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INTRODUCTION 
 The decline and fall of the Roman Empire, recurrent collapses of Mesopotamian 
civilizations, and rise and demise of great powers—such historical events excite lay public’s 
imagination and provide fodder for controversies about possible causes among historians (Jones 
1964, Kennedy 1987, Yoffe and Cowgill 1988). Over the centuries, historians and political 
thinkers advanced many explanations of such recurrent waves of state breakdown. Some were 
quite particularistic, specific for each instance of collapse, such as the role of Christianity in the 
fall of Rome (Gibbon 1932), others more general, for example, Joseph Tainter’s (1988) theory of 
diminishing returns on sociopolitical complexity. The explanation of breakdown in the agrarian 
states and empires that is arguably the best grounded in sociological mechanisms is the 
demographic-structural theory (Goldstone 1991, Turchin 2003c).  
 

According to this theory, population growth in excess of the productivity gains of the 
land has several effects on social institutions. First, it leads to persistent price inflation, falling 
real wages, rural misery, urban migration, and increased frequency of food riots and wage 
protests. Second, rapid expansion of population results in an increased number of aspirants for 
elite positions. Increased intraelite competition leads to the formation of rival patronage networks 
vying for state rewards. As a result, elites become riven by increasing rivalry and factionalism. 
Third, population growth leads to expansion of the army and the bureaucracy and rising real 
costs. States have no choice but to seek to expand taxation, despite resistance from the elites and 
the general populace. Yet, attempts to increase revenues cannot offset the spiraling state 
expenses. Thus, even if the state succeeds in raising taxes, it is still headed for fiscal crisis. As all 
these trends intensify, the end result is state bankruptcy and consequent loss of the military 
control; elite movements of regional and national rebellion; and a combination of elite-mobilized 
and popular uprisings that manifest the breakdown of central authority (Goldstone 1991). 
 

Sociopolitical instability resulting from state collapse feeds back on population growth. 
Most obviously, when the state is weak or absent, the populace will suffer from elevated 
mortality due to increased crime, banditry, and internal and external warfare. Additionally, the 
times of troubles cause increased migration rate, as refugees flee war-affected areas. Migration 
may lead to emigration (and we can simply add that to mortality) and to spread of epidemics. 
Increased vagrancy spreads the disease by connecting areas that would stay isolated during better 
times. As vagabonds and beggars aggregate in towns and cities, increasing their population size, 
they may tip the density over the epidemiological threshold (a critical density above which a 
disease spreads). Finally, political instability causes lower reproduction rates, because during 
uncertain times people choose to marry later and to have fewer children. People's choices about 
their family sizes may be reflected not only in birth rates, but also in increased rates of 
infanticide.  
 

Instability can also affect the productive capacity of the society. First, the state offers 
protection. In a stateless society people can live only in natural strongholds, or places that can be 
made defensible. Examples include hillfort chiefdoms in preconquest Peru (Earle 1997), and the 
movement of settlements to hilltops in Italy after the collapse of the Roman Empire (Wickham 
1981). Fearful of attack, peasants can cultivate only a small proportion of productive area that is 
near fortified settlements. The strong state protects the productive population from external and 
internal (banditry, civil war) threats, and thus allows the whole cultivable area to be put into 
production. Second, states often invest in increasing the agricultural productivity by constructing 



irrigation canals, roads, and flood control structures. A protracted period of civil war results in a 
deterioration and outright destruction of this productivity-enhancing infrastructure. 
 

I investigated the theoretical relationships between population numbers and social 
structures, described above, with a suite of dynamical models, ranging from very simple to 
moderately complex (Turchin 2003c, Turchin and Korotayev 2004). The mathematical theory 
suggests two general insights. First, population numbers should oscillate with a period of roughly 
two-three centuries. Second, sociopolitical instability also oscillates with the same period, but 
shifted in phase with respect to population numbers (Figure 1).  
 

The theory, thus, yields quantitative predictions about the dynamical relationship between 
population and instability that can be empirically tested using historical data. My goal in this 
paper is to test the theory on data from several empirical case-studies where data are available on 
the dynamics of both population and instability: late medieval–early modern England (1450–
1800), ancient and medieval China (the Han and Tang periods), and the Roman Empire.  
 
METHODS 
England 1450-1800: Population Data 
 Population numbers for the period 1540–1800 were taken from Table A.9.1 in Wrigley et 
al. (1997). The quinquennial data of Wrigley et al. were resampled at decadal intervals. For the 
period 1450–1525 population data were taken from Hatcher (1977), also sampled at 10-y 
intervals (all data analyzed here were sampled at 10-y intervals). The value for 1530 was 
interpolated. The population data show an increasing long-term trend. Such nonstationarity 
violates one of the most important assumptions of nonlinear time-series analysis; thus, data need 
to be detrended (Turchin 2003a:175).  
 
Detrending the English Population Data 
 Agrarian revolution in England started during the seventeenth century (Grigg 1989, Allen 
1992, Overton 1996). We can trace this revolution using data on long-term changes in grain 
yields (Grigg 1989, Overton 1996). Average wheat yields in the thirteenth century were around 
10 bushels of grain per acre. Yields declined slightly during the fourteenth and fifteenth centuries 
to 8 bushels per acre (perhaps as a result of the worsening global climate). Even as late as the 
1580s, the yields were still at their late medieval level. During the seventeenth century, however, 
yields began improving, increasing to ca. 15 in 1700 and 20-21 in the early nineteenth century 
(Grigg 1989:69). Net yields (subtracting seed corn) were lower. For example, the typical late 
medieval seeding rates were 2 bushels per acre; thus, the net yield was only 6 bushels per acre.  
 

Net yields from Grigg and Overton are plotted in Figure 2a. To capture the rising trend, I 
fitted the data after 1580 with a straight line (see Figure 2a, note the log-scale). The linear 
relationship appears to be an adequate description of the trend (thus, adding a quadratic term 
failed to better the regression in a statistically significant fashion). 
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Figure 1. (a) Typical dynamics of population (N, solid curve), state strength (S, broken 
curve), and warfare intensity (W, dotted curve), illustrated with the output of the model 
investigated in Turchin and Korotayev (2004). (b) The trajectory in the phase space of 
population and sociopolitical instability (defined as the difference between W and S).  
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Figure 2. Detrending population trajectory for England. (a) Population numbers (in 
million), net yields (in bushels per acre), and the estimated carrying capacity (in million of 
people) in England from 1450 to 1800 (all variables plotted on a log-scale). (b) 
Detrended population (“population pressure”) trajectory (solid curve) and inverse real 
wages (broken curve). 



We can obtain an approximate estimate of the carrying capacity by assuming that it was 
proportional to the net yield. Assuming the total potentially arable area of 12 mln acres (Grigg 
1989) and that one individual (averaging over adults and children) needs a minimum of one 
quarter (8 bushels or 2.9 hectoliters) of grain per year, I calculated the carrying capacity of 
England shown by the broken line in Figure 2a (by coincidence 1 bushel of net yield per acre 
translates exactly into 1 million of carrying capacity).  
 

We can now detrend the observed population numbers by dividing them by the estimated 
carrying capacity. The detrended population, which can also be thought of as “population 
pressure on resources,” is defined as N'(t) = N(t)/K(t). Note that the critical assumption here is 
that K is proportional to the net yield, Y; since Y is the only quantity varying with time in the 
formula, other components (total arable area, consumption minimum) being constant multipliers, 
K will wax and wane in step with Y. In other words, the exact values of constant multiples do not 
matter, since we are interested in relative changes of population pressure. Note that the estimate 
of K is based not on the area that was actually cultivated (this fluctuated up and down with 
population numbers), but on the potentially arable area. The latter quantity fluctuated little across 
the centuries (for example, as a result of some inundation of coastal areas during the Middle Ages 
or more recent reclamation using modern methods) and can be approximated with a constant 
without a serious loss of precision. 
 

A test of the appropriateness of this detrending was obtained by regressing the estimated 
population pressure on real wages reported by Allen (2001). There was a very close inverse 
relationship between these two variables, and not a very good one if we were to use the non-
detrended population numbers. As Figure 2b shows, population pressure and inverse real wage 
fluctuated virtually in perfect synchrony.  
 
England 1450-1800: Sociopolitical Instability Data 
 For the period 1492-1800 I used the list of civil wars and rebellions compiled by Tilly 
(1993:Table 4.2). The list reports on revolutionary situations in all British polities. Since my 
focus is on England, I excluded all rebellions in Ireland, as well as in Scotland prior to the 
unification under the Stuarts. For the period prior to 1492, I used the compendium of Sorokin 
(1937: Appendix to Part III), which essentially added the data on the Wars of the Roses. The 
complete list is given in Table 1. 
 
Smoothing Socio-Political Instability 
 I constructed an index of sociopolitical instability by assigning “1” to years with rebellion 
or civil war and “0” to years without (Boswell and Chase-Dunn 2000). To translate this 
discontinuous index into a smoothly varying one, I used the technique known as the kernel 
regression. The kernel regression is a nonparametric function estimator. The degree with which 
the estimated curve interpolates vs. smooths over a scatter in the data is determined by a single 
parameter h called the bandwidth (Härdle 1990). I used an exponentially weighted kernel (that is, 
the contribution of a data point to the smoothed point declines exponentially with distance 
between the two points). The choice h = 50 was determined by a prior empirical observation (see 
Turchin 2003c: Section 9.1.2) that the times of trouble in European polities tended to be “lumpy” 
on a human generation scale. That is, revolutions and bouts of civil war tend to skip generations: 
if fathers participate in bitter internal fightings, their sons tend to value stability at almost any 
cost, while the grandsons exhibit a renewed willingness to revolt. Interesting as this pattern may 
be, it is a different phenomenon from the one we are investigating (the average periodicity of this 



lumpiness is two human generations, or 50 years, compared to 200-300 year secular cycles). 
Using the bandwidth of 50 y smooths out any bigenerational cycles that may be present in the 
data, and allows us to focus on the secular oscillations (Figure 3). 

 
Table 1. Civil wars and rebellions in England 1450-1800. 
Years  Description 
1455-6 The Wars of Roses: 1st phase  
1460-5 The Wars of Roses: 2nd phase 
1467-71 The Wars of Roses: 3rd phase 
1483-5 The Wars of Roses: 4th phase  
1495 Rebellion of Perkin Warbeck 
1497 Insurrection in Cornwall 
1536-7 Pilgrimage of Grace 
1549 Kett’s rebellion 
1554 Wyatt’s rebellion 
1569 Rebellion of catholic lords of the North 
1639-40 The Bishops’ Wars 
1642-7 Civil War 
1648-51 Second Civil War 
1655 Penruddock rising in Salisbury 
1660 Monk’s coup; restoration of James II 
1666 Revolt of Scottish Covenanters 
1679 Revolt of Scottish Covenanters 
1685 Monmouth and Argyll rebellions 
1687-92 Glorious Revolution, with intervention by France
1715-6 Jacobite rebellion in Scotland 
1745-6 Scottish rising (Jacobite pretender) 

China: Population Data 
 The situation with population data for China is complex. On one hand, the central 
authority in China (when it existed), conducted detailed censuses for tax purposes. On the other 
hand, corrupt or lazy officials often falsified or fabricated population data (Ho 1959). Conversion 
coefficients between the number of taxable households and the actual population are often 
unknown, and what is worse, these coefficients probably changed from dynasty to dynasty. The 
area controlled by the state also continually changed. Finally, it is often difficult to determine  
whether the number of taxable households declined during the times of trouble as a result of 
demographic change (death and emigration), or as a result of the state's failure to control and 
enumerate the subject population. Thus, there is a certain degree of controversy among the 
experts as to the precise levels that population numbers achieved at the highs and lows (Ho 1959, 
Durand 1960, Song et al. 1985). However, the controversy primarily concerns the absolute 
population levels, and there is a substantial degree of agreement on the relative changes in 
population density (which are, of course, of primary interests to a dynamical analysis).  
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Figure 3. Sociopolitical instability in England, 1450-1800. Spikes: years in civil war or 
rebellion. Curve: yearly data smoothed by an exponential kernel with bandwidth of 50 y. 

The most detailed trajectory of population dynamics in China known to me was 
published by Zhao and Xie (1988). These authors give estimates of Chinese population numbers 
at irregular time intervals. In order to make the data suitable for time-series analysis, I 
interpolated Zhao and Xie data using an exponential kernel with bandwidth of 10 years, and then 
subsampled the resulting smoothed trajectory at 10 year intervals. Setting h = 10 y, same as the 
sampling interval, results in a minimal smoothing of the data. 
 

After 1000 C.E. the trajectory becomes clearly nonstationary, and requires detrending. 
For this reason, I focus on the pre-1000 data (analysis of the second millennium data will be 
reported in Turchin and Nefedov 2006). After the fall of the East Han dynasty and before the Sui 
re-unification China was divided among a number of warring states. I excluded this period 
because the demographic-structural theory is state-centered (rather than focusing on state 
systems, as China was during the Han-Sui interregnum). This gave me two periods (using 
centuries as convenient break-points): 200 BCE – 300 CE and 600 – 1000 CE.  
 
China: Instability Data 
 The index of sociopolitical instability in China comes from the remarkable publication by 
J. S. Lee (1931), who during the 1920s set out to calculate the frequency of internecine wars in 
Chinese history (ranging from fairly localized uprisings to wide-spread rebellions and civil wars). 



For the period of interest to us (up to year 1000) Lee largely extracted his data from the Tih Wang 
Nien Piao by Chih Shao-nan. Checks with independent sources demonstrated the high accuracy 
of this source (Lee 1931:114). Lee presented the data as counts of internecine wars per 5-year 
interval. I smoothed his data using an exponential kernel with bandwidth h = 30 y, and resampled 
the data at 10-y intervals. I reduced the bandwidth (compared to h = 50 y used in the analysis of 
the English data) because the Chinese data did not appear to exhibit bi-generational cycles. In 
general, Chinese dynamics operated on a faster time scale, so using a bandwidth of 50 y would 
result in oversmoothing (however, when I redid the analyses with h = 50 y the results were 
essentially the same). 
 
Rome: Population and Instability Data 
 Population history of the Roman Republic and Empire remains a highly contentious topic 
(Scheidel 2001). Archaeological data, however, begins to throw light on this obscure aspect of 
Roman history. Recently Lewit (1991) integrated the results from numerous archaeological sites 
within the Western Empire and presented summaries indicating the proportion of archeological 
sites occupied in a 50-year period for Britain, Belgica, Northern and Southern Gaul, Northern and 
Southern Spain, and Italy. The data suggest that there were two periods of settlement expansion 
and two periods of settlement abandonment. I constructed a crude index of population dynamics 
by averaging provincial occupation curves.  
 

Data on internal warfare in the Roman Empire was published by Sorokin (1937:Table 
26). The data points are given for each 25-y interval. Smoothing the data using kernel with h = 50
y reveals two periods of intense sociopolitical instability. One is the first century B.C.E., which 
was a period of transition between the Republic and Empire. During the first half of the 
Principate (the Early Roman Empire), after internal warfare subsided, population exhibited a long 
period of sustained growth. The population peak was achieved just before 200. The second period 
of instability occurred during the third century, when the Empire was convulsed by a series of 
internal wars, which were accompanied by population decline. Another period of stability and 
population growth occurred during the first half of the Dominate (the fourth century). After the 
decline and fall of the Roman Empire in the West, population decreased. Note that Sorokin’s 
index of internal warfare underestimates the extent of actual sociopolitical instability during the 
fifth century, because he treated barbarian invasions as external warfare. 
 

The population data are too crude to analyze using standard time-series methods (the 
main problem is the length of the sampling period, 50 years). Thus, I did not fit models with the 
population index as the dependent variable, but only used it as an independent variable in the 
analysis of sociopolitical instability. The population data were smoothed using an exponential 
kernel with bandwidth h = 30 y, and resampled at 10-y intervals.  
 
Statistical Analysis: Regressions 
 The conceptual framework of the statistical analysis is explained in the accompanying 
Primer on Statistical Analysis of Dynamical Systems.

Prior to analysis I log-transformed all data: X(t) = log N(t) and Y(t) = log W(t) where N(t)
and W(t) are population and internal war (instability) data. As explained above, the English 
population data were detrended by calculating population pressure. English internal war data 
were also non-stationary (see Figure 3). I detrended instability data by calculating  



Y'(t) = Y(t) – (a0 + a1t), where a0 and a1 are parameters of linear regression of Y(t) on t. (This is 
equivalent to dividing the untransformed data by the temporal trend, which is the same as the 
procedure used in detrending population.) 
 

I fitted a simple time-series model to the data, the linear autoregressive process 

0 1 2( ) ( ) ( ) tX t a a X t a Y tτ τ ε= + − + − + Model (1) 
 
(and an analogous Model (1) equation for Y(t), reversing the definitions of X and Y). Here ai are 
parameters to be estimated, and εt is an error term, assumed to be normally distributed (Box and 
Jenkins 1976). The time delay was chosen as τ = 30 y, which approximates a human generation 
length. This particular time delay is also a reasonable choice that optimizes the tension between 
redundancy and irrelevance (see Turchin 2003c: Section 7.2.2). To check how my conclusions 
were affected by the specific value of the time lag, I fitted all models using an alternative choice 
of τ = 20 y, and obtained essentially same results.  
 

As another check I fitted a model that used a quadratic polynomial: 
 

2 2
0 1 2 11 22 12( ) ( ) ( ) [ ( )] [ ( )] ( ) ( ) tX t a a X t a Y t a X t a Y t a X t Y tτ τ τ τ τ τ ε= + − + − + − + − + − − +

The purpose of this model was to determine whether the process had a strong nonlinear 
component. There was statistical evidence for nonlinearity in some series, but using the quadratic 
model instead of the linear one (where it fit better) did not change any conclusions discussed 
below, so I do not report these results here.  
 

To quantify any reciprocal effects of population and instability on each other I employed 
the stepwise regression. Thus, in order to estimate the effect of instability on population change, I 
first regressed X(t) on X(t–τ ), and then tested whether adding the term Y(t–τ ) significantly 
reduced unexplained variance. The effect of population density on instability was investigated by 
regressing Y(t) on Y(t–τ ), and then adding the term X(t–τ ).  
 
Analysis: Cross-Validation 
 The ultimate test of any model is its ability to predict independent data (data that were not 
used to develop the model and estimate its parameters). To assess the ability of the demographic-
structural model to predict out-of-sample data I split each data set into two equal-sized parts. 
Then I fitted model (1) to the first half (the “fitting set”) and used the estimated coefficients to 
predict each data point in the second half (the “testing set”). Thus, the predicted population 
values, X*, (the asterisk denotes prediction) were calculated as follows: 
 

*
0 1 2( ) ( ) ( )X t a a X t a Y tτ τ= + − + −

where X(t–τ ) and Y(t–τ ) are the observed values of the independent variables in the second half,
while the parameters a0, a1, and a2 were estimated using data in the first half. The correspondence 
between the observed X(t) and predicted X(t)* was assessed by linear correlation.  
 

After using the first half of the data set to predict the second, I reversed the procedure and 
used the second half to predict the first. This procedure allowed me to use the complete data set 



for testing the model performance. Finally, I repeated the complete procedure with the instability 
data (Y).  
 

One possible objection to the procedure outlined above is that there is some positive 
autocorrelation between X(t) and X(t–τ ) due to the time-series nature of the data, and it is 
conceivable that the excellent correlations between the observed X(t) and predicted X(t)* are 
entirely due to this “inertial” effect. To eliminate this possibility, I redid the analyses with a 
different dependent variable, ( ) ( ) ( )X t X t X t τ∆ = − − . ( )X t∆ is a measure of the rate of change, 
and by using it we break the autocorrelation arising from the time-series nature of the data. In 
fact, ( )X t∆ is none other than the realized per capita rate of population change, which is the 
standard dependent variable in the analyses of population data (Turchin 2003a). There can still be 
some predictive relationship between ( )X t∆ and X(t), so we need to compare two alternative 
models: 
 

0 1( ) ( ) tX t a a X t τ ε∆ = + − + Model (2) 
 
which I call the inertial model (with an analogous Model (2) for Y(t)), and  
 

0 1 2( ) ( ) ( ) tX t a a X t a Y tτ τ ε∆ = + − + − + Model (3) 
 
which I call the interactive model (with an analogous Model (3) for Y(t)). The interactive model 
has an extra parameter, but in a cross-validation setting this does not matter (if the extra 
independent variable does not have a systematic influence on the dependent variable, then adding 
it to the model actually decreases to the ability of the model to predict out-of-sample data).  
 
RESULTS 
England: 1450-1800 
 Between the late fifteenth century and 1800 England went through several phases in 
which population growth and sociopolitical instability were in inverse relationship to each other 
(Figure 4a). There were two periods of endemic civil war (the Wars of the Roses of the late 
fifteenth century, and the revolutionary period of the seventeenth century) during which 
population stagnated or even declined. There were also two periods of internal stability (roughly, 
the sixteenth and the eighteenth centuries) during which population grew at a rapid pace. When 
plotted in the phase space, the trajectory moved in a cyclic manner (Figure 4b). Time-series 
analysis of these data provides strong evidence for reciprocal influences of population and 
instability on each other (Table 2). In fact, a simple linear time-series model (Model 1)  explains a 
remarkable 85-93% of variance. Furthermore, the signs of the estimated coefficients (all highly 
statistically significant, see Table 2) correspond to those predicted by the theory: instability has a 
negative effect on population, while population has a positive effect on instability.  
 

The strength of the effect of sociopolitical instability on population growth rate can be 
illustrated as follows. I took the data on the compound annual growth rate (CGR) of the English 
population from Table A.9.1 of Wrigley et al. (1997) and smoothed them using the 25-year 
running average suggested by Wrigley et al. Note that CGR is also known as the realized per 
capita rate of population growth; it is the most common measure of population growth used by 
population ecologists (Turchin 2003a). Plotting this measure of population growth rate against the 
instability index we observe a very tight relationship (Figure 5).  
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Figure 4. Dynamical interrelation between population pressure and instability index in 
England 1450-1800. (a) Time plot of the two variables. (b) The empirical trajectory in the 
phase space. 
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Figure 5. Relationship between the per capita rate of population growth and 
sociopolitical instability in England, 1540-1800.  
 

China 
 The Chinese data (see Figure 6) are measured with much less accuracy, compared to the 
English ones, and time-series models with the same τ = 30 y resolve a smaller proportion of 
variance. Nevertheless, the coefficients of determination fall in the 0.4–0.8 range (Table 2), a 
very respectable result for what are quite imperfectly measured data. Coefficients associated with 
reciprocal feedbacks between population and instability are of correct sign and are all highly 
statistically significant (Table 2).  
 



Table 2. Results of regression analyses using Model (1). The regression correlations are 
negative for effects of instability on population and positive for effects of population on 
instability. The time lag is τ = 30 y in each of these regressions. 

Correlation between 
data and predictions  

Source of data 

 

Dependent 
variable 

 
F-statistic for 
the reciprocal 

effect1
Regression 

R2
Fitted on 1st 
half, tested  
on 2nd half 

Fitted on 2nd 
half, tested  
on 1st half 

England  population 137.91*** 0.93 0.90*** 0.96*** 
England   instability 76.46*** 0.85 0.92*** 0.41* 
Han China population 15.55*** 0.42 0.86*** 0.52** 
Han China instability 36.47*** 0.78 0.86*** 0.79*** 
Tang China population 50.48*** 0.64 0.76*** 0.84*** 
Tang China instability 13.96*** 0.63 0.80*** 0.94*** 
Roman Empire instability 8.04** 0.63 0.66** NS 
1F-statistic of adding the Y(t–τ ) term to the X(t) regression in a stepwise fashion, and 
analogously for the Y(t) regression.  
*P < 0.05 
** P < 0.01
*** P< 0.001 
 

Rome 
 Despite the inadequacies of the data (see METHODS), the qualitative dynamics of the 
variables are clearly consistent with the pattern predicted by the theory. Oscillations have a period 
of 2-3 centuries, instability lags in phase behind population (Figure 7). The effect of population 
index on instability with the same τ = 30 y is statistically significant (Table 2). 
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Figure 6. Dynamics of population (solid curve) and sociopolitical instability (broken 
curve) in China: (a) the Han period (200 BCE to 300 CE); (b) the Tang Period (600 – 
1000 CE).  
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Figure 7. Dynamics of population (solid curve) and sociopolitical instability (broken 
curve) in the Roman Empire. 

Cross-validation results 
 The population-instability model (1) was capable of making very accurate out-of-sample 
predictions (Table 2, last two columns). The correlation between model predictions and data was 
not statistically significant in only one case. In the majority of cases the correlations exceeded 
0.8, and in some cases they were even greater than 0.9.  
 

Ability to make accurate forecasts is not due to inertial dynamics of the observed 
variables (Table 3). The inertial model (2) does better than the interactive model (3) in only one 
case (indicated by italics in Table 3). In all other cases the prediction accuracy is substantially 
increased by using the interactive model. In fact, in half of the cases the correlation coefficient 
between the observations and predictions made by the inertial model is not significantly positive. 
In the English case the inertial model does so poorly that the correlations between the predictions 
and observations are actually negative (remember, we are predicting, not fitting data, and 
therefore negative correlations are possible).  
 

In summary, knowledge of population dynamics significantly increases the ability to 
predict instability, and vice versa. This appears to be a very robust result, especially with respect 
to the best dataset, England. I checked its validity by analyzing with a variety of approaches: (1) 
detrended and not detrended; (2) smoothed strongly (h=50 y), moderately (h=30 y), and 
minimally (h=10 y) or not at all; (3) using variables themselves (X, Y) or their rates of change 
(∆X, ∆Y) as dependent variables; (4) fitting regression models or cross-validation; (5) using time 



step τ = 30, 20, or 10 y; and (6) using linear and quadratic forms of independent variables (to 
check for nonlinearities). In all cases, analyses suggested that instability is the dominant influence 
on population dynamics, and population is likewise on instability dynamics, although coefficients 
of determination (or prediction) and P-values varied depending on the approach employed.  
 

Table 3. Comparing out-of-sample predictive abilities of the inertial Model (2) and 
interactive Model (3). The time lag is τ = 30 y in each of these predictions.  

Correlation between predicted and observed
Fitted on 1st half,  
tested on 2nd half 

Fitted on 2nd half,  
tested on 1st half 

Source of data Dependent 
variable 

inertial interactive inertial interactive 
England  population –0.57 0.94 –0.07 0.44 
England   instability –0.13 0.80 –0.53 0.89 
Han China population 0.45 0.57 0.73 0.48 
Han China instability 0.39 0.87 0.37 0.68 
Tang China population 0.56 0.80 0.61 0.90 
Tang China instability 0.57 0.78 0.66 0.92 

DISCUSSION 
 The best data set analyzed in this paper was for the early modern England. We are lucky 
to have quantitative data for many dynamical aspects of this social system (Turchin and Nefedov 
2006), and some variables, such as population numbers, are quite accurately measured. The 
demographic and economic variables for this period have been ably analyzed by Wrigley and 
Schofield (1981), and by Lee (1973, 1985, Lee and Anderson 2002). These analytical results 
suggest that population dynamics plays the dominant role in setting the level of real wages. My 
analysis, focusing on “population pressure,” population numbers divided by the estimated 
carrying capacity, confirms this result (Figure 2b).  
 

The feedback effect of real wage on vital rates is much more difficult to discern. Wrigley 
and Schofield thought that fertility responded to variation in real wages, but with a substantial lag 
time (variously estimated as 50 and 30 years). Lee (1985), however, made a very important point: 
if population numbers are driven in a cyclical fashion by some variable other than real wage,
then we should expect a correlation between the real wage and the rate of population change (or 
its components, such as fertility) shifted by one-quarter of the cycle period, which in this case is 
around 50 years. For this reason, Lee concluded that fertility responds to some other factor than 
real wage. Both authorities agree that variation in mortality exhibits no discernible relation to the 
real wage.  
 

Thus, Lee came to the conclusion “that extraneous variation in vital rates drove the 
system over this long swing.” Goldstone (1991) concurred, and suggested that the exogenous 
variables responsible for the population cycle could have been a combination of climate change 
and receding disease.  
 



What I find particularly compelling in this discussion is the theoretical point made by 
Lee. Restating it in terms of the theory of nonlinear dynamics, let us suppose that we have two 
dynamic variables, X (in this case, population numbers) and Y (the inverse real wage). If the cycle 
is driven by the interaction between X and Y, then oscillations in Y must be shifted by about a 
quarter cycle with respect to X. If, on the other hand, Y responds to X without a time lag, that is, 
both variables oscillate synchronously (which is the case, see Figure 2b), then it is not the 
endogenous interaction between X and Y that drives the oscillations in the system; there must be 
some other variable Z. This basic fact is explained more fully in Turchin (2003b) in the context of 
predator-prey cycles. In that publication I also point out that a lag shift of one-half of the cycle 
period (which is what we get when using real wage instead of inverse real wage) is also 
inconsistent with the hypothesis of endogenously driven cycles.  
 

My contribution to the debate is the suggestion that the “factor Z” is sociopolitical 
instability. It is an exogenous variable in the theoretical framework of Wrigley, Schofield, and 
Lee, who have focused exclusively on demographic and economic variables. Ironically enough, it 
is also exogenous in the theory of Goldstone because, although he postulated and empirically 
supported the causal connection from population growth to sociopolitical instability, he did not 
close the causal loop. In the version of demographic-structural theory tested in this paper, 
instability is endogenized by postulating the feedback connection from instability to the rate of 
population growth.  
 

From the point of view of nonlinear dynamics, real wage and sociopolitical instability 
respond to population numbers in fundamentally different ways (both in theory and in data). Real 
wage adjusts to population numbers essentially instantaneously (we can ignore a time lag of few 
years when cycles take two or three centuries to unfold). By contrast, population affects not 
instability itself, but its rate of change. Because instability is a slow dynamical variable, it takes a 
long time for it to reach its peak, leading to a phase shift between it and population numbers. 
Similarly, instability affects population via its growth rate (see Figure 5). Endogenous oscillations 
in population and instability are, thus, generated by a classical dynamical mechanism, which also 
operates in such disparate phenomena as planetary orbits and predator-prey cycles. 
 
General Conclusions 
 Quantitative time-series analysis of several empirical case-studies, ranging spatially 
across the breadth of Eurasia and temporally over two millennia, suggests that the demographic-
structural theory does an excellent job of capturing dynamic relationships between population 
dynamics and sociopolitical instability. Significantly, more precise data resulted in better-
resolved relationships (as measured by the coefficients of determination). It should be stressed, 
however, that there is one special attribute of all case studies that I analyzed: they all are 
characterized by a high degree of “endogeneity”, and thus it should be easier to detect feedbacks 
between different variables interacting within these “low-dimensional” dynamical systems. For 
example, early modern England was largely insulated from other European states—by virtue of 
its insular position. By contrast, preliminary analysis of the medieval cycle in England reveals a 
much greater impact of exogenous forces: the effects of the Black Death on population dynamics, 
and of the cross-channel involvement in French affairs on the rise of instability. As was noted by 
Guy Bois (1985) export of the “surplus elites” to France during the Hundred Years War reduced 
social pressures for internal war in England. It is, thus, not surprising that as soon as the English 
were finally expelled from France (by 1450), England went into the convulsions of the Wars of 
the Roses. This analysis will be further pursued in Turchin and Nefedov (2006). 



The Roman and Chinese empires were largely “closed” military-political systems by 
virtue of their size and lack of significant rivals. Even their “barbarians” can be thought of as an 
integral part of the system. An excellent case for this interpretation of the Chinese-nomad 
relationship is made by Barfield (1989).  
 

In cases involving non-insular medium-sized states and empires, therefore, we would 
expect to find the relationship between population dynamics and sociopolitical instability to be 
partially obscured. Despite these caveats, one remarkable finding here was that strong dynamical 
feedbacks can be detected at all in the historical record. This result has broad implications for the 
study of history, suggesting that historical societies can be profitably analyzed as dynamical 
systems.  
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