environments with different spatial constraints, as a result of differences in either the identity of 
the zeolites or the siting of the acid within a specific location in a given zeolite structure. The 
more constrained environment in Scheme 3.2a stabilizes both adsorbed molecules and transition 
states more effectively than the more open structure in Scheme 3.2b through concerted 
interactions that influence the adsorption enthalpies of the reactants and the stabilization energies 
of the transition states [45,47], assuming their complete containment within the smaller 
environment. Thus, intrinsic activation barriers for cracking (or dehydrogenation) are more 
weakly affected by local environment than measured activation energies, which reflect 
differences between transition states and gas-phase reactants. Measured turnover rates therefore 
depend on transition state energies and entropies, which depend, in turn, on the channel 
environment that stabilizes transition states but not reactants in the gas phase external to the 
zeolite.   

 
H-MOR contains Al atoms that reside at four unique T-sites and corresponding Brønsted 

acid sites that reside within two distinct channel environments: 8-MR side pockets or 12-MR 
main channels. The distribution of Brønsted acid sites among 8-MR and 12-MR locations can be 
measured from the frequency and intensity of their antisymmetric vibrations in infrared spectra 
(3550-3650 cm-1) [8]. Such methods are unable to establish the specific location of OH groups in 
H-MFI, however, because of the greater diversity of T-sites and because intrachannel 
environments are more uniform in local structure in MFI than in MOR [48]. All acid sites in H-
MFI reside within 10-MR channels or their intersection, precluding the use of titrants of varying 
size to probe local environment. In light of these considerations, we choose to examine the 
catalytic consequences of Al siting in the bimodal distribution of channel environments of H-
MOR. Al siting was previously shown to influence strongly the stability of charged transition 
states involved in CO insertion into methyl groups [8], but not symmetric and essentially neutral 
transition states involved in exchange reactions [9]. 
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Infrared spectra showed that Na+
 cations selectively replace protons within constrained 8-

MR side pockets in MOR [8,49,52] (Fig. 3.3), because more electropositive alkali cations appear 
to be stabilized more effectively than H+ by the stronger dispersive forces prevalent within such 
smaller environments. Rate constants for C3H8 dehydrogenation (per residual H+) decreased even 
more strongly with Na+ exchange than for cracking (Table 3.4), reflecting a greater specificity of 
8-MR pockets for dehydrogenation reactions compared with 12-MR channels. Measured 
activation entropies became more negative for both cracking and dehydrogenation as Na+ 
replaced H+ within 8-MR side pockets (Table 3.4), demonstrating that the more constrained 
environment provided by such pockets actually stabilizes looser transition states than the larger 
12-MR main channels in MOR for both reactions. 

 
We can extract from these data the specific contributions of OH groups within 8-MR and 

12-MR locations in H-MOR by expressing measured rate constants for C3H8 cracking and 
dehydrogenation as linear combinations of rate constants in the two locations: 

 

8 8 12 12MR MR MR MRk k X k X       . (3.12) 

 
Here, X8-MR and X12-MR represent the fraction of all OH groups located within 8-MR and 12-MR 
locations, respectively, and k8-MR and k12-MR the corresponding monomolecular rate constants in 
each environment. The latter were determined by regressing overall rate constants on seven 
MOR samples with different acid site densities and location; the details of the regression analysis 
are shown in Section 3.6.5 of the supporting information. Measured rate constants (shown at 748 
K in Table 3.5) for C3H8 cracking were larger (by factors of ~3) in 8-MR than in 12-MR 
environments; C3H8 dehydrogenation rates on OH groups within 12-MR channels were 
undetectable within the accuracy of these measurements. 
 

 
Table 3.5. Monomolecular propane cracking and dehydrogenation rate constants (kmeas) at 748 K within 8-MR and 
12-MR locations of MOR and measured activation energies (Emeas) and entropies (Smeas). Uncertainties in regressed 
rate parameters are reported as twice the standard error. 

Reaction (Location) kmeas
a

(/ 10-3 mol [(mol H+)-s-bar]-1) 
Emeas 

(kJ mol-1) 
Smeas  

(J mol-1 K-1) 
Cracking (8-MR)  2.0 0.5 164 5 -91 9 
Cracking (12-MR) 0.7 0.4 151 5 -117 14 

Dehydrogenation (8-MR) 3.2 0.7 197 7 -54 11 
Dehydrogenation (12-MR) n.d.* n.d.* n.d.*

aRate parameters determined by least-squares regression (supporting text shown in Section 3.3.2). 
*n.d., not detected. 
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These data demonstrate that propane cracking and dehydrogenation occur preferentially 
within 8-MR pockets at 718-778 K on H-MOR. Yet, infrared bands of OH groups in 8-MR 
pockets of H-MOR were not perturbed by contact with C3H8 at near ambient temperatures (323 
K) [29], suggesting that propane molecules have restricted access to or weaker interactions with 
8-MR compared with 12-MR OH groups. 13C-NMR spectra [54] and theoretical simulations 
[55], however, have shown that C3H8 adsorbs preferentially within 8-MR H-FER channels of 
similar size at ambient temperatures. Such specificity for adsorption within 12-MR channels in 
H-MOR reflects stronger dispersive forces within constrained environments that can fully 
contain the adsorbate molecules [45] and the consequently more negative adsorption enthalpies 
that reflect more effective van der Waals contacts with framework oxygens [29-31]. Correlations 
that relate adsorption enthalpies to the effective channel diameters for different zeolites [45] 
predict that C3H8 would indeed adsorb more strongly (by ~12 kJ mol-1) if fully contained within 
channels 0.41 nm in diameter, such as those in 8-MR MOR pockets, than within the larger 
channels (0.67 nm) formed by 12-MR structures in MOR. C3H8 molecules (~0.65 nm in length) 
extend, however, beyond the depth of the 8-MR pockets (~0.37 nm) and must protrude into 
connecting 12-MR channels (procedures used for estimating channel and molecular dimensions 
are described in Sections 3.6.6 and 3.6.7, respectively, of the supporting information). These 
dimensions preclude van der Waals interactions between the entire propane molecule and the 
framework oxygens in 8-MR pockets. As a result, C3H8 adsorbs preferentially within larger 12-
MR channels, which interact with the entire molecule, albeit more weakly than 8-MR channels 
able to contain the entire molecule. 

 
Regressed rate constants on acid sites within 8-MR and 12-MR locations are shown as a 

function of temperature in Figure 3.6; these data were used to estimate activation energies and 
entropies within these two distinct MOR environments (Table 3.5). Cracking turnover rates were 
larger on sites present within 8-MR pockets than on acid sites of similar strength within 12-MR 
channels, even though measured activation energies were actually higher on 8-MR OH groups 
(by 13 kJ mol-1), apparently because of looser transition states with higher entropies (Table 3.5). 
The adsorption enthalpy of C3H8 on 12-MR MOR channels was measured to be -41 kJ mol-1 
using calorimetry [29], in agreement with the adsorption enthalpy predicted from its correlation 
to channel size [45]. Taken together with the measured activation energy on 12-MR channels 
(151 kJ mol-1), this enthalpy gives an intrinsic cracking activation barrier of 192   7 kJ mol-1 for 
acid sites within 12-MR channels (Eq. (3.6)). These data agree well with values for C3H8 
cracking on H-MFI, H-FER and H-MOR (201-208 kJ mol-1; Table 3.3). C3H8 adsorption 
enthalpies on 8-MR pockets are not available, but we can extend arguments and data indicating 
that intrinsic activation barriers are independent of zeolite structure or location (because they 
lead to equivalent stabilization of adsorbed precursors and transition states) to estimate such 
adsorption enthalpies from measured activation energies on 8-MR OH groups. Adsorption 
enthalpies for C3H8 within 8-MR H-MOR pockets would then be -30 kJ mol-1 in order for 
intrinsic cracking activation barriers to be the same as those determined on 12-MR H-MOR 
channels (~190 kJ mol-1). These data and arguments lead us to conclude that C3H8 adsorption is 
much weaker on 8-MR pockets in MOR than predicted based on channel size considerations (-53 
kJ mol-1; Section 3.6.6 of the supporting information). Thus, we conclude that both adsorbed 
C3H8 molecules and their monomolecular transition states are only partially contained within 
shallow 8-MR pockets and protrude into neighboring 12-MR channels. These data and 



 

conclusio
significan

 
W

pockets, 
within 12
transition
species b
not essen
electron c
the posit
eliminati
higher fo
caused by
species f
entropy 
environm
monomo
transition

 
 
 

Figure 3.6
channels (
Dehydroge
error in reg

 
 

ons are co
ntly higher o

We conclude
which can 

2-MR chann
n states and
by decreasin
ntial for elec
center in the
tive charge 
ion of the n
or these part
y partial con
fully contain

in the sta
ments and fu
lecular crac

n state entrop

6. Measured ra
( ) and dehy
enation rate co
gressed rate con

nsistent wit
on 8-MR tha

e that transit
confine onl

nels, which p
d the adsorb
g van der W
ctrostatic sta
e transition s

is localized
neutral mole
tially confine
nfinement, in
ned within 1
abilization o
urther extend
cking rates o
pies [36].  

ate constants (k
ydrogenation in
onstants were n
nstants. 

th measure
an on 12-MR

tion states a
ly in part cr
provide mor
bed molecul

Waals contac
abilization o
tate; in late t

d at the car
cule (H2 or 
ed species, i
ndicating tha
12-MR chan
of adsorbed

d our previou
of C3-C6 n-

kmeas) for mono
n 8-MR pock
not detected in

d transition
R acid sites (

are less stab
racking and 
re effective 
les. We not
ts with parts
f the positiv
transition sta
rbon atom i

CH4) from 
in spite of th
at their free e
nnels. These 
d species a
us studies th
-alkanes on 

omolecular pro
kets ( ) deter
n 12-MR chann

n state entr
Table 3.5).  

ble, in term
d dehydrogen

van der Wa
te that part
s of the mol
ve charge (+
ates for mon
in the alkyl

m the transiti
the concomit
energies are 
findings ill

and transiti
hat conclude

H-MFI to 

opane cracking
rmined from 
nels. Error bar

ropies (Sm

 

ms of enthalp
nation trans
aals stabiliza
tial containm
lecules, but 
+0.9e) at the
nomolecular 
l fragment l
ion state. Tu
tant enthalp
in fact lowe

lustrate the 
ion states 

ed the expon
reflect pred

 
g in 8-MR pock

least-squares 
rs are shown a

meas), which

py, within 8
ition states,

ation for bot
ment destab
such contact

e three-atom
alkane react

left behind 
urnover rate
ic destabiliz

er than for si
dominant ro
within con

nential increa
dominantly l

kets ( ) and 1
regression an

as twice the sta

33 

h are 

8-MR 
 than 
th the 

bilizes 
ts are 

m/two-
tions, 
upon 

es are 
zation 
imilar 
ole of 
nfined 
ase in 
larger 

12-MR 
nalysis. 
andard 



 

T
the trade
transition
and caus
[46]. As 
cracking 
(Table 3.
of their lo
used abo
cracking 
transition
responsib
pockets i

 
 

Figure 3.7
acid sites i
the solid cu
samples. 

 
 
T

measured
environm
dehydrog
samples 
cracking-

The entropy c
e-offs medi
n states invo
es atypically
a result, the 
transition st

.5). We were
ow reactivity

ove for 8-M
transition s

n states, how
ble for the p
in MOR.   

7. The depende
in 8-MR pocke
urve. Data at 7

The less neg
d for OH gr

ment on c
genation rate
with differ

-to-dehydrog

component o
ated by pa
lving dissoc
y large pre-e
specificity o

tates, becaus
e unable to d
y at the cond

MR pockets t
state free e
wever, leads
preferential 

nce of propane
ets of MOR, pr
748 K are show

gative trans
roups within
cracking an
e ratios and
ent OH dis
genation rat

of transition 
artial contain
iation and el

exponential f
of 8-MR cha
se of the late
detect dehyd
ditions of ou
to infer part
nergies. Th

s us to conc
stabilization

e cracking-to-d
redicted using 

wn (MOR-Z: 

ition state 
n 8-MR poc
nd dehydro
d the concom
stributions (
te ratios (at 

state free en
nment, beco
limination o
factors (1015

annels is eve
er nature of t
drogenation 
ur measurem
tial containm
e similar na

clude that si
n of dehydro

dehydrogenatio
regressed rate 
, MOR-S: , M

entropies (r
ckets (Table
ogenation r
mitant chang
Tables 3.2 
748 K) on

nergies, and,
omes increa

of a fragment
5-1017 s-1) fo
en stronger 
the former [
contribution

ments, preclud
ment and en
ature of cra
imilar effect
ogenation tr

on rate ratios at
constants (Tab
MOR-T: ) a

relative to r
e 3.5) reflec
rate consta
ges in these
and 3.4). T

n the fractio

, by extensio
asingly sign
t from the ac
or gas-phase
for dehydro

[27], as foun
ns from 12-M
ding a simila
nthalpy-entro
acking and 
ts of partial 
ransition sta

 
t 748 K on the 
ble 3.5) and Eq

along with Na/A

reactants in
ct the strong
ants and 
e properties 
The depend
on of all OH

on, the benef
nificant for 
ctivated com
 fission reac
genation tha

nd experimen
MR sites bec
ar analysis to
opy trade-of
dehydrogen
containmen

ates within 8

fraction of Brø
q. (3.12), is giv
Al ratios for M

n the gas p
g effects of 
on crackin
among H-M

ence of pro
H groups pr

34 

fits of 
later 

mplex, 
ctions 
an for 
ntally 
cause 
o that 
ffs in 
nation 
nt are 
8-MR 

ønsted 
ven by 

MOR-Z 

phase) 
local 

ng-to-
MOR 
opane 
resent 



35 
 

within 8-MR H-MOR pockets is shown in Figure 3.7, together with values predicted from Eq. 
(3.12) and regressed rate constants (Table 3.5), which agree well with data on H-MOR samples 
of different provenance and for H-MOR samples in which Na+ exchange was used to selectively 
titrate 8-MR OH groups.  

 
We conclude that selectivity in alkane activation reactions can be tuned using the location 

of acid sites within a given zeolite structure. Temperature, which exploits differences in 
activation energies between dehydrogenation and cracking pathways, can also be used to control 
selectivity, but rely solely on intrinsic differences in relative stabilities of reactants protonated at 
various positions or bonds; these relative intrinsic barriers for cracking and dehydrogenation are 
therefore independent of zeolite structures or channel location (Table 3.3), as predicted by the 
thermochemical cycle in Scheme 3.1b. Our findings provide an alternate strategy for selectivity 
control, which exploits location-specific differences in entropy between dehydrogenation and 
cracking transition states. To our knowledge, the ability to exploit location and zeolite structure 
to tune the selectivity of cracking and dehydrogenation pathways and the interpretation of the 
resulting effects in terms of the dominant effects of transition state entropies have not been 
previously recognized in zeolite catalysis. These data and conclusions provide design strategies 
for the placement of Al sites within specific locations in order to promote specific reactions via 
rigorous considerations of the position of their respective transition states along the reaction 
coordinate.   

 
To our knowledge, the enzyme-like specificity of spatial environments within 8-MR 

pockets in H-MOR or the marked effects of partial confinement have not been previously 
recognized or demonstrated for alkane activation reactions. These findings resemble, however, 
the reported specificity of 8-MR pockets for CO insertion into CH3 groups during dimethyl ether 
carbonylation to methyl acetate at ~450 K [8]. The sole mechanistic connection between these 
reactions and the alkane activation reactions that we discuss here is the common involvement of 
cationic transition states. Such specificity was not observed for isotopic exchange reactions on 
zeolites, for which transition states are symmetrical and essentially uncharged [9]. We conclude 
that this remarkable specificity and the partial confinement effects responsible for it are general 
features of chemical reactions occurring via transition states with highly localized cationic 
centers within constrained environments. We provide next evidence for the role of partial 
confinement on the relative reactivity of various C-C bonds within alkanes in monomolecular 
cracking reactions and demonstrate the ability of H-MOR side pockets to selectively crack 
terminal C-C bonds in n-butane as a result of partial confinement configurations. 
 
 
3.3.3 Partial Confinement Effects and Preferential Terminal Cracking Selectivity in n-Butane 
Activation on MOR  
 

Concepts of pore mouth catalysis [56], a form of partial confinement, have been used as a 
phenomenological description of processes in which molecules penetrate small zeolite channels 
only partially as they react. Propane reactions in MOR may well fit this empirical concept, 
because reactants cannot fully enter the 8-MR pockets within which they preferentially react, and 
remain in part within connecting 12-MR channels (detailed treatments for estimating channel and 
molecular dimensions shown in Sections 3.6.6 and 3.6.7, respectively, of the supporting 
information). The resulting transition states would preferentially activate terminal C-C and C-H 
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bonds, but such preferences lead to identical products for propane reactants. Any terminal C-C 
bond activation preference arising from partial confinement would be apparent for n-butane 
reactants, but specific activation of terminal C-H bonds may be impossible to detect because of 
fast hydride shifts on both 8-MR and 12-MR acid sites. Indeed, equilibrated n-butene isomers 
were detected at all conditions on all catalysts (data shown in Section 3.6.8 of the supporting 
information). We use here terminal-to-central C-C bond cleavage rate ratios to probe how 
molecules access active sites within 8-MR and 12-MR environments and to demonstrate the 
effects of partial confinement on n-butane dehydrogenation and cracking turnover rates.  

 
Rate constants of terminal and central C-C bond cracking and dehydrogenation of n-

C4H10 (per residual H+) and their rate ratios are shown at 748 K in Table 3.6 for five MOR 
samples with varying Na+ content; the corresponding measured activation energies and entropies 
are shown in Table 3.7. Figure 3.8 shows the temperature dependence of monomolecular rate 
constants (per residual H+) for terminal and central C-C bond cleavage (Fig. 3.8a) and of their 
rate ratio (Fig. 3.8b) on MOR samples with 56% (H100Na0MOR-Z) and 13% (H45Na55MOR-Z) 
of H+ sites within 8-MR pockets. As Na+ selectively replaced H+ within 8-MR locations, 
terminal and central C-C bond cracking and dehydrogenation rate constants (per total H+) 
decreased, while cracking-to-dehydrogenation rate ratios concurrently increased (Table 3.6, Fig. 
3.8). These trends resemble those for propane cracking and dehydrogenation, suggesting that the 
specificity of OH groups in 8-MR pockets for both reactions, and especially for 
dehydrogenation, is not restricted to the smaller C3H8 reactants. Measured activation energies for 
terminal and central C-C bond cracking are similar to each other on all samples (Table 3.7), 
consistent with the lack of temperature effects on n-C4H10 terminal cracking selectivities on H-
MOR (718-778 K; Fig. 3.8b) and of n-C5H12 cracking selectivities on H-MFI (750-810 K) [22]. 
The absence of enthalpic preferences for the cleavage of one of the two types of C-C bonds in n-
butane via late carbonium ions as transition states is consistent with the similar gas-phase 
protolytic cracking enthalpies for the various C-C bonds in n-decane estimated by theory [57]. 
The terminal-to-central C-C bond cracking selectivity decreased monotonically as H+ sites 
within 8-MR pockets were selectively replaced by Na+ (Table 3.6), suggesting that terminal 
bonds are activated preferentially on 8-MR OH sites, as expected from partial confinement of n-
butane within these side pockets. 

 
Table 3.6. Monomolecular n-butane cracking and dehydrogenation rate constants (kmeas) (per total H+) and rate 
ratios at 748 K experimentally measured on MOR-Z samples and estimated within 8-MR and 12-MR locations of 
MOR. 

Zeolite kmeas  
(/ 10-3 mol [(mol H+)-s-bar]-1)  

Rate Ratios 

 Term. C-C 
Cracking 

Cent. C-C 
Cracking 

Dehyd. Term./Cent. C-C 
Cracking 

Cracking/ 
Dehyd. 

H100Na0MOR-Z 13.0 3.2 13.8 4.0 1.1 
H83Na17MOR-Z 10.2 2.9 12.8 3.5 1.0 
H73Na27MOR-Z 6.9 2.7 4.9 2.6 2.0 
H59Na41MOR-Z 6.4 2.4 4.4 2.6 2.0 
H45Na55MOR-Z 4.0 1.6 2.1 2.6 2.6 

8-MRa 20.8 5.4 4.1 2.0 31.5 6.0 5.0 0.9 
12-MRa n.d.* 1.8 1.2 n.d.* n.d.* n.d.* 

aRate parameters for 8-MR and 12-MR locations determined by least-squares regression. Uncertainties in regressed 
rate parameters are reported as twice the standard error. 
*n.d., not detected 
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Monomolecular rate constants for H+ sites within 8-MR and 12-MR locations were 
estimated from measured rate constants (per H+) on the five MOR-Z catalysts (using Eq. (3.12) 
and treatments similar to those in Section 3.6.5 of the supporting information). These rate 
constants (733-763 K; shown at 748 K in Table 3.6) were used to determine activation energies 
and entropies on acid sites within these two environments (Table 3.7). As in the case of C3H8, n-
C4H10 cracking and dehydrogenation rate constants were larger on 8-MR than on 12-MR acid 
sites. The rates of dehydrogenation and of terminal C-C cracking on 12-MR acid sites were too 
small to be estimated accurately from overall rate constants, because both reactions occurred 
much faster on 8-MR acid sites. Measured terminal-to-central cracking rate ratios increased from 
essentially zero on 12-MR acid sites to 5.0 on sites within 8-MR pockets (Table 3.6). These data 
indicate that the partial confinement of n-C4H10 reactants into 8-MR pockets leads to a 
configurational preference for cracking at terminal C-C bonds in n-butane.  

 
 

Table 3.7.  Measured activation energies (Emeas) and entropies (Smeas) for monomolecular n-butane cracking and 
dehydrogenation on MOR samples and estimated values within 8-MR and 12-MR locations of MOR. 

Zeolite Emeas 

(/ kJ mol-1) 
Smeas 

(/ J mol-1 K-1) 
 Term. C-C 

Crackinga 
Cent. C-C 
Crackinga 

Dehyd.b Term. C-C 
Crackingc 

Cent. C-C 
Crackingc 

Dehyd.d

H100Na0MOR-Z 156 153 203 -86 -96 -36 
H83Na17MOR-Z 160 152 227 -83 -98 -4 
H73Na27MOR-Z 139 145 213 -114 -108 -31 
H59Na41MOR-Z 148 146 231 -102 -108 -8 
H45Na55MOR-Z 145 139 n.d.* -110 -120 n.d.* 

8-MRe 163 15 159 11 215 11 -72 23 -86 19 -13  17 
12-MRe n.d.* 134 10 n.d.* n.d.* -126 22 n.d.* 

aErrors for experimentally determined cracking Emeas are  6 kJ mol-1. 
bErrors for experimentally determined dehydrogenation Emeas are  10 kJ mol-1. 
cErrors for experimentally determined cracking Smeas are  9 J mol-1 K-1. 
dErrors for experimentally determined dehydrogenation Smeas are  15 J mol-1 K-1. 
eRate parameters for 8-MR and 12-MR locations determined by least-squares regression. Uncertainties in regressed 
rate parameters are reported as twice the standard error. 
*n.d., not detected. 

 
 
Measured activation energies for central C-C bond cracking of n-C4H10 (Table 3.7) were 

higher on sites within 8-MR pockets (159   11 kJ mol-1), where this reaction actually occurs at 
higher rates, than in 12-MR channels (134   10 kJ mol-1), as also found for C3H8 cracking. 
Adsorption enthalpies of n-C4H10 in 12-MR channels of H-MOR (-50 kJ mol-1) [29] lead to an 
estimated intrinsic activation barrier for central C-C bond cracking of 184 12 kJ mol-1 (using 
Eq. (3.6)); this barrier is similar to that reported here for C3H8 cracking on 12-MR channels of H-
MOR (192 7 kJ mol-1) and in previous studies for cracking of C3-C6 n-alkanes on H-MFI (194-
198 14 kJ mol-1) [21]. If we assume that intrinsic activation barriers for central C-C bond 
cracking within 8-MR pockets were also similar to these values in 12-MR channels, then we 
estimate n-butane adsorption energies of -25 kJ mol-1 from Eq. (3.6), indicating that n-butane 
binding is weaker than expected from complete confinement within 8-MR pockets (-59 kJ mol-1; 
Section 3.6.6 of the supporting information). These findings indicate that van der Waals 
interactions stabilize only part of the n-butane molecule (0.83 nm length) and of its terminal 
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3.3.4 Monomolecular Propane Activation on H-MFI Zeolites 
 

Rate constants for propane cracking and dehydrogenation (per H+) and cracking-to-
dehydrogenation rate ratios at 748 K, and measured cracking and dehydrogenation activation 
energies are shown in Table 3.8 on H-MFI samples of different provenance and acid site density. 
Measured activation barriers were 40-50 kJ mol-1 higher for dehydrogenation than for cracking, 
as also found for H-MOR. Consequently, cracking-to-dehydrogenation rate ratios decreased with 
increasing temperature on all H-MFI samples. Cracking and dehydrogenation turnover rates (per 
H+) varied among these H-MFI samples (by up to factors of 5), without any systematic trends 
with their Al content. These turnover rates (or their ratios) did not correlate with the 
concentration of extraframework Al atoms or Lewis acid centers, as shown by the NMR and IR 
data in Sections 3.6.1 and 3.6.2, respectively, of the supporting information.   

 
 

Table 3.8.  Monomolecular propane cracking and dehydrogenation rate constants (kmeas) and cracking-to-
dehydrogenation (C/D) rate ratios measured at 748 K on different H-MFI samples and measured activation energies 
(Emeas). 

Zeolite kmeas  
(/ 10-3 mol (mol H+)-1 s-1 bar-1)

C/D 
Ratio 

Emeas 

(/ kJ mol-1) 
 Cracking Dehyd.  Crackinga Dehyd.b

H-MFI-1 2.0 2.1 0.9 158 200 
H-MFI-2 6.3 3.9 1.6 155 204 

H85Na15MFI-2 3.9 1.5 2.7 150 193 
H-MFI-3 4.4 3.5 1.3 150 200 
H-MFI-4 1.5 0.8 1.9 150 194 

aErrors are  5 kJ mol-1. 
bErrors are  7 kJ mol-1. 

 
 
These turnover rate differences (Table 3.8) suggest that Brønsted acid sites at the 12 T-

sites in MFI are not identical in reactivity and that these samples differ in their distribution of Al 
among these locations. In contrast, earlier studies reported n-hexane cracking activities that did 
not depend on Al content [1,2,33] and inferred that the location of the sites were also 
inconsequential for reactivity. These data would also be consistent with location-specific 
reactivity but for a set of samples in which Al is similarly distributed among T-sites for all Al 
contents, a possibility mentioned in the original article [33], but largely ignored thereafter. In 
spite of similar acid strength, the reactivity of Brønsted acid sites in MFI depends on location, as 
shown here for H-MOR (Section 3.2) and appears to account for the turnover rate differences 
among our H-MFI samples (Table 3.8). We conclude that previous studies in which n-hexane 
cracking rates were independent of Al content [1,2,33] may have used H-MFI samples with a 
similar distribution of acid sites among locations of different reactivity. We cannot comment 
further about these discrepancies or about the extent to which bimolecular pathways prevailed 
during these previous studies, because precise experimental conditions were not given and the 
cracking data were reported as catalytic activities (arbitrary units) that were likely measured 
under integral reactor conditions.  

 
The replacement of just 15% of H+ sites in H-MFI-2 by Na+ decreased C3H8 cracking and 

dehydrogenation turnover rates (per H+) (by ~1.5 and ~2.5 factors, respectively) and increased 
their selectivity ratios (from 1.6 to 2.7) (Table 3.8), but measured activation energies for neither 
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cracking nor dehydrogenation were affected. These effects of Na+ exchange on monomolecular 
C3H8 cracking and dehydrogenation turnover rates (per H+) on H-MFI resemble those attributed 
here in the case of H-MOR to the preferential replacement of H+ by Na+ at locations where 
cracking and dehydrogenation catalysis is most effective (Table 3.4). These effects of alkali 
exchange are also similar to those reported for i-C4H10 [58] and n-C6H14 [59] cracking on H-
USY, in which cracking rates were rendered undetectable upon titration of just 20-33% of the H+ 
species associated with framework Al atoms. Our data show that Na+ cations preferentially 
replace Brønsted acid sites with the highest reactivity for reactions involving cationic transition 
states. We conclude also that electropositive Na+ cations preferentially reside within smaller 
channel environments, where entropy-enthalpy trade-offs resulting from partial confinement are 
most consequential. In MFI, however, the structural diversity of T-site locations precludes 
rigorous assessment of Al siting and prevents unequivocal and specific interpretations of the 
effects of local environment on cracking and dehydrogenation of alkanes.  
 

The preferential reactivity of specific channel environments reported here for alkane 
activation on Brønsted acid sites and earlier for CO insertion into surface methyls8 appear to 
represent general features of catalytic reactions involving cationic transition states. Spatial 
constraints imposed by zeolite channels, frequently proposed to select transition states based 
simply on their size and shape, play a more fundamental and consequential role in acid catalysis 
via solvation of cationic transition states and specifically via its mediation of enthalpy and 
entropy factors, predominantly in ways that favor entropic stabilization even at the expense of 
enthalpic penalties. We expect that similar effects will prevail for bimolecular alkane reaction 
pathways that propagate via hydride transfer and beta-scission and oligomerization cycles, 
channel environments permitting the formation of the bulkier transition states involved, because 
these pathways also require the formation of cationic transition states [6,7]. Our findings about 
the dominant role of entropy and of partial containment provide a conceptual path forward 
towards a more rigorous assessment of local environment effects on transition state stability and 
therefore on site reactivity and selectivity and towards more rational design and selection 
strategies for microporous catalysts with specific catalytic properties. 
 
 
3.4. Conclusions 

 
Turnover rate (per H+) differences for monomolecular cracking and dehydrogenation of 

propane and n-butane with changes in zeolite structure (H-MFI, H-FER and H-MOR) and acid 
site location (H-MOR: 8-MR side pocket, 12-MR main channel) reflect the strong dependence of 
cationic transition state free energy on local channel environment. In agreement with Born-Haber 
thermochemical cycles that define energy relations in acid catalysis, intrinsic activation barriers 
for both monomolecular propane cracking (201-208 kJ mol-1) and dehydrogenation (229-245 kJ 
mol-1) were similar on H-MFI, H-FER, H-MOR samples and were consistently larger for 
dehydrogenation (by 25-42 kJ mol-1). The insensitivity of these barriers to zeolite structure 
reflects similar zeolite deprotonation enthalpies and commensurate differences in the 
stabilization of transition states and reactants by different channel environments. Transition 
states for dehydrogenation are higher in energy than for cracking, reflecting respective affinities 
for protonation at C-C and C-H bonds in gas-phase alkanes, and are higher in entropy than for 
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cracking, consistent with the later and looser transition states for the former pathways as 
suggested by theory. 

 
Monomolecular cracking and dehydrogenation reactions of propane and n-butane 

occurred predominantly on Brønsted acid sites located within 8-MR side pockets of H-MOR, a 
consequence of spatially constrained environments that allow only partial containment of 
reactants and transition states. Partial transition state confinement results in entropy gains that 
compensate for concomitant enthalpy losses and decrease transition state free energies. Such 
strong effects of channel environment and, by extension, acid site location on reactivity allowed 
for systematic and precise control of cracking-to-dehydrogenation selectivities and of terminal-
to-central C-C bond cleavage selectivities by selective titration of OH groups in 8-MR pockets of 
MOR with Na+. 

 
These findings reflect the broad range of reactivities likely to prevail among acid sites 

located within different channels of the same zeolite structure, shown explicitly for MOR 
samples of varying provenance and acid site distribution and consistent with data obtained on 
different MFI samples. In what appears to be a consideration specific to and consequential for 
acid catalysis by zeolite, channel environments influence the formation of cationic transition 
states, more fundamentally than simple considerations of size and shape, through their solvation 
of transition states and mediation of compromises in enthalpy and entropy factors. These 
findings and their conceptual interpretations offer specific design and selection strategies for 
microporous solids of specific channel structure and acid site location with predictable 
consequences for acid catalysis. 
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3.6. Supporting Information 
 
3.6.1 27Al MAS NMR Spectroscopy of Zeolite Samples 
 

Relative amounts of aluminum in framework and extra-framework locations were 
determined from integrated areas of peaks respectively centered at 55 ppm (tetrahedral) and 0 
ppm (octahedral), referenced to a 1.0 M aqueous solution of Al(NO3)3, in their 27Al MAS NMR 
spectra (Fig. 3.9). NMR spectra were collected at the Caltech Solid State NMR Facility on a 
Bruker Avance 500 MHz spectrometer in a wide bore 11.7 Tesla magnet. 27Al MAS NMR 
spectra were measured at 130.35 MHz using a 4 mm CPMAS probe with the application of 
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3.6.3 Assessment of Transport Corruptions of Kinetic Measurements 
 
The Mears criterion was used to assess intraparticle mass transport limitations by 

assuming isothermal and spherical particles. This criterion asserts that intraparticle concentration 
gradients are negligible when the inequality: 

 

1v p

s e

R r

C D
  (3.13) 

 
is satisfied at the conditions of the experiments. Here, Rv is the observed reaction rate per unit 
volume, rp is the crystallite radius, Cs is the reactant concentration at the crystallite surface, and 
De is the effective reactant diffusivity [60]. 
 
 The largest measured rate constants were ~0.005 mol (mol H+)-1 s-1 bar-1 (Table 3.2) and 
typical experimental conditions for monomolecular alkane reactions (0.2 bar alkane, 780 K, H-
MFI, Si/Al = 15) correspond to a per volume reaction rate (Rv) of ~0.2 mol s-1 m-3. The crystallite 
radius (rp) was conservatively assumed to be 1000 nm; scanning electron microscopy (SEM) 
images (not included) indicated that crystallites were 100-250 nm in their longest dimension.  
 

The reactant concentration at the external crystallite surface (Cs) was estimated to be 0.3 
mol m-3 at 0.02 bar(C3H8) using the adsorption constant at 780 K on H-MFI (Kads ~ 0.005 bar-1), 
which was calculated using Eq. (3.32) and reported adsorption parameters for C3H8 on H-MFI 
(Hads = -46 kJ mol-1, Sads = -102 J mol-1 K-1) [29], the saturation loading of C3H8 on H-MFI 
(qsat ~ 1.5 mol kg-1) [29], and the framework density of MFI ( ~ 1.8 x 106 g m-3). We note that 
typical acid site densities (CH+ ~ 1 x 10-3 mol(H+) g-1; H-MFI, Si/Al = 15) and intrazeolite 
reactant concentrations (CC3H8,z ~ 0.3 mol m-3) result in a fractional site coverage of ~0.0002, 
indicating that acid sites remain predominantly unoccupied at monomolecular reaction 
conditions (i.e., high temperatures, low alkane partial pressures). 

 
The effective reactant diffusivity (De) was estimated to be 1 x 10-4 cm2 s-1, a conservative 

estimate because De = 3 x 10-4 cm2 s-1 for n-C6H12 at 811 K in MFI [61].  These values result in a 
ratio of reaction to diffusion rates smaller than 10-4 in Eq. (3.13) and satisfy the Mears criterion 
for neglecting intracrystallite mass transport limitations and the resulting concentration gradients. 

 
Corruptions arising from heat transfer limitations are expected to be insignificant because 

of the differential conditions used and the endothermic nature of monomolecular cracking and 
dehydrogenation reactions.  Kinetic measurements were also independent of catalyst bed 
volume, indicating that homogeneous reactions do not contribute to measured reaction rates and 
selectivities.  
 
 
3.6.4 Transition State Treatments of Monomolecular Reaction Rate Laws and the Derivation of 
Activity Coefficients for Adsorbed Molecules Described by Langmuir Isotherms 
 
Monomolecular reactions of alkanes on Brønsted acid sites occur via the pathways shown in 
Scheme 3.3. Alkanes in the gas phase (Bg) adsorb onto Brønsted acid sites (H+) located within 
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the zeolite channel (Bz) in a quasi-equilibrated step.  Transition state treatments define reaction 
rates by the frequency () at which activated complexes (†), formed upon reactions of adsorbed 
alkanes with Brønsted acid sites (H+), cross the activation barrier:  
 

†r C ,  (3.14) 

 
 

1. BgBz 

2. Bz + H+Z†P 
 

Scheme 3.3.  Reaction sequence for monomolecular reactions of alkanes (B denotes a reactant base and P denotes 
products) on Brønsted acid sites (H+) located within zeolite channels. 

 
 
In thermodynamically non-ideal systems, the conversion of reactants into the activated 

complex is given by an equilibrium constant (K†) that depends on the activities of the relevant 
species: 

 

† † †
†

z z zH Z B H Z H Z B B

a C
K

a a C C


   

  .  (3.15) 

 
Combining Eqs. (3.14) and (3.15) results in the following rate expression: 
 

†

†

exp z zH Z H Z B BB

g

C Ck T G
r

h R T

 


   

   
 

,  (3.16) 

 
which can be recast in terms of enthalpies ( †H  ) and entropies ( †S  ) of activation 
 

† †

†

exp expz

z

H Z BB
BH Z

g g

k T S H
r C C

h R R T

 






      
       

   
.  (3.17) 

 
The concentrations (per active site; H+) (Ci) of adsorbed species (Bz, †) are related to their 

real (PB) or hypothetical (P†) gas-phase pressures by Langmuir isotherms: 
 

† †1
i i

i
B B

K P
C

K P K P


 
.  (3.18) 

 
Alkanes adsorbed within zeolite channels (Bz) are in equilibrium with alkanes in the gas-phase 
(Bg) at a given pressure (PB) when their chemical potentials are equal: 
 

z gB B  .  (3.19) 
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Assuming that gaseous alkanes behave ideally, their chemical potentials are defined as 
 

ln
g g

o B
B B o

P
RT

P
      

 
,  (3.20) 

 
where Bg

o is the standard gas-phase chemical potential at the reference pressure (Po) of 1 bar. 
Chemical potentials of adsorbed species can be analogously written as 
 

ln z

z z

z

Bo
B B o

B

a
RT

a
 

 
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 
,  (3.21) 

 
where aBz is the activity of the adsorbed alkanes and Bz

o is their standard chemical potential at 
the reference activity aBz

o. 
 
The combination of Eqs. (3.19)-(3.21) results in the following relationship 
 

ln z

z g

z

o
Bo o B

B B o
B

aP
RT

P a
 

 
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 
,  (3.22) 

 
that defines the dimensionless equilibrium constant (Keq), 
 

z

z

o
B

eq o
B B

aP
K

P a
 ,  (3.23) 

 
which can be further related to KB: 
 

z z

o
B B B Ba K P a ,  (3.24) 

 
where Keq = KB*Po. 
 
Activities are related to concentrations through activity coefficients (): 
 

z z zB B Ba c ,  (3.25) 

 
and combining Eqs. (3.18), (3.24) and (3.25) results in the following expression for   
 

 † †1
z z

o
B B B Ba K P K P    .  (3.26) 

 
A similar derivation follows for the activity coefficients of transition states, whose surface 
concentrations are in equilibrium with hypothetical gas-phase pressures and are related by a 
respective Langmuir adsorption constant. 
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 Activity coefficients for alkanes and transition states in Eq. (3.17) (Bz†) are identical 
and cancel because alkanes and hypothetical transition states in the gas-phase competitively 
adsorb onto the same site (H+). Furthermore, monomolecular alkane activation requires 
temperatures that favor low intrazeolite concentrations (CBz) in which H+ sites are predominantly 
unoccupied and both CH

+
Z and H

+
Z approach unity.  Reaction rates therefore become strictly 

proportional to intrazeolite alkane concentrations (CBz): 
 

† †

exp exp
z

B
B

g g

k T S H
r C

h R R T

      
       

   
.  (3.27) 

 
These rates can be rewritten in terms of pre-exponential (A) and activation energy ( †H  ) 
components: 
 

†

exp
zB

g

H
r A C

R T

  
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 
.  (3.28) 

 
Intrazeolite concentrations (CBz) become proportional to external pressures (PB) and to 

the adsorption constants (KB) in the low-coverage limit (Eq. (3.18)) and reaction rates (Eq. 
(3.28)) then become: 

 

int B Br k K P   , (3.29) 

 
with measured rate constants (kmeas): 
 

intmeas Bk k K  , (3.30) 

 
and temperature dependences for kint and KB: 
 

)/(
intint

int RTEeAk  , (3.31) 

 
( / ) ( / ) ( / )ads ads adsG RT H RT S R

BK e e e    , (3.32) 

 
where Hads andSads are the enthalpy and entropy of adsorption, respectively. Measured 
activation energies and pre-exponential factors are given by: 
 

intmeas adsE E H   , (3.33) 

 

intln( ) ln( ) ( / )meas adsA A S R   , (3.34) 

 

intmeas adsS S S     , (3.35) 
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where Emeas and Ameas (Smeas) are measured rate parameters referenced to gas phase alkanes, and 
Eint and Aint (Sint) are intrinsic rate parameters referenced to adsorbed alkanes. We define the 
measured entropy of activation as: 
 

[ln( ) ln( / )]meas meas BS R A k T h    , (3.36) 

 
where Ameas is rigorously normalized by the number of acid sites and the number of bonds 
available for each reaction. This measured activation entropy, although calculated, is simply a 
redaction of Ameas and therefore a measured quantity.    
 
 
3.6.5 Least-Squares Estimation of Rate Constants for Monomolecular Propane Activation in 8-
MR and 12-MR Locations of MOR 
 

The individual contributions of OH groups within 8-MR and 12-MR in H-MOR to 
measured rate constants were estimated by weighing their respective rate constants by the 
fraction of OH sites within each environment (Eq. (3.11)). These rate constants were determined 
by a least-squares regression of rate data on seven MOR samples with different acid site 
distributions (Table 3.1). This system of equations can be expressed in matrix notation: 
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, (3.37) 

 
where meask is a column vector (7 x 1) containing measured rate constants, x  is a matrix (7 x 2) 

containing the fraction of Brønsted acid sites within 8-MR and 12-MR locations, and lock  is a 

column vector (2 x 1) of measured first-order rate constants in 8-MR and 12-MR locations. 
Regressed rate constants are shown in Table 3.9 at different temperatures, with uncertainties 
reported as twice the standard deviation. Dehydrogenation rate constants in 12-MR locations are 
much smaller (by factors of  > 10) than rate constants in 8-MR locations and are zero within the 
error of the regression; these rates were set to zero and the 8-MR dehydrogenation rate constants 
were regressed again to give final values (shown in Table 3.9). 
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Table 3.9.  Regressed first-order rate constants for cracking and dehydrogenation of propane in the 8-MR pockets 
and 12-MR channels of MOR at different temperatures; uncertainties reported as twice the standard error. Corrected 
8-MR dehydrogenation rate constants were calculated by forcing the 12-MR rate constants to be zero.   

Temperature 
(K) 

kmeas (8-MR) 
(/ 10-3 mol (mol H+)-1 s-1 bar-1) 

kmeas (12-MR) 
(/ 10-3 mol (mol H+)-1 s-1 bar-1) 

 Cracking Dehyd. Dehyd (corr.) Cracking Dehyd. 
718 0.7 0.2 0.8 0.3 0.8 0.2 0.3 0.1 0.05 0.2 
733 1.2 0.3 1.5 0.6 1.7 0.3 0.4 0.2 0.1 0.4 
741 1.6 0.4 2.2 0.8 2.4 0.5 0.5 0.3 0.2 0.6 
748 2.0 0.5 2.9 1.2 3.2 0.7 0.7 0.4 0.3 0.8 
756 2.6 0.7 4.0 1.7 4.4 0.9 0.9 0.5 0.4 1.2 
763 3.4 0.8 5.4 2.2 5.9 1.3 1.1 0.6 0.5 1.6 
778 5.5 1.3 9.7 4.2 10.8 2.4 1.7 0.9 1.0 3.0 

 
 
 
3.6.6 Estimation of Adsorption Enthalpy and Entropy of Propane and n-Butane Within 8-MR 
Pockets of H-MOR, Assuming Complete Confinement 
 

Calorimetric measurements of alkane adsorption on acidic zeolites showed that both 
isosteric heats of alkane adsorption and the incremental heat of adsorption per methyl or 
methylene group correlated strongly with the effective pore radius of the zeolite channel [45]. 
Here, we attempt to estimate differences in the adsorption enthalpy of C3H8 and n-C4H10 between 
the 12-MR channel and the 8-MR pocket of H-MOR, assuming that these molecules can be fully 
contained within 8-MR side pockets.   

 
 The effective pore diameter, defined to span the centers of the framework oxygen atoms, 
was calculated by averaging the minor and major axes of the elliptical channel after adding the 
oxygen atom diameter (0.27 nm). In MOR, the effective pore radii of the 12-MR channel (0.70 x 
0.65 nm) and 8-MR pocket (0.26 x 0.57 nm) are 0.47 nm and 0.34 nm, respectively. We note that 
the effective pore radius for the 8-MR pocket in MOR (0.34 nm) is very similar to the radii for 
the 8-MR channel (0.34 nm) and 10-MR channel (0.37 nm) in FER, and make the reasonable 
assumption that the adsorption enthalpy for CH4 in the 8-MR pocket of MOR is the same as in 
H-FER (Hads = -27.7 kJ mol-1) [45]. The incremental adsorption enthalpy per CH2 group in H-
FER (Qst = 12.8 kJ mol-1) predicts and adsorption enthalpy of -53.3 kJ mol-1 for C3H8 in the 8-
MR pocket of H-MOR, in agreement with the value reported for C3H8 in H-FER [45]. 
 
 Therefore, adsorption parameters for C3H8 in 8-MR locations of H-MOR will be 
estimated as those reported for adsorption in H-FER (Hads = -49 kJ mol-1, Sads = -103 J mol-1 
K-1) [30]. Adsorption parameters for C3H8 in the 12-MR channel of H-MOR were directly 
measured by calorimetric, gravimetric and infrared spectroscopic methods (Hads = -41 kJ mol-1, 
Sads = -85 J mol-1 K-1) [29]. Similarly, if n-C4H10 were to be completely contained within 8-MR 
side pockets of H-MOR, we predict adsorption enthalpies would resemble values measured in H-
FER (Hads = -59 kJ mol-1) [30]. The adsorption enthalpy of n-C4H10 in 12-MR H-MOR 
channels was directly measured to be -50 kJ mol-1 [29]. 
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CHAPTER FOUR 
 

Effects of Partial Confinement on the Specificity of Monomolecular Alkane 
Reactions for Acid Sites in Side Pockets of Mordenite 

 
 
4.1 Results and Discussion 

 
The location of Brønsted acid sites within zeolites influences catalytic rates and 

selectivities when their diverse intrachannel environments stabilize transition states to different 
extents [1]. Mordenite zeolites in their proton-form (H-MOR) contain acid sites located within 
two environments: eight-membered ring (8-MR) side pockets and 12-MR main channels. The 
location of these acid sites can be determined by rigorous deconvolution of OH infrared bands 
and by titration with molecules of varying size [2,3], allowing catalytic turnover rates to be 
described in terms of the respective contributions from sites within these two locations.   

 
We have shown previously that monomolecular cracking and dehydrogenation of 

propane and n-butane occur preferentially within constrained 8-MR pockets, where transition 
states and adsorbed reactants are only partially confined [2]. Such configurations lead to entropy 
gains that compensate for the weaker binding of partially confined structures to give lower free 
energies for transition states within 8-MR pockets [2]. For n-alkanes, monomolecular 
dehydrogenation reactions show greater specificity for 8-MR locations than cracking and also 
show higher activation barriers [2], predominantly because (C-H-H)+ species involved in 
transition states for dehydrogenation reactions are less stable than the (C-C-H)+ carbonium ions 
in cracking transition states (proponium [4]; n-butonium [5]). Activation entropies were also 
higher for n-alkane dehydrogenation than for cracking [2], consistent with crossing potential 
curve descriptions of charge transfer reaction coordinates [6-8], which indicate that transition 
states with higher energies are looser and occur later along the reaction coordinates. Thus, it 
seems plausible that reactions involving later and looser transition states, with more fully-formed 
ion-pairs, benefit preferentially from entropy gains caused by partial confinement within 8-MR 
side pockets. The electrostatic underpinnings of these entropy benefits resemble those for proton-
transfer [7] and electron-transfer [8] reactions in solvated systems, for which the entropies for 
molecular and charge reorganization are essential in stabilizing the ion-pairs formed upon charge 
transfer. 

 
 Here, we probe and extend these concepts of 8-MR pocket specificity in ion-pair 
stabilization to monomolecular reactions of branched alkanes. We show that isobutane cracking 
has a stronger preference than dehydrogenation for 8-MR locations in MOR, in sharp contrast 
with the trends for n-alkane reactions. Transition state energies are higher for isobutane cracking 
than for dehydrogenation, consistent with the less stable cations formed upon protonation of C-C 
bonds instead of the tertiary C-H bond in isobutene [9]. We propose that, as for monomolecular 
n-alkane dehydrogenation, isobutane cracking shows a stronger preference than dehydrogenation 
for 8-MR acid sites because it involves later and looser transition states, which benefit more 
strongly from entropy gains arising from partial confinement. 
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These findings and concepts highlight the preeminent role of entropy and free energy in 
determining reactivity and selectivity in chemical reactions [2,29,30], the strong effects of 
location in the preferential stabilization of specific transition states [1,2], and the rigor of 
thermochemical analyses in dissecting the effects of catalyst and reactant properties on the 
stability of bound reactants and ion-pairs at the transition state. 

 
 
4.2 Experimental Section 
 

H-zeolites were prepared by treating NH4
+-zeolites in flowing dry air (2.5 cm3 g-1 s-1, 

zero grade, Praxair) at 773 K (at 0.0167 K s-1) for 4 h and then pelleting, crushing, and sieving to 
retain 180-250 m (60-80 mesh) aggregates. The methods used to prepare the Na+-exchanged 
zeolites, determine their elemental composition and obtain 27Al-NMR and infrared spectra are 
reported elsewhere [2]. Catalytic cracking and dehydrogenation rates were measured under 
differential conditions (<2% conversion) in a plug-flow tubular quartz reactor [2]. Catalysts 
(0.01-0.03 g) were first treated in a 5% O2 / 95% He mixture (16.7 cm3 g-1 s-1, 99.999%, Praxair) 
at 803 K (0.0167 K s-1) for 2 h and then in pure He flow (16.7 cm3 g-1 s-1, 99.999%, Praxair) for 
0.5 h, while isobutane reactants (10% i-C4H10, 5% Ar, 85% He, Praxair, 99.5% purity) were 
transferred via heated lines (423 K) to a gas chromatograph (Agilent HP-6890GC) for calibration 
purposes. Flame ionization and thermal conductivity detection were used to measure reactants 
and products, which were separated chromatographically using GS-AL\KCl capillary (0.530 mm 
ID x 50 m; Agilent) and HayeSep DB packed (100-120 mesh, 10 ft.; Sigma-Aldrich) columns. 
Reactants were mixed with He (99.999%, Praxair) to vary i-C4H10 pressures (1-5 kPa) and molar 
rates (10-4-10-3 mol alkane g-1 s-1). Equimolar C3/C1 product ratios were observed at all space 
velocities; taken together with the absence of C5+ products, these data confirm that bimolecular 
or secondary pathways do not contribute to the products formed. Activation energies and pre-
exponential factors were determined from rate constants measured as a function of temperature 
(703-778 K). Rates and selectivities measured after ~10 h on stream were similar (within 5%) to 
their initial values on all catalysts, indicating that deactivation did not influence kinetic data. 
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( ) ( )PA PA C H H PA C C H        . (4.14) 
 
Here, we describe methods to estimate the difference in gas-phase proton affinities of alkane C-C 
and C-H bonds using values calculated by theory [4,5,9]. 

 
The most stable C3H9

+
 cation is the carbonium ion formed upon protonation of the C-C 

bond in gas-phase C3H8 (-627 kJ mol-1). Less stable carbonium ions are formed from protonation 
at primary C-H bonds (-583 kJ mol-1) and secondary C-H bonds (-598 kJ mol-1). We estimate the 
proton affinity of the average C-H bond in propane (-587 kJ mol-1) as the proton affinity for each 
individual C-H bond, weighted by the number of such bonds in propane (six primary C-H; two 
secondary C-H). Using this method, we obtain a PA value of 40 kJ mol-1 for propane. 

 
The most stable n-C4H11

+
 cations are the carbonium ions formed upon protonation of the 

secondary C-C bond (-655 kJ mol-1) and the primary C-C bond (-636 kJ mol-1); we estimate the 
proton affinity of the average C-C bond in n-butane (-642 kJ mol-1) by weighing these values by 
the respective abundance of their bonds in the molecule (two primary C-C; one secondary C-C). 
Less stable carbonium ions result from protonation at primary C-H bonds (-588 kJ mol-1) and 
secondary C-H bonds (-606 kJ mol-1); we estimate the proton affinity of the average C-H bond in 
n-butane (-595 kJ mol-1) from these values after weighting by the number of each bond in n-
butane (six primary C-H; four secondary C-H). Therefore, we estimate that PA = 47 kJ mol-1 
for n-butane. 

 
The most stable i-C4H11

+
 cation resembles a van der Waals complex between H2 and a 

tert-C4H9
+ cation, which is formed upon protonation of the tertiary C-H bond (-696 kJ mol-1) in 

gas-phase isobutane. Protonation at the C-C bond in isobutane forms a less stable van der Waals 
complex between CH4 and a sec-C3H7

+ cation (-682 kJ mol-1).  Therefore, we estimate that PA 
= -14 kJ mol-1 for isobutane. 

 
Relative differences in these gas-phase proton affinities lead to commensurate differences 

in monomolecular alkane dehydrogenation and cracking barriers (Fig. 4.4).  These effects result 
in cracking-to-dehydrogenation rate ratios for linear (propane, n-butane) and branched 
(isobutane) alkanes that respectively decrease and increase with increasing temperature (Fig. 
4.3).  The higher energy pathways involve later and looser transition states that are more 
sensitive to the entropy benefits upon partial confinement, leading, in turn to cracking-to-
dehydrogenation rate ratios that decrease and increase with increasing 8-MR OH content in 
MOR for linear and branched alkanes, respectively (Fig. 4.2). 
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CHAPTER FIVE 
 

The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition 
States in Zeolite Acid Catalysis 

 
 
Conspectus 

 
The confinement of reactive intermediates and transition states within voids of molecular 

dimensions involves van der Waals interactions, which mediate chemical reactions on zeolitic 
solid acids in a manner reminiscent of the solvation effects of enzyme pockets and with 
analogous consequences for catalytic specificity. Voids provide the “right fit” for certain 
transition states, as reflected in their lower free energies, thus extending the catalytic diversity of 
zeolites beyond their ability to discriminate molecules and their chemical pathways by excluding 
moieties of a certain size. This diversity is all the more remarkable because acid strength is 
unaffected by confinement and similar amongst known crystalline aluminosilicates. In this 
Account, we discuss the factors that determine the “right fit” for a specific chemical reaction and 
explore predictive criteria that extend the prevailing discourse based on size and shape; in doing 
so, we link the respective structures of reactants, transition states, and voids to chemical 
reactivity and selectivity.  

 
Confinement mediates enthalpy-entropy trade-offs that determine Gibbs free energies of 

transition states and relevant reactants; the resulting activation free energies determine turnover 
rates in the context of transition state theory. At low temperatures (400-500 K), dimethyl ether 
carbonylation occurs with high specificity within small eight-membered ring (8-MR) voids in 
FER and MOR, but at undetectable rates within larger voids (MFI, BEA, FAU, SiO2-Al2O3). 
More effective van der Waals stabilization within 8-MR voids leads to ion-pair transition states 
with lower enthalpies but also with lower entropies, which taken together decrease carbonylation 
activation free energies. The “right fit” is a “tight fit” at low temperatures, a natural consequence 
of how temperature appears in the defining equation for Gibbs free energy.  

 
In contrast, entropy effects become dominant in catalytic reactions of small alkanes at 

higher temperatures (700-800 K) where the “right fit” becomes a “looser fit”; yet, alkane 
activation turnovers are also faster on 8-MR protons in MOR. These transition states are 
confined only partially within shallow 8-MR pockets and retain higher entropies, at the expense 
of enthalpic stability, than ion-pairs confined fully within 12-MR channels. The selectivities 
toward n-alkane dehydrogenation (relative to cracking) and iso-alkane cracking (relative to 
dehydrogenation) are higher on 8-MR than 12-MR sites because partial confinement 
preferentially stabilizes ion-pair structures that are looser; such structures occur later along 
reaction coordinates and are higher in energy, consistent with Marcus theory for charge-transfer 
reactions. Enthalpy differences between cracking and dehydrogenation ion-pairs of a given 
reactant are independent of zeolite structure (FAU, FER, MFI, MOR) and reflect gas-phase 
proton affinity differences between alkane C-C and C-H bonds, as expected from Born-Haber 
thermochemical cycles. These thermochemical relations, together with statistical mechanics 
treatments, also show how rotational entropy differences between intact reactants and ion-pair 
transition states cause cracking turnover rates to increase with n-alkane size. Through these 
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illustrative examples, our Account highlights the effects of reactant and catalyst structures on 
ion-pair transition state enthalpies and entropies, while underscoring the role of temperature to 
mediate enthalpic and entropic contributions to free energies and, in turn, to turnover rates and 
selectivities in solid acid catalysis. 
 
 
5.1 Introduction 

 
Zeolites are used in refining and petrochemical processes as Brønsted acid catalysts that 

target specific products based on the size and shape of the molecules and confining voids [1-3]. 
Cracking, alkylation, and hydride transfer reactions require that ion-pairs form at transition states 
from relatively uncharged physisorbed reactants or bound alkoxides [3-7]. Activation barriers 
decrease as ion-pairs become more stable with increasing acid strength, reflected in smaller 
deprotonation energies (EDP), and with smaller cation-anion distances [5-7]. In contrast, 
activation barriers for steps involving more neutral transition states that are predominantly 
stabilized by covalent interactions, such as H-D exchange and alkene adsorption, depend weakly 
on acid strength [5-7].  

 
Brønsted acid sites within aluminosilicates are weaker (EDP ~1200 kJ/mol), than in 

Brønsted-Lewis superacids (HF-SbF5; EDP ~1000 kJ/mol) [8], polyoxometalates or anion-
modified oxides (EDP ~1050-1150 kJ/mol) [9]. Theoretical treatments of structural and 
electrostatic effects in zeolite frameworks indicate that EDP values are similar for isolated 
protons (within ~10 kJ/mol) at all locations within MFI [10] and MOR [11], and for the most 
stable locations in other frameworks [12]. Even though acid sites in zeolites are weaker and less 
diverse in composition and strength than in mesoporous or liquid acids, turnover rates are often 
higher than on stronger acids and depend sensitively on the geometry of both the microporous 
voids and the reacting molecules [13-16]. 

 
Confinement causes ubiquitous compromises between entropy and enthalpy because 

dispersion forces restrict mobility. Smaller channels confine alkanes (and transition states by 
extension) more strongly as long as they fit, because more effective van der Waals contacts with 
framework O-atoms make adsorption enthalpies and entropies more negative [17-20]. Chemical 
reaction rates depend on the Gibbs free energies of transition states (Go

‡) with respect to the 
relevant reactants. 
 

‡ ‡ ‡G H T S        . (5.1) 

 
Thus, trade-offs between enthalpy (Ho

‡) and entropy (So
‡) upon confinement determine 

reactivity. Enthalpic contributions tend to dominate at low temperatures, for which the first term 
in Eq. (5.1) prevails, while entropic effects become important at higher temperatures. In turn, we 
expect that stronger solvation and a tighter fit will benefit chemical reactivity at low 
temperatures, but that a looser fit will do so at higher temperatures. We illustrate these trends for 
alkane cracking and dehydrogenation at high temperatures (700-800 K), where entropy effects 
prevail and vary predictably with alkane structure and with the lateness of transition states along 
reaction coordinates. In sharp contrast, enthalpic considerations dominate free energies at the low 
temperatures (400-500 K) of dimethyl either (DME) carbonylation.  
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5.2 Results and Discussion 
 
5.2.1 Enthalpic Stabilization and “Tighter Fits” in Carbonylation Catalysis 

 
DME carbonylation under anhydrous conditions selectively (>99%) forms methyl acetate 

on acidic zeolites at 400-500 K via kinetically-relevant addition of CO to bound CH3 groups [21-
23]. Turnover rates are much higher on zeolites containing eight-membered ring (8-MR) 
structures (FER, MOR) than on materials with larger voids (MFI, BEA, FAU, SiO2-Al2O3) [23]. 
Carbonylation rates are strictly proportional to the number of H+ within 8-MR structures in FER 
and MOR, which varied with Na+ content and sample provenance and was measured by 
deconvolution of OH infrared bands and by titration of 12-MR H+ with large molecules (n-
hexane, pyridine, 2,6-lutidine) [23]. Carbonylation rates were independent of the number of 
protons within 10-MR or 12-MR structures, in spite of acid strengths (EDP) that do not depend 
on location [11]. 

 
Thus, the preferential stabilization of carbonylation transition states within 8-MR voids 

cannot reflect the electrostatic component of ion-pair energies. Theoretical estimates of barriers 
for CO addition to bound CH3 are similar at all four Al T-site locations within MOR when the 
methods used account for electrostatic but not attractive dispersion forces, but become ~30 
kJ/mol lower within 8-MR voids using ab initio [24] or DFT-based methods [25] that account for 
dispersion. More effective van der Waals interactions within smaller voids decrease the enthalpy 
of transition states, as long as they fit, relative to larger voids. Although tighter confinement 
causes entropy losses, activation free energies are smaller and turnover rates larger within 8-MR 
voids at the low temperatures of DME carbonylation catalysis.  

 
 

5.2.2 Entropic Benefits of Partial Confinement in Catalysis at High Temperatures  
 
Monomolecular alkane cracking and dehydrogenation prevail at high temperatures (>623 

K) and low pressures of alkene products [26]. They involve cations with (C-C-H)+ or (C-H-H)+ 
character that mediate kinetically-relevant C-C or C-H bond scissions (Scheme 5.1) and form via 
proton transfer to physisorbed alkanes present at low intrazeolite concentrations (CA(z)) during 
catalysis [14]. Turnover rates (per H+) are given by: 

 

( )int A z int ads A meas Ar k C k K P k P       , (5.2) 

 
where Kads is the alkane adsorption equilibrium constant and kint is the rate constant for C-C or C-
H scission steps (Scheme 5.1). Measured rate constants (kmeas) reflect free energy differences 
between transition states stabilized within voids and gaseous alkanes: 
 

    ‡ ( )exp /meas B A g H Z
k k T h G G G RT         . (5.3) 

 
Measured activation energies (Emeas) depend on intrinsic activation barriers (Eint) and adsorption 
enthalpies (Hads): 
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whether alkanes are linear or branched? While rate constant ratios depend only on free energy 
differences between the two transition states involved (Eq. (5.6)), each contain enthalpy and 
entropy terms that can be independently obtained from temperature effects on cracking and 
dehydrogenation rates. The catalytic consequences of enthalpy-entropy trade-offs imposed by 
confinement differ for two transition states accessible to each reactant because of how late they 
occur along their reaction coordinates, a property that is reflected in their respective activation 
barriers, as we discuss next.  
 
 
5.2.4 Relations Between Ion-Pair Enthalpy and Entropy 

 
Figure 5.2 shows differences in activation energy between dehydrogenation and cracking 

versus activation entropy differences for each alkane (propane, n-butane, isobutane) on each 
zeolite (FER, MFI, MOR, USY, CD-USY (chemically-dealuminated-USY using (NH4)2SiF6)). 
For a given alkane and zeolite, Emeas (or Smeas) values for dehydrogenation and cracking differ 
only because their transition states differ in enthalpy (or entropy): 
 

‡, ‡,meas,D meas,C D CE E H H       . (5.7) 

 
Barriers were larger for dehydrogenation than cracking for propane and n-butane, but smaller for 
isobutane (Fig. 5.2). Thus, n-alkane dehydrogenation ion-pairs are higher in enthalpy than for 
cracking, but the opposite applies to isobutane. n-Alkane dehydrogenation and isobutane 
cracking also gave larger Smeas values than their respective counterparts (Fig. 5.2), in turn, 
indicating that higher enthalpy ion-pairs also have larger entropies.  

 
These data and their implications for ion-pair enthalpy-entropy tradeoffs are consistent 

with charge transfer reaction coordinates based on reactant and product potentials (Scheme 5.2) 
[27,28]. In this approach, paths from one reactant to several products differ only because of 
product energies. Transition states for the higher barrier path occur later along reaction 
coordinates and more closely resemble products.  For monomolecular alkane activation, products 
contain one more molecule than reactants, and later transition states become looser and higher in 
entropy. As a result, ion-pairs that are higher in enthalpy are also higher in entropy.  

 
For each alkane, rates of the higher barrier reaction selectively increased when transition 

states were partially confined within 8-MR MOR pockets (Fig. 5.1), despite their weaker 
enthalpic stabilization compared with full confinement within 12-MR channels. The different 
kinetic preferences of cracking and dehydrogenation predominantly reflect entropic effects of 
partial confinement, which become more consequential for stability with increasing temperature 
and for looser transition states. Enthalpy and entropy differences between cracking and 
dehydrogenation transition states reflect differences in structure between (C-C-H)+ and (C-H-H)+ 
cations formed as C-C and C-H bonds acquire positive charge. These differences are intrinsic to 
reactant molecules and independent of zeolite structure (Fig. 5.2). We examine next how reactant 
and catalyst properties influence the entropy and enthalpy terms in activation free energies for 
Brønsted acid catalysis using thermochemical cycles that dissect free energies into their 
fundamental components. 
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cations or reactants within voids depends on both catalyst and reactant properties. Cations are 
stabilized (Estab, Sstab) via electrostatic interactions with the anionic framework and, to a lesser 
extent, via van der Waals forces, while neutral alkanes are predominantly stabilized by the latter 
(Hads, Sads ) [17-19] . 

 
 

5.2.6 Gas-Phase Alkane Proton Affinities Determine Monomolecular Activation Barriers 
 
 Differences in cracking and dehydrogenation barriers (Eq. (5.8)) are given by: 
 

   , , , , , , , ,meas D meas C DP D P D stab D DP C P C stab CE E E E E E E E             . (5.10) 

 
EDP terms rigorously cancel when both reactions occur on the same acid. Confinement 
stabilizes gaseous analogs of both transition states to similar extents (Estab), because of their 
similar charge (+0.8-0.9e) and its distribution [5-7,29], which determine electrostatic effects, and 
their similar size, which defines van der Waals contacts. Thus, cracking and dehydrogenation 
barriers for a given alkane and zeolite differ predominantly because C-C and C-H bond proton 
affinities are different: 
 

, , , ,meas D meas C P D P CE E E E     . (5.11) 

 
The carbonium-ions formed upon protonation of gaseous alkanes decompose without detectable 
barriers to form complexes containing a neutral fragment (smaller alkane or H2) and a carbenium 
ion interacting via van der Waals forces with each other [30-33], similar to the late transition 
state structures identified by theory [29,34-36]. 
 

Indeed, differences between cracking and dehydrogenation barriers for each alkane agree 
with proton affinity differences between their respective C-C and C-H bonds (Fig. 5.3), properly 
weighed by the number of each bond (details in Supporting Information) [15]. Activation 
energies were higher for terminal than central C-C cleavage in n-butane (Fig. 3 inset), consistent 
with the higher energy (C-C-H)+ cations formed at terminal locations (by 20-25 kJ/mol) as 
determined by ab initio methods [32,37]. Activation entropies are also higher for terminal than 
central cracking (Fig. 2 inset), consistent with the higher enthalpy ion-pairs for terminal scission 
being later and looser (Scheme 5.2). Next, we examine how the structures of alkanes influence 
the entropies of their cracking transition states and cause differences between terminal and 
central bonds of n-butane and among C3-C6 n-alkanes. 
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int DP P stab adsS S S S S        . (5.14) 

 
Confinement causes entropy losses because attractive van der Waals interactions restrict 

mobility. We surmise that dispersive interactions similarly influence entropies of n-alkanes 
(Sads) and their transition states (Sstab), in view of their similar size, using arguments similar to 
those that account for the similar van der Waals contributions to their enthalpies. Confinement 
may cause entropy differences between charged transition states and neutral reactants if 
electrostatic interactions with the anionic framework change the amount or distribution of charge 
in the cation. Such perturbations seem inconsistent with nearly-full proton transfer (+0.8-0.9e) 
and with the local nature of this charge in both transition state [5-7,29,30] and gaseous [30-33] 
complexes; in turn, these entropy changes (contained within Sstab) are small and insensitive to 
n-alkane size. Chain length must therefore cause differences in the entropy gained upon 
protonation of C-C bonds in gaseous alkanes (SP), even in the absence of concomitant effects 
on protonation enthalpies (EP) [37]. These entropy gains reflect the emergence of frustrated 
rotational and translational modes accessible at late transition states, but not in intact neutral 
alkanes.  

 
 

5.2.8 Entropic Consequences of Chain Size in Monomolecular Alkane Cracking 
 
Ab initio treatments indicate that low-frequency vibrations in alkanes physisorbed at 

intrazeolitic protons represent frustrated translations and rotations relative to the confining walls 
[40,41]. The entropies of these modes were estimated by statistical mechanics formalisms that 
treat alkane translation on a plane perpendicular to the O-H bond axis (2D free translation) and 
rotation about their center axis (1D free rotation); rotation can also occur about an axis 
perpendicular to the zeolite surface (2D free rotation) when void spaces permit [40,41]. Late 
cracking transition states resemble van der Waals complexes formed by charge separation and C-
C bond lengthening [5,29,34]. Distortion of internal bond lengths and angles in these complexes 
represent hindered rotations and rocking vibrations of two fragments stabilized weakly by 
dispersion forces; these motions are essentially barrierless compared to the much larger reaction 
barriers that predominantly reflect the energies required for charge separation [6,7,29,45-50]. We 
expect the statistical thermodynamic treatments used for confined alkanes [40,41] would also 
accurately estimate entropies for late transition states, in which the two products are nearly 
formed.  

 
Entropy gains along the path from n-alkanes to two molecules were calculated for each 

C-C bond cleavage event, separately for one and two degrees of free translational and rotational 
freedom (details in Supporting Information); bond-averaged values are shown in Figure 5.5 as a 
function of chain size. The formation of two molecules causes large translational entropy gains 
(~37 (1D), ~66 (2D) J/mol-K) that are, however, affected only weakly by alkane size (4 J/mol-K 
per CH2 group (2D)). In sharp contrast, rotational entropy gains depend strongly on chain size 
(~22 (1D), ~30 (2D) J/mol-K per CH2 group). Entropy gains from 1D free rotation (Fig. 5.5) are 
similar to Sint values for each n-alkane (Fig. 5.4b); they are also higher for terminal than central 
C-C cleavage in n-butane (by 8 J/mol-K), consistent with the higher activation entropies 
measured for terminal cracking (Fig 5.2 inset). The quantitative agreement between these data 
suggest that if fragments at late transition states rotate freely relative to one another, other 
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gains associated with partial ion-pair confinement are similarly consequential for turnover rates 
of these reactions at high temperatures [53,54]. 
 
 
5.3 Outlook 

These ubiquitous principles for catalysis within confined spaces generate research 
inquiries accessible to theory and experiment. Opportunities emerge for designing catalytic 
materials with active sites located within voids that provide the “right fit” for a given chemical 
transformation. Active site distributions can be modified by post-synthetic treatments, but how 
do we synthesize materials with sites already in desired locations? Recent studies of FER zeolites 
have demonstrated precise control of Al siting at specific framework locations using structure-
directors that template different voids during synthesis [55,56]. These findings offer promise for 
the development of related strategies to control heteroatom siting in other microporous 
frameworks.  

 
Determining proton location within different voids of a given structure, even before and 

after catalytic reactions, remains a state-of-the-art process. Proton location can be accurately 
determined when OH groups differ in infrared vibrational frequencies, in their ability to interact 
with titrants of different size, and in their preference for exchange with other cations [23]. These 
methods provide unclear inferences for structures with many different Al T-sites within voids 
that differ only slightly in size, such as MFI. Nuclear magnetic resonance spectroscopic methods 
can resolve Al atoms with different isotropic chemical shifts in MFI, but the specific assignment 
to unique T-site locations remains uncertain [57]. Methods to characterize Al or OH location 
with increasing accuracy will require synergistic approaches based on experiment and theory, in 
which theoretical methods treat spectral features more definitively and help guide experimental 
design. 

 
Theoretical chemistry can probe how and why voids solvate intermediates and transition 

states. Attractive dispersion forces largely account for catalytic enhancements caused by 
confinement and for reactivity differences among zeolites with diverse void structures but acid 
sites of similar strength. Thus, ab initio [24,40,41] and DFT-based methods that account for 
dispersion [50] are essential to describe reaction coordinate and potential energy surfaces within 
confined spaces. These reaction coordinates exist, however, within free energy surfaces; 
therefore, entropies of confined species need also be determined accurately to predict reactivity. 
Classical mechanics seem unable to accurately describe low-frequency vibrations, such as 
hindered rotations [46,47], which are essential to describe entropy differences between intact 
molecules and ion-pairs at transition states. Treatment of low-frequency vibrations instead as 
free rotational and translational modes using statistical thermodynamics formalisms has 
estimated entropies of physisorbed alkanes that resemble experimentally-determined values 
[40,41,58]. 

 
The choice and design of microporous voids for specific catalytic targets typically relies 

on criteria based on size exclusion, despite the strong consequences of confinement for transition 
state stability. This reflects our emerging knowledge about the specific catalyst and reactant 
properties that influence turnover rates and selectivities. These insights become increasingly 
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important as we expand the ranges of materials used and of the reactions they catalyze. 
Predictive guidance based on rigorous mechanistic interpretation can replace phenomenological 
considerations of void geometry and topology and enable the design of inorganic structures that 
mimic biological catalysts in their ability to confine specific transition states and selectively 
catalyze the chemical reactions that they mediate. 
 
 
5.4 Summary 

 
Turnover rates and selectivities in zeolite acid catalysis depend predominantly on 

enthalpic and entropic stabilities of ion-pair transition states at low and high temperatures, 
respectively. The catalytic consequences of reactant and void structure are identified using 
thermochemical cycles that separate activation energies and entropies into terms that depend 
differently on reactant and catalyst identity. These findings provide insight into the high 
specificity of both DME carbonylation (400-500 K) and monomolecular alkane activation (700-
800 K) turnovers for 8-MR MOR pockets, the higher selectivities to n-alkane dehydrogenation 
but isoalkane cracking in such locations, and the marked increase in cracking turnover rates with 
n-alkane size. 
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5.6 Supporting Information 
 
5.6.1 Estimation of Gas-Phase C-C and C-H Bond Proton Affinities for Propane, n-Butane and 
Isobutane 

 
The proton affinity (EP) is defined as the enthalpy change in the following gas-phase 

reaction: 
 
B H BH   , (5.15) 
 
where B denotes a base (proton acceptor). Proton affinity values become more negative, and 
enthalpy changes for the reaction in Eq. (5.15) more exothermic, as the gaseous cations formed 
become more stable. 
 
 Protonation of alkanes can occur either at C-C or C-H bonds to form carbonium-like ions. 
The structures and energies for stable intermediates and transition states involved in gas-phase 
protonation of alkanes (C3H8;[31] n-C4H10;[32] i-C4H10[33]) at different C-C and C-H bonds were 
calculated by Mota et al. using ab initio quantum chemical calculations at the MP4SDTQ(fc)/6-
311++G**//MP2(full)/6-31G** level. Here, we describe how these values were used to estimate 
differences in gas-phase proton affinities for individual or weighted-average alkane C-C and C-H 
bonds, which are plotted in Figure 5.3. 
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 Gaseous C3H9
+

 carbonium-ions formed upon protonation at the C-C bond in C3H8 are 
more stable (-627 kJ/mol) than those formed upon protonation at primary C-H bonds (-583 
kJ/mol) and secondary C-H bonds (-598 kJ/mol).[31] We estimate the proton affinity of the 
average C-H bond in C3H8 (-587 kJ/mol) by weighting the proton affinity for each individual C-
H bond by the relative numbers of such bonds (six primary C-H and two secondary C-H). Thus, 
we estimate the difference in proton affinities between an average C-H bond and the C-C bond in 
C3H8 (EP(C-H)-EP(C-C)) to be 40 kJ/mol. 

 
Gaseous n-C4H11

+
 carbonium-ions formed upon protonation at secondary C-C bonds in n-

C4H10 (-655 kJ/mol) are more stable than those formed upon protonation at primary C-C bonds (-
636 kJ/mol) by ~20 kJ/mol.[32] The proton affinity of an average C-C bond in n-C4H10 (two 
primary C-C and one secondary C-C) is -642 kJ/mol. Less stable carbonium-ions are formed 
upon protonation at primary C-H bonds (-588 kJ/mol) and secondary C-H bonds (-606 
kJ/mol)[32] and indicate that the average n-C4H10 C-H bond proton affinity is -595 kJ/mol (six 
primary C-H and four secondary C-H).  These values can be used to calculate proton affinity 
differences between an average C-H bond and either an average (47 kJ/mol), primary (41 
kJ/mol) or secondary (60 kJ/mol) C-C bond in n-C4H10. 

 
The most stable gaseous i-C4H11

+
 cation is formed upon protonation at the tertiary C-H 

bond (-696 kJ/mol) in i-C4H10; this cation resembles a van der Waals complex between H2 and a 
tert-C4H9

+ cation.[33] Protonation at i-C4H10 C-C bonds form a less stable van der Waals 
complex between CH4 and a sec-C3H7

+ cation (-682 kJ/mol).[33] These proton affinities give a 
EP(C-H)-EP(C-C) value of -14 kJ/mol. 

 
 

5.6.2 Estimation of Intrinsic Activation Entropies of Monomolecular Alkane Cracking using 
Statistical Mechanics 
 
 According to the mechanism shown in Scheme 5.1, intrinsic activation entropies of 
monomolecular alkane cracking (Sint,C) reflect entropy differences between transition states and 
alkanes adsorbed onto acid sites, both of which are contained within zeolite voids: 
 

 ‡ ( )int A zH Z
S S S S           . (5.16) 

 
Entropies for adsorbed alkanes have been estimated by De Moor et al.[40,41] using statistical 
mechanics formalisms that treat alkane translation on a plane perpendicular to the O-H bond axis 
(2D free translation) and rotation about their center axis (1D free rotation) and about an axis 
perpendicular to the zeolite surface (2D free rotation) when void spaces permit. Transition states 
for monomolecular cracking are late and resemble van der Waals complexes of two fragments 
formed by charge separation and C-C bond lengthening,[5,29,34] approaching the limit in which 
both cracking product fragments are fully-formed. In this limit, we expect that transition state 
entropies can be estimated from entropies of products determined by the same statistical 
mechanics treatments used for adsorbed alkane reactants. Here, we describe how entropies of 
adsorbed molecules depend individually on translational and rotational contributions, how 
entropy values were estimated for a given C-C scission event, and how these values were 
averaged to determine the Sint,C values for C3-C6 n-alkanes in H-MFI plotted in Figure 5.5. 
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 The following expressions, derived using statistical mechanics,[59] were used to evaluate 
molecular entropies arising from 1D translation (Eq. (5.17)), 2D translation (Eq. (5.18)), 1D 
rotation (Eq. (5.19)) and 2D rotation (Eq. (5.20)): 
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In these expressions, R is the universal gas constant, kB is the Boltzmann constant, and h is the 
Planck constant. Translational entropies (Eqs. (5.17)-(5.18)) depend on the molecular mass (M) 
and the surface area (Ao/NA) or distance (Lo/NA) available for translation near the acid site in two 
or one dimensions, respectively. The molecular surface area (Ao/NA) available for translation in 
MFI was taken as 200 x 600 pm (1.2 x 10-19 m2), as reported by De Moor et al.,[41] and Lo/NA 
was estimated as (Ao/NA)1/2. Rotational entropies (Eqs. (5.19)-(5.20)) depend on principal 
moments of inertia (IA, IB) and the external symmetry number () of the molecule. Moments of 
inertia were taken from the NIST Computational  Chemistry Comparison and Benchmark 
Database,[60] calculated at the coupled-cluster doubles (CCD) level of theory with the 6-31G* 
basis set.  
 
 
 These molecular properties (M, IA, IB, ) are summarized in Table 5.2 for all molecules 
that are reactants or products of monomolecular cracking routes of C3-C6 n-alkanes. Entropies of 
these molecules arising from translation and rotation in one and two dimensions were determined 
from values in Table 5.2 and Eqs. (5.17)-(5.20); these values are summarized in Table 5.3. 
 
Entropy changes for the following cracking reactions are summarized in Table 5.4: 
 

3 8 4 2 4C H CH C H   (5.21) 

 

4 10 4 3 6nC H CH C H   (5.22) 
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4 10 2 6 2 4nC H C H C H   (5.23) 

 

5 12 4 4 81nC H CH C H   (5.24) 

 

5 12 2 6 3 6nC H C H C H   (5.25) 

 

5 12 3 8 2 4nC H C H C H   (5.26) 

 

6 14 4 5 102nC H CH C H   (5.27) 

 

6 14 2 6 4 81nC H C H C H   (5.28) 

 

6 14 3 8 3 6nC H C H C H   (5.29) 

 

6 14 4 10 2 4nC H nC H C H   (5.30) 

 
 
The entropy changes for cracking of a given alkane (summarized in Table 5.5, plotted in 

Fig. 5.5) were estimated by weighing entropy changes for individual C-C scission events (Eqs. 
(5.21)-(5.30)) by the number of such events expected statistically based on the alkane structure. 
For a Cn alkane, cracking at terminal C-C bonds was assumed to form CH4 and the 
corresponding Cn-1 alkene, while cracking at non-terminal C-C bonds was assumed to form the 
Cm alkane + Cn-m alkene (m<n) and the Cm alkene + Cn-m alkane products with equal probability 
(Eqs. (5.31)-(5.34)). 

 
 

3 8 . .7C H Eq S
S S    (5.31) 

 
   

4 10 . .8 . .9
2 3 1 3nC H Eq S Eq S

S S S      (5.32) 

 
     

5 12 . .10 . .11 . .12
2 4 1 4 1 4nC H Eq S Eq S Eq S

S S S S        (5.33) 

 

       
6 14 . .13 . .14 . .15 . .16

2 5 1 5 1 5 1 5nC H Eq S Eq S Eq S Eq S
S S S S S          (5.34) 
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Table 5.2.  Molecular masses (M), principal moments of inertia (IA, IB) and external symmetry numbers (). 
Molecule M 

(/ 10-26 kg) 
IA 

(/ 10-47 kg m2) 
IB 

(/ 10-47 kg m2) 
 

CH4 2.7 5.3 5.3 12 
C2H4 4.6 5.7 28.1 4 
C2H6 5.0 10.5 42.1 6 
C3H6 7.0 18.1 90.5 1 
C3H8 7.3 28.6 99.6 2 

1-C4H8 9.3 37.3 203 1 
n-C4H10 9.6 63.5 177 2 
2-C5H10 11.6 62.8 342 1 
n-C5H12 12.0 49.4 433 2 
n-C6H14 14.3 57.5 738 2 

 
 
Table 5.3.  Entropies (J mol-1 K-1) of adsorbed molecules from translation and rotation in one and two dimensions. 

Molecule So
1D-trans So

2D-trans So
1D-rot So

2D-rot 
CH4 38 68 7 31 
C2H4 41 73 17 47 
C2H6 41 73 16 48 
C3H6 42 76 33 68 
C3H8 42 76 29 65 

1-C4H8 43 78 36 75 
n-C4H10 44 79 33 71 
2-C5H10 44 80 38 79 
n-C5H12 44 81 32 73 
n-C6H14 45 82 32 76 

 
Table 5.4.  Reaction entropy changes (J mol-1 K-1) calculated using values in Table 5.3. 

Reaction S1D-trans S2D-trans S1D-rot S2D-rot 
S.7 36 64 -5 13 
S.8 37 65 8 29 
S.9 38 67 0 25 
S.10 37 66 12 32 
S.11 39 69 18 43 
S.12 38 69 15 39 
S.13 37 66 14 34 
S.14 39 70 20 47 
S.15 39 71 30 57 
S.16 39 69 17 42 

 
 
Table 5.5.  Entropy changes (J mol-1 K-1) upon cracking of C3-C6 n-alkanes calculated using values in Table 5.4. 

Reactant S1D-trans S2D-trans S1D-rot S2D-rot 
C3H8 36 64 -5 13 

n-C4H10 37 66 5 27 
n-C5H12 38 67 14 37 
n-C6H14 38 68 19 43 
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CHAPTER SIX 
 

Catalytic Hydrogenation of Alkenes on Acidic Zeolites: Mechanistic 
Connections to Monomolecular Alkane Dehydrogenation Reactions 

 
 
Abstract 
 

Brønsted acid sites in zeolites (H-FER, H-MFI, H-MOR) selectively hydrogenate alkenes 
in excess H2 at high temperatures (>700 K) and at rates proportional to alkene and H2 pressures. 
This kinetic behavior and the De Donder equations for non-equilibrium thermodynamics show 
that, even away from equilibrium, alkene hydrogenation and monomolecular alkane 
dehydrogenation occur on predominantly uncovered surfaces via microscopically reverse 
elementary steps, which involve kinetically-relevant (C-H-H)+ carbonium-ion-like transition 
states in both directions. As a result, rate constants, activation energies and activation entropies 
for these two reactions are related by the thermodynamics of the overall stoichiometric gas-phase 
reaction. The ratios of rate constants for hydrogenation and dehydrogenation reactions do not 
depend on the identity or reactivity of active sites; thus, sites within different zeolite structures 
(or at different locations within a given zeolite) that favor alkane dehydrogenation reactions, 
because of their ability to stabilize the required transition states, also favor alkene hydrogenation 
reactions to the exact same extent. These concepts and conclusions also apply to monomolecular 
alkane cracking and bimolecular alkane-alkene reaction paths on Brønsted acids and, more 
generally, to any forward and reverse reactions that proceed via the same kinetically-relevant 
step on vacant surfaces in the two directions, even away from equilibrium. The evidence shown 
here for the sole involvement of Brønsted acids in the hydrogenation of alkoxides with H2 is 
unprecedented in its mechanistic clarity and thermodynamic rigor. The scavenging of alkoxides 
via direct H-transfer from H2

 indicates that H2 can be used to control the growth of chains and 
the formation of unreactive deposits in alkylation, oligomerization, cracking, and other acid-
catalyzed reactions. 
 
 
6.1 Introduction 

 
The catalytic cracking and dehydrogenation of alkanes on Brønsted acid sites within 

zeolites have been shown by experiment [1-5] and theory [6-9] to occur via monomolecular 
routes at high temperatures (>623 K) and low conversions (<2%) [10]. These paths involve 
protonation at C-C or C-H bonds in alkanes, respectively, to form (C-C-H)+ or (C-H-H)+ 
carbonium-ion-like transition states in their respective kinetically-relevant bond scission steps 
[2]. Cracking and dehydrogenation of alkanes (C3H8, n-C4H10, i-C4H10) via monomolecular 
routes at these conditions occur exclusively on Brønsted acid sites in H-FER, H-MFI, and H-
MOR, consistent with rates proportional to the proton density in these materials but not with the 
number of metal or Lewis acid impurity sites [2,3]. On all zeolites, the differences between 
cracking and dehydrogenation activation energies of a given alkane equal the difference in gas-
phase proton affinities of its C-C and C-H bonds, as expected from thermochemical cycle 
analyses of transition state ion-pairs for cracking and dehydrogenation paths catalyzed by 
Brønsted acids (Section 6.7.1, Supporting Information) [2,3]. 
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The hydrogenation of alkenes by H2 on acidic zeolites, however, is typically attributed to 

metals [11-16] or cations [17,18] introduced deliberately or present as adventitious impurities 
[19,20]. Yet, the reactivity of Brønsted acid sites in monomolecular alkane dehydrogenation 
would make such sites plausible candidates as catalysts for alkene hydrogenation with H2 via 
carbonium-ion-like transition states, as proposed, but not shown unequivocally, on liquid 
superacids [21-23] and solid acids [18,24,25]. This expectation would be justified rigorously for 
any general chemical reaction only at equilibrium, conditions at which reactions occur via 
identical mechanistic sequences in forward and reverse directions, as dictated by the principle of 
microscopic reversibility [26,27]. Such requirements hold even away from equilibrium for 
elementary steps, because they involve a single energy barrier that must be surmounted in both 
directions along the reaction coordinate.   
 

We provide evidence here that Brønsted acid sites in zeolites catalyze alkene 
hydrogenation with H2, even at conditions far away from equilibrium, via the microscopic 
reverse of monomolecular alkane dehydrogenation paths and at rates constrained by the 
thermodynamics of the stoichiometric gas-phase reaction. Rate constants, activation energies and 
activation entropies for propene hydrogenation and monomolecular propane dehydrogenation are 
interpreted rigorously using common elementary steps and De Donder relations that describe the 
rates of elementary steps as a function of their chemical affinity, the relevant metric for their 
distance from equilibrium. We use these mechanistic insights to show that intrazeolite locations 
and channel structures that lead to more active Brønsted acid sites do so to the same extent for 
monomolecular propane dehydrogenation and propene hydrogenation reactions, regardless of 
their respective distances from equilibrium.  These conclusions would seem at first glance to 
extend the principle of microscopic reversibility beyond its intended description of chemical 
reactions at equilibrium, but represent, in fact, a not altogether uncommon example of chemical 
reactions that involve a single kinetically-relevant elementary step on predominantly vacant 
surfaces, for which such principles apply at all distances from equilibrium. 

 
 

6.2 Methods 
 
6.2.1 Catalyst Synthesis and Characterization 
 

NH4
+-zeolites were treated in flowing dry air (2.5 cm3 g-1 s-1, zero grade, Praxair) by 

heating to 773 K (0.0167 K s-1) and holding for 4 h to prepare H-zeolites, which were then 
pelleted, crushed, and sieved to retain 180-250 m (60-80 mesh) aggregates. The zeolite samples 
used are described in Table 6.1 together with the relevant characterization data. The notation 
describes their fractional H+ and Na+ content at exchange sites, their framework structure, and 
their provenance. Methods to prepare Na+-exchanged zeolites, measure elemental composition, 
and collect 27Al-NMR and infrared spectra have been reported elsewhere [2]. The number of 
Brønsted acid sites in Na+-exchanged samples was determined by the difference in the number of 
framework Al atoms and exchanged Na+ cations. 
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Table 6.1.  Characterization of zeolite samples used in this study.  
Zeolite Source Si/Al  

Ratioa 
Na/Al  
Ratioa 

AlEF
b  

(%) 
X8-MR

c 

 
X12-MR

c

 

H100Na0-FER-Z Zeolyst 10.3 0.002 15 - - 
H100Na0-MFI-Z Zeolyst 16.5 0.004 12 - - 

H100Na0-MOR-T Tosoh 8.9 0.001 19 0.78 0.22
H100Na0-MOR-S Sud-Chemie 10.1 0.001 21 0.60 0.40
H100Na0-MOR-Z Zeolyst 10.0 0.001 22 0.56 0.44
H83Na17-MOR-Z Zeolyst 10.0 0.17 22 0.36 0.64
H73Na27-MOR-Z Zeolyst 10.0 0.27 22 0.27 0.73
H59Na41-MOR-Z  Zeolyst 10.0 0.41 22 0.20 0.80
H38Na62-MOR-Z Zeolyst 10.0 0.62 22 0.17 0.83

a Determined from elemental analysis (ICP-OES; Galbraith Laboratories). 
b Extra-framework Al content (AlEF) determined from 27Al MAS NMR spectra; details in [2]. 
c Fraction of H+ sites in 8-MR or 12-MR locations on MOR samples determined from infrared spectral band 
deconvolution (Section 6.7.3, Supporting Information).  
 
 
6.2.2 Catalytic Rate Measurements 
 

Procedures for measuring monomolecular alkane dehydrogenation rates have been 
reported elsewhere [2]. Alkene hydrogenation rates were measured in a plug-flow tubular quartz 
reactor under differential conditions (<5% conversion). Before rate measurements, catalysts 
(0.01-0.10 g) were treated at 803 K (0.0167 K s-1) in a 5% O2 / 95% He mixture (16.7 cm3 g-1 s-1, 
99.999%, Praxair) for 2 h, and then in pure He flow (16.7 cm3 g-1 s-1, 99.999%, Praxair) for 0.5 h 
while propene (1% C3H6, 5% Ar, 94% He, Praxair, 99.5% purity) and H2 (99.999%, Praxair) 
reactants were transferred to a gas chromatograph (Agilent HP-6890GC) via heated lines (423 K) 
for calibration purposes. Reactants and products were separated using GS-AL\KCl capillary 
(0.530 mm ID x 50 m; Agilent) and HayeSep DB packed (100-120 mesh, 10 ft.; Sigma-Aldrich) 
columns and detected using flame ionization and thermal conductivity detection, respectively. 
Reactants were diluted with He (99.999%, Praxair) to vary the pressures and molar rates of C3H6 
(0.01-0.05 kPa; 10-7-10-6 (mol C3H6) g

-1 s-1) and H2 (10-120 kPa; 10-4-10-3 (mol H2) g
-1 s-1) and to 

maintain high H2/C3H6 feed molar ratios (>1000). Rate constants measured between 718 K and 
778 K were used to estimate activation energies and pre-exponential factors. On all catalysts, 
steady-state rates and selectivities measured after ~12 h on stream were similar (within 5%) to 
their initial values, indicating that kinetic data were unaffected by deactivation. 
 
 
6.3 Results and Discussion 
 
6.3.1 Monomolecular Alkane Dehydrogenation on Acidic Zeolites 
 

Monomolecular alkane dehydrogenation proceeds via quasi-equilibrated adsorption of 
alkanes within zeolite voids that contain Brønsted acid sites (Step 1, Scheme 6.1), the subsequent 
formation of (C-H-H)+ carbonium-ion-like transition states in kinetically-relevant C-H scission 
steps (Step 2, Scheme 6.1), and quasi-equilibrated desorption of alkene and H2 products (Steps 3-
5, Scheme 6.1) [2]. The temperatures and pressures required for monomolecular alkane 
activation lead to unoccupied H+ sites as the most abundant surface intermediate (MASI) [2] and 
to low intrazeolite alkane concentrations that are proportional to gas-phase pressures. 
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different conditions and far from equilibrium in their respective directions. In what follows, we 
provide evidence that alkane dehydrogenation and alkene hydrogenation paths do, in fact, 
proceed via the same sequence of elementary steps (Scheme 6.1) by interpreting rate constants in 
mechanistic terms and using the De Donder relations to connect kinetic parameters (kmeas, Emeas, 
Smeas) for these two reactions.   

 
 

6.3.3 The De Donder Formalism for Rates of Elementary Steps and their Sequences 
 

The net rate of an elementary step (ri) reflects the difference between its forward ( ir


) and 

reverse ( ir


) rates: 

 

i i ir r r 
 

.  (6.8) 

 
The De Donder equation [31,32] relates forward and reverse rates to chemical affinities 

(Ai) for a given step, which are defined as (-∂G/∂)T,P with G denoting the Gibbs free energy and 
 the extent of reaction: 
 

 expi i ir r A RT
 

.  (6.9) 

 
Elementary step reaction rates must also obey the law of mass action because they occur 

as written, and the chemical affinity is given by: 
 

ln j

i i j
j

A RT K a  
  

 
 ,  (6.10) 

 
where aj and j are the thermodynamic activity and molecularity of the species j involved in step 
i, and where j is positive for products and negative for reactants. Ki is the equilibrium constant 

for the step, which is given, in turn, by the ratio of its forward ( ik


) and reverse ( ik


) rate 

constants: 
 

i
i

i

k
K

k



 .  (6.11) 

 
The De Donder equation (Eq. (6.9)) accounts rigorously for the consequences of 

thermodynamic equilibrium and of reactant and product thermodynamic activities on the net rate 
of any elementary step in a catalytic sequence [33-36]; the sign of Ai prescribes the direction in 
which the chemical transformation indicated by that step will occur. The net rate of each 
elementary step is then given by Eqs. (6.8)-(6.10) in terms of the approach to equilibrium 
parameter for the ith step (i) as:  
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 1
1 1

ji i i i

i j
j

r r r
K a  

 
 

    
 
 


 

.  (6.12) 

 
The value of i approaches zero far away from equilibrium and unity as a step reaches 
equilibrium. 

  
Catalytic reactions occur, however, via a sequence of elementary steps that form reactive 

intermediates on active sites, transform them chemically, and ultimately desorb them as products 
to regenerate sites for subsequent turnovers. The pseudo-steady-state hypothesis (PSSH) for all 
adsorbed species requires that the net rate of each elementary step be related to that of the overall 
reaction (r) by: 
 

 i i i ir r r r r    
   

,  (6.13) 

 
in which i  is the stoichiometric number for step i, defined as the number of times it must occur 
to complete one catalytic turnover. Applying Eq. (6.9) to each elementary step in a catalytic 
sequence allows the De Donder formalism to be extended from elementary steps to single path 
catalytic sequences [36]:  
 

   exp expi
i

i

rr
A RT A RT

r r
   


  ,  (6.14) 

 
where A represents the chemical affinity for the overall reaction sequence: 
 

i i
i

A A ,  (6.15) 

 

and   is an affinity-averaged stoichiometric number for the catalytic sequence: 
 

i i i
i i

A A   .  (6.16) 

 
The fact that elementary steps are reversible (Eq. (6.9)) implies that a single path catalytic 

sequence must also occur in both forward and reverse directions at the respective rates given by 

Eq. (6.14), at a given set of reaction conditions (T, Pj). Moreover, forward ( k


) and reverse ( k


) 
rate constants must be related to the equilibrium constant (KR) for the overall reaction [36] by: 
 

1
Rk k K 

 
.  (6.17) 

 
When all kinetically-relevant steps in a catalytic sequence have stoichiometric numbers 

of unity, as is the case for hydrogenation-dehydrogenation reactions (Scheme 6.1), Eqs. (6.14) 
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and (6.17) become indistinguishable from those derived for a single elementary step, irrespective 
of the concentrations of reactants and products relative to their equilibrium values. 

 
 

6.3.4 Mechanistic Connections Between Alkane Dehydrogenation and Alkene Hydrogenation 
 

The application of Eq. (6.14) to the alkane dehydrogenation sequence in Scheme 6.1 and 
with forward and reverse rates for elementary steps given by the law of mass action results in: 
 

2 2 2

2 2 2

1 ( ) 2 ( ) 3 4 ( ) 5 ( )1 2 3 4 5

1 ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( )1 2 3 4 5

RH g RH z R z H zH Z RH ZD

RH z H z R z R g H gH RH Z H Z

k a k a a k a k a k ar r r r rr

k a k a a k a a k a k ar r r r r r

   

       

 


  .  (6.18) 

 
The thermodynamic activity of any given surface intermediate appearing in the forward and 
reverse rate expressions in Eq. (6.18) is identical for a fixed set of reaction conditions (T, Pj). 
These terms cancel in such cases, and replacing activities for ideal gases with pressures results 
in: 
 

2

2

1 2 3 4 5

1 2 3 4 5

RHD

R HH

k P k k k kr

k k k k P k Pr     



 .  (6.19) 

 
The isolation of dehydrogenation and hydrogenation rate parameters in the numerator and 
denominator, respectively, then gives:  
 

2 2

2 2

1 2 ,

1 1 1
2 3 4 5 ,

RH meas D RHD

R H meas H R HH

K k P k Pr

k K K K P P k P Pr   


 

 .  (6.20) 

 
Thus, the ratio of measured rate constants for alkane dehydrogenation (kmeas,D) and alkene 
hydrogenation (kmeas,H), as given by Eq. (6.20), equals the equilibrium constant for the 
interconversion of the gaseous molecules, as given by Eq. (6.17), but only when the surface 
coverage of each species is identical in both directions. This requirement is rigorously met only 
for a fixed set of reaction conditions (T, Pj), however, the reaction rate in the direction opposing 
equilibrium cannot be measured directly in such cases. 
 

Turnover rates for monomolecular propane dehydrogenation and bimolecular propene 
hydrogenation were measured at different pressures so as to ensure unidirectional reactions in 
their respective directions (i < 0.001). Propene hydrogenation rates depend linearly on both 
C3H6 and H2 pressures (Fig. 6.3), consistent with the rate expression derived when propoxide 
formation (Step 3, Scheme 6.1) is quasi-equilibrated but inconsistent with the zero-order H2 
dependence in the expression derived when step 2 (Scheme 6.1) is assumed to be quasi-
equilibrated instead (derivation in Section 6.6). The mean value of kmeas,D/kmeas,H  at 748 K for all 
zeolites tested is 0.017 0.001 bar (Table 6.2), which is identical, within experimental accuracy, 
to the equilibrium constant (KR) for the stoichiometric propane dehydrogenation reaction at 748 
K (0.017 bar; Section 6.7.2, Supporting Information). This remarkable agreement is consistent 
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with Eq. (6.17) for  =1 (evident from the elementary steps in Scheme 6.1), as if stoichiometric 
dehydrogenation-hydrogenation reactions behaved as a single elementary step.  

 
This thermodynamic consistency between alkane dehydrogenation and alkene 

hydrogenation rate constants and equations persists at all temperatures (718-778 K; Fig. 6.5), but 
it is not rigorously required in this case, because De Donder relations apply only when forward 
and reverse reactions are carried out at the same reactant and product pressures. The ratio of 
propane dehydrogenation and propene hydrogenation rates, when measured at different 
conditions (denoted by subscripts A and B, respectively) and when alkoxide desorption and 
formation (Step 3, Scheme 6.1) is quasi-equilibrated, is given by (derivation in Section 6.6): 
 

 
 

   
     

2

2

,

,

D meas D RH H Z AA A

meas H H RH H Z BB BB

r k P c

k P P cr

 

 





 .  (6.21) 

 
This equation reduces to that describing a fixed set of reaction conditions (Eq. (6.20)) 

only when unoccupied H+ sites are the most abundant species at the different reaction conditions 
used to measure forward and reverse rates, which is the case for the high temperatures and low 
hydrocarbon pressures used in this study. Thus, the persistent relevance of the De Donder 
relation beyond its intended scope reflects a unique situation in which different conditions for 
forward and reverse catalytic reactions preserve the identity of a single most-abundant surface 
intermediate and of a single kinetically-relevant step, which must be unoccupied H+ sites and 
step 2 (Scheme 6.1), respectively, for the dehydrogenation-hydrogenation reactions described in 
this study (Section 6.6). In such cases, forward and reverse directions of the kinetically-relevant 
step, and consequently of a multi-step chemical reaction sequence even far away from 
equilibrium, must obey the principle of microscopic reversibility. This unique situation, not all 
that infrequent in heterogeneous catalysis, allows the rigorous prediction of the rate in one 
direction from thermodynamic data and the rate in the opposite direction by using Eq. (6.17), for 
any active site or catalyst, irrespective of its reactivity or structure. 

  
Measured activation barriers for monomolecular propane dehydrogenation (Eq. (6.3)) and 

for propene hydrogenation (Eq. (6.6)) depend on zeolite channel structure because they each 
reflect enthalpy differences between the same transition state (Step 2, Scheme 6.1) solvated by 
channel environments and their respective reactants in the extrazeolitic gas phase. The difference 
between Emeas,D and Emeas,H on a given site is: 
 

3 6 2 3 8, , ( ) ( ) ( ) ( )meas D meas H C H g H g C H g R gE E H H H H           ,  (6.22) 

 
in which the enthalpy of the bare proton and of the transition state cancel rigorously.  The 
differences between measured Emeas,D and Emeas,H are very similar on all zeolites (127 8 kJ mol-

1; Table 6.3) and identical, within experimental accuracy, to the enthalpy for the stoichiometric 
propane dehydrogenation reaction (HR(g) = 129 kJ mol-1; Section 6.7.2, Supporting 
Information), consistent with the relation expected (Eq. (6.22)) when the same elementary step 
(Step 2, Scheme 6.1) is kinetically-relevant in both forward and reverse directions.  
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Theoretical studies indicate that monomolecular alkane dehydrogenation requires late 
transition states, with a nearly full positive charge localized at the alkyl cations and activation 
barriers that reflect predominantly electrostatic interactions of the fully-formed ion-pairs 
[6,7,37,38]. We conclude from the thermodynamic consistency of the rate parameters for 
monomolecular alkane dehydrogenation and alkene hydrogenation that they occur via a common 
transition state, however, the initial carbonium-ions formed in these two reactions are likely to 
differ in structure (as depicted qualitatively in Scheme 6.2). This requires, in turn, that the 
incipient (C-H-H)+ carbonium-ions formed in forward and reverse directions of step 2 (Scheme 
6.1) interconvert via rotations that involve kinetically-insignificant energy barriers, which has 
been shown by theory for the cationic intermediates and transition states involved in hydride 
transfer and dehydrogenation reactions of hydrocarbons on heteropolyacids [39,40]. These data 
and interpretations provide the first experimental evidence for the facile rotation of cationic 
species at transition states, which appears to be ubiquitous in catalysis on solid acids.  

 
The reaction coordinate for the overall catalytic reaction contains free energy barriers for 

the other elementary steps in Scheme 6.1, but they are small enough in both directions to make 
these steps quasi-equilibrated. As a consequence, monomolecular alkane dehydrogenation and 
alkene hydrogenation reactions proceed via the same kinetically-relevant transition state and 
differences in their measured activation energies merely reflect the enthalpy for the overall 
chemical reaction (Eq. (6.22)). This relation between activation energies in the forward and 
reverse direction and the reaction enthalpy (shown in Scheme 6.2) holds rigorously for any 
elementary step, but is unexpected in general for rates and barriers arising from the sequence of 
elementary steps required to complete a catalytic turnover. These same arguments apply for 
differences in measured activation entropies for the catalytic reaction in forward and reverse 
directions, which causes differences between Smeas,D and Smeas,H on all zeolites tested (134 11 
J mol-1 K-1; Table 6.3) to equal, within experimental error, the gas-phase reaction entropy for 
propane dehydrogenation (SR(g) = 138 J mol-1 K-1; Section 6.7.2, Supporting Information) 
because the transition state entropy also cancels when evaluating this difference: 
 

3 6 2 3 8, , ( ) ( ) ( ) ( )meas D meas H C H g H g C H g R gS S S S S S            .  (6.23) 

 
Temperature effects on kmeas,D/kmeas,H ratios depend only on the thermodynamics of the 

overall reaction (Eq. (6.22); Fig. 6.5); therefore, they must be identical on all catalysts, 
irrespective of the structure or reactivity of the active sites or of any confinement effects 
provided by the spatial constraints within zeolite structures, as long as H+ remains the single 
MASI and step 2 (Scheme 6.1) remains the sole kinetically-relevant step at the different 
conditions used to measure forward and reverse reaction rates. As a result, the rate of the reverse 
reaction at any given temperature and at any reactant and product concentrations can be 
determined rigorously from the rate of the forward reaction determined at that temperature but at 
different reactant concentrations. In the same manner, activation energies and entropies for a 
reaction can be estimated accurately from thermodynamic data and their values for the reaction 
in the opposite direction, as long as these requirements are met, as they are in this case for 
propane-propene interconversions. 
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A given catalytic solid contains a range of active sites differing in structure, binding 
properties and spatial environment, and therefore also in catalytic reactivity, even for regular 
crystalline materials such as zeolites. As a result, turnover rates for monomolecular alkane 
activation differ among protons present at different locations within a given zeolite (e.g. 8-
member and 12-member rings in H-MOR) [2,3], and the ensemble-averaged reactivity of protons 
in a given zeolite also varies with channel structure (e.g. H-FER, H-MFI, H-MOR) [2,42]. Thus, 
it seems reasonable to conclude that the aforementioned irrelevance of the catalyst identity for 
kmeas,D/kmeas,H ratios and their exclusive thermodynamic origins can be extended to sites of 
different reactivity within a given catalyst. If indeed so, site properties that affect reactivity 
would do so with the exact proportional effects on the rates of the forward and reverse reaction, 
even when the rates for these reactions are measured at different conditions and each far away 
from its respective equilibrium, as long as such conditions preserve the identity of the single 
MASI (unoccupied H+) and the single kinetically-relevant step (Step 2, Scheme 6.1). 

 
Turnover rates for the monomolecular cracking and dehydrogenation of linear (C3H8, n-

C4H10) [2] and branched (i-C4H10) [3] alkanes are significantly larger on protons located within 
eight-membered ring (8-MR) pockets in H-MOR than on protons with similar acid strength [43] 
but present within larger and more accessible 12-MR channels. The required transition states for 
alkane protonation at C-C and C-H bonds (Step 2, Scheme 6.1) are confined only partially within 
the shallow 8-MR pockets, leading to structures with higher entropy and lower free energy and to 
rate constants significantly larger on 8-MR than 12-MR protons for both dehydrogenation and 
cracking reactions [2]. Alkene hydrogenation proceeds via the same kinetically-relevant step and 
transition state as monomolecular alkane dehydrogenation; thus, hydrogenation turnover rates 
must also be larger, to the same exact extent, on 8-MR than on 12-MR protons in H-MOR. 

 
 

Table 6.4.  Rate constants for monomolecular propane dehydrogenation (kmeas,D; mol (mol H+)-1 s-1 (bar C3H8)
-1) and 

for propylene hydrogenation (kmeas,H; mol (mol H+)-1 s-1 (bar C3H6)
-1 (bar H2)

-1) at 748 K on 8-MR and 12-MR H+ of 
MOR. 

Rate Constant 8-MR H+ 12-MR H+ 8-MR H+ / 12-MR H+

kmeas,D
a 

0.0036   0.0004 n.d.b >10c 
kmeas,H

a 
0.20   0.03 n.d.b >17c 

kmeas,D / kmeas,H
 

0.018   0.004 n.d.b  
a Rate constants determined by linear regression methods (Section 5.7.3, Supporting Information). 
b n.d., not detected. 
c Lower bounds on 8-MR-to-12-MR rate constant ratios determined by assuming maximum values for 12-MR rate 
constants were upper bounds of confidence intervals containing one standard deviation, because 12-MR rate 
constants were undetectable, within the accuracy of regression. 

 
 
Infrared spectral band deconvolution methods (Section 6.7.3, Supporting Information) 

showed that H-MOR samples of varying provenance or extent of Na+ exchange contain very 
different distributions of protons between 8-MR side pockets (0.10-0.80 fraction; Table 6.1) and 
12-MR channels [2]. As in the case of propane dehydrogenation, rate constants for propene 
hydrogenation (per total H+; 748 K; Fig. 6.6) increased linearly as the fraction of the H+ that 
reside within 8-MR pockets increased, consistent with the preference of both reactions for 8-MR 
sites. The contributions of 12-MR sites to both measured propane dehydrogenation and propene 
hydrogenation turnover rates were negligible (Table 6.4; Section 6.7.3, Supporting Information). 
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alkenes to form alkoxides and their reaction with H2 via the same kinetically-relevant (C-H-H)+ 
carbonium-ion-like transition states (Step 2, Scheme 6.1) as required for monomolecular 
dehydrogenation of alkanes on Brønsted acid sites. Thus, differences in catalytic reactivity 
among zeolitic materials, which are influenced by confinement, binding energy, and acid 
strength, must influence to the same proportional extent the rates of the forward and reverse 
reactions in general, even when the reactant and product concentrations differ in the 
measurement of the two rates, as long as the conditions required for the De Donder relations to 
hold are maintained. Within the specific context of zeolite catalysis by Brønsted acids, these 
concepts can be extended logically to alkylation reactions between alkanes (e.g., CH4, C2H6) and 
alkenes (e.g., C2H4, C3H6) that proceed via (C-C-H)+ carbonium-ion-like transition states [44,45] 
also involved in monomolecular cracking reactions of linear [2] and branched [3] alkanes. 

 
The ability of H2 to scavenge surface alkoxides directly via hydrogen transfer can guide 

design and selection strategies for zeolite catalysts that contain Brønsted acid sites, but are 
devoid of metal or cationic species, for hydrogenation and hydrogen transfer catalysis. These 
results suggest further that reactions of alkoxides with alkenes in oligomerization reactions can 
be terminated by hydrogen transfer from H2, in steps analogous to those that transfer hydrogen 
from alkanes, and at rates that can be estimated from the reverse reaction (alkane 
dehydrogenation to form the alkoxide species). The incorporation of H2 into Brønsted acid-
catalyzed reaction paths indicates its presence during oligomerization, alkylation and cracking 
processes can influence chain growth selectivities and mitigate the formation of unreactive 
residues [46,47]. 
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6.6 Appendix: Derivation of Rate Expressions for Alkane Dehydrogenation and Alkene 
Hydrogenation 
 
6.6.1 Temkin Relation for Forward and Reverse Rate Expressions 
 

The reaction rates in the forward (monomolecular alkane dehydrogenation) and reverse 
(alkene hydrogenation) directions can be written by considering only steps 2 and 3 in Scheme 
6.1, which by themselves comprise a closed sequence and are preceded only by equilibrated 
steps that relate the activities of the species involved to those in the gas phase, using the 
following relation [36,48]: 
 

     
   

2 3

2 3 3 2

A A
D

A

A A

r r
r

r r 




 


  ,  (6.24) 
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     
   

2 3

2 3 3 2

B B
H

B

B B

r r
r

r r 




 


  .  (6.25) 

 
In these equations, the subscripts A and B denote the different reaction conditions used to 

measure rates of dehydrogenation and hydrogenation, respectively. Reaction rates for elementary 
steps are given by the law of mass action, and Eqs. (6.24) and (6.25) can be rewritten as: 
 

     
 

2

2

2 3 ( )

3 2 ( )

RH z H Z AA
D

A
H z A

k k a a
r

k k a

 







,  (6.26) 

 

       
 

2

2

2 3 ( ) ( )

3 2 ( )

H z R z H ZB BB
H

B
H z B

k k a a a
r

k k a

  







,  (6.27) 

 
in which the 

RH Z
a    terms have been cancelled from the numerator and denominator of each 

equation. 
 
 The activity of H+ species (

H Z
a   ) can be expressed as the product of their activity 

coefficient (
H Z
   ) and concentration (

H Z
c   ): 

 

H Z H Z H Z
a c      .  (6.28) 

 
We have shown previously [2], using reported adsorption enthalpies and entropies for 

hydrocarbons on acidic zeolites [49-51], that H+ sites are predominantly unoccupied at the 
conditions (>700 K, <0.05 bar(hydrocarbon)) relevant for monomolecular alkane 
dehydrogenation and alkene hydrogenation reactions. In this low coverage limit, both the 
fractional coverage of and activity coefficients for H+ sites approach unity. Studies of alkane 
adsorption on acidic zeolites (Si/Al>10) using calorimetry, gravimetry and infrared spectroscopy 
have shown further that C3-C6 n-alkanes adsorb specifically onto H+ sites with constant 
adsorption enthalpies, even up to saturation coverages [49-51]. Thus, when framework Al atoms 
are isolated from each other, as tends to occur when Si/Al>9 in FER, MFI and MOR [52], 
zeolites behave as Langmuirian ensembles of Brønsted acid sites with uniform binding 
properties, and in turn, activity coefficients that are independent of surface coverage.   
 
 
6.6.2 Case I: Step 3 is Quasi-Equilibrated 
 

The assumption of quasi-equilibrium on step 3 results in the following relation: 
 

23 2 ( )H zk k a .  (6.29) 
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Eqs. (6.26) and (6.27) can be simplified by using the assumption in Eq. (6.29), by rewriting the 
activities of H+ using Eq. (6.28), and by relating the activities of intrazeolitic species to gas-
phase pressures via steps 1, 4, and 5:  
 

       
21 2D RH H Z H ZA AAA

r K k P c    


,  (6.30) 

 

         
2

1 1 1
2 3 4 5H R H H Z H ZB BB BB

r k K K K P P c    
  




.  (6.31) 

 
These rate expressions for monomolecular alkane dehydrogenation and alkene hydrogenation 
agree with their respective first-order dependences on alkane (Fig. 6.2) and on alkene and H2 
pressures (Fig. 6.3). The only rate constants that appear individually and not as a ratio (i.e., an 
equilibrium constant) in Eqs. (6.30) and (6.31) are for step 2 (k2, k-2), indicating that this step, 
which involves the formation of (C-H-H)+ carbonium-ion-like ion-pairs at the transition state, is 
the sole kinetically-relevant step in both directions. The ratio of forward (Eq. (6.30)) to reverse 
(Eq. (6.31)) rates, after cancelling 

H Z
   terms that are independent of coverage, gives: 

 

 
 

   
     

   
     

2 2

2 2

1 2

1 1 1
2 3 4 5

D RH RHH Z H ZA AA A A
R

R H R HH H Z H ZB BB B B BB

r K k P c P c
K

k K K K P P c P P cr

   

   
  



 



 .  (6.32) 

 
The 

H Z
c    terms in Eq. (6.32) cancel only when surface sites are occupied to the same extent at 

conditions A and B. This is the case for the range of pressures and temperatures used in this 
study, which result in H+ sites that are predominantly unoccupied by hydrocarbons, and Eq. 
(6.32) becomes: 

 

 
 

 
   

2

2

D RHA A
R

R HH B BB

r P
K

P Pr




 .  (6.33) 

 
This expression is equivalent to that derived from the De Donder relations (Eq. (6.20)), which 
apply for a fixed set of reaction conditions, in which case 

H Z
c    values are identical in forward 

and reverse directions and thus cancel rigorously. 
 
 
6.6.3 Case II: Step 2 is Quasi-Equilibrated 
 
The following relation holds if, instead, step 2 is quasi-equilibrated: 
 

22 ( ) 3H zk a k  .  (6.34) 

 
In this case, the rate expressions for alkane dehydrogenation (Eq. (6.26)) and alkene 
hydrogenation (Eq. (6.27)) simplify to: 
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     
 

2

2

2 3 ( )

( )

RH z H Z AA
D

A
H z A

K k a a
r

a

 




,  (6.35) 

 

     3 ( )H R z H ZB BB
r k a a  


.  (6.36) 

 
Expressing 

H Z
a   using Eq. (6.28) and relating the activities of other species to gas-phase 

pressures via steps 1, 4, and 5 gives: 
 

       
 
2

2

1 2 3 5 RH H Z H ZA AA
D

A
H A

K K k K P c
r

P

    




,  (6.37) 

 

       1
3 4H R H Z H ZB BBB

r k K P c    





.  (6.38) 

 
In these rate expressions, the only rate constants that appear individually are for step 3 (k3, k-3), 
indicating that this step, which corresponds to alkoxide desorption and formation, must be 
kinetically-relevant in forward and reverse directions.  Eqs. (6.37) and (6.38), however, are not 
supported by the experimental data and the first-order dependence of hydrogenation rates on H2 
pressure (Fig. 6.3). 
 

We note, however, that the ratio of Eqs. (6.37) and (6.38), after cancelling 
H Z
   terms, 

gives an expression that resembles Eq. (6.32): 
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



 
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 .  (6.39) 

 
The consistency between Eq. (6.39), Eq. (6.32) (derived for step 3 quasi-equilibrated) and Eq. 
(6.20) (the De Donder relation) reflects solely the fact that the same step is kinetically-relevant in 
both forward and reverse directions. Eqs. (6.32) and (6.39) are equivalent to Eq. (6.20) only 
when unoccupied H+ sites are the most abundant species for the different reaction conditions 
used to obtain kinetic measurements in forward and reverse directions. 
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6.7.2 Estimation of Thermochemical Properties of Gas-Phase Reactions 
 

The reaction enthalpy, entropy and Gibbs free energy change at a given temperature, T, 
for the following gas-phase reaction: 

 

3 8 3 6 2C H C H H  , (6.41) 

 
were calculated using thermochemical data [54], the ideal gas assumption, and the following 
equations: 
 

3 6 2 3 8, , , ,( ) ( ) ( ) ( ) ( )R i f i f C H f H f C H
i

H T H T H T H T H T            , (6.42) 

 

3 6 2 3 8, , , ,( ) ( ) ( ) ( ) ( )R i f i f C H f H f C H
i

S T S T S T S T S T            , (6.43) 

 

3 6 2 3 8, , , ,( ) ( ) ( ) ( ) ( )R i f i f C H f H f C H
i

G T G T G T G T G T            . (6.44) 

 
The dimensionless equilibrium constant, K, for this reaction is related to GR

o(T): 
 

3 6 2

3 8

( ) exp( ( ) / ) C H H
R

C H

a a
K T G T RT

a
    , (6.45) 

 
and the equilibrium constant in pressure units, KR, is given by: 
 

 3 6 2 3 6 2

3 8 3 8

( ) ( ) C H H C H H
R

C H C H

P P P P
K T K T bar

P P

 



 
    

 
, (6.46) 

 
where Pi

o is the standard state pressure of 1 bar. 
 
The following calculations are shown at 748 K as an example: 
 

 (748 ) 4.3 0 124.7 129 /RH K kJ mol       , (6.47) 

 

 (748 ) 177 0 315 138 /RS K J molK        , (6.48) 

 
(748 ) 136.4 0 110.9 25.5 /RG K kJ mol      , (6.49) 

 

  (748 ) exp 25500 / 8.3145* 748 0.017RK K bar   . (6.50) 
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The equilibrium constant for the stoichiometric propane dehydrogenation reaction (Eq. (6.41)), 
when written in the reverse direction, is given by the inverse of Eq. (6.50): 
 

1 1(748 ) 60RK K bar  . (5.51) 

 

6.7.3 Determination of 8-MR and 12-MR H+ Distribution in MOR and Estimation of Location-
Specific Rate Constants 

 
The infrared spectra of H-MOR samples show an asymmetric OH stretch band (~3550-

3650 cm-1) arising from the overlapping contribution of Brønsted-acidic Si(OH)Al groups 
vibrating within 8-MR side pockets (~3592 cm-1) and within 12-MR channels (~3611 cm-1) [55]. 
Principal component bands for 8-MR and 12-MR OH groups were obtained using singular value 
decomposition methods reported previously [55]. The contribution of each pure component to 
composite OH bands was determined by least-squares regression methods, allowing pure 
component band centers to shift up to 3 cm-1 and assuming identical molar extinction 
coefficients.  

 
The distribution of sites between 8-MR and 12-MR locations on the MOR samples used 

in this study varied widely as a result of differing Na+ content and provenance (Table 6.1). The 
deconvoluted infrared spectra for these samples are reported elsewhere [2,55], along with 
methods and data used to verify acid site distributions by titration of OH groups with probes of 
varying size.  

 
Rate constants for propylene hydrogenation measured on a given MOR sample were 

expressed as the additive contributions of 8-MR (X8-MR) and 12-MR (X12-MR) acid sites, weighed 
by their respective rate constants (k8-MR, k12-MR): 

 

8 8 12 12MR MR MR MRk k X k X       . (6.52) 

 
The location-specific rate constant for propylene hydrogenation at a given temperature was 
determined by least-squares regression of rate data collected on the seven MOR samples, with 
uncertainties in regressed rate constants reported as the standard deviation.   
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CHAPTER SEVEN 
 

Catalytic Alkylation Routes via Carbonium-Ion-Like Transition States on 
Acidic Zeolites 

 
 
7.1 Results and Discussion 
 

Brønsted acid sites in zeolites catalyze alkene hydrogenation with H2 via the same 
kinetically-relevant (C-H-H)+ carbonium-ion-like transition states as those involved in 
monomolecular alkane dehydrogenation [1]. C3H6-H2 reactions selectively form C3H8 (>80% 
carbon basis) at high H2/C3H6 ratios (>2500) and temperatures (>700 K) [1]. Ratios of C3H8 
dehydrogenation to C3H6 hydrogenation rate constants (718-778 K) were identical on H-FER, H-
MFI and H-MOR zeolites and equal to the equilibrium constant for the stoichiometric gas-phase 
reaction, consistent with De Donder non-equilibrium thermodynamic treatments of chemical 
reaction rates [2-4]. The seemingly fortuitous extension of the principle of microscopic 
reversibility [5,6] and the De Donder relations beyond their rigorous descriptions of chemical 
reaction dynamics at equilibrium and far from equilibrium but at identical (T, Pj), respectively, 
reflect the persistence of the same single kinetically-relevant step and the prevalence of 
unoccupied H+ sites at the very different conditions used to measure forward and reverse rates 
[1]. 

 
By inference, larger alkanes should also form via direct alkene-alkane addition steps via 

the same (C-C-H)+ carbonium-ion-like transition states involved in monomolecular alkane 
cracking. These chemical processes differ from alkylation mechanisms prevalent on liquid and 
solid acids (e.g. HF, H2SO4, H-zeolites) and superacids (e.g., HF-SbF5, HF-TaF5), which are 
mediated by carbenium-ion chain carriers that terminate as alkanes via hydride transfer [7]. 
Carbonium-ions contain three-atom/two-electron centers [8,9] and have been posited to mediate 
the formation of C3H8 in reactions of CH4-C2H4 mixtures on superacids at the low temperatures 
(<573 K) required for favorable alkylation thermodynamics [10-13]. Here, we provide definitive 
kinetic and isotopic evidence that catalytic CH4-C2H4 alkylation reactions occur via the same 
transition states involved in monomolecular alkane cracking, even on zeolitic Brønsted acid sites 
at high temperatures (>700 K). 
  

Monomolecular alkane cracking routes prevail at high temperatures and low  
concentrations of alkene products; they involve late (C-C-H)+ carbonium-ion-like transition 
states in kinetically-relevant C-C bond cleavage steps and unoccupied H+ sites as most abundant 
surface intermediates (MASI) [8,9,14-18]. Minority species adsorbed on H+ sites are in quasi-
equilibrium with gas phase reactants and products, leading to monomolecular C3H8 cracking 
rates given by: 

 

3 8 3 81 2 ,c C H meas c C Hr K k P k P 


, (7.1) 

 
where K1 is the equilibrium constant for intrazeolite C3H8 adsorption and k2 is the rate constant 
for the elementary step that forms C2H5

+Z- and CH4 via (C3H9)
+ transition states (Scheme 7.1). 
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differ in structure and orientation, but they must access the same transition state via kinetically-
insignificant conformational changes to give transition state free energies (reflected in kmeas,c and 
kmeas,alk) that are measured with respect to gaseous reactants. These effects are consistent with the 
facile rotation of cationic species formed during acid-catalyzed hydrocarbon reactions, as shown 
by theoretical studies [19,20] and as found for alkane dehydrogenation-alkene hydrogenation [1]. 
 

Propane formation via paths other than that in Scheme 7.1 (e.g., H-transfer between CH4 
and propoxides formed from C2H4 oligomerization-cracking cycles) may also occur at rates 
proportional to CH4 pressure, but would require an implausible coincidence of rate constants for 
monomolecular C3H8 cracking and the mechanistically-unrelated step so as to give ratios equal 
to the C3H8 cracking equilibrium constant. These alternate paths are also ruled out by the 
isotopologues formed in 13CH4-

12C2H4 reactions (Table 7.2; H-MFI; 748 K). C3H8 molecules 
predominantly contain one 13C-atom (91%) and the C3H6 molecules formed are predominantly 
unlabeled (88%) and reflect oligomerization-cracking reactions of 12C2H4. These isotopologue 
distributions, taken together with the linear dependence of C3H8 synthesis rates on CH4 and C2H4 
pressures and the agreement between kmeas,c/kmeas,alk ratios and KR1 (Table 7.1, Eq. (7.3)) 
constitute clear and rigorous evidence for direct CH4-C2H4 alkylation via carbonium-ion-like 
transition states. 

 
 

Table 7.2. Product isotopologues formed from 13CH4-
12C2H4 reactions on H-MFI at 748 K.  

Product Mole Fraction 
 0 13C 1 13C 2 13C 3 13C 

C3H8 0.09 0.91 0 0 
C3H6 0.88 0.12 0 0 

 
 
Reactions of CH4-C2H4 mixtures on acidic zeolites form C3H8 as the predominant product 

only at high CH4/C2H4 ratios (>3000; Fig. 7.2); C3, C4 and C6 alkenes are also formed (Fig. 7.2), 
but with a total selectivity that decreases with increasing CH4/C2H4 ratios (data in Section 7.4.2, 
Supp. Info.). These trends reflect competitive reactions of ethoxides (Scheme 7.2) with CH4 
(alkylation to form C3H8) and C2H4 (dimerization to form butoxides), consistent with products of 
C2H4 reactions on H-zeolites in the absence of CH4 that reflect solely the latter route (data in 
Section 7.4.5, Supp. Info.). The butoxides formed from C2H4 dimerization can desorb as butene 
isomers or react further with C2H4 to form larger C6 oligomers, which desorb as alkenes, 
isomerize, undergo -scission to form predominantly C3H6 [21-24] or cyclize to form arenes 
after hydrogen transfer [25-27]. 

 
The rates of formation of unsaturated C3-C6 species are related to the rate at which C4 

intermediates (C4H9
+Z-) are formed (Scheme 7.2) by: 
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4 8 6 3 6 4 104 9
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2dim C H C C H C HC H Z
r r r r r r      . (7.4) 

 
When H+ sites are the MASI, C2H4 dimerization rates are second-order in C2H4 pressure 
(derivation in Section 7.4.5, Supp. Info.) and alkylation-to-dimerization rate ratios become: 
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7.4. Supporting Information 
 
7.4.1 Monomolecular Propane Cracking on Acidic Zeolites 
  

Accepted paths for monomolecular alkane cracking involve the adsorption of alkanes 
from the gas phase onto Brønsted acid sites within zeolite channels (Step 1, Scheme 7.1) and 
subsequent C-C bond protonation to form (C-C-H)+ carbonium-ion-like transition states that 
decompose to form smaller alkane and alkoxide species in equimolar amounts (Step 2, Scheme 
7.1); protonation can also occur at alkane C-H bonds in monomolecular alkane dehydrogenation 
paths [8,14,15,18]. Monomolecular routes prevail at high temperatures and low pressures, 
leading to intrazeolite alkanes present in dilute concentrations (H+ sites are predominantly 
unoccupied) [18] and in quasi-equilibrium with gaseous alkanes. These mechanistic details result 
in the following expression for monomolecular cracking rates (a detailed derivation can be found 
elsewhere) [18]: 
 

3 8 3 81 2 ,c C H meas c C Hr K k P k P 


. (7.6) 

 
Propane cracking rates (748 K) are first-order in C3H8 pressure (Fig. 7.6) on all zeolites 

tested (H-FER, H-MFI, H-MOR-56), consistent with the rate equation for monomolecular C3H8 
cracking given by Eq. (7.6). Reactions of C3H8 led to the formation of CH4 and C2H4 in 
equimolar ratios (C2H4/CH4 = 0.93-1.00) at all space velocities (Fig. 7.7). Rate constants for 
C3H8 cracking and dehydrogenation were invariant with space velocity (Fig. 7.7) and gave non-
zero values upon extrapolation to zero residence time, indicating that all products were formed in 
primary paths and reflect exclusively contributions from monomolecular activation. 

 
The equilibrium and rate constants in Eq. (7.6) can be expressed in terms of the free 

energies of reactants, products and transition states involved in their respective elementary steps 
(given in Scheme 7.1): 
 

  3 8 3 81 ( ) ( )exp /C H z C H gK G G RT      , (7.7) 

 

    3 8‡,2 ( )exp /2 B C H z H Z
k k T h G G G RT         . (7.8) 
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The equilibrium constant in pressure units (KR) is given by: 
 

 2 4 4 2 4 4

3 8 3 8

( ) ( ) C H CH C H CH
R

C H C H

P P P P
K T K T bar

P P

 



 
    

 
, (7.19) 

 
in which the standard state pressure (Pi

o) is 1 bar. 
 
The following calculations are shown at 748 K as an example: 
 

1
1 (748 ) 98.5 ( 7.8) 111.0 20.3RG K kJ mol        , (7.20) 

 

  1(748 ) exp 20300 / 8.3145*748 26RK K bar   . (7.21) 

 
 
7.4.4 De Donder Treatments of Chemical Reaction Rates 
  
 A more detailed treatment of the De Donder relations and their consequences for 
chemical reaction rates in forward and reverse directions can be found elsewhere.[1] In this 
section, we include a highly abridged version relevant to the discussion in this manuscript. 
 

The De Donder equation, which relates the rates of an elementary step in forward ( ir


) 

and reverse ( ir


) directions to the chemical affinity (Ai) of the step, can be extended to describe 

forward ( r


) and reverse ( r


) rates of single-path catalytic sequences [4]: 

 

   exp expi
i

i

rr
A RT A RT

r r
   


  . (7.22) 

 
In this equation, the chemical affinity for the overall reaction sequence (A) is given by: 
 

i i
i

A A , (7.23) 

 
in which   is the affinity-averaged stoichiometric number for the entire catalytic sequence: 
 

i i i
i i

A A   . (7.24) 

 
These treatments also show that forward ( k


) and reverse ( k


) rate constants and the  equilibrium 

constant (KR) for the overall reaction must be related by [4]: 
 

1
Rk k K 

 
. (7.25) 
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Equation (7.22) can be applied to the catalytic sequence shown in Scheme 7.1 for C3H8 
cracking and C2H4-CH4 alkylation: 

 

3 8 3 8 2 4 42 5

3 8 4 2 4 2 4 42 5

1 ( ) 2 ( ) 3 4 ( ) 5 ( )1 2 3 4 5

1 ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( )1 2 3 4 5

C H g C H z C H z CH zH Z C H Zc

C H z CH z C H z C H g CH galk C H Z H Z

k a k a a k a k a k ar r r r r r

k a k a a k a a k a k ar r r r r r

   

       

 

 
  , (7.26) 

 
in which elementary step reaction rates are given by the law of mass action. At fixed reaction 
conditions (T, Pj), the thermodynamic activity of a given surface intermediate is constant and 
will cancel when appearing in both forward and reverse rate expressions, allowing Equation 
(7.26) to be simplified to: 
 

3 8

2 4 4

1 2 3 4 5

1 2 3 4 5

C Hc

C H CHalk

k P k k k kr

k k k k P k Pr     



 . (7.27) 

 
Rate expressions for cracking (Eq. (7.6)) and alkylation (Eq. (7.10)) can be isolated in numerator 
and denominator of Eq. (7.27) to give:  
 

3 8 3 8

2 4 4 2 4 4

1 2 ,

1 1 1
2 3 4 5 ,

C H meas c C Hc

C H CH meas alk C H CHalk

K k P k Pr

k K K K P P k P Pr   


 

 . (7.28) 

 
Thus, when surface coverages are identical (i.e., fixed (T, Pj)), the ratio of measured rate 
constants for C3H8 cracking (kmeas,c) and C2H4-CH4 alkylation (kmeas,alk), as given by Eq. (7.28) 
will equal the equilibrium constant for the stoichiometric gas-phase reaction (KR), as given by 
Eq. (7.19).  
 

When rates in forward and reverse directions are measured at different reaction 
conditions (denoted by subscripts A and B, respectively) as they are in this study, however, their 
ratio is given by: 

 

 
 

   
     

3 8

4 2 4

,

,

c meas c C H H Z AA A

meas alk CH C Halk H Z BB BB

r k P c

k P P cr

 

 





 . (7.29) 

 
This equation becomes equivalent to Eq. (7.28), which holds rigorously for constant (T, Pj), only 
when H+ sites are predominantly unoccupied at the different reaction conditions used to measure 
forward and reverse rates. We conclude from this treatment that the relevance of the De Donder 
relations beyond their rigorous description of chemical reaction rates at fixed reaction conditions 
reflects kinetic measurements of the same single kinetically-relevant step (Step 2, Scheme 7.1), 
albeit in opposite directions, on predominantly vacant surfaces at the different reaction 
conditions used to measure forward and reverse rates. 
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CHAPTER EIGHT 
 

Solvation and Acid Strength Effects on Catalysis by Faujasite Zeolites 
 

 
Abstract 
 

Kinetic, spectroscopic and chemical titration data show that small differences in 
monomolecular isobutane cracking and dehydrogenation and methanol dehydration turnover 
rates (per H+) among FAU zeolites treated thermally (H-USY) and then chemically with 
ammonium hexafluorosilicate (CD-HUSY) do not reflect differences in acid strength but instead 
differences in the size and solvating properties of their supercage voids. The number of protons, 
measured by their titration with Na+, with CH3 groups via reactions of dimethyl ether, and with 
2,6-di-tert-butylpyridine during methanol dehydration catalysis, was similar for each sample; 
OH infrared bands indicated these methods selectively counted the number of acidic OH groups. 
The number of protons, taken as the average of the three titration methods, was significantly 
smaller than the number of framework Al atoms (Alf) obtained from 27Al MAS NMR on H-USY 
(0.35 H+/Alf) and CD-HUSY (0.69 H+/Alf). These data indicate that Alf sites, ubiquitously used 
as structural proxies for active H+ sites, are imprecise, apparently because NMR lines assigned to 
Alf sites do not always correspond to structures associated with acidic protons. Monomolecular 
isobutane cracking and dehydrogenation rates, when non-rigorously normalized by the number 
of Alf species, decreased with increasing Na+ content on both H-USY and CD-HUSY samples 
and became undetectable at sub-stoichiometric exchange levels (0.32 and 0.72 Na+/Alf ratios, 
respectively), an unexpected finding inaccurately attributed to the presence of minority ‘super-
acidic’ sites in previous studies. These same rates, when rigorously normalized by the number of 
residual H+, were independent of Na+ content on both H-USY and CD-HUSY samples, reflecting 
the stoichiometric replacement of protons that are uniform in reactivity by Na+ cations.  Zero-
order rate constants for methanol dehydration, which depend on acid strength but not solvation 
within zeolite voids, were similar (within a factor of 1.1) on H-USY and CD-HUSY, consistent 
with uniform H+ species of similar reactivity in both samples. First-order rate constants for 
methanol dehydration and for monomolecular isobutane activation, which depend on both acid 
strength and solvation effects, were larger on H-USY than on CD-HUSY (by factors of 3.4 and 
1.8, respectively). These small differences in reactivity reflect slightly smaller voids in H-USY, 
apparently because extraframework Al (Alex) residues occlude space within FAU supercages. 
These findings appear to clarify enduring controversies about the interpretation and mechanistic 
attribution of the effects of Na+ and Alex species on the catalytic reactivity of FAU zeolites. They 
also illustrate the need to normalize rates by the number of active sites, instead of using more 
convenient but less precise structural proxies for such sites. 

 
 

8.1 Introduction  
 
Faujasite (FAU, Y-zeolite) is used as a solid acid catalyst, often after thermal or chemical 

treatments render it more stable during catalysis [1-4]. Although FAU zeolites contain only one 
framework Al (Alf) T-site, isolated Alf atoms give rise to OH groups with significantly smaller 
deprotonation energies (DPE; 1161-1166 kJ mol-1) than OH groups on Alf atoms with next-



138 
 

nearest Al neighbors (1177-1247 kJ mol-1) [5]. As a result, isolated Brønsted acid sites in FAU 
zeolites should behave as uniform sites, equal in acid strength as well as solvating environment. 
This appears to be consistent with rates of alkane cracking (per g) that are proportional to the 
number of isolated Alf atoms on FAU zeolites treated by a given thermal or chemical protocol [6-
10]. Yet, cracking rates (per Alf) differ among FAU zeolites treated by different thermal and 
chemical methods [6-10], in apparent contradiction to the constant turnover rates expected from 
a single-site catalyst. 

 
Thermal treatments that convert Y-zeolite to its ultrastable form (USY) [1,4,11,12] create 

extraframework Al (Alex) moieties by extraction of Al from framework sites and increase 
cracking rates (per g) of i-C4H10 [7], n-C5H12 [9] and n-C6H14 [6,13,14]. Alkane cracking 
reactions are fully suppressed upon addition of only small amounts of Na+ to H-USY (0.2-0.3 per 
Alf) [9,15-17]. These effects have been previously interpreted as the result of a small number of 
highly reactive and ‘super-acidic’ Brønsted sites, formed via electronic interactions with Alex 
moieties and titrated selectively by Na+ [9,15-17]. Some studies have suggested that higher 
alkane cracking rates on thermally-treated zeolites reflect the generation of mesopores and of 
external surfaces that decrease diffusional constraints on bimolecular cracking reactions [13,18-
21]. A recent study concluded that monomolecular C3H8 cracking turnovers occur only on H+ 
sites at isolated Alf atoms [10]; yet, this interpretation appears inconsistent with turnover rates 
(per H+) that vary (up to factors of 3) on FAU zeolites treated with steam, ammonia, or 
ethylenediaminetetraacetic acid [10] and with the elimination of detectable alkane cracking rates 
after substoichiometric titration of isolated Alf with Na+ cations [15-17]. 

 
Here, we examine the structural and catalytic properties of FAU zeolites containing 

different Alf and Alex contents, resulting from thermal treatment in water vapor that forms Alex 
moieties and from chemical treatments with (NH4)2SiF6 that remove these species. The number 
of H+ was determined directly by their chemical titration with Na+, with dimethyl ether (DME) to 
form CH3 groups, and with 2,6-di-tert-butylpyridine during methanol dehydration catalysis. On 
each sample, proton counts were similar among these methods but much smaller than the number 
of Alf atoms, determined by 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) 
and X-ray diffraction (XRD). Yet, Alf atoms measured by these methods are ubiquitously used as 
a structural proxy for Brønsted acid sites in the reporting of catalytic reactivity as turnover rates.  

 
Turnover rates (per H+) for isobutane cracking and dehydrogenation (763 K) and 

methanol dehydration to DME (433 K) were measured at differential conversions in the absence 
of mass and heat transfer artifacts. These kinetic data provide evidence that Na+ cations 
stoichiometrically titrate H+ sites that are uniform in reactivity and acid strength within a given 
sample. These data also indicate that thermal and chemical treatments weakly influence the 
solvation properties of FAU supercage voids but not the strength of Brønsted acid sites. These 
findings seem to resolve issues that have persisted for decades regarding the mechanistic origin 
of the effects of Na+ and Alex species in catalysis by FAU zeolites. The distractions inherent in 
using imprecise structural proxies (Alf) for active sites (H+) to normalize reaction rates have led 
to incorrect interpretations of reactivity in terms of ‘super-acid’ sites. 
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8.2 Methods  
 
8.2.1 Catalyst Synthesis and Preparation 

 
H-USY (Engelhard, Si/Al = 2.8) and H-BEA (Zeolyst, Si/Al = 11.8) samples were treated 

in flowing dry air (2.5 cm3 g-1 s-1, zero grade, Praxair) by heating to 773 K (at 0.0167 K s-1) and 
holding for 4 h. A chemically-dealuminated USY sample (CD-NH4USY, Si/Altot = 7.5) was 
prepared by protocols reported in the LZ-210 patent [22]; this procedure has been shown to 
remove Alex moieties selectively without significant removal of Alf atoms [23]. H-USY (Union 
Carbide, Si/Al = 2.9, 12 kg) was stirred in H2O (36 L) at 348 K while adding an aqueous 1.5 M 
(NH4)2SiF6 solution (99%, 15 L, 323 K) continuously (at 1.67 g s-1). Small batches (1.8 kg) of 
this treated zeolite slurry were then added to aqueous Al2(SO4)3 solutions (0.6 M, 0.8 L) and 
stirred at 368 K for 24 h to decrease the F- content in the samples. The resulting solids were 
filtered and rinsed with 1 L H2O to yield CD-NH4USY (~0.1 kg per batch). CD-HUSY was 
obtained by treating CD-NH4USY in flowing dry air (2.5 cm3 g-1 s-1, zero grade, Praxair) by 
heating to 773 K (at 0.0167 K s-1) and holding for 4 h to convert NH4

+ to H+. H-USY and CD-
HUSY samples were exposed to ambient air before structural and functional characterization.    

 
H-USY, NH4-CD-USY and CD-HUSY samples (0.5-2.0 g) were partially-exchanged 

with Na+ cations by stirring in aqueous NaNO3 (99%, EMD Chemicals) solutions (0.25 or 0.50 
L) at 353 K for 12 h. The extent of Na+ exchange was varied by changing the concentration of 
NaNO3 in the exchange solution (0.001-0.150 M). These Na+-exchanged zeolites were filtered 
and rinsed with 1 L of deionized water. Na+-zeolites were treated in flowing dry air (2.5 cm3 g-1 
s-1, zero grade, Praxair) by heating to 773 K (at 0.0167 K s-1) and holding for 4 h to convert 
residual NH4

+ cations to H+. Samples were exposed to ambient air before structural and 
functional characterization studies. 

 
 
8.2.2 Catalyst Characterization 

 
Alf and Alex contents were estimated from XRD and 27Al MAS NMR spectroscopy. X-

ray diffractograms of zeolite samples, after exposure to ambient air, were obtained using a 
Siemens D-5000 diffractometer and Cu-K radiation. Lattice parameters were calculated from 
(533) reflections and used to estimate Alf content based on methods reported in the literature 
[24,25] (diffractograms and additional details in Section 8.6.1, Supporting Information). 27Al 
MAS NMR spectra of zeolites were collected using a Bruker Avance 500 MHz spectrometer in a 
wide-bore 11.7 Tesla magnet (Caltech Solid State NMR Facility). Samples were held within a 4 
mm ZrO2 rotor and hydrated in a desiccator containing 1.0 M KCl for >48 h before sealing the 
rotor. NMR spectra were measured at 130.35 MHz using a 4 mm cross polarization (CP) MAS 
probe with the application of strong proton decoupling and with a magic angle spinning rate of 
13 kHz. NMR spectra were acquired at ambient temperature from 512 scans with 0.5 s pulses 
and a 6 s delay; they were referenced to aqueous 1.0 M Al(NO3)3 solutions. 

 
The number and types of OH groups remaining after titration with different amounts of 

Na+ or pyridine were measured from the intensity of OH vibrational bands (3400-3800 cm-1) 
before and after titrant introduction. Infrared (IR) spectra were collected with a Nicolet NEXUS 
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670 Fourier-transform spectrometer equipped with a Hg-Cd-Te (MCT) detector by averaging 64 
scans at 2 cm-1 resolution in the 4000-400 cm-1 range. Self-supporting wafers (5-15 mg cm-2) 
were sealed within a quartz vacuum cell equipped with NaCl windows, treated in flowing dry air 
(1.67 cm3 s-1, zero grade, Praxair) at 773 K (at 0.033 K s-1) and holding for 2 h, evacuated at 773 
K for >2 h (<0.01 Pa dynamic vacuum; Edwards E02 diffusion pump), and cooled to 303 K in 
vacuum before collecting spectra. Acid sites were titrated with pyridine (99.8%, Aldrich) at 298 
K and 450 K by incremental dosing without intervening evacuation; infrared spectra were 
collected after each dose. All infrared spectra were normalized by overtone and combination 
bands for zeolite framework vibrations (1750-2100 cm-1).  

 

Si, Al and Na contents were determined by inductively-coupled plasma optical emission 
spectroscopy (Galbraith Laboratories). 

 
   

8.2.3 Methylation of OH Groups by Dimethyl Ether 
 
The number of protons in FAU zeolites was measured by titration with dimethyl ether at 

438 K.  Samples were placed in a quartz tube (7.0 mm i.d) held at 438 K using a resistively-
heated three-zone furnace (Applied Test Systems Series 3210) and Watlow controllers (EZ-
ZONE PM Series). Samples (0.10-0.12 g, 180-250m) were held on a coarse quartz frit; 
temperatures were measured with a K-type thermocouple contained within a thermowell at the 
external tube surface.    

 
Samples were treated in a flowing 5% O2/He mixture (8.3 cm3 g-1 s-1, 99.999%, Praxair) 

by heating to 773 K (at 0.025 K s-1) and holding for 2 h, followed by cooling to 438 K (at 0.083 
K s-1) in flowing He (16.7 cm3 g-1 s-1, 99.999%, Praxair). DME reactants (0.30 cm3 s-1, 99.8%, 
Praxair) were treated by passing over CaH2 (99%, Aldrich) at ambient temperature to remove 
trace amounts of water and mixed with Ar (0.15 cm3 s-1, 99.999%, Praxair), used as an inert 
tracer, before flowing through a sample loop (420 K, 0.250 cm3). This DME/Ar mixture was 
introduced as pulses onto samples via injection into flowing He (14.2 cm3 s-1 g-1, 99.999%, 
Praxair) at 10 s intervals via heated transfer lines (420 K). A heated Si-coated stainless steel 
capillary (420 K, 0.254 mm i.d., 183 cm length) placed at the end of the quartz frit holding the 
samples brought the effluent into a mass spectrometer (MKS Spectra Minilab) to measure the 
concentrations of DME (m/z = 45, 46), CH3OH (m/z = 32), H2O (m/z = 18) and Ar (m/z = 40) 
every 0.7 s. 

 
 

8.2.4 Isobutane Reaction Rates and Selectivities 
 
Isobutane cracking and dehydrogenation rates were measured at differential conversions 

(<2%) in a tubular packed-bed quartz reactor (7.0 mm i.d.) with plug-flow hydrodynamics at 763 
K. Samples (0.01-0.05 g, 180-250m) were held on a coarse quartz frit. Temperatures were set 
by a resistively-heated three-zone furnace (Applied Test Systems Series 3210) and Watlow 
controllers (96 Series) and measured with a K-type thermocouple held within a thermowell at the 
external surface of the quartz tube.    
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Catalysts were treated in 5% O2/He flow (16.7 cm3 g-1 s-1, 99.999%, Praxair) by heating 
to 803 K (at 0.0167 K s-1) and holding for 2 h. This stream was replaced with He (16.7 cm3 g-1 s-

1, 99.999%, Praxair) for 0.5 h, while isobutane (10% i-C4H10, 5% Ar, 85% He, Praxair, 99.5% 
purity) was sent to a gas chromatograph (Agilent HP-6890GC) via heated lines (423 K) for 
calibration purposes. Reactant pressures (0.1-1.0 kPa i-C4H10) and molar rates (10-6-10-4 (mol 
iC4H10) g

-1 s-1) were varied by diluting with inert He (99.999%, Praxair). Reactant and product 
concentrations were measured by flame ionization and thermal conductivity detectors after 
chromatographic separation (GS-AL\KCl Agilent capillary column, 0.530 mm ID x 50 m; 
HayeSep DB Sigma-Aldrich packed column, 100-120 mesh, 10 ft.). Rates and selectivities 
measured after ~12 h on stream were similar (within 5%) to initial steady-state values on all 
samples, indicating that rate and selectivity data were not affected by changes in the number, 
reactivity, or accessibility of active sites. 

 
 

8.2.5 Methanol Dehydration Rates and Titration of H+ with 2,6-di-tert-butyl Pyridine During 
Catalysis 

 
CH3OH conversion rates to dimethyl ether were measured at differential conditions (<1% 

conversion) at 433 K in the reactor setup described in section 2.3. Catalyst samples (0.01-0.05 g, 
125-180 μm) were diluted with SiO2 (Cab-o-sil, washed with 1.0 M HNO3, 125-180 μm, >0.1 g 
total bed weight) and treated in dry air (99.999%, Praxair) by heating to 773 K (at 0.083 K s-1) 
and holding for 2 h. Liquid CH3OH (Sigma-Aldrich; 99.8%; no additional purification) was 
evaporated into a stream of He (99.999%, Praxair) using a liquid syringe pump (Cole-Palmer 
780200C series). Liquid deionized water was evaporated into a separate stream of He (99.999%, 
Praxair) using a liquid syringe pump (Cole-Palmer 74900 series) and mixed with the CH3OH 
reactant stream in order to examine the inhibition of dehydration rates by water. Reactants were 
transferred via heated lines (>393 K) to prevent the condensation of liquids. Reactant pressures 
(0.05-3.0 kPa CH3OH, 0 or 0.6 kPa H2O) and molar rates were changed by varying liquid flow 
rates. Concentrations of reactants, products, and titrants were determined by gas chromatography 
(Agilent 6890N GC) using flame ionization detection (DB-Wax capillary column; 0.320 mm ID 
x 30 m x 0.25 m film; J&W Scientific) and mass spectrometry (MKS Spectra Minilab). 
Dimethyl ether and water were the only products observed under all reaction conditions 
examined. SiO2 (0.1 g) did not lead to detectable product formation at the conditions used in this 
study. Conditions were periodically returned to a reference condition (0.6 kPa CH3OH, 0.6 kPa 
H2O, 433 K) to check for catalyst deactivation during kinetic experiments. Rates were similar to 
initial values at the reference condition (within 5% after 5h time-on-stream) indicating that 
deactivation was negligible on all samples. 

 
The number of Brønsted acid sites was measured by titration with 2,6-di-tert-butyl 

pyridine during dehydration catalysis in the same reactor setup. Steady-state dehydration rates at 
433 K were maintained before the introduction of titrant molecules. 2,6-di-tert-Butylpyridine 
(>97%; Aldrich; CAS #585-48-8) was dissolved in CH3OH (99.8%; Sigma-Aldrich) reactants 
and evaporated into a He stream (99.999%, Praxair) using a syringe pump to give their desired 
concentrations (0.40-0.55 Pa titrant). Titrant adsorption uptakes and dehydration rates were 
calculated during titrant injection from the concentrations of reactants, products, and titrant in the 
reactor effluent using the chromatographic protocols described above. The total number of 
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protons on each sample was calculated by extrapolating cumulative titrant uptake to zero 
dehydration rates and assuming 1:1 titrant:H+ adsorption stoichiometries [26]. Titrations using 
pyridine (anhydrous, 99.8%; Aldrich) were conducted using the same protocols over a range of 
0.30-3.0 Pa of pyridine. 

 
 
8.3 Results and Discussion  
 
8.3.1 Characterization of Aluminum Structure and Coordination in Zeolites 

 
Catalytic rates on acidic zeolites are often normalized by the number of framework Al 

atoms, which act as structural surrogates for protons that are assumed to exist in equimolar 
amounts to balance the framework negative charge. The different  27Al MAS NMR lines for 
tetrahedral Alf and octahedral Alex atoms (60 and 0 ppm chemical shifts) can be used to 
distinguish these species, but Al centers in distorted environments give broad lines that often 
become undetectable [27,28]. 27Al MAS NMR spectra for H-USY, CD-HUSY and CD-
NH4USY, acquired after hydrating samples (section 2.2), are shown in Figure 8.1. CD-HUSY 
gave much sharper tetrahedral Al lines than H-USY (Fig. 8.1) and the latter, but not the former, 
showed a line at 0 ppm corresponding to octahedral Al centers. These spectra indicate that 
treatment of H-USY with (NH4)2SiF6 removed Al centers in octahedral and distorted tetrahedral 
sites or converted them to tetrahedral Al centers through healing of structural defects. An 
octahedral Al NMR line appears in the spectrum of CD-HUSY (Fig. 8.1) upon removal of NH4 
by treatment in dry air at 773 K and subsequent exposure to ambient conditions. This reflects the 
extraction of some Alf atoms into Alex moieties or the presence of Al species that can adopt 
tetrahedral or octahedral coordination depending on the temperature or the titrants (e.g., water, 
NH3) with which they interact [29,30]. 

 
The fraction of total Al atoms present as Alf species, estimated from integrated intensities 

of tetrahedral and octahedral Al NMR lines, is 0.71 on H-USY and 0.75 on CD-HUSY (Table 
8.1). The number of Alf atoms can also be inferred from XRD-derived FAU lattice constants 
because Al-O bonds are longer than Si-O bonds [24,25]; these methods (details and 
diffractograms in Section 8.6.1, Supporting Information) gave Alf/Altot ratios of 0.46 on H-USY 
and 0.74 on CD-HUSY (Table 8.1). Estimates of Alf content may be imprecise, however, 
because some Al atoms may not be detected in NMR spectra or may reside within distorted 
tetrahedral locations in extrazeolite phases. The ex situ conditions of these measurements, such 
as the hydration treatments at ambient temperature intended to weaken Al quadrupolar 
interactions and sharpen NMR lines, may also cause unintended structural changes that may be 
reversed at the conditions used for catalysis. Ultimately, Alf atoms are merely a structural 
surrogate for active sites, which are present as charge-balancing protons (H+); as we show next, 
these sites can be counted directly and precisely at conditions more relevant to catalysis using 
chemical titrants.  
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Saturation Na+ exchange levels (per Altot) were 0.28 on H-USY and 0.51 on CD-HUSY 
(Table 8.2), indicating that only a fraction of all the Al atoms contain a proton that can be 
exchanged by Na+. These values were larger for CD-NH4USY (0.85 Na+/Altot; Table 8.2) than 
for CD-HUSY, suggesting that NH4 removal by treatment in dry air at 773 K and subsequent 
exposure to ambient air to form CD-HUSY led to framework dealumination [3,32], which 
decreased the number of available exchange sites and, in turn, the number of protons available 
for exchange. 

 
 

Table 8.2. Brønsted acid site titration of zeolite samples.  
Zeolite H+/Altot H+/Alf

a Na/Alf at zero 
turnover rateb 

 Na CH3 2,6 di-tert-
butylpyridine  

  

H-USY 0.28 0.26 0.20 0.35 0.32 0.04 
CD-HUSY 0.51 0.53 0.50 0.69 0.72 0.05 

CD-NH4USY 0.85 n.m.* n.m.* 0.86 n.m.* 
aCalculated from average H+ count determined by the three titration methods and the Alf count determined by 27Al 
MAS NMR (Table 8.1). 
bNa/Alf ratios required for undetectable i-C4H10 cracking and dehydrogenation rates (from Fig. 8.7). 
*n.m., not measured. 

 
 
Infrared spectra of CD-HUSY and two Na+-exchanged CD-HUSY samples are shown in 

Figure 8.3 (spectra of all CD-HUSY samples in Section 8.6.3, Supporting Information). They 
showed strong bands at 3630 and 3550 cm-1, assigned to acidic OH groups vibrating within 
supercage and sodalite cages, respectively; weaker bands at 3740 cm-1 (silanol OH) and 3675 
cm-1 (OH associated with Alex species) were also detected [10,33]. The intensity of the acidic OH 
bands decreased linearly with increasing Na+/Altot ratio (Fig. 8.3 inset) and extrapolated to zero 
values at 0.56 Na/Altot ratios, consistent with the maximum ion-exchange capacity of CD-HUSY 
(0.51 Na/Altot; Table 8.2) and with the complete replacement of H+ by Na+. 

 
The infrared spectra of H-USY and two Na+-exchanged H-USY samples are shown in 

Figure 8.4 (the other samples are included in Section 8.6.3, Supporting Information). In contrast 
with CD-HUSY, saturation Na+ levels on H-USY did not fully remove OH bands (3660-3475 
cm-1), which retained a strong feature at 3600 cm-1 (Fig. 8.4). The difference spectrum between 
H-USY samples before and after Na+-exchange (Fig. 8.4) predominantly shows bands assigned 
to acidic OH groups centered at 3630 and 3550 cm-1 (~90% of total difference spectrum area), 
indicating that Na+ preferentially titrates H+ sites. These findings sharply contrast previous 
reports that Na+ selectively replaced ‘super-acid’ sites (but not isolated OH groups), which were 
assigned to a perturbed OH band at ~3600 cm-1 [16]. We conclude that acidic OH groups are not 
responsible for the band at 3600 cm-1, as also proposed earlier [10]; this band may instead reflect 
the presence of OH groups on the amorphous extrazeolite phases [23,34] that form during 
thermal treatment. 
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The number of protons in H-USY and CD-HUSY was also determined by sequential 
pulses of DME at 438 K to replace H+ sites with CH3 groups [35]: 

 

   3 3 3 3CH OCH SiO H Al SiO CH Al CH OH         , (8.3) 

 

   3 3 2CH OH SiO H Al SiO CH Al H O         .  (8.4) 

 
DME and CH3OH concentrations were undetectable in the reactor effluent during the initial 
pulses on H-USY and CD-HUSY, consistent with the fast and irreversible nature of these 
methylation reactions. DME was detected in the effluent only after all protons were replaced by 
CH3 groups (data in Section 8.6.4, Supporting Information), while methanol was never detected 
in the effluent stream. DME uptakes (0.5:1 DME:H+; Eqs. (8.3) and (8.4) gave H+/Altot ratios of 
0.26 and 0.53 on H-USY and CD-HUSY, respectively (Table 8.2). These values were similar, 
within experimental accuracy, to the respective maximum Na+ exchange capacities of these 
samples (Table 8.2), but much smaller than expected if all Alf atoms (from 27Al MAS NMR 
spectra) were associated with one proton.  
 

Finally, the number of protons in H-USY and CD-HUSY was measured during CH3OH 
dehydration catalysis at 433 K by their titration with 2,6-di-tert-butylpyridine (i.e. hindered 
pyridine). This base titrates only Brønsted acid sites because steric constraints around its N-atom 
prevent coordination to Lewis acid centers [26]. On both H-USY and CD-HUSY, CH3OH 
dehydration rates remained constant with time before titrant introduction and then decreased 
monotonically with increasing titrant uptakes (Fig. 8.5). Detectable rates (~20% of initial rates) 
persisted on both samples even at maximum uptakes (0.17 and 0.38 titrant per Altot on H-USY 
and CD-HUSY, respectively). Titration of CD-HUSY with pyridine, which binds to both 
Brønsted and Lewis sites, gave larger maximum uptakes (0.66 pyridine per Altot) than with 
hindered pyridine, but similar residual rates after saturation uptakes (Fig. 8.5), indicating that 
methanol dehydration occurs at virtually undetectable rates on Lewis acid centers. The infrared 
spectrum of CD-HUSY after adsorption of 0.71 pyridine titrants (per Altot) at 298 K, showed 
bands for acidic OH groups vibrating in supercages (3630 cm-1) and sodalite cages (3550 cm-1) 
(Fig. 8.6). Bands for both OH groups weakened concurrently with increasing pyridine uptake 
(Fig. 8.6 inset), even though pyridine titrants cannot enter sodalite cages, because H+ species 
migrate among the four O-atoms connected to each Alf atom (further discussion in Section 8.6.5, 
Supporting Information). 

 
These infrared and kinetic data indicate that residual rates of CH3OH dehydration at 

saturation titrant uptakes reflect the presence of acid sites accessible to CH3OH but not to larger 
titrants. Thus, the total number of acid sites was determined by extrapolating hindered pyridine 
uptakes to zero dehydration rates, which gave values of 0.20 and 0.50 H+ (per Altot) for H-USY 
and CD-HUSY, respectively (Table 8.2). These values are consistent with the number of H+ 
measured by titration with Na+ and DME (Table 8.2), but they are much smaller than the number 
of Alf atoms determined from 27Al MAS NMR spectra (Table 8.1). Previous studies have also 
reported that the number of adsorbed amine titrants on chemically-dealuminated FAU was much 
smaller than the number of Alf atoms determined from XRD-derived lattice constants [13].  
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(NH4)2SiF6 (to form CD-HUSY) increases void size, estimated from 129Xe NMR chemical shifts 
and argon adsorption isotherms [28,49], via the removal of extraframework Al debris that 
occludes void space. The similar kmono values between H-USY and H-BEA (Table 8.4) appear, at 
first glance, to reflect similar solvation effects and pore sizes between these samples; however, 
accounting for the small differences in their kdimer (and therefore DPE) values indicates that 
solvation effects are stronger in H-BEA (detailed treatment in Section 8.8.8, Supporting 
Information). Thus, the higher Alex content in H-USY supercages (Table 8.1) apparently results 
in void spaces that are smaller than CD-HUSY supercages (~1.3 nm diameter, Alex-free), but 
larger than H-BEA channels (~0.7 nm diameter).  

 
These findings and their conceptual interpretation seem to resolve issues that have 

persisted for decades regarding the mechanistic origin of the effects of Na+ and extraframework 
Al species in catalysis by FAU zeolites. They underscore the requirement that turnover rates be 
normalized rigorously by the number of active sites before interpreting the origins of reactivity. 
They also highlight the importance of measuring active sites directly and, if at all possible, 
during catalysis. In this case, the distractions of using imprecise structural surrogates (Alf) for the 
active sites (H+) to normalize rates have led to the incorrect attribution of reactivity to ‘super-
acid’ sites.  

 
 
8.4 Conclusions  

 
Kinetic and spectroscopic studies of FAU zeolites treated thermally (H-USY) and then 

chemically with ammonium hexafluorosilicate (CD-HUSY) were used to examine the effects of 
extraframework aluminum (Alex) and Na+ species on the number and strength of Brønsted acid 
sites, and on catalytic rates of isobutane cracking and dehydrogenation (763 K) and of methanol 
dehydration (433 K). The number of H+ sites on H-USY and CD-HUSY were counted directly 
by titration with 2,6-di-tert-butylpyridine during CH3OH dehydration catalysis (433 K), with 
dimethyl ether to form CH3 groups (438 K) and with Na+ (353 K). These methods gave similar 
values for the number of protons on each sample, which were smaller than the number of 
framework aluminum (Alf) atoms (0.35 and 0.69 H+/Alf on H-USY and CD-HUSY, respectively) 
estimated by 27Al MAS NMR. Thus, Alf atoms are imprecise structural proxies for Brønsted acid 
sites on FAU zeolites, illustrating the requirement that the number of active sites be measured 
directly and, when possible, during catalysis. 

 
Turnover rates of monomolecular isobutane cracking and dehydrogenation, normalized 

rigorously by the number of residual H+ on Na+-exchanged H-USY and CD-HUSY samples, 
were independent of Na+ content, reflecting the stoichiometric replacement of catalytically-
equivalent protons by Na+ cations. These data sharply contrast previous reports [15-17] that 
claimed Na+ selectively titrated ‘super-acidic’ H+ sites, formed via electronic interactions with 
Alex species. These ‘super-acidic’ H+ sites, purported to comprise a small fraction of all protons, 
were invoked to account for artifacts that result from normalizing rates non-rigorously by the 
number of Alf atoms. 

 
Zero-order rate constants for methanol dehydration, which depend predominantly on acid 

strength (DPE), were similar (within a factor of 1.1) on H-USY and CD-HUSY. In contrast, first-
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order rate constants for monomolecular isobutane activation and methanol dehydration, which 
reflect the combined effects of acid strength and solvation, were higher by factors of 1.8 and 3.4, 
respectively, on H-USY than CD-HUSY. These data reflect stronger van der Waals interactions 
within H-USY supercages, which are apparently smaller in size because they contain Alex 
species that occlude void space. Thermal and chemical treatments of FAU zeolites, which 
change the distribution of aluminum atoms between framework and extraframework phases and 
thus the sizes of supercage voids, predominantly influence their solvation properties and not the 
strength of their Brønsted acid sites. 
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8.6 Supporting Information 
 
8.6.1 X-ray Diffraction of Zeolite Samples and Estimation of Extraframework Aluminum Content 
 

The powder X-ray diffractograms of H-USY and CD-HUSY are shown in Figure 8.10. 
Lattice parameters (ao) determined from (533) reflections were identical, within experimental 
error, to averaged ao values determined from individual hkl planes between 5-25° 2θ; the lattice 
parameters (Table 8.5) were 2.449 nm for H-USY and 2.440 nm for CD-HUSY, indicating that 
unit cells are larger in H-USY. The number of framework Al (Alf) atoms per unit cell (NAlf; Table 
8.5) on each sample was estimated using correlations reported by Fichtner-Schmittler et al. [50] 
(Eq. (8.7)) and Sohn et al. [24] (Eq. (8.8)): 

 

 112.4 24.233Alf oN a  . (8.7) 

 

 107.1 24.238Alf oN a  . (8.8) 

 
Si/Alf and Alf/Altot ratios (Table 8.5) were calculated from NAlf values and total Si/Al ratios 
determined by elemental analysis. Alf contents are higher on H-USY (Si/Alf = 6.1) than CD-
HUSY (Si/Alf = 10.1), but the fraction of total Al within the zeolite framework is lower on H-
USY (Alf/Altot = 0.46) than CD-HUSY (Alf/Altot = 0.74).  
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Assuming that all Si atoms are contained within the framework, the number of Alex atoms per 
unit cell (NAlex) can be determined from the Si/Alex ratio and NSif by: 
 

 Sif
Alex

ex

N
N

Si Al
 . (8.11) 

 
This value for NAlex can be used to estimate the number of Alex atoms per supercage, of which 
there are eight per unit cell, assuming that all NAlex species are located within supercage voids. 
This Alex/supercage ratio is an upper bound because some of the Alex species may be located 
within sodalite cages or in extracrystalline phases.  
 

The following example calculations are shown for H-USY (Si/Altot = 2.8; Table 8.1), 
using XRD-derived values (NAlf = 27.0, Si/Alf = 6.1; Table 8.5): 

 

     11 1
2.8 6.1 5.2

ex

Si

Al

    , (8.12) 

 
192 27 165SifN    , (8.13) 

 
165

31.7
5.2AlexN   , (8.14) 

 
which yields an upper bound of 3.9 Alex species per supercage. 
 

 
8.6.2 Thermodynamics of Aqueous-Phase Na+-exchange of Zeolite Samples 
 

The total number of Al atoms (Altot) on a given zeolite sample can be expressed as the 
sum of the number of Al atoms that generate anionic framework oxygen sites capable of ion-
exchange (Alexch) and the number of those that do not (Alnon-exch): 

 

,tot non exch exch i
i

Al Al Al  . (8.15) 

 
In Eq. (8.15), each Alexch,i term reflects exchange sites occupied by a distinct monovalent cation i 
(e.g., H+, NH4

+, Na+). For the specific case of Na+ exchange onto H-zeolites, normalizing Eq. 
(8.15) by Altot gives: 
 

, ,1
non exch

exch H exch Nanon exch exch non exch
Al H Na

tot tot tot tot tot

Al AlAl Al Al

Al Al Al Al Al
  

 

 


         , (8.16) 

 
where 

H
   and 

Na
  are intrazeolite H+ and Na+ contents (per Altot), respectively. Eq. (8.16) can 

be rearranged to give an expression for 
H

   in terms of 
Na

  : 
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 1
non exch

exch
AlH Na Na

tot

Al

Al
     


     . (8.17) 

 
The aqueous-phase exchange of Na+ onto H-zeolites (353 K) is described by the 

following equilibrium reaction: 
 

   K
aq aqNa SiO H Al H SiO Na Al              . (8.18) 

 
in which the equilibrium constant (K), assuming all components behave ideally, is given by: 
 

 
 

aq aq Na

Haq aq

H HSiO Na Al
K

Na NaSiO H Al








  

  

         
         

. (8.19) 

 
Combining Eqs. (8.17) and (8.19) and rearranging the resulting expression: 
 

aq Na

exch tot Naaq

Na
K

Al AlH












  


  
. (8.20) 

 
This equation can be rearranged to obtain a Langmuirian dependence for 

Na
   on the ratio of Na+ 

and H+ aqueous-phase concentrations: 
 

1
aq aqexch

Na
tot

aq aq

K Na HAl

Al K Na H
 

 

 

        
           

. (8.21) 

 
This treatment can be used to derive an analogous expression for Na+ exchange onto NH4-
zeolites. 
 
 
8.6.3 Infrared Studies of Na+ Titration of H+ Sites 
 

Infrared spectra of Na-exchanged CD-USY samples and difference spectra (with respect 
to CD-HUSY) are displayed in Figures 8.11 and 8.12, respectively. These spectra show OH 
bands at 3630 cm-1 (acidic supercage OH), 3550 cm-1 (acidic sodalite cage OH ), 3740 cm-

1 (silanol OH), and 3675 cm-1 (OH groups associated with Alex species) [10,33]. Infrared spectra 
of Na-exchanged USY samples and difference spectra (with respect to H-USY) are shown in 
Figures 8.13 and 8.14, respectively.  These spectra show an additional band at 3600 cm-1, which 
may reflect OH groups on amorphous extrazeolite phases formed during thermal treatment. 
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pyridine/Alf uptakes of 0.8 (Fig. 8.6). These data are consistent with pyridine uptakes that would 
completely suppress CH3OH dehydration rates (0.8 pyridine molecules per Alf; Fig. 8.5).  

 
Monomolecular isobutane activation rate constants (per residual H+; Fig. 8.8) were 

independent of Na+ content on H-USY and CD-HUSY samples, indicating that Na+ 
stoichiometrically titrates all protons, which are catalytically-equivalent within each sample. Na+ 
titrants preferentially reside within sodalite cages [51], yet replace protons without preference, 
consistent with infrared spectra of Na-exchanged CD-HUSY (Fig. 8.3) and H-USY (Fig. 8.4) 
samples that show band areas for both supercage (3630 cm-1) and sodalite cage (3550 cm-1) OH 
groups that decrease concurrently with increasing Na+ content.  

 
Taken together, these data indicate that protons migrate across all four oxygen atoms 

connected to Alf atoms at identical T-sites on CD-HUSY (Si/Alf = 10.1; Table 8.5) at these 
conditions; in turn, protons can interact with reactant or titrant molecules that can only access 
FAU supercages. FAU zeolites with Si/Alf ratios below 5.8 would require the presence of Alf 
pairs [8], which may restrict proton mobility and cause some H+ sites to reside permanently 
within sodalite cages. In such cases, pyridine preferentially titrates H+ sites located within FAU 
supercages and cannot access all H+ sites confined within sodalite cages, even at saturation 
uptakes [52]; thus, not all protons would be accessible to reactant molecules (e.g. isobutane) and 
participate in catalytic turnovers. The complex features present in the OH infrared spectrum of 
H-USY preclude a similar analysis upon titration with pyridine, but its low Alf content (Si/Alf = 
6.1; Table 8.5) does not require the presence of paired Alf atoms. Therefore, it is reasonable to 
expect that all Alf atoms in H-USY are isolated from each other and that, in turn, all protons on 
H-USY are mobile and accessible to reactants or titrants that can reside only within supercages.  
 
 
8.6.6 Monomolecular Isobutane Activation on Acidic Zeolites 

 
Isobutane activation by monomolecular routes form equimolar amounts of CH4 and C3H6 

from cracking steps, and H2 and i-C4H8 from dehydrogenation steps. Measured first-order rate 
constants for isobutane cracking and dehydrogenation did not depend on space velocity and gave 
non-zero values upon extrapolation to zero residence time (Fig. 8.16), indicating that these 
products were formed in primary paths and did not enter secondary routes. Isobutane cracking 
led to the formation of CH4 and C3H6 in equimolar ratios that did not depend on space velocity 
(Fig. 8.16), consistent with monomolecular cracking events. Monomolecular isobutane 
dehydrogenation led to the formation of i-C4H8, which was present in higher than equilibrium 
amounts relative to linear butene isomers at all space velocities tested; i-C4H8/1-C4H8 ratios 
decreased towards equilibrium ratios with increasing residence time, while ratios of 2-C4H8/1- 
C4H8 and cis-2-C4H8/trans-2-C4H8 isomers did not depend on space velocity (Fig. 8.17). These 
data indicate that skeletal isomerization between linear and branched C4H8 isomers is not 
equilibrated but double-bond isomerization among linear C4H8 isomers is equilibrated, consistent 
with C4H8 isomer distributions formed from monomolecular n-C4H10 dehydrogenation [44]. The 
absence of C5+ species in product chromatograms confirmed the absence of bimolecular 
reactions over the range of space velocities and pressures studied. 
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8.6.7 Methanol Dehydration to Dimethyl Ether on Brønsted Acids 
 
The effects of acid strength and van der Waals solvation on rate constants for CH3OH 

dehydration to DME on Brønsted acids have been examined in detail elsewhere [45]; here, we 
include an abridged version to supplement the discussion in this manuscript. Density functional 
theory calculations on tungsten Keggin polyoxometalate (POM) clusters indicate that CH3OH 
dehydration proceeds by the quasi-equilibrated adsorption of two CH3OH molecules at a proton 
to form protonated dimer intermediates (Steps 1-3, Scheme 8.3), which directly eliminate H2O 
and form DME in a single concerted kinetically-relevant step (Step 4, Scheme 8.3); DME then 
desorbs from the catalyst surface in a quasi-equilibrated step (Step 5, Scheme 8.3). Dehydration 
rates on Keggin POM clusters and zeolite H-BEA, normalized by the number of accessible 
protons determined from titrations with 2,6-di-tert-butylpyridine, were accurately described by 
Langmuir dependences on CH3OH pressure: 

 

 
3

3
1

mono CH OH

mono dimer CH OH

k Pr

k k PH 


  
. (8.22) 

 
where kmono and kdimer are the measured first and zero-order rate constants, respectively.  
 

  
Scheme 8.3. Elementary steps for CH3OH dehydration on solid acids. Dashed lines represent H-bonding interactions 
(adapted from [45]). 
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 The well-defined structure of Keggin POM clusters permits accurate calculations of their 
deprotonation energies (DPE), a rigorous and non-probe specific measure of Brønsted acid 
strength, from theoretical treatments. The DPE values for these clusters increase monotonically 
with decreasing central atom valence (P, Si, Al, Co) and increasing number of charge-
compensating protons, without concomitant changes in structure. Rate constants for CH3OH 
dehydration measured on Keggin POM, together with those for H-BEA, whose DPE can also be 
estimated by theory [46], allowed for the development of relations between acid strength, 
composition, and function [45]. Values of kdimer reflect the free energies of DME formation 
transition states (Step 4, Scheme 8.3) relative to protonated dimers; they depend predominantly 
on DPE because the stabilization of transition states and dimers by van der Waals forces are 
similar. Values of kmono reflect the free energies of the same transition state with respect to one 
adsorbed CH3OH and one gas-phase CH3OH molecule; these values depend on DPE and 
solvation properties of the catalyst, which affect the stability of transition states and CH3OH 
monomers to different extents [45]. 
 
 
8.6.8 Assessment of Solvation Effects Among Acidic Zeolites From Methanol Dehydration Rate 
Constants 
 

Values of kdimer among H-USY, CD-HUSY and H-BEA zeolites are similar (within a 
factor of 1.3, Table 8.6), indicating that their acid sites are similar in strength. Yet, any 
differences among kdimer values, if they were to depend solely on acid strength (DPE), would also 
be reflected in kmono values because they depend on both DPE and solvation effects. Relations 
developed elsewhere between methanol dehydration rate constants and DPE values indicate that 
kdimer values are less sensitive to DPE (d[ln(kdimer)]/d(DPE) = -0.028) than kmono 
(d[ln(kmono)]/d(DPE) = -0.093) [45], because changes in acid strength similarly influence the 
energies of charged DME formation transition states and charged CH3OH dimer intermediates, 
but not relatively uncharged CH3OH monomers.  

 
 

Table 8.6. Measured CH3OH dehydration (433 K) zero-order (kdimer) and first-order (kmono) rate constants on H-
USY, CD-HUSY and H-BEA. Values of kmono,Zhyp calculated using Eq. (8.25) and of  using Eq. (8.26).  

Zeolite kdimer 

(/10-3 (mol DME) (mol 
H+-s)-1) 

kmono 

(/10-3 (mol DME) (mol 
H+-kPa CH3OH-s)-1) 

kmono,Zhyp 

(/10-3 (mol DME) (mol 
H+-kPa CH3OH-s)-1) 

 

 

H-BEA 2.9 0.96 0.11 8.5 
H-USY 4.1 0.94 0.36 2.6 

CD-HUSY 3.8 0.28 0.28 1.0 

 
 
Here, we examine the effects of solvation in H-USY (or in H-BEA), relative to CD-

HUSY (Zref), by comparing its measured kmono value (Table 8.6) to the expected kmono value for a 
hypothetical CD-HUSY zeolite (Zhyp) with the DPE required to give the measured kdimer value on 
H-USY. If the sensitivities of kdimer and kmono values on DPE are assumed to be the same as found 
on POM clusters, then the rate constants on Zhyp are given by: 
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hyp ref
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Z Z
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 

, (8.23) 

 

  ln 0.093hyp

hyp ref

ref
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k
DPE DPE

k

 
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. (8.24) 

 
Combining Eqs. (8.23) and (8.24) gives: 
 

0.093
ln ln

0.028
hyp hyp

ref ref

mono,Z dimer,Z

mono,Z dimer,Z

k k

k k

                
. (8.25) 

 
Thus, the measured kdimer values on H-USY (

hypdimer,Zk ) and on CD-HUSY (
refdimer,Zk ), together 

with the measured kmono value on CD-HUSY (
refmono,Zk ) and Eq. (8.25), can be used to calculate 

hypmono,Zk  values (Table 8.6). 

 
In turn, any differences in solvation between H-USY (or H-BEA) and CD-HUSY are 

reflected in the ratio of measured-to-expected kmono values, defined by the parameter : 
 

hyp

mono

mono,Z

k

k
  , (8.26) 

 
where values of  greater than unity reflect stronger solvation effects relative to CD-HUSY, and 
vice versa. Values of  are 2.6 on H-USY and 8.5 on H-BEA (Table 8.6), indicating that 
solvation effects are stronger, and pore sizes concomitantly smaller, on H-BEA (~0.7 nm 
diameter channels) than on H-USY than on CD-HUSY (~1.3 nm diameter supercages). 
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