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Upsetting the contingency table: Causal induction over sequences of point events
Michael D. Pacer (mpacer@berkeley.edu)

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, 3210 Tolman Hall

Berkeley, CA 94720 USA

Abstract

Data continuously stream into our minds, guiding our learn-
ing and inference with no trial delimiters to parse our experi-
ence. These data can take on a variety of forms, but research
on causal learning has emphasized discrete contingency data
over continuous sequences of events. We present a formal
framework for modeling causal inferences about sequences
of point events, based on Bayesian inference over nonhomo-
geneous Poisson processes (NHPPs). We show how to apply
this framework to successfully model data from an experiment
by Lagnado and Speekenbrink (2010) which examined human
learning from sequences of point events.
Keywords: causal inference; continuous time; stochastic pro-
cesses; Bayesian models

Introduction
Only a single bullet is needed to end a life. One momentary
event quickly ruptures a slew of causal mechanisms, having
effects that persist long after the trigger was pulled. We un-
derstand this causal inference easily enough, but how do we
manage to arrive at that inference? More precisely, what for-
mal tools can characterize events that last an instant but leave
profound consequences in their wake?

Learning from instantaneous events is one of the most im-
portant forms of causal induction in the real world, but is not
the case considered in most models of human causal reason-
ing. More commonly, these models rely on the existence of
aggregated statistics often in the form of a contingency table
describing the frequencies with which different combinations
of events occur (Griffiths & Tenenbaum, 2009). The most
traditional case is the 2× 2 contingency table that describes
two variables that are either present or not. It is out of this
statistical paradigm that many of the models of human causal
inference and learning have arisen (Gopnik et al., 2004).

The world offers more than contingency tables and fre-
quency counts. Different kinds of data warrant different
kinds of inferences. For example, when Greville and Buehner
(2010) coerce events embedded in continuous-time into con-
tingency tables, they are challenged with identifying an (as-
sumed) underlying trial structure. To fill a 2×2 table of event
pairs, one needs to slice the continuum into trials; a variable
is counted if an event occurred in the slice and not if it did
not. But different slicing regimens can warrant different in-
ferences about the same data. This arises because of a funda-
mental asymmetry between the times at which events occur
and when then do not occur. In a contingency table both X
and ¬X are treated as the same kind of entity, but instanta-
neous events can be counted while the the continuous expanse
of nothingness in which events are embedded by definition
cannot be counted, only measured.

But there is another way to model sequences of point
events occurring in continuous-time. Here, we build a model
of causal induction on the framework described in Pacer and
Griffiths (2012), which uses a model of events embedded in
continuous-time. It computes probabilities not in terms of the
frequency with which events co-occur, but directly from the
temporal distances between cause and effect events. Impor-
tantly, we accomplish this without needing to uniquely match
individual cause events with individual effect events. We rely
on probabilistic graphical models to describe the structure of
causal relations. We use Poisson processes and operations
over these processes to describe the functional relationships
between variables, which provide the structure by which we
identify and organize kinds of events.

Our focus in this paper is on causal induction from se-
quential point processes — sequences of events that are tran-
sient moments in continuous time. This is an important case
for modeling causal induction, describing a wide range of
real-world settings in which people perform causal induc-
tion such as trying to infer which particular interaction with
which particular other person led to coming down with the
flu. Bramley, Gerstenberg, and Lagnado (2014) raise a con-
cern that these cases present a challenge for the continuous-
time causal network approach presented by Pacer and Grif-
fiths (2012).

The paper will proceed as follows. We review Poisson
processes, which form the foundation for the rest of the pa-
per. We introduce a physical analogue of these formal struc-
tures to provide intuition to the underlying mathematics of
nonhomogeneous Poisson processes. These processes form
the basis of our framework when combined with probabilis-
tic graphical causal models. We then successfully apply the
framework to Experiment 2 from Lagnado and Speekenbrink
(2010) — a paradigm for human judgments of causal struc-
ture from sequences of point events. We then discuss the im-
plications of this work for statistical and mechanistic theories
of human causal reasoning.

Formal Foundations
In this section we describe formal foundations for our frame-
work (cf., Pacer & Griffiths, 2012). We explain a class of
point-process models (processes that describe the occurrence
of point-events which have a location, but no measurable du-
ration) called Poisson processes that are defined in terms of
a space and a positive rate function that gives the expected
number of events to be found in any subspace. This rate-
function will depend upon the identity and time of events
that occur during the course of the processes’ activity (cf.,
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Simma & Jordan, 2010; Blundell, Beck, & Heller, 2012). To
accommodate this kind of conditional intensity function we
use nonhomogeneous Poisson processes (NHPPs), whose rate
functions are not constant.

We will first describe two ways of looking at homogeneous
Poisson processes: arrivals and rates. After developing an
intuition for Poisson processes with constant rate functions,
we will then consider the general case of NHPPs and how
to model sequences of point events in terms of a generative
model that iteratively analyzes individual arrivals relative to
the rates induced by previous arrivals.

Poisson Processes: Arrivals and Rates

Poisson processes can be interpreted in a number of ways that
lend themselves more or less easily to different applications.
We will describe Poisson processes in two senses: the ar-
rival process sense and the rate-of-events sense.1 Sequences
of point events can be described sequences of successive ar-
rivals, making the arrival perspective convenient for comput-
ing point event likelihoods. But it is easiest to conceive of the
causal effects of point events in terms of their altering event
rates. Both perspectives prove useful.

Arrivals The arrival sense can be understood by anyone
who has ever waited in a queue. You will have to wait some
amount of time before your turn, and we can assign a prob-
ability that you will be served by time t. If you were next
in the queue and it were governed by a homogeneous Pois-
son Process with rate λ, the waiting time distribution of being
served by time t would be an exponential distribution with
mean 1

λ (t ∼ Exp( 1
λ) ∶ p(t) = λe−λt ). Interestingly, this distri-

bution is memoryless, such that, regardless of how long we
have waited, we still expect to wait the exact same amount of
time — it has no memory of how long it has been since the
last event. This memorylessness property does not hold for
the general class of NHPPs.

Rates Equivalently, we can count the number of events that
occur in a measurable time-period, rather than looking at the
delays between each event. Poisson processes define a “rate”
of events, which describes the expected count of events to
occur in any interval. A homogeneous Poisson process has
a constant rate, λ, and for a time interval with length ∣τ∣ we
can expect to see event-count distribution governed by a Pois-
son random variable, with mean (λ∣τ∣). In the case of nonho-
mogeneous Poisson processes, we will have a rate-function
defined over time λ(t). Integrating this function over some
time-interval defines how many events are expected to occur
(i.e., for τ[a,b) the expected event count is ∫τ[a,b) λ(s)ds).

1Poisson processes can be defined over higher dimensional
spaces (e.g., R3) than the real line. This complicates the arrival per-
spective, which implicitly relies on the order that events “arrive”.
The event-rate perspective is unchanged in higher dimensions; in
that sense it could be said to be more “fundamental” than the ar-
rival perspective. In this paper, for simplicity we focus on processes
defined over time ([0,∞)).

Combining Perspectives The arrival perspective gives us a
probability distribution over intervals of time (i.e., intervals
defined from now until the next event arrives), while the rate-
of-events perspective gives us an instantaneous measure of
event likelihood which is comprehensible only in terms its
integration over intervals of time. The former is more use-
ful in cases where events are analyzed one at a time. For
example, when simulating dependent event sequences or cal-
culating the probabilities of event sequences in terms of the
likelihood of each event’s occurrence given the previous rele-
vant occurrences. In our model of Lagnado and Speekenbrink
(2010), we will use this perspective to define the likelihood of
each inter-arrival period conditional on the previous events.

The rate-of-events perspective is useful when simulating
many events when the rate is independent of the particular oc-
currence of the events. The rate perspective is also useful for
calculating event likelihoods, when the interval during when
the events occurred is known, but the exact occurrence times
are unknown. Pacer and Griffiths (2012) use this technique to
analyze the data given to participants in Greville and Buehner
(2007) in which data were presented in a tabular form that de-
scribed the day during which bacteria died but not the exact
timing of the events. This property allows us to recover a
trial structure from continuous-time by integrating over inter-
vals of time and treating occurrences within those intervals as
events that occurred in those trials.

Most importantly for our uses, it is most straightforward
to see causes as altering the rate-of-events and then comput-
ing an expected wait-time distribution based on those altered
event rates. Describing effects in terms of rate changes will
be the key to the causal aspect of our framework. Fortunately,
Poisson processes have two closure properties, superposition
and thinning, that allow us to create continuous time analogs
of noisy-OR and noisy-ANDNOT (for more details, see Pacer
& Griffiths, 2012).

Superposition and Thinning in Poisson Processes
This section will develop a rough physical model to aid in
thinking about NHPPs as formed by functions on homoge-
neous Poisson processes. Namely, we aim to provide an intu-
ition for the superposition and thinning closure-properties of
homogeneous Poisson processes from the rate-of-events per-
spective. We do so by sketching a mechanistic picture of a
particle emission system that exhibits these properties.

First, consider a decaying radioactive material which re-
leases particles at a constant rate, λ. With a particle detector
around the material you record the time-stamp at which parti-
cles hit the detector. A particle is expected to hit the detector,
on average, every 1

λ s. This detector will then be recording a
homogeneous Poisson process with rate λ.

Suppose you were to place a barrier to block some of the
paths leading from materials to the detector (call the propor-
tion blocked π ∶ 0 ≤ π ≤ 1, as in the parameter associated with
the orange filter in Figure 1). From the detector’s perspec-
tive, events associated with particles blocked by a filter are
events that never occurred. This process is known as filtering
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Figure 1: Particle emission detector model for visualizing su-
perpositioning and filtering Poisson processes. Color distin-
guishes particle origins prior to detection, with color lost in
detection. Filtered events are never detected.

the Poisson process, and if π is independent of the generating
process, filtering gives a Poisson process with rate (1−π)λ.

Suppose you were to place another radioactive material in
the detector, of a different kind than the original, but which
did not interact with the original radioactive material (see the
blue and green materials in Figure 1). From the perspective
of the detector, there is no difference between the particles
hitting it from different materials — it only knows that a par-
ticle hits it and when it hits it. If we suppose the rate of this
new material’s emitting particles is constant at λ1, then the to-
tal set of events would be a Poisson process with rate λ+λ1.
This is the superposition property of Poisson processes: if
jointly independent, the union of the events from two Poisson
processes will be a Poisson process whose rate is their sum.

Superposition and thinning allow us to see how the rates
of Poisson processes can change without altering their under-
lying structure. We can apply these transformations at par-
ticular times or intervals of time, thereby producing and in-
crease (via superposition) or a decrease (via thinning) in the
rate of events while at all times maintaining its identity as a
Poisson process. Applying superposition or thinning as time-
dependent functions thus allows one way to create NHPPs that
nonetheless can be understood in terms of component pro-
cesses and their transformations.

Causal Graphs and Sequential Point Processes
With superposition and thinning in our tool belts, we can dis-
cuss causal point processes feeding back into themselves. By
applying thinning and superposition dependent on time we
can build NHPPs from component processes. If we apply su-
perposition and thinning functions relative to the occurrence
of events at particular times (e.g., by scaling their effects rel-
ative to the distance from the events’ occurrence time), then
we can define NHPPs relative to the occurrence of particu-
lar events. If we then define the set of events capable of
evoking changes in the Poisson process as themselves being
the outcome of Poisson processes (see also Blundell et al.,

2012), then we have successfully managed to create a system
of causal relations in terms of Poisson processes.

It is worth noting that if we want to describe the causal
effects of point events at all, we will need some form of in-
fluence function that lasts beyond the occurrence of the point
event. Because point events are instantaneous, if a cause’s ef-
fects last while cause persists the effects would have to occur
at that same instant. But we are seeking to model causal re-
lations that are not only embedded in a moment in time, but
across time. We need to consider how events that occur at one
point and time can influence events – or, more precisely, the
underlying rate of events – at later time points and intervals.

We need a way to describe what kinds of things exist
which things are related to one another and in what ways
they are related — i.e., we need an ontology, plausible re-
lations, and functional forms (Griffiths & Tenenbaum, 2009).
Probabilistic graphical models are formal structures for ex-
pressing stochastic dependencies between variables. But are
our events valid variables? To define a set of possible graphs
over variables, we usually need to know what those variables
are. Given that we do not know when events will occur events
would make events a bad candidate for graphical nodes. Fur-
thermore, there’s no obvious way to say whether event at
time t0 counts as the “same” event (or even kind of event)
as that which happens at t1. Without some other information
we would be left with a proliferation of variables equal to
the number of events we observe. Instead, we will consider
the case where events have signature identities that identify
which sequence of events each event belongs to. These se-
quences will be our variables. Both events and variables fea-
ture in our ontology, but the graphs will be defined over po-
tential relations between variables which will be associated
with sequences of point events. Events will be the compo-
nents through which variables actually affect one another.

As in Griffiths and Tenenbaum (2009), to compute pos-
teriors over graphs, we will need a prior over the possible
relations between variables. Often this will be made easier
by knowing (from our ontology) which things are potential
causes of which effects. When all possible binary relations
could be graphs it is a challenge not because it is difficult to
impose a prior per se, but because of how rapidly the number
of graphs grows in terms of the number of variables. This
is especially pernicious because by using continuous-time
causal networks, we can represent directed cycles as easily as
any other relationship, which allows even more graphs than
in the traditional causal Bayes nets framework.

For each of these relationships, we will express a func-
tional form defining how variables relate to one another. In
particular, we need to relate the kind of relationship between
variables (e.g., generative, preventative) to the how the in-
fluence of particular events associated with those variables
changes over time. Our approach is to see an event(t′) in the
cause-variable’s event set as inducing a NHPP on the vari-
able’s child nodes. For generative causes, the NHPP starts
with a maximum rate(ψ) immediately when it is triggered
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with the rate decaying exponentially according to a decay
rate(ϕ) scaled distance from the cause event ((t − t′)). This
produces a NHPP with rate function λ(t) =ψe−ϕ(t−t′).

We compute likelihoods for events sequences as follows.
We compute a likelihood for an event using the rate function
of its associated variable during its wait-time interval. We
then update the rate functions for variables that are effects of
the variable associated with the event, and iterate this process
until we exhaust the event sequence. The waiting-time likeli-
hood for each event can be further broken down into waiting-
time likelihoods for the Poisson process composing its vari-
able’s rate function at the instant the event occurs. Note that
from the superposition perspective an event’s waiting-time
implies that none of the variable’s processes produced events
until the point when the event in question occurs.

The general form of the cdf (cumulative density function)
of the waiting time distribution until the first event of a NHPP
with time-dependent rate function λ(⋅), is:

F(T ≤ t) = F(t) = 1−exp(−∫
t

0
λ(s)ds).

This can be converted to a pdf by taking the derivative accord-
ing to t, which (assuming that the derivative exists) becomes,

p(t) = λ(t)exp(−∫
t

0
λ(s)ds).

Modeling Continuous Event Streams:
Lagnado & Speekenbrink, 2010

In this section we will model Experiment 2 from Lagnado and
Speekenbrink (2010) using the formal elements described in
Pacer and Griffiths (2012) and above. As mentioned, Bramley
et al. (2014) raised a concern that the framework described
in Pacer and Griffiths (2012) does not address “sequences of
point events”. Here, we apply this framework to modeling
data from real-time event streams, characterizing sequences
of point events and using them for computing the same infer-
ences Lagnado and Speekenbrink (2010) asked of their par-
ticipants. Moreover, our models’ judgments closely match
average human responses, which suggests the framework suc-
ceeds both at characterizing the sequences of point events and
at producing models capable of causal inference that compa-
rable to that of human beings facing the same problems.

Experiment Description
Experiment 2 of Lagnado and Speekenbrink (2010) has the
form of participants observing a continuous sequence of
events (as a video) that represent the time-course of various
kinds of seismic activity, specifically three kinds of seismic
waves (which we shall refer to as A, B, C) and earthquakes
(E). The goal of the participants was to infer which (if any)
of the seismic waves were the cause of the earthquakes.

Earlier work suggests people will lessen their judgments of
causal attribution between two variables if there is a longer(or
more variable) delay between the occurrence of two events.

However, this could either be because there is something spe-
cific about long delays between causes and effects, or that
longer delays allow more opportunities during which other
events could occur that are not causally related, thus weak-
ening the connection between the original two variables of
interest.2 According to the design of the experiment – un-
known to the participant – only one of the types of wave(A)
was a cause of earthquakes, but sometimes non-causal waves
would occur in the interval of time between the cause and its
effects. This allows us to disentangle the two explanations for
reduced causal strength due to longer delays. The length of
time between the cause and its effect and the commonness of
mid-interval events’ sometimes were the primary differences
between the experimental conditions.

The experiment had a 2× 2 structure. DELAY-LENGTH
could be LONG (mean delay between cause and effect = 6s) or
SHORT (mean delay between cause and effect = 3s) — in both
the standard-deviation is 0.1s. The probability a non-cause
event occurred between the cause and the effect was LOW
(≈ 35% of the time a non-cause event would occur between
a cause and its effect) or HIGH (≈ 65%). These probabili-
ties are approximate because the event sequences were ran-
domly sampled and so cannot be expected to exactly match
expected percentages. The authors chose delay distributions
between the occurrence of cause and lure events to produce
these probabilities in aggregate across samples.

They generated sixty datasets per condition that repre-
sented the time-stamps and identities of events that occurred
in the movie. Of these, the first twenty datasets were used,
with each of twenty participants participating in all four con-
ditions exactly once. They were told that each animation
would last no more than 10 minutes.3

After each video participants were asked to provide judg-
ments about the seismic waves that they had just observed.
Participants were first asked to rate the extent to which each
wave was a cause of earthquakes on a scale of “0 (does not
cause the effect) to 10 (completely causes the effect)”. This
provides an “absolute” judgment of each wave’s causal prop-
erties since the rating provided for one of the waves did not
constrain the rating provided for the other waves. Participants
were then asked for “comparative ratings, in which they di-
vided 100 points amongst the three types of cause.”

Building the Model
We treated the problem as one of structure induction. That is,
given the knowledge that there are three possible cause vari-
ables ({A,B,C}) of the effect in question (E) and the data D,
we want to infer a posterior over the possible graphs linking

2We should note that “more opportunities” is actually somewhat
misleading as opportunities in plural form suggests that there would
be a countable number of opportunities during which these events
could intervene. It is more accurate to say that long delays allow for
a larger, continuous amount of “opportunity”(a mass noun).

3Though participants did see multiple conditions, we treat each
trial independently rather than attempting to detect order effects.
While we acknowledge its potential usefulness, addressing this is
outside the scope of our analysis.
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the causes to the effects. Then we will use this posterior to
compute measures analogous to those given by participants.

Graphs and Parameterization We considered graphs with
any subset of three potential independent causes {A,B,C}.
All causal links were generative and non-interacting with the
other causal links. Thus the total rate of effects under a graph
would be the superposition of all Poisson processes induced
by the activity of cause-events according to the graph. As de-
scribed in Pacer and Griffiths (2012) this is the continuous-
time analog to the Noisy-OR parameterization of a causal
graph. Because causes were independent according to all
graphs, the likelihood of their occurrences can be removed
from our likelihood calculations.

In addition to a base-rate process PPλ∅ , which we assumed
was a homogeneous Poisson process with rate λ∅, we allowed
each cause-event (t[X]d ) to initiate a NHPP with maximum rate
(ψX ) that decays exponentially(ϕX ) relative to the the distance
from the cause event(∣t − t[X]d ∣).

We sampled these parameters in a similar manner to
Pacer and Griffiths (2012). We use uniform random vari-
ables (u ∼U(−10.1,10.1)) under a transformation (λ∅ = eu)
to determine our initial timescale (in seconds), which acts
as our base-rate PP. This creates a approximate scale-free
baseline parameter (λ∅ ∼ 1

λ∅ ) from which other parameters
can be sampled. We sample ψX ∼ Γ(λ∅,1) (the maximum
rate induced by a single event of type X occurring) and
ϕX ∼ Γ(λ∅,1) (the rate at which the intensity decays accord-
ing to the distance in time from that instance) associated with
each potential cause X ∈ {A,B,C}. Each cause instance(t[X]d )

produces a NHPP with rate function ψexp(−ϕ(t − t[X]d )).
Because the baseline distribution is scale-free and defines

other scales, these parameters are not “fit to the data”. A
“misfit” baseline scale produces overflow, underflow or other
numerical and computational issues that result in model fail-
ure. But, any success can only stem from the model’s struc-
tural commitments and the relation to the modeled data.

Data The data used to generate stimuli in Lagnado and
Speekenbrink (2010) are organized by the time-step (in mil-
liseconds) that an event occurred and the identity of the kind
of event (i.e., A,B,C or E). Though there were sixty gener-
ated sequences consistent with the design principles of their
experiment, we used only the first twenty which corresponded
with the conditions that they ran in their study.

Structure Inference For each graph (Gα ∈ G) and dataset
(D) we take our sampled parameters({Θ}m∈{1,...,M}; for us,
M = 200000) and compute:

L(D∣Gα) ≈
1
M

M

∑
m=1

exp(ℓ(D∣Gα,Θm))

We compute log-likelihoods (ℓ(⋅)) under Gα and Θm as fol-
lows. For computational efficiency, we eliminate events do
not alter other events (e.g., under graph B→ E, we consider
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Figure 2: Top: Mean absolute judgments, Experiment 2 of
Lagnado and Speekenbrink (2010). Bottom: mabs model.

likelihoods of E- and B-events but eliminate A- and C-events).
Using the reduced event set ({0,t1, . . . ,ti, . . . ,tn}), we can par-
tition the observation interval and considering each interval
× event-identity pair τt j ,t j+1 × (X j,X j+1) ≡ τ j conditioned on

previous events associated with cause X (t[X]d ∀d ≤ j) we can
calculate the log-likelihood. The total log-likelihood:

ℓ(D∣Gα,Θ) = −Λ(t0,tn)+λ{t}n
0
,

where Λ(0,tn) is the log-likelihood component of the intervals,

Λ(0,tn)=λ∅(tn−t0)+∑
τ j∈D
[∑

X ,
X→E∈Gα

[ψX
ϕX
(e−ϕX t j −e−ϕX t j+1)∑

t[X]d ≤t j

[eϕX t[X]d ]]],

and λ{t}n
0

is the log-likelihood component of the point events,

λ{t}n
0
= ∑

t j∈t
[E]
j

[ log(λ∅+∑
X ,

X→E∈Gα

[ψX(e−ϕX t j) ∑
t[X]d ≤t j

[eϕX t[X]d ]])].

Using the likelihood estimate(L) plus the prior for each
graph (in our case, uniform over graphs p(Gα)∝ 1,∀α), we
can then compute the posteriors for all graphs.

p(Gα∣D) =
L(D∣Gα)× p(Gα)

∑Gα∈G (L(D∣Gα)× p(Gα))

Comparison to Human Responses People judged causes,
not graphs; we need a way to map posterior probabilities
p(Gα∣D) to causal judgments. Lagnado and Speekenbrink
(2010) asked participants for absolute measures (assign each
potential cause a value on scale from 0 to 11) and comparative
measures (assign a total of 100 points to the three causes).

We will model judgments as statements about structure in-
ferences (not strength estimations). We interpret the absolute
score in terms of a probability that a particular variable is
thought to be present by marginalizing over the probabilities
given to the graphs that include that variable is a cause. I.e.,

mabs(X ∈N; p(G∣D)) = ∑
Gα∶(X→E)∈Gα

p(Gα∣D)
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Note if the complete graph were to receive all the probabil-
ity measure, then mabs(A), mabs(B), and mabs(C) would each
equal 1, and so their sum would equal 3. Thus, this is not a
probability measure in the usual sense because we have not
defined probabilities over causes, but over graphs.

However, by normalizing by the sum of these measures
over all nodes, we can adapt the absolute measure to saying
something about the comparative importance of the different
nodes in producing the effect. This will sum to 1, but still
should not be interpreted as anything like a direct probability
of the cause being present.

mcomp(X ∈N; p(G∣D)) =
∑Gα∶(X→E)∈Gα p(Gα∣D)
∑x∈N∑Gα∶(x→E)∈Gα p(Gα∣D)

Finally, we could consider the comparative prompt as imply-
ing that there is only one cause, and so we should only con-
sider those graphs which attribute a single cause for produc-
ing the effect in question. In fact we can say that under the
restriction that only one cause may exist the graph including
X as its sole cause is the measure of the comparative impor-
tance of X (since it is the only graph with that cause).

munique(X ∈N; p(G∣D)) = p(X → E ∣D)
∑X∈{A,B,C} p(X → E ∣D)

Results
We find an excellent fit between our models’ predicted
values and average human judgments for both absolute
(r ≈ 0.93, p < 10−5, see Figure 2) and comparative judgments
(mcomp ∶ r ≈ 0.96, p < 10−5; munique ∶ r ≈ 0.98, p < 10−7, see
Figure 3) of the different kinds of waves’ causal importance.

Discussion
Learning from streams of events unfolding in continuous time
is an important case to consider in studying human causal in-
duction. We have shown how this case can be accommodated
within the framework of Pacer and Griffiths (2012), success-
fully predicting mean human judgments of real-time event
streams used in Lagnado and Speekenbrink (2010). We know
of no other framework that has been brought to bear on real-
time event streams.

Often, statistical frameworks of theories of human causal
inference are contrasted with mechanistic theories. The kinds
of arguments used against statistics are that they neglect to in-
clude information about temporal and spatial characteristics
of the modeled processes. We have seen success in modeling
causal induction that relies explicitly on the temporal aspects
of events. We see this as a step towards reconciling mecha-
nism and statistics. More sophisticated graphical models can
be built that articulate complex causal mechanisms that are
sensitive to particular temporal and spatial properties. This
gives a hope for dissolving statistical-mechanistic divide and
the birth of a new synthesis with statistical inferences com-
puted over mechanistic theories.
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Figure 3: Top: Mean human comparative judgments from
Lagnado and Speekenbrink (2010). Middle: mcomp model.
Bottom: munique model.
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