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Abstract

Background: Paraspinal muscle fat infiltration is associated with spinal degeneration

and low back pain, however, quantifying muscle fat using clinical magnetic resonance

imaging (MRI) techniques continues to be a challenge. Advanced MRI techniques,

including chemical-shift encoding (CSE) based water–fat MRI, enable accurate mea-

surement of muscle fat, but such techniques are not widely available in routine clini-

cal practice.

Methods: To facilitate assessment of paraspinal muscle fat using clinical imaging, we

compared four thresholding approaches for estimating muscle fat fraction (FF) using

T1- and T2-weighted images, with measurements from water–fat MRI as the ground

truth: Gaussian thresholding, Otsu's method, K-mean clustering, and quadratic dis-

criminant analysis. Pearson's correlation coefficients (r), mean absolute errors, and

mean bias errors were calculated for FF estimates from T1- and T2-weighted MRI

with water–fat MRI for the lumbar multifidus (MF), erector spinae (ES), quadratus

lumborum (QL), and psoas (PS), and for all muscles combined.

Results: We found that for all muscles combined, FF measurements from T1- and

T2-weighted images were strongly positively correlated with measurements from the

water–fat images for all thresholding techniques (r = 0.70–0.86, p < 0.0001) and that

variations in inter-muscle correlation strength were much greater than variations in

inter-method correlation strength.

Conclusion: We conclude that muscle FF can be quantified using thresholded T1-

and T2-weighted MRI images with relatively low bias and absolute error in relation to

water–fat MRI, particularly in the MF and ES, and the choice of thresholding tech-

nique should depend on the muscle and clinical MRI sequence of interest.

K E YWORD S
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1 | INTRODUCTION

Chronic low back pain (cLBP) is a leading cause of disability in the

world. To better understand potential causes, symptoms, and patholo-

gies of this ailment, there is growing interest in quantifying paraspinal

muscle quality (e.g., composition of fat infiltration and lean muscle).

Currently, water–fat MRI sequences are considered the contemporary

standard for quantifying the fat fraction (FF) within muscles.1,2 Unfor-

tunately, because of time constraints and cost, these advanced

sequences are not included in routine clinical MRI procedures and are

difficult to segment due to a poor signal-to-noise ratio. Because of

these challenges with water–fat sequences, we tested the validity

of estimated FF on T1- and T2-weighted images—which are more

suitable for segmentation and are routinely performed on patients

during clinical scans—against values from water–fat sequences.

Multiple studies have used T1- and T2-weighted images to esti-

mate FF based on voxel thresholding, but their estimates for FF are

difficult to compare due to inconsistency among methodologies.1

Many of those that do include validation rely on a qualitative assess-

ment of fat (the Goutallier grading system) and MR spectroscopy.3–5

Furthermore, many studies rely on the selection of single disc levels,

unilateral muscle segmentation, and/or a summary statistic of muscle

quality that fails to differentiate between the varying pathology along

the spine.1 In a study similar to this one, a research group calculated

fat on a T1-weighted sequence and used a fat-water sequence for val-

idation, but they focused their study on the shoulder and used a freely

available fuzzy C-means segmentation software, thus leaving room for

the analysis of the spine and for the development of more robust

thresholding methods.6 Recent work compared the calculation of FF

using T2-weighted images with fat-water sequence for paraspinal mus-

cles in the lumbar spine. Their results provided more evidence that

thresholding was a viable way to analyze muscle quality in clinical

sequences.7 However, this group used manual segmentation and man-

ual thresholding methods, focused solely on the L4-L5 and L5-S1 disc

levels, and only estimated FF using the T2-weighted sequence. While

there are many studies attempting to quantify fat using various imaging

techniques, there are gaps in the literature when it comes to widely

available, user-friendly, and time-efficient methodologies to better ana-

lyze the underlying paraspinal muscle pathology in cLBP patients.

To address this, we applied and compared four different auto-

mated thresholding approaches: Gaussian thresholding, Otsu's

method, k-means clustering, and quadratic discriminant analysis

(QDA). Using these methods, we predicted and applied thresholding

values to T1- and T2-weighted MR images to quantify fat within the

lumbar paraspinal muscles (multifidus (MF), erector spinae (ES), quad-

ratus lumborum (QL), and psoas (PS)) and validated our results with

chemical shift encoding-based (CSE) based water–fat MRI which

enables accurate measurement of muscle fat.8 In this study we sought

to understand variation in accuracy among different thresholding

techniques on the lumbar spine muscles to determine which methods

are reliable while using clinical MRI sequences. The results of this

study will support the use of more efficient and accurate estimations

of fat infiltration in the paraspinal muscles.

2 | METHODS

2.1 | Subjects

Following IRB (# 20-29928) approval and informed consent, lumbar

MRI scans were acquired from 11 patients with cLBP. Patients were

recruited from the spine clinic at our institution and were included if

they met the criteria for cLBP established by the National Institutes of

Health Research Taskforce: low back pain for at least 3 months or on

at least half of the days in the past 6 months.9 Subjects were

excluded if they had prior spine surgeries. Subjects were aged 31 to

79 (55.0 ± 14.4), with a height ranging from 150.9 to 184.5 cm

(167.4 ± 8.4), a weight ranging from 53.5 to 108.5 kg (53.4 ± 14.3),

and BMI ranging from 19.2 to 28.8 kg/m2 (24.3 ± 2.9).

2.2 | Imaging

All subjects were imaged using the same 3T MRI scanner (Discovery

MR750; GE Medical Systems, Chicago IL) with an 8-channel phased-

array spine coil. The acquisitions of the lumbar spine (L1 through S1)

included standard clinical fast spin echo (FSE) sequences with T1- and

T2-weighting, and a six echo CSE sequence to acquire water–fat images

(Figure 1). The FSE images were acquired using the following parame-

ters for T1- and T2-weighting, respectively: TE = 13, 56 ms; TR = 594,

8414 ms, field-of-view (FOV) = 18 cm; slice thickness = 4 mm; slice

gap = 4 mm; and in-plane resolution = 0.35 mm. The CSE acquisition

included a six echo 3D spoiled gradient-recalled echo (SPGR) sequence

with iterative decomposition of water and fat with echo asymmetry and

least-squares estimation (IDEAL) reconstruction with the following

parameters: TE = 2, 3, 4, 5, 6, 7 ms; TR = 5.95 ms; FOV = 28 cm; flip

angle = 3�; slice thickness = 4 mm; slice gap = 4 mm; in-plane

resolution = 1.09 mm; receiver bandwidth = 125 kHz. All images

were acquired in the axial plane. All sequences were prospectively

applied to the same region of the lumbar spine (L1–S1) and were

acquired contemporaneously, enabling accurate anatomic co-

location across sequences.10

2.3 | Muscle segmentation

The bi-lateral MF, PS, ES, and QL muscles were automatically seg-

mented on T1- and T2-weighted images using a previously developed

neural network, followed by manual adjustments as needed

(Figure 1).11,12 Bordering epimuscular fat was excluded from muscle

segmentations to facilitate assessment of fatty infiltration.1 Segmen-

tation masks were generated for two axial slices centered at each lum-

bar disc level (L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1), thus yielding

10 annotated slices per patient. Eight muscle segmentations (one for

each bi-lateral muscle) nominally comprised each annotated slice

(Figure 1); however, due to variations in muscle morphology, some

muscles (particularly the QL and ES) were not able to be segmented at

some axial locations. Specifically, the QL was not segmentable
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at L5-S1 for any of the 11 patients, or at L4-L5 for 8 of 11 (73%)

patients. Additionally, the ES was not segmentable at L5-S1 level for

6 of 11 (55%) patients. Thus, n = 782 individual muscle segmenta-

tions were included in the final analysis.

In order to analyze corresponding anatomic regions between

T1-weighted, T2-weighted, and water–fat images (which have differ-

ent spatial resolutions), the muscles segmentations were transformed

from T1- and T2-weighted space to CSE space using an affine trans-

formation utilizing the spatial information embedded in the DICOM

metadata.12 This technique enabled co-localization of the muscle seg-

mentations between the different MRI sequences.

Clinical and water–fat axial slices were paired for segmentation

by extracting the minimum difference in patient z-position from image

metadata. Although the patient image position between the clinical

and water–fat sequences do not maintain perfect alignment, the mean

z-position difference per patient for annotated slices was less than

2 mm for both T1- and T2-weighted sequences (1.41 ± 1.62 mm,

1.44 ± 1.54 mm).

2.4 | Image enhancement

The T1- and T2-weighted images were enhanced via contrast limited

adaptive histogram equalization to improve tissue contrast (Figure 2).

In this method, the DICOM image array is divided into non-

overlapping tiles and a histogram of voxel intensities is created for

each tile. An intensity clip limit is then set for each image, and the

regional histograms are redistributed within that limit. Then, bilinear

interpolation was used to re-sample the image.13 The goal of this

approach was to improve the contrast of the image and to account for

any imaging discrepancies to help ensure that differences in voxel

intensities are related to pathology. All image enhancement was

implemented in Python (v 3.9.12) using scikit-image (v 0.19.2), scikit-

learn (v 1.0.2), numpy (v 1.22.3), and pandas (v 1.4.4).

2.5 | Image thresholding

The segmented muscles from T1- and T2-weighted images were thre-

sholded to differentiate muscle tissue from intramuscular fat. Each

segmented muscle region of interest (ROI) was extracted from the full

DICOM array into unique matrices for statistical analysis where each

voxel in the matrix was scaled to a grayscale value (0 = black,

255 = white). Four thresholding approaches were then tested:

Gaussian curve fitting, Otsu's method, k-means clustering, and QDA.

Thresholding was implemented in Python (v 3.9.12) using scikit-image

(v 0.19.2) and scikit-learn (v 1.0.2).14,15

2.5.1 | Gaussian method

For each image, two Gaussian curves were fit to the signal intensity

histogram of each muscle, thereby assuming a bimodal histogram dis-

tribution based on the differential signal from muscle tissue and intra-

muscular fat. The fat threshold was calculated as the intersection of

the Gaussian curves: voxels with signal intensity values below the

threshold were classified as muscle and voxels above the threshold

were classified as fat.16

F IGURE 1 Representative MRI images (upper) and muscle segmentations (lower) for an axial slice centered at the L2-L3 level from T1-, T2-,
and IDEAL water–fat images. MF, ES, QL, and PS are highlighted as blue, green, yellow, and purple, respectively.
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2.5.2 | Otsu's method

Otsu's method is a nonparametric and unsupervised method for image

thresholding, which minimizes the intra-class variance in signal inten-

sity (thereby maximizing inter-class variance).17 Unlike the Gaussian

method—which assumed a bi-modal histogram distribution—Otsu's

method does not require a priori assumptions regarding histogram

shape; rather, Otsu's method requires enumeration of discrete classes.

Here, we attempted to differentiate between three tissue classes: fat,

muscle, and underlying pathologies. We assumed that the Gaussian

method was overpredicting FF because it was mis-classifying the tis-

sue of underlying pathologies as fat, and that using a third class in

Otsu's method would capture this erroneous group. To tease out the

subtle differences in voxel pixel intensity, the fat-muscle threshold

was calculated as the average signal intensity of the two

Otsu-determined thresholds.

2.5.3 | k-means method

k-means clustering is an unsupervised machine learning approach that

separates data into k clusters. To differentiate groups, the centroid of

each cluster is iteratively tested until the intra-cluster sum of squares

is minimized between each voxel and the cluster's centroid.18 Here,

we specified k = 3 classes, consistent with the approach used for

Otsu's method.

2.5.4 | Quadratic discriminant analysis (QDA)

QDA is a supervised learning approach that partitions classes through

the optimization of the quadratic discriminant function, which

incorporates several parameters pertaining to voxel signal intensity.19

Specifically, the model inputs were the signal intensity of each voxel,

the mean signal intensity in a 15 � 15 region surrounding the voxel of

interest (i.e., the regionally-blurred signal intensity), and mean signal

intensity of the entire muscle. For this supervised approach, the

ground-truth dataset was developed by first finding the FF for

the ROI in the fat-water sequence. The water–fat FF was then used

to determine the number of T1- or T2-weighted voxels that needed

to be classified as fat so that the clinical sequence FF matched the

water–fat sequence FF (Nfat = Ntotal[1 � FFwater–fat] and Nfat =
P

n

where SIn<Xthresh; Nfat and Ntotal are the number of fat voxels and

total voxels in each ROI, SIn is the signal intensity of the voxel of inter-

est, and n is the binary value assigned to SIn). Using these formulas,

each voxel was assigned a ground-truth binary value (1 for fat, 0 for

not fat). With 782 segmented muscles (ranging from 50 to 2500 vox-

els each), we had a dataset of n=1290378 voxels divided into an

80/20 test/train split. The accuracy score for the model's prediction

of each voxel as either fat or not-fat was consistently around 87%.

2.6 | Outcomes and statistical methods

The primary outcomes of this analysis were the muscle FF values

measured for each thresholding approach using the T1- and

T2-weighted images, and the ground-truth FF value measured from

the water–fat images. For each muscle at each axial slice, the FF value

was computed by dividing the total number of voxels classified as fat

by the total number of voxels comprising each segmented muscle.

The ground-truth muscle FF was quantified as the mean voxel signal

intensity within each muscle from the corresponding water–fat

image.8 For each thresholding technique, Pearson correlation coeffi-

cients (r), mean absolute errors (MAE¼ 1
n

Pn
i¼1 j yi�byi j), and mean bias

F IGURE 2 Representative MRI images depicting un-enhanced (left) and enhanced (right) T1-weighted images and associated histograms.
After enhancement the voxels signal intensities have a lower maximum and are more evenly distributed within the histogram.
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errors (MBE¼ 1
n

Pn
i¼1 yi�byið Þ were calculated for the muscle FF esti-

mations for the thresholded T1- and T2-weighted images relative

to the water–fat FF (see Tables 2–4). MBE was used to indicate

whether each method over- or under-estimated the true FF, while

MAE indicated the average magnitude of the errors regardless of

direction. A Fisher's r-to-z transformation was calculated to obtain

95% confidence intervals (CIs) for r. Z-scores were calculated for

all permutations of method comparisons (see Supporting Informa-

tion Table B). Statistical analyses were conducted in Python

(v 3.9.12) using numpy (v 1.22.3), pandas (v 1.4.4), scikit-learn

(v 1.0.2), and scipy (v 1.7.3).

3 | RESULTS

Consistent with demographic and clinical heterogeneity, there was

wide variation in mean muscle FF values measured with water–fat

MRI (2–74% fat, depending on patient, muscle, and lumbar level;

Table 1, Supporting Information Table A). Muscle FF values tended to

be highest in the MF (mean ± SD = 27.2 ± 8.7%) and lowest in the PS

(8.4 ± 4.1%).

Results from pooled muscle analysis show that FF measurements

from the T1- and T2-weighted images were strongly correlated with

measurements from the water–fat images across all thresholding

techniques (r = 0.70–0.86 depending on thresholding technique and

MRI sequence [T1- or T2-weighted], p < 0.0001, Table 2). Correlation

strength tended to be slightly higher for T2-weighted images than

T1-weighted images for all thresholding techniques except QDA

(r = 0.84, 0.83 for QDA thresholding for T1-, T2-weighted images,

respectively). Of the approaches tested, QDA demonstrated the

strongest correlation (r = 0.84, p < 0.0001), the lowest absolute

error (MAE = 5.9%), and the smallest bias (MBE = �1.46%) on

T1-weighted images, whereas Otsu's method demonstrated

strongest correlation (r = 0.86, p < 0.0001), the lowest error

(MAE = 5.3%), and the smallest bias (MBE = 1.31%) on

T2-weighted images (Tables 2–4, Figure 3).

Variations in inter-muscle correlation strength were much greater

than variations in inter-method correlation strength. Specifically, FF

estimates from T1- and T2-weighted images were strongly correlated

with water–fat measurements for the MF and ES regardless of thresh-

olding technique (r = 0.66–0.89 across thresholding techniques,

p < 0.0001, Table 2). Conversely, T1- and T2-weighted measurements

were only moderately or weakly correlated with water–fat measure-

ments in the PS and QL for all thresholding techniques (r = 0.16–0.48

depending on technique, p < 0.0001). Thus, the accuracy of FF esti-

mates from T1- and T2-weighted MRI depend more on which muscle

is analyzed than which thresholding approach is used.

To get a better visual understanding of the discrepancies in corre-

lation between muscles, we plotted differences in the estimated fat

from each thresholding method and the water–fat sequence.

Figure 4B (voxels are highlighted under the condition where the clini-

cal sequence voxel was classified as fat and the corresponding water–

fat sequence voxel was not) allows us to see that the inaccuracies in

our estimations follow a similar pattern across methods and

sequences. The thresholding methods incorrectly estimate fat along

the medial and superior borders of the ES and the medial border of

MF, while the mis-estimation of PS is random. Furthermore, the

TABLE 2 Pearson's correlation coefficient (r) [95% CI] for fat fraction estimates from T1- and T2-weighted MRI relative to IDEAL water–fat
MRI for the four thresholding methods tested (Gaussian, Otsu, k-means, QDA).

Gaussian Otsu k-means QDA

r 95% CI r 95% CI r 95% CI r 95% CI

Multifidus (n = 220) T1 0.72 [0.65, 0.78] 0.71 [0.64, 0.77] 0.66 [0.58, 0.73] 0.78 [0.73, 0.83]

T2 0.80 [0.75, 0.84] 0.79 [0.74, 0.84] 0.73 [0.66, 0.79] 0.72 [0.65, 0.78]

Psoas (n = 216) T1 0.31 [0.18, 0.43] 0.23 [0.01, 0.35] 0.16 [0.03, 0.29] 0.31 [0.19, 0.42]

T2 0.44 [0.33, 0.54] 0.39 [0.27, 0.50] 0.30 [0.17, 0.42] 0.29 [0.17, 0.41]

Erector spinae (n = 196) T1 0.72 [0.65, 0.78] 0.84 [0.79, 0.88] 0.83 [0.78, 0.87] 0.80 [0.75, 0.84]

T2 0.84 [0.79, 0.88] 0.89 [0.86, 0.92] 0.87 [0.83, 0.90] 0.80 [0.75, 0.85]

Quadratus lumborum (n = 150) T1 0.43 [0.29, 0.55] 0.36 [0.21, 0.49] 0.29 [0.14, 0.43] 0.44 [0.31, 0.56]

T2 0.35 [0.20, 0.48] 0.48 [0.35, 0.60] 0.32 [0.17, 0.46] 0.44 [0.30, 0.56]

All (n = 782) T1 0.73 [0.70, 0.76] 0.82 [0.80, 0.84] 0.70 [0.66, 0.73] 0.84 [0.82, 0.86]

T2 0.8 [0.77, 0.82] 0.86 [0.84, 0.88] 0.76 [0.73, 0.79] 0.83 [0.81, 0.85]

Note: All correlation p-values were below 0.0001.

TABLE 1 Mean ± standard deviation (range) fat fraction
measured from IDEAL water–fat MRI.

Muscle Fat fraction (%)

Multifidus (n = 220) 27.2 ± 8.7 (8.2–58.2)

Psoas (n = 216) 8.4 ± 4.1 (3.0–23.4)

Erector spinae (n = 196) 23.5 ± 13.1 (6.5–73.8)

Quadratus lumborum (n = 150) 14.3 ± 7.8 (2.1–45.4)

All (n = 782) 18.9 ± 12.1 (2.1–73.8)
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TABLE 3 Mean absolute error (MAE, %) [95% CI] for fat fraction estimates from T1- and T2-weighted MRI relative to IDEAL water–fat MRI
for the four thresholding methods tested (Gaussian, Otsu, k-means, QDA).

Gaussian Otsu k-means QDA

MAE 95% CI MAE 95% CI MAE 95% CI MAE 95% CI

Multifidus (n = 220) T1 7.35 [6.7, 8.0] 5.96 [5.29, 6.63] 7.41 [6.66, 8.16] 5.24 [4.76, 5.73]

T2 6.68 [6.06, 7.3] 5.93 [5.29, 6.57] 7.78 [7.05, 8.51] 24.0 [22.48, 25.26]

Psoas (n = 216) T1 1.19 [10.98, 12.87] 3.91 [3.41, 4.4] 14.4 [13.37, 15.4] 5.35 [4.81, 5.9]

T2 1.17 [10.94, 12.51] 3.25 [2.82, 3.68] 14.9 [14.01, 15.77] 4.88 [4.28, 5.48]

Erector spinae (n = 196) T1 1.08 [9.83, 11.66] 6.82 [6.2, 7.44] 8.72 [8.0, 9.43] 6.24 [5.62, 6.86]

T2 9.03 [8.28, 9.78] 6.28 [5.71, 6.85] 8.55 [7.86, 9.24] 18.4 [17.05, 19.65]

Quadratus lumborum (n = 150) T1 10.9 [9.74, 12.12] 5.82 [4.92, 6.72] 11.2 [9.93, 12.48] 6.95 [5.99, 7.91]

T2 9.71 [8.63, 10.79] 6.02 [5.08, 6.96] 11.3 [10.2, 12.41] 6.88 [5.82, 7.93]

All (n = 782) T1 10.2 [9.68, 10.62] 5.59 [5.25, 5.92] 10.4 [9.89, 10.89] 5.85 [5.53, 6.17]

T2 9.25 [8.83, 9.66] 5.29 [4.97, 5.62] 10.6 [10.15, 11.08] 14.0 [13.18, 14.79]

TABLE 4 Mean bias error (MBE, %)
for fat fraction estimates from T1- and
T2-weighted MRI relative to IDEAL
water–fat MRI for the four thresholding
methods tested (Gaussian, Otsu, k
means, QDA).

Gaussian Otsu k-means QDA

Multifidus (n = 220) T1 6.34 4.48 6.57 2.94

T2 5.91 4.86 7.15 23.85

Psoas (n = 216) T1 11.79 �0.23 14.38 �4.34

T2 11.65 �0.48 14.88 �1.58

Erector spinae (n = 196) T1 8.91 4.12 6.77 �0.13

T2 7.26 3.85 6.71 18.18

Quadratus lumborum (n = 150) T1 9.87 0.08 10.34 �5.54

T2 7.99 �4.62 10.15 2.26

All (n = 782) T1 9.18 2.25 9.49 �1.46

T2 8.23 1.31 9.75 11.26

Note: Positive values represent over-estimation, and negative values represent under-estimation.

F IGURE 3 Bland–Altmann between clinical and water–fat sequence of each method, separated by sequence and muscle.

6 of 9 ORNOWSKI ET AL.



thresholding methods did not recognize fat that was classified as such

by the water–fat sequence in regions of muscle neighboring the bone.

Z-score calculations and Bland–Altmann (BA) plots were used to

compare performance between methods. After performing Z-score

calculations on all permutations of method comparisons, it can be

confirmed that the Gaussian, Otsu, and k-means methods perform

better on T2-weighted sequences than on T1-weighted sequences

(see Supporting Information Table B). BA plots showed consistency in

error shape within muscles across methods, but differences across

muscles within methods suggesting that no method was wholistically

superior.

4 | DISCUSSION

This study presents several automated thresholding methods for the

quantification of fat infiltration within the paraspinal muscles using

clinical MRI sequences. All methods yielded an r of 0.70 or greater for

the overall set of paraspinal muscles, as well as for ES and MF when

assessed individually. The T2-Otsu method showed the highest corre-

lation coefficient over all muscles with an r of 0.86 (p < 0.0001) and a

95% CI of [0.841, 0.877], and all methods had the highest correlation

coefficients for ES with r's ranging from 0.72 for T1-Gaussian to 0.89

for T2-Otsu.

Consistent with a recent study done by Masi et al., the muscles

that saw the lowest r were consistently PS and QL, which also contain

the least amount of fatty tissue.7 Muscles with higher amounts of fat

were associated with better estimation results which is likely because

the spread of voxel SI values within the muscular region of interest is

larger (see Table 1, Table 2, and Figure S2). The clustering algorithms,

namely k-means and Otsu, are optimized based on the variance within

the set of voxel SI values. Therefore, a set of voxel SI values with a

small variance, such as PS and QL, are likely to result in less accurate

clusters. Despite the large differences in performance between mus-

cles, the differences in performance within each muscle varies only

slightly between methods. Because of this it is impossible to recom-

mend a “perfect” thresholding option for FF estimation for all muscles

of the lumbar spine. However, this analysis does provide us with evi-

dence to suggest that the best thresholding option is dependent on

the clinical sequence as well as the muscle of interest.

Assessing the thresholding methods based on their algorithms in

addition to their interaction with the data can provide insight into

why the correlation varies so much between muscles as well as

between methods. Differences between the k-means and Otsu

methods are interesting because both techniques use an unsupervised

clustering method. The clustering of voxels, however, is where their

similarities end. The Otsu method optimizes variance within and

between groups, establishing complementary relationships between

the clusters, while the k-means method is more single-cluster-focused

with the goal of minimizing each point's distance from its cluster's

center. Looking at this information in tandem with ground-truth FF of

the muscles, it becomes clear why the Otsu method outperformed the

k-means method. Muscles with a lower FF have a smaller voxel SI var-

iance which making the separation of voxels more arbitrary for the

Otsu method, while the nature of the k-means method allows for a

better separation of voxels due to the need to maximize inter-group

variance. This small difference is less noticeable in muscles that have

higher FF, such as MF and ES because the Otsu's method of minimiz-

ing the in-cluster sum of squares is a sufficient way to distinguish the

groups.

With the goal to achieve a higher Pearson correlation than the

three unsupervised methods, a fourth, supervised learning method

was applied: the QDA method. By adding more information about the

image to the thresholding process, we predicted that this method

would either outperform our previous attempts or would illuminate a

ceiling to the Pearson correlation value. Ultimately, this method did

F IGURE 4 (A) Raw T1-weighted, T2-weighted, and IDEAL water–fat muscle segmentations. (B) Visual representation of the variability in fat
classifications between each thresholding method using the T1- and T2-weighted MRI sequence on the L4-L5 disc level of a single patient scan.
The colored pixels in the top row represent where each T2 thresholding algorithm classified the pixel as fat, but the IDEAL water–fat sequence
did not. The bottom row shows where each T1-weighted thresholding algorithm classified the pixel as fat, but the IDEAL water–fat sequence did
not. QL was omitted from this visualization.
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the latter. With an overall r of 0.82, this method was comparable to

the unsupervised methods and requires training data that makes it dif-

ficult to reproduce unless fat-water sequences are available. Further-

more, as with any supervised learning method, there is a risk of

overfitting the data, especially with a small sample population. This

potential challenge was exemplified by the results of the T2-weighted

estimations (MBE = 11.26), but interestingly was not a problem for

the T1-weighted estimations (MBE = �1.46).

Once it was determined that our summary statistics were likely

hitting a ceiling, we considered confounding factors that could be

affecting the thresholding performance for estimating FF. The first

potential issue is the individual muscle segmentations. Despite the

consistency provided by the automated nature of the segmentations,

there remains the potential for error. To account for this, we applied

secondary manual adjustments to maximize accuracy of the segmen-

tations. Additionally, because the size ratios of the ROI between the

clinical sequences and the water–fat sequences are not 1:1, and

the difference in patient z-position patient between clinical and

water–fat sequences is greater than zero, each segmentation is not

100% reproducible thus leading to skewed FF calculations. Further-

more, within the clinical sequences, each image slice had an intensity

gradient leaving it darker at the top than at the bottom. Although

image adjustment was applied to each slice to normalize the pixel

values, a perfectly balanced image was likely not achieved, leading to

slightly skewed clustering.

While there are a variety of potential problems regarding image

quality and segmentations, another potential factor influencing perfor-

mance is the diverse composition of the muscle itself. Our results

show that most of the methods overestimated FF. Originally, we sus-

pected that this was a methodological issue, but because of the con-

sistency of the error across all methods, we found that the error likely

comes from the incorrect classification of tissue representing various

pathologies as fat. When using the k-means and Otsu methods, we

chose a cluster number of 3 to attempt to tease out the intensity dif-

ferences between fat and other tissues. While the Otsu method did

improve upon the Gaussian method, it continued to overestimate FF.

To better understand the meaning behind the inaccuracies in our

estimations we created a visualization that highlights the differences

between the T2-weighted estimations and the ground-truth FF (see

Figure 4B). The location of the classification differences is notable as

the T1- and T2-weighted thresholding algorithms appear to classify

tissue as fat on the borders of the muscle (where the water–fat calcu-

lations do not). Highlighting of the perimeter by the T1- and

T2-weighted estimations is likely due to the higher resolution of the

clinical images while the highlighting of the deeper muscle fat by

the water–fat calculations is likely due to voxel intensity discrepancy.

Finally, we found the BA plots to be insightful regarding our con-

clusions as to which method is best suited for a given muscle or mus-

cle quality (Figure 3). For example, the MF plots suggest that the

errors are consistently random across the range of mean FF (indicating

low bias) for all methods except for the QDA method on the

T2-weighted sequence. Looking at the QDA method applied to

the T2-weighted sequence, higher mean FF values yield higher

positive errors, suggesting that this approach may be sub-optimal for

degenerate muscle (despite the low mean bias). For ES, many of the

plots exhibit a fan-shaped appearance, indicating heteroscedasticity

such that the error increases (both positive and negative) as mean FF

increases.

Despite the limitations in this study, all four thresholding methods

provide viable options for estimating FF in the lumbar spine. The best

method, however, is dependent on the sequence type of the image,

muscle of interest, and the muscle quality. The Gaussian, Otsu, and

k-means methods perform better on T2-weighted sequences than on

T1-weighted sequences (see Supporting Information Table B). While

the differences in performance within each muscle varies only slightly

between methods, it is clear that thresholding as a form of FF estima-

tion is much more viable for muscles with higher amounts of fatty

infiltration such as MF and ES. While these methods were tested

solely on axial scans of the lumbar spine, we are hopeful that their

straightforward nature will prove to be easily reproducible for esti-

mating intra-muscular FF in any area of the body.
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