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Analytical approximation of transit time scattering due
to magnetosonic waves
J. Bortnik1, R. M. Thorne1, B. Ni2, and J. Li3

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA, 2Department of
Space Physics, School of Electronic Information, Wuhan University, Wuhan, China, 3Institute of Space Physics and Applied
Technology, Peking University, Beijing, China

Abstract Recent test particle simulations have shown that energetic electrons traveling through fast
magnetosonic (MS) wave packets can experience an effect which is specifically associated with the tight
equatorial confinement of these waves, known as transit time scattering. However, such test particle
simulations can be computationally cumbersome and offer limited insight into the dominant physical
processes controlling the wave-particle interactions, that is, in determining the effects of the various
wave parameters and equatorial confinement on the particle scattering. In this paper, we show that such
nonresonant effects can be effectively captured with a straightforward analytical treatment that is
made possible with a set of reasonable, simplifying assumptions. It is shown that the effect of the wave
confinement, which is not captured by the standard quasi-linear theory approach, acts in such a way as to
broaden the range of particle energies and pitch angles that can effectively resonate with the wave. The
resulting diffusion coefficients can be readily incorporated into global diffusion models in order to test the
effects of transit time scattering on the dynamical evolution of radiation belt fluxes.

1. Introduction

Fast magnetosonic (MS) waves are a class of right-hand elliptically polarized, electromagnetic emissions
that are found in the Earth’s inner magnetosphere at L shells that straddle the plasmapause, L∼2–8
[Gurnett, 1976; Perraut et al., 1982; Laakso et al., 1990] and magnetic local time regions that favor the
postnoon or dusk sectors [Green et al., 2005; Pokhotelov et al., 2008]. Typical observations show that MS
waves occur as a series of narrow tones, spaced at multiples of the proton gyrofrequency (fci), in the
range between fci and the lower hybrid resonance frequency (fLHR), that are spatially localized near the
geomagnetic equator within ∼ 2–3◦ [Russell et al., 1970; Santolik et al., 2002; Nemec et al., 2005, 2006]
(although larger spreads have occasionally been reported [Tsurutani et al., 2014]) and propagate at angles
that are nearly perpendicular to the background magnetic field which requires the wave magnetic field to
be nearly parallel to the background field. MS waves are believed to derive their energy from unstable “ring”
distributions in the ion population [e.g., Gurnett, 1976; Perraut et al., 1982; Boardsen et al., 1992; Horne et al.,
2000; Meredith et al., 2008; Xiao et al., 2013; Ma et al., 2014], which form mostly on the dayside as a result of
the overlap of the westward drifting energetic ions (due to gradient curvature drift) and eastward drifting
cold ions (due to the corotation electric field), with a null near ∼10 keV [e.g., Chen et al., 2010].

MS waves have become the focus of renewed attention, following a study by Horne et al. [2007] that
demonstrated the potential of these waves to accelerate radiation belt electrons to relativistic energies
on timescales that are comparable to other leading mechanisms, i.e., ∼1–2 days. However, due to the
combination of high obliquity and tight spatial confinement of the MS waves, it was not clear that the
quasi-linear diffusion theory employed by Horne et al. in their analysis was the most appropriate approach.
In particular, Bortnik and Thorne [2010] showed that when a test particle simulation was performed, the
energy range of resonant particles was significantly widened, and additional nulls appeared in the scattering
map of electrons, due to an effect known as “transit time scattering” (analogous to an effect employed in
an early method used to heat ions in magnetically confined plasmas [e.g., Berger et al., 1958; Stix, 1992]). A
drawback of test particle simulations is the long computation time required to produce a map of diffusion
coefficients, and the relatively poor insight into the dominant physical processes controlling the particle
scattering, that is, what effects do the various wave parameters (for example, the wave intensity, obliquity,
and equatorial confinement) play in the pitch angle and energy scattering. Furthermore, since transit time
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scattering was shown to be linear (but nonresonant), it is not clear that a full test particle simulation run is
always necessary to obtain the relevant scattering properties.

In the present paper, we show that by using a few reasonable approximations, the equations describing
the test particle motion through the MS wavefield become readily integrable and result in equations that
smoothly capture the transition from resonant to nonresonant scattering and elucidate the dominant
processes involved. In section 2 we present the derivation of the equations and discuss the results in
section 3.

2. Analytical Approximation

As a starting point, we use the set of equations that describes the motion of a test particle in a static
magnetic field

(
B0 = B0ẑ

)
, with a superimposed whistler mode wavefield having a wave number k, a wave

normal angle " , and wave components Ew
x , Ew

y , Ew
z , Bw
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y , and Bw
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where % is defined as the angle between Bw
R , v⊥,# is the whistler wave radial frequency, and #ce =

−qeB0∕me = eB0∕me is the electron gyrofrequency, where qe and me are the electron charge and mass,
respectively. Ji are Bessel functions of the first kind, order i, whose argument is proportional to the particle
gyroradius in terms of perpendicular wavelengths and represents the asymmetry of the wavefield as
experienced by the gyrating particle. The supporting equations are
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where * is the refractive index and #$0 is the trapping frequency. The set of equations is closed by relating
the wave components to a single reference component through the usual Stix [1992] relations. The
nonlinear phase term in (3) is neglected as in previous studies, since it is generally a small correction and
potentially only impacts particles at very low pitch angles [e.g., Tao and Bortnik, 2010].

We note explicitly that compared to the set of equations given in Bortnik and Thorne [2010], equation (2)
differs by the inclusion of an additional factor (−1)m−1 which causes a sign difference for the Landau
(m = 0) and all even numbered harmonic resonances. The source of this discrepancy is shown and discussed
in detail by Li et al. [2014].

Although the set of equations (1)–(3) may appear somewhat complicated at first glance, it is reduced fairly
quickly by taking some straightforward assumptions. As in previous work [Horne et al., 2007; Bortnik and
Thorne, 2010] we consider only the m = 0 resonance, since resonant energies for |m| ≥ 1 are in excess of 10
MeV and hence beyond our energy range of interest. Equation (3) can then be rewritten as

d%
dt

= −# − k||v|| (11)

Furthermore, since MS waves are confined to near-equatorial regions, we do not need to use the full dipolar
description of the background magnetic field but can expand the field near the equator using a Taylor
series and retain only the second-order term, as was done in previous work [e.g., Helliwell, 1967,
equation (8)], giving

B = B0

(
1 + 4.5z2

L2R2
e

)
= B0

(
1 + gz2) (12)

where the substitution g = 4.5
/(

L2R2
e

)
has been made above. Through conservation of the first adiabatic

invariant (i.e., p2
⊥∕B = p2

⊥0∕B0), we obtain the first-order variation of the particle’s velocity components near
the equator, substitute into (11) and rewrite the ordinary differential equation in terms of distance along the
field line, z, giving
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In order to keep (15) simple and the complete set of equations tractable, we shall neglect the adiabatic
variation of the particle velocity, such that

d%
dz

= − #
v||0

− k|| (16)

which implies that

, =
v2
⊥0

2v2
||0

gz2 ≪ 1 (17)

Near the equator, z can be expressed as a function of geomagnetic latitude . (in degrees) for a dipolar
magnetic field as

z = . /
180

LRE cos .
√

1 + 3 sin2 . ∼ . /
180

LRE (18)
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Figure 1. Validity condition for approximation of the dipolar magnetic
field as a uniform field. The shaded region indicates where the
approximation is accurate within 1%, as a function of equatorial pitch
angle and geomagnetic latitude.

Substituting (18) into (17), using the
relation tan +0 = v⊥0∕v||0, where +0 is
the equatorial pitch angle and bearing in
mind that , ≪ 1, we obtain

g
( /

180
LRE

)2
.2 tan2 +0 = 2, (19)

. tan +0 =
√

2,
4.5

180
/

∼ 38
√
, (20)

The condition for validity (20) is plotted
in Figure 1 and shows the relation
between the maximum latitude . within
which our approximation holds and the
maximum equatorial pitch angle of the
interacting particle +0, for 10 values of ,
ranging from , = 0.01 (bottom curve) to
, = 0.1 (top curve). Since the bulk of the
magnetosonic wave power is primarily
confined to . ∼ 2◦–3◦ of the equator, the

pitch angle range where our approximation is valid extends from +0 = 0◦ to approximately +0 ∼ 70◦–80◦,
which is quite adequate for our purposes.

We now integrate (16) once, to obtain

% = −
(
#

v||0
+ k||

)
z + %0 (21)

where %0 is a constant of integration and can be interpreted as the phase angle at z = 0.

Having performed the first integration of the phase, we now return to the variation of the particle’s motion,
namely, (1) and (2). Since the integration is assumed to be symmetrical about the geomagnetic equator, and
the scattering is “small,” the last term on the right-hand side of (1) and (2) describing the adiabatic variation
of the particle’s motion can be neglected to first order. We further assume that the leading multipliers of
both equations do not vary significantly near the equator (as above), except for a variation in the wave
amplitude of the form

Bw = Bw
0 exp

(
−.2 /.2

w

)
(22)

where Bw
0 is the equatorial value of the MS wave’s magnetic field and .w specifies its latitudinal confinement.

This envelope of the wave intensity models the confinement of the wave to near-equatorial regions, as was
done previously [Bortnik and Thorne, 2010]. The resulting equations both have a similar form and can be
expressed as
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(
−z2 /z2

w

)
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where the differential equations have been rewritten as a function of z, which is related to . as in (18) and
the subscript j denotes either the parallel or perpendicular components of the particle motion, such that
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and the m = 0 resonance has been explicitly assumed, as before. From (21), the values of B and C are

B = −
(
#

v||0
+ k||

)
(26)

C = %0 (27)

Equations of the form (23) have an exact integral solution given by

∫
Aj

v||0
exp

(
− z2

z2
w

)
sin(Bz + C)dz =

√
/

2

Aj

v||0
zw sin C exp

(
−

z2
wB2

4

)
R

[
erf

(
z

zw
+

izwB
2

)]
(28)

which can then be evaluated between the limits ±z1 as a definite integral. Furthermore, if it is assumed that
the limits of integration are much larger than the extent of the wave, i.e., z1∕zw > 4 (or so), the error function
tends to unity and the definite integral takes on the relatively simple form:
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Similar analytical expressions can be derived for the variation in the particle’s pitch angle and energy. For
instance, starting with the definition tan + = p⊥∕p|| and taking the derivative yields

d+
dt

= cos +
p

dp⊥
dt

− sin +
p

dp||
dt

(30)

which has the same form as equations (1)–(2) and can be reduced to the form of (29) by letting

Aj = A+ =
cos +0

p0
A⊥ −

sin +0

p0
A|| (31)

Similarly, the variation in particle energy can be related to the variation in the particle momentum
components in a straightforward way. The rate of change of particle energy is

dE
dt

= mec2 d&
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=
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dt
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2&
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dt

(
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Writing p2 = p2
⊥ + p2

||, (32) can be expressed in terms of (1)–(2) as

dE
dt

= v||
dp||
dt

+ v⊥
dp⊥
dt

(33)

which reduces to the form of (29) by letting

Aj = AE = v||0(A|| + tan +0A⊥) (34)

Equations (31) and (34) have been evaluated together with (29) and compared to the integration of the full
differential equations, showing that the agreement is excellent (Figure 2).

The equations for the diffusion coefficients due to equatorially confined MS waves can be related to the
variation in the particle’s properties in a simple way:

Dij =
< ΔpiΔpj >

2$
(35)

where i, j denote any two properties of the particle, such as energy and pitch angle described by (31) and
(34). The timescale $ is the timescale over which the wave-particle interaction took place, and in our case
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Figure 2. A comparison between analytically derived and numerically computed scattering in energy and pitch angle.
(a and b) The latitude-dependent trajectories of 24 electrons, together with analytical estimates plotted as stars at
. = −4◦. (c and d) The net scattering calculated numerically (black solid line) and analytically (red dashed line).

$ = 0.5$b since (29) describes only a single transit across the equator, i.e., a half-bounce period. The angled
brackets “<>” indicate an averaging over gyrophase, and in the case of (29) is simplified by the relation:

∫
2/

0
sin2(%0)d%0 = 1∕2 (36)

Inserting (36), (31), and (34) into (35) gives the energy, pitch angle, and cross diffusion coefficients
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and
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3. Discussion

The analytical expressions in (37) and (39) have a simple form and show that the term (zw∕v||0)2 is intro-
duced into the diffusion equation due to the spatial confinement of MS wave described in (22). This term can
be thought of as the timescale required for the particle to transit through the wave packet, $tr = zw∕v||0, and
has the effect of scaling both the magnitude of the diffusion coefficients, and the phase term, 0 = #+ k||v||0
(we remind the reader that the senses of k and v||0 are defined positive in opposite directions in accordance
with Bell [1984] and for historical reasons [e.g., Inan et al., 1978; Helliwell, 1967]).

When the particle propagating through the MS wave packet is in Landau resonance, 0 = 0, the exponential
term becomes unity, reducing to the ordinary quasi-linear diffusion coefficient which is then simply scaled
by the extent of the wave packet. However, when particles are not strictly in resonance, 0≠ 0 and the
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Figure 3. A comparison of (a and b)analytically and (c and d) numerically computed diffusion coefficients, D++ (Figures 3
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exponential term can become ∼0, thus severely reducing the magnitude of the diffusion coefficient. In this
case, having a narrowly confined wave packet, i.e., $tr ≪ 1 scales the phase term 0 such that the overall
argument of the exponential $2

tr0
2∕2≪ 1, and the exponential term can still take on values ∼1. This effect

of the wave confinement is not captured by the standard quasi-linear theory approach and acts in such
a way as to broaden the range of particle energies and pitch angles that can effectively “resonate” with
the wave.

Figure 3 shows an evaluation of (37) and (39) for the set of parameters described by Bortnik and Thorne
[2010] section 2.2 and is compared to a full test particle simulation in Figures 3a and 3b and Figures 3c
and 3d, respectively. The figure serves to demonstrate that the agreement between our analytical formulas
and the full simulation is excellent, and the simplifying assumptions we have employed did not degrade
the results. The difference in computation time, however, is dramatic, the analytical evaluation taking
approximately 4 orders of magnitude faster to compute than the full test particle simulation (a few seconds
compared to about 10 h on the same computer). This evaluation was performed over a similar energy and
pitch angle range as the full test particle simulation in Figure 4 of Bortnik and Thorne [2010] and shows
excellent agreement when the additional (−1)m−1 term is included in the latter. The figure also shows similar
null patterns in the figures, although the low-amplitude harmonic ripples are typically not captured.

Our analysis shows that the nonresonant effects introduced by the confinement of the wave packet can
be effectively captured with a straightforward analytical treatment that is made possible with a set of
reasonable, simplifying assumptions. These expressions can be readily incorporated into global diffusion
models in order to test the effect of transit time scattering on the dynamical evolution of radiation
belt fluxes.
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