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Abstract: Yb14ZnSb11 has been of interest for its intermediate valency and possible Kondo 
designation. It is one of the few transition metal compounds of the Ca14AlSb11 structure type that 
show metallic behavior. While the solid solution of Yb14Mn1-xZnxSb11 shows an improvement in the 
high temperature figure of merit of about 10% over Yb14MnSb11, there has been no investigation of 
optimization of the Zn containing phase. In an effort to expand the possible high temperature p-
type thermoelectric materials with this structure type, the rare earth (RE) containing solid solution 
Yb14-xRExZnSb11 (RE = Y, La) was investigated. The substitution of a small amount of 3+ rare earth 
(RE) for Yb2+ was employed as a means of optimizing Yb14MnSb11 for use as a thermoelectric 
material. Yb14ZnSb11 is considered an intermediate valence Kondo system where some percentage 
of the Yb is formally 3+ and undergoes a reduction to 2+ at ~85 K. The substitution of a 3+ RE element 
could either replace the Yb3+ or add to the total amount of 3+ RE and provides changes to the 
electronic states. RE = Y, La were chosen as they represent the two extremes in size as substitutions 
for Yb: a similar and much larger size RE, respectively, compared with Yb3+. The composition x = 0.5 
was chosen as that is the typical amount of RE element that can be substituted into Yb14MnSb11. 
These two new RE containing compositions show a significant improvement in Seebeck while 
decreasing thermal conductivity. The addition of RE increases the melting point of Yb14ZnSb11 so 
that the transport data from 300 K to 1275 K can be collected. The figure of merit is increased five 
times over that of Yb14ZnSb11 and provides a zT ~0.7 at 1275 K. 

Keywords: thermoelectric; Seebeck; Yb14MnSb11; intermetallic; intermediate valence; valence 
fluctuation 

 

1. Introduction 

Compounds of the Ca14AlSb11 (14-1-11) structure type have been shown to exhibit high 
thermoelectric figure of merit, zT, at high temperatures [1–4]. While Yb14MnSb11 and Yb14MgSb11 
members of this group have been high achievers in this area [5,6], the more metallic Yb14ZnSb11 has 
never been considered a good thermoelectric material because of its low Seebeck coefficient (α) and, 
therefore, low zT, as it scales with α2 [7,8]. However, the low electrical resistivity that it possesses is 
an attractive feature, and prior work sought to tap into this by forming a solid solution of Zn with 
Mn, which resulted in improved zT compared with Yb14MnSb11 [9]. Yb14ZnSb11 has a smaller unit cell 
and possesses a lower decomposition temperature than those of its Mn and Mg counterparts; the 
latter property further dashing hopes for its use in high temperature TE devices. Yb14ZnSb11 is unique 
amongst the members of the 14-1-11 family in that it exhibits Curie-Weiss behavior equivalent to 
about 0.75 Yb3+ from 300 K to 100 K and a broad maximum in magnetic susceptibility at around 85 K 
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that drops as temperature is lowered, followed by a sharp increase at 20 K. The fact that there is not 
a simple integral amount of Yb3+ is consistent with an “intermediate valence”. The broad maximum 
is interpreted as a fluctuation between the f13 (3+) and f14 (2+) electronic configurations of Yb, while 
the low temperature increase in susceptibility is attributed to free Yb3+ impurities. Intermediate 
valence is observed in some of the rare earth elements, such as Ce, Eu, and Yb [10]. The resulting 
change in valence corresponds to the effective nuclear charge and then, ultimately, to a change in 
lattice parameters [7]. The valence fluctuation in Yb14ZnSb11 is the shift from the small percentage of 
Yb3+ states at high temperature to all Yb2+ at a low temperature. A Curie–Weiss fit of the paramagnetic 
region above 150 K yields a µeff of 3.8 µB, which corresponds to the presence of approximately 0.8 
Yb3+ per formula unit [7]. The existence of 0.75 Yb3+ in this compound makes Yb14ZnSb11 close to a 
valence precise Zintl formula, but the low resistivity and intermediate valence of Yb distinguish it 
from this simplistic interpretation of bonding. Recently, magnetic susceptibility measurements of the 
Mg compound were reported and are consistent with a similar amount of Yb3+, but there is no 
evidence for intermediate valency [11]. Yb14MnSb11 contains only Yb2+, confirmed by X-ray 
photoelectron spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) and neutron 
measurements [8,12]. 

Figure 1 shows a view of the unit cell of Yb14ZnSb11 along the c axis. This compound is considered 
as a Zintl phase with the approximate formula of 13Yb2+ + ~1Yb3+ +ZnSb410− + Sb37− + 4Sb3− [7]. There 
are four Yb crystallographic sites in the structure, but there is no direct evidence from the structure 
concerning site preference for the Yb3+ cation, although Yb14ZnSb11 does have the smallest lattice 
parameters within this family of compounds. While the valence precise Zintl phase of Yb14AlSb11 has 
been shown to have semiconducting electrical transport properties, Yb14ZnSb11 shows the lowest 
resistance of compounds of this structure type published to date. The crystal structures of Yb14ZnSb11 
and Ca14ZnSb11 were reported with defects or interstitial atoms; Yb14ZnSb11 contains a slight 
deficiency on the Zn site and Ca14ZnSb11 is purported to contain interstitial Sb [8,13]. The low 
resistance of Yb14ZnSb11 is attributed to either the intermediate valence of Yb or to the defects in the 
structure [7]. 

 

 
 

Figure 1. A view of the structure of Yb14ZnSb11 down the c axis. Yb atoms are grey, Sb atoms are in 
red, and the blue tetrahedra are the ZnSb4 units. 

In Yb14MnSb11, the substitution of 3+ rare earth (RE) cations for Yb cations in small amounts (x < 
0.5) has been successful in improving zT and, in addition, has been shown in some cases to decrease 
the high temperature sublimation (as is the case for RE = La) [14]. A slight reduction in carrier 
concentration from the substitution of the RE helps to boost α and, in turn, zT. In all attempts, no 
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more than x ~0.7 was found to incorporate into the structure of single crystals of Yb14-xRExMnSb11 
solution grown in Sn flux [14–17]. The isostructural Ca14-xRExMnSb11 grown in Pb flux is reported to 
exhibit a limit of x = 1 [18]. It is not clear if the differences in substitution for the two different parent 
phases, Yb14MnSb11 versus Ca14MnSb11, is due to the different flux employed or electronic and size 
effects. 

In an effort to further expand our investigation of the effect of RE3+ on the transport properties 
of this structure type, the solid solution, Yb14-xRExZnSb11 (RE = Y and La), was investigated. The solid 
solutions were made via a stoichiometric metallurgical approach and the samples condensed into 
fully dense pellets for measurement. Seebeck, electrical and thermal transport, and Hall 
measurements are reported. 

2. Materials and Methods  

2.1. Synthesis 

Samples of Yb13.5RE0.5ZnSb11 were synthesized by combining Yb filings, Sb shot, Zn shot (100% 
excess), and RE filings with a total mass of 8 g in a SPEX 55ml tungsten carbide canister with one 
large and two small tungsten carbide balls. Work was performed in an argon filled drybox and both 
RE and Yb were brushed with a designated wire brush prior to filing to remove any oxide on the 
surface. Samples were milled using a SPEX 8000M mixer mill (SPEX, 65 Liberty Street, Metuchen, NJ 
08840, USA) for a total of 1 h and 30 minutes, with 15 minutes of rest time between 30 minutes milling 
intervals, and a scrape down inside the drybox after 1 h of milling time. Samples were sealed in 13 
cm long Nb tubes, arc melted shut under Ar, and sealed in quartz under vacuum. The samples were 
annealed for 96 h at 900 °C in a box furnace. Zn was used in 100% excess in an effort to prevent 
formation of Yb11Sb10. Samples made with a stoichiometric amount of Zn contained this side phase as 
20% or larger composition, indicating some loss of Zn during the ball milling or annealing stage.  

2.2. Consolidation of Powder 

Annealed powder samples were made into dense pellets for measurement via a spark plasma 
sintering (SPS) Dr. Sinter Lab SPS-211LX unit (Fuji Electric Industrial Co., Ltd, 6-2-22 Fujimi, 
Tsurugashima, Saitama 350-220, Japan). In an argon drybox, the annealed powder was ground in an 
agate mortar and pestle and passed through a 200 mesh stainless steel sieve and loaded between 
multiple thin graphite foil spacers in a 12.7 mm inner diameter high-density graphite die. Sintering 
was performed under dynamic vacuum and with a starting sample pressure of 20 MPa. The 
temperature was ramped from 20 °C to 750 °C over four minutes, then to 800 °C in one minute to 
avoid temperature overshoot. The pressure was slowly and steadily increased to 63 MPa during the 
temperature range 700–800 °C (about 1.5 minutes). Then, 800 °C and 63 MPa were held constant for 
15 minutes, after which the sintering process was ended, and pressure/temperature released. Pressed 
pellets were typically 2 g in size and were cut circumferentially into two disks using a Buehler 
diamond saw to allow for one to be pulverized for use in characterization via powder X-ray 
diffraction. The other pellet was saved for properties measurements. The pellet densities obtained 
through this sintering profile were greater than 96% of the theoretical densities for each compound.  

2.3. Electron Microprobe Analysis and Wavelength Dispersive Spectroscopy 

After measurement of TE properties, small pieces of pellets were mounted in epoxy and polished 
using grits sizes down to 0.01 µm. Care was taken to prevent oxidation of these polished sample 
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pucks and, after preparation, they were stored under dynamic vacuum and transported triple-bagged 
in argon atmosphere. Prior to their measurement, the pucks were carbon coated to prevent charging. 
Samples were analyzed using a Cameca SX100 electron microprobe (CAMECA Instruments, Inc., 
5470 Nobel Drive, Madison, WI 53711, USA) with five wavelength dispersive X-ray spectrometers, 
operated at 15 kV accelerating potential and beam current of 20 nA. A polished single crystal of 
Yb14MnSb11 was used as wavelength dispersive X-ray spectroscopy (WDS) standard for Yb. Zn and 
Sb metal, LaPO4, and yttrium aluminum garnet (YAG) crystals were used as WDS standards for Zn 
and Sb, La and Y, respectively. The composition of each sample was determined by calculating the 
average and standard deviation of 15 data points of the main phase and 5 data points of the side 
phase randomly spaced through the sample. 

2.4. Powder X-Ray Diffraction 

Powder X-ray diffraction (PXRD) data were collected on each sample after furnace annealing and 
after consolidation in the SPS. Samples were ground into a fine powder by mortar and pestle in an 
Ar drybox and plated with ethanol to obtain a uniform, thin spread onto a zero background holder 
on a Bruker D8 Advance Eco Diffractometer (BRUKER AXS, Inc., 5465 East Cheryl Parkway, 
Madison, WI 53711-5373, USA) operated at 40 kV and 25 mA utilizing Ni filtered Cu Kα radiation 
with the knife-edge attachment. Data were collected from 20° to 80° 2θ with a step size of 0.19° at 1.5 
s. Data were converted from .raw to .gsas using powdll and analyzed via Rietveld refinement using 
General Structure Analysis System, GSAS-II [19,20]. The GSAS-II instrument parameter file used in 
refinement was generated from a similarly-prepared LaB6 standard. Lattice parameters of the RE 
phases were obtained from refinement of a 14-1-11 phase modelled from published Crystallographic 
Information File (CIF) of Yb14ZnSb11.  

2.5. Electrical Resistivity, Hall Effect, and Seebeck Coefficient 

The electrical resistivity (ρ) and Hall coefficient were measured simultaneously from 300 K to 
1275 K on a home-built instrument under dynamic vacuum. Resistivity was measured via the van 
der Pauw technique using a current of 100 mA; Hall was measured under a forward and reverse 
magnetic field of about 7500 G. The carrier concentration (n) was calculated from n = 1/RHe, where RH 
is the measured Hall coefficient and e the elementary charge. The hall factor was assumed to be 1 [21]. 
The Seebeck coefficient (α) was measured using a home-built instrument with graphite heater using 
W/Nb thermocouples and the temperature differential generated by light pulse. The resultant 
resistivity and Seebeck data from the heating up measurements were each fitted to a six-order 
polynomial function for the calculation of zT.  

2.6. Thermal Conductivity 

Thermal diffusivity (Dt) data were collected from 300 K to 1275 K using a Netzsch LFA-457 laser flash 
unit (Netzsch Instruments North America, 129 Middlesex Turnpike Burlington, MA 01803 USA). 
Then, 12.7 mm diameter pellet samples were polished to obtain parallel top and bottom surfaces and 
overall thickness less than 1.2 mm, and were then coated in graphite. The measurement was 
performed under dynamic vacuum and with three data points per temperature step. The Cowan + 
pulse correction fit of the detected signal was employed through the Netzsch software to obtain 
values of thermal diffusivity, which were then averaged for each temperature step. Thermal 
conductivity was calculated via κ = Dt × ρ × Cp, where ρ = density and Cp = heat capacity as a function 
of temperature [21]. Room-temperature density was measured geometrically and high-temperature 
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density was estimated using thermal expansion data from previous study on Yb14MnSb11 [22]. The 
previously reported experimentally-determined Cp values for Yb14MnSb11 were used as an estimate 
for these compounds correcting for mass [23].  

3. Results 

The two compounds, Yb13.5RE0.5ZnSb11 (RE = Y, La), were prepared with excess Zn in order to 
prevent the formation of the unwanted side phase Yb11Sb10. We have shown in previous publications 
that the highest temperature properties of compounds of this structure type are compromised once 
Yb11Sb10 forms [24]. Synthesis of phase pure Yb14MgSb11 requires 20% excess Mg; this requirement is 
attributed to the high vapor pressure of Mg at the reaction temperature. Zn has a slightly higher 
vapor pressure than that of Mg at the reaction and sintering temperatures, highlighting the need for 
excess [25]. The samples were prepared by balling the elements, sealing the fine powder into niobium 
tubes, and heat treating at 900 ℃. The product was then pressed into a dense pellet via spark plasma 
sintering (SPS).  

Yttrium and lanthanum rare earth elements were chosen for this study because of their sizes. Y3+ 
(0.900 Å) is closest in size to Yb3+ (0.868 Å), while La3+ (1.032 Å) represents the largest of the 3+ RE 
cations [26]. As previously mentioned, there are four crystallographic sites for the Yb cation in 
Yb14ZnSb11 coordinated by antimony with various sized polyhedral volumes. The site specificity of 
various rare earth elements has been shown to be correlated with size in studies of Yb14-xRExMnSb11. 
Early RE cations with larger ionic radius, such as La, were shown to preferentially substitute on the 
Yb2 and Yb4 sites, while RE of smaller ionic radius such as Y substitutes on all of the Yb sites [15,16]. 
While it is expected that carrier concentration plays the largest role in controlling the transport 
properties, the RE site selectivity has been indicated as important for subtle differences in 
thermoelectric properties across the series, Yb14-xRExMnSb11 [2,27]. 

Electron microprobe X-ray maps of the dense pellets (Figure 2) show that the samples have a 
good distribution of the elements and that there is excess Zn at the grain boundaries. Figure S1 shows 
the microprobe backscatter electron images of Yb13.5Y0.5ZnSb11 and Yb13.5La0.5ZnSb11. Wavelength 
dispersive X-ray spectroscopy of the samples show two phases: a main phase (Yb13.5RE0.5ZnSb11) and 
side phase (Yb1.95RE0.0.5Zn0.8Sb2), tabulated in Table 1. While the main phase was loaded as 
Yb13.5RE0.5ZnSb11, the analysis shows that when RE = Y, the amount incorporated is slightly less. 
Whereas for RE = La, it is in good agreement, and the Zn is slightly deficient in both samples, giving 
rise to the stoichiometries Yb13.7Y0.35Zn0.85Sb11 and Yb13.7La0.48Zn0.91Sb11. The WDS data were normalized 
to 11 Sb and while that provides a slightly high Yb + RE content, it is within error consistent with the 
stoichiometry of 14-1-11, with deficiencies of Zn. 

Table 1. Wavelength dispersive X-ray spectroscopy (WDS) stoichiometry from pelleted samples from 
an average of 15 data points (main phase) and an average of 5 points (side phase). RE—rare earth. 

 As Loaded Yb RE Zn Sb 

Main Phase 
Yb13.5Y0.5ZnSb11 13.7(2) 0.35(1) 0.85(5) 11.0(1) 
Yb13.5La0.5ZnSb11 13.7(2) 0.48(5) 0.91(5) 11.0(1) 

Secondary 
Phase 

Yb13.5Y0.5ZnSb11 1.96(2) 0.04(1) 0.78(2) 2.00(2) 
Yb13.5La0.5ZnSb11 1.95(2) 0.08(1) 0.79(2) 2.00(2) 
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Figure 2. Electron microprobe X-ray maps of pelleted samples of Yb13.5Y0.5ZnSb11 (a–d) and 
Yb13.5La0.5ZnSb11 (e–h). 

The WDS of the side phase provides a formula that is consistent as a solid solution of RE and 
‘Yb2ZnSb2’ with slight deficiency of Zn. The phase Yb2ZnSb2 is as of yet unreported, and the obvious 
possible analog, Ca2ZnSb2, is also not a reported phase. Rietveld refinement of powder X-ray 
diffraction data for each of these samples included the phases Yb14ZnSb11 and Yb2O3; small 
unidentified peaks were present after refinement attributed to this side phase. There are reports of 
the Eu2ZnSb2 and Sr2ZnSb2 phase that crystallize in the P63/mmc space group [28]. Attempts to 
unambiguously identify these peaks with the appropriately scaled lattice parameters of known 2-1-2 
structure types employing the elements Yb, Zn, and Sb were unsuccessful. Figure 3 contains a 
zoomed-in overlay of the PXRD data from Yb13.5RE0.5ZnSb11, with the unidentified peaks marked.  
Unit cell parameters of Yb13.5RE0.5ZnSb11 obtained from the refinement are listed in Table 2. 
Representative PXRD data are provided in SFigure 2. Because the two pellets show similar amounts 
of this unknown phase and the majority of the phase is the Yb13.5RE0.5ZnSb11, measurements of the 
thermoelectric and transport properties will provide some insight into the effects of the RE solid 
solution. 
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Figure 3. Powder X-ray diffraction (PXRD) patterns of Yb13.5Y0.5ZnSb11 (filled in blue) and 
Yb13.5La0.5ZnSb11 (filled in red) from 28° to 37° 2θ. Unidentified peaks in each pattern are marked by 
asterisks in respective colors. 

Table 2. Lattice parameters as determined by refinement of powder X-ray diffraction (PXRD) data 
using GSAS II. 

As Loaded a (Å) c (Å) V (Å3) wR 
(overall) 

RF2/RF (14-1-11 
phase) 

Yb13.5Y0.5ZnSb11 16.5939(4) 21.9309(7) 6038.9(3) 20.812% 14.122%/9.616% 
Yb13.5La0.5ZnSb11 16.6412(4) 21.9188(6) 6070.0(3) 19.914% 12.328%/8.316% 

Figure 4 contains the plots of the electrical resistivity, Seebeck, and thermal conductivity of the 
samples. Both heating and cooling data sets for resistivity and Seebeck are provided in SFigures 3 
and 4. As mentioned previously, Yb14ZnSb11 has low electrical resistivity, similar to that seen in many 
intermediate Yb valence compounds, and magnetic susceptibility is consistent with the presence of 
about 0.75 Yb3+ [7]. This mixture of Yb2+ and Yb3+ can be more exotic and can be described as an 
intermediate valence state. Yb containing intermetallics can show this effect when the nearly 
degenerate 4 f13 and 4f14 electron levels are close to the s-d band, favoring an intermediate valence 
state. Rare earth ions in this state fluctuate between two 4f electronic configurations competing for 
stability. With doping, the hybridization strength of the f-electrons with the conduction electrons can 
change, resulting in a change in the effective mass and thereby the associated transport properties 
[29,30]. The electrical resistivity of Yb13.5RE0.5ZnSb11 shows a significant increase at temperatures 
above 500 K over Yb14ZnSb11 for both samples. In the Zintl electron counting scenario, RE3+ adds one 
electron to the p-type Yb14ZnSb11 and is thus expected to reduce the carrier concentration and thereby 
the electrical resistivity. Consistent with the slightly higher amount of RE in the sample, the RE = La 
sample shows a slightly higher resistivity value. Consistent with the electrical resistivity, the thermal 
conductivities of the samples are reduced from that of Yb14ZnSb11. Lattice thermal conductivity is 
provided in SFigure 4. This is attributed to both the loss of electrical conduction at a high temperature 
and, from point defect scattering, of the solid solution. There is a decrease in thermal conductivity 
even at 300 K compared with Yb14ZnSb11. The Seebeck coefficient shows a remarkable increase over 
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that of Yb14ZnSb11 for the entire temperature range, with the RE = La sample showing a slightly higher 
Seebeck at the highest temperatures, consistent with the slightly larger amount of RE cation. This 
suggests that the effect of the RE3+ is to change the hybridization of Yb/RE, thereby leading to a change 
in bands that are important for the high temperature behavior.  

 

Figure 4. (a) Electrical resistivity, (b) thermal conductivity, and (c) Seebeck for the Yb13.5RE0.5ZnSb11 
(RE = Y, La) compounds plotted against those of Yb14ZnSb11 (Yb14ZnSb11 data from the work of [9]). 
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Figure 5 shows the Hall mobility and Hall carrier concentration of the RE solid solutions. The 
RE element was substituted with the goal of reducing the carrier concentration and making this 
compound a better thermoelectric material. The carrier concentrations of both RE samples are lower 
than that of Yb14ZnSb11, which shows conductive electrical resistivity at low temperatures and 
presumably has a high carrier concentration. Typically, for transition metal containing compounds 
with the formula Yb14MSb11, where Yb is considered to be all Yb2+ and M = M2+, the carrier 
concentration is equivalent to one hole in the unit cell volume. Therefore, the addition of an RE3+ 
cation provides one additional electron to reduce the p-type carrier concentration. In this example, 
considering the effect of the RE3+ cation is complicated because this compound has both Yb2+ and Yb3+ 
at room temperature. If the Y3+ or La3+ cation does not simply substitute for Yb3+ in Yb14ZnSb11 and 
instead substitutes for Yb2+, it would contribute an extra 0.5 electron per formula unit (or 0.35 in the 
case of Y). Calculating the carrier concentration, it would contribute approximately 6.6 × 1020 
carriers/cm3. This would indicate that at room temperature, the carrier concentration of Yb14ZnSb11 
should be 1.3 × 1021 cm−3, a value close to the highest room temperature concentrations obtained for 
Yb14MnSb11, which is much less metallic than Yb14ZnSb11. In a similar system, Yb14-xLaxMnSb11 (x = 0.4, 
0.7) was found to have a reduction in room temperature carrier concentration from that of Yb14MnSb11 
(1.1 to 1.3 × 1021 cm−3), which closely corresponded with the amount of La added, 6 × 1020 cm−3 and 4 × 
1020 cm−3 for 0.4 La and 0.7 La, respectively [14,17]. Therefore, these results suggest that RE3+ is 
substituting for Yb3+ in Yb14ZnSb11 and that once the Yb3+ is no longer a species in the structure, the 
metallic conduction is no longer viable. Because neither Y nor La have filled f electrons, it is possible 
that a hybridized band from Yb3+ is responsible for the low electrical conduction in Yb14ZnSb11. 
Considering the reductions in carrier concentrations from the Y3+ and La3+ substitutions, the large 
increase in Seebeck is consistent. 

 

Figure 5. (a) Mobility and (b) carrier concentration of the Yb13.5RE0.5ZnSb11 (rare earth (RE) = Y, La) 
compounds.  

Figure 6 shows the zT for the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds compared with the zT of 
Yb14ZnSb11. The properties of Yb14ZnSb11 were only measured up to 900 K because of the stability of 
the compound. With the addition of the RE, the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds are stable 
to 1275 K. This is a side benefit of RE3+ incorporation that has been also noted for Yb14MnSb11, where 
the melting point is increased and sublimation vapor pressure is decreased depending upon the 
identification and amount of rare earth ion incorporation [31]. 
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Figure 6. Calculated zT for the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds compared with that of 
Yb14ZnSb11 (data from the work of [9]).  

Figure 7 contains Pisarenko plots at 400 K, 800 K, and 1200 K that were generated using a single 
parabolic band (SPB) model. The parameters used to generate these plots are provided in Table 3. 
The effective mass values generated for this model at 1200 K for both RE = La, Y are significantly 
larger than those generated at 400 and 800 K. These parameters indicate that modelling 
Yb13.5RE0.5ZnSb11 as a single parabolic band is insufficient and that the band(s) change from light to 
heavy with temperature [32]. This is supported by the reduction in carrier concentration that these 
samples exhibit with only a small donation of 0.5 or less extra e- density per formula unit. These plots 
suggest that the carrier concentration could be further reduced to obtain peak zT. 

 

Figure 7. Pisarenko plots for the Yb13.5RE0.5ZnSb11 (RE = Y, La) compounds calculated at 400, 800, and 
1200 K.  
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Table 3. Values used in generating the Pisarenko plots shown in Figure 7. 

Sample T (K) m* (m0) µ0 (cm2/V·s) κL (mW/cm·K) 

Yb13.5Y0.5ZnSb11 
400  1.40  18.95  2.4  
800  1.47  7.61  3.2  
1200  2.07  2.11  3.8  

Yb13.5La0.5ZnSb11 
400  1.18  24.44  3.4  
800  1.15 9.3  3.4  
1200  2.07  2.08  3.5  

5. Conclusions 

The addition of the rare earths, Y and La, to the Yb14ZnSb11 system has a profound but complex 
effect on the carrier concentration and presumably the density of states (DOS) as a function of 
temperature. The large improvement in zT observed in the Yb13.5RE0.5ZnSb11 (RE = Y, La) samples over 
Yb14ZnSb11 is unexpected because these RE3+ ions are simply replacing Yb3+. These remarkable results 
suggest that better modeling/theoretical understanding of complex systems is important to further 
advance the field. Renewed interest in the nuanced system of Yb14ZnSb11 may lead to a more complete 
understanding of the electronic and structural factors affecting the 14-1-11 compounds and aid in the 
future design of optimized materials. Further improvement to the zT of these compounds might be 
achieved by reducing carrier concentration further by means of increasing x or by substitution of Ca 
on the Yb site or Al on the Zn site. Yb14-xCaxMnSb11 and Yb14Mn1-xAlxSb11 solid solutions show reduced 
carrier concentration with increasing x and higher zT’s than Yb14MnSb11. While x has been shown to 
be limited in the case of Yb14-xRExMnSb11 to x ~0.5, it might be possible to increase x to 1 for the Zn 14-
1-11 phase, as is the case for Ca14-xRExMnSb11. Overall, these results for Yb13.5RE0.5ZnSb11 (RE = Y, La) 
suggest that there is significant room for improvement of zT with new compositions of this structure 
type. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Microprobe 
backscatter electron images of (a) Yb13.5Y0.5ZnSb11 and (b) Yb13.5La0.5ZnSb11, Figure S2: Powder X-Ray diffraction 
patterns from samples of Yb13.5Y0.5ZnSb11 and Yb13.5La0.5ZnSb11, Figure S3. Electrical resistivity as a function of 
temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11 (data from Ref. 9). Figure S4. 
Seebeck as a function of temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11 (data from 
Ref. 9). Figure S5. Total thermal conductivity and calculated lattice thermal conductivity as a function of 
temperature for samples of Yb13.5Y0.5ZnSb11, Yb13.5La0.5ZnSb11 and Yb14ZnSb11 (taken from Ref. 9). 
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