
UC San Diego
UC San Diego Previously Published Works

Title
Cramér-type moderate deviations for Studentized two-sample $U$-
statistics with applications

Permalink
https://escholarship.org/uc/item/0cq7z37p

Journal
The Annals of Statistics, 44(5)

ISSN
0090-5364

Authors
Chang, Jinyuan
Shao, Qi-Man
Zhou, Wen-Xin

Publication Date
2016

DOI
10.1214/15-aos1375
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cq7z37p
https://escholarship.org
http://www.cdlib.org/


The Annals of Statistics
2016, Vol. 44, No. 5, 1931–1956
DOI: 10.1214/15-AOS1375
© Institute of Mathematical Statistics, 2016

CRAMÉR-TYPE MODERATE DEVIATIONS FOR STUDENTIZED
TWO-SAMPLE U -STATISTICS WITH APPLICATIONS

BY JINYUAN CHANG1,∗,†, QI-MAN SHAO2,‡ AND WEN-XIN ZHOU3,§,†

Southwestern University of Finance and Economics,∗ University of Melbourne,†

Chinese University of Hong Kong‡ and Princeton University§

Two-sample U -statistics are widely used in a broad range of applications,
including those in the fields of biostatistics and econometrics. In this paper,
we establish sharp Cramér-type moderate deviation theorems for Studentized
two-sample U -statistics in a general framework, including the two-sample
t-statistic and Studentized Mann–Whitney test statistic as prototypical exam-
ples. In particular, a refined moderate deviation theorem with second-order
accuracy is established for the two-sample t-statistic. These results extend the
applicability of the existing statistical methodologies from the one-sample
t-statistic to more general nonlinear statistics. Applications to two-sample
large-scale multiple testing problems with false discovery rate control and
the regularized bootstrap method are also discussed.

1. Introduction. The U -statistic is one of the most commonly used nonlinear
and nonparametric statistics, and its asymptotic theory has been well studied since
the seminal paper of Hoeffding (1948). U -statistics extend the scope of parametric
estimation to more complex nonparametric problems and provide a general theo-
retical framework for statistical inference. We refer to Koroljuk and Borovskich
(1994) for a systematic presentation of the theory of U -statistics, and to Kowalski
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and Tu (2007) for more recently discovered methods and contemporary applica-
tions of U -statistics.

Applications of U -statistics can also be found in high dimensional statisti-
cal inference and estimation, including the simultaneous testing of many differ-
ent hypotheses, feature selection and ranking, the estimation of high dimensional
graphical models and sparse, high dimensional signal detection. In the context of
high dimensional hypothesis testing, for example, several new methods based on
U -statistics have been proposed and studied in Chen and Qin (2010), Chen, Zhang
and Zhong (2010) and Zhong and Chen (2011). Moreover, Li et al. (2012) and Li,
Zhong and Zhu (2012) employed U -statistics to construct independence feature
screening procedures for analyzing ultrahigh dimensional data.

Due to heteroscedasticity, the measurements across disparate subjects may dif-
fer significantly in scale for each feature. To standardize for scale, unknown nui-
sance parameters are always involved and a natural approach is to use Studentized,
or self-normalized statistics. The noteworthy advantage of Studentization is that
compared to standardized statistics, Studentized ratios take heteroscedasticity into
account and are more robust against heavy-tailed data. The theoretical and numer-
ical studies in Delaigle, Hall and Jin (2011) and Chang, Tang and Wu (2013, 2016)
evidence the importance of using Studentized statistics in high dimensional data
analysis. As noted in Delaigle, Hall and Jin (2011), a careful study of the moderate
deviations in the Studentized ratios is indispensable to understanding the common
statistical procedures used in analyzing high dimensional data.

Further, it is now known that the theory of Cramér-type moderate deviations for
Studentized statistics quantifies the accuracy of the estimated p-values, which is
crucial in the study of large-scale multiple tests for controlling the false discovery
rate [Fan, Hall and Yao (2007), Liu and Shao (2010)]. In particular, Cramér-type
moderate deviation results can be used to investigate the robustness and accuracy
properties of p-values and critical values in multiple testing procedures. However,
thus far, most applications have been confined to t-statistics [Cao and Kosorok
(2011), Delaigle, Hall and Jin (2011), Fan, Hall and Yao (2007), Wang and Hall
(2009)]. It is conjectured in Fan, Hall and Yao (2007) that analogues of the theoret-
ical properties of these statistical methodologies remain valid for other resampling
methods based on Studentized statistics. Motivated by the above applications, we
are attempting to develop a unified theory on moderate deviations for more general
Studentized nonlinear statistics, in particular, for two-sample U -statistics.

The asymptotic properties of the standardized U -statistics are extensively stud-
ied in the literature, whereas significant developments are achieved in the past
decade for one-sample Studentized U -statistics. We refer to Wang, Jing and Zhao
(2000) and the references therein for Berry–Esseen-type bounds and Edgeworth
expansions. The results for moderate deviations can be found in Vandemaele and
Veraverbeke (1985), Lai, Shao and Wang (2011) and Shao and Zhou (2016). The
results in Shao and Zhou (2016) paved the way for further applications of statistical
methodologies using Studentized U -statistics in high dimensional data analysis.
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Two-sample U -statistics are also commonly used to compare the different
(treatment) effects of two groups, such as an experimental group and a control
group, in scientifically controlled experiments. However, due to the structural com-
plexities, the theoretical properties of the two-sample U -statistics have not been
well studied. In this paper, we establish a Cramér-type moderate deviation theo-
rem in a general framework for Studentized two-sample U -statistics, especially
the two-sample t-statistic and the Studentized Mann–Whitney test. In particular, a
refined moderate deviation theorem with second-order accuracy is established for
the two-sample t-statistic.

The paper is organized as follows. In Section 2, we present the main results
on Cramér-type moderate deviations for Studentized two-sample U -statistics as
well as a refined result for the two-sample t-statistic. In Section 3, we investigate
statistical applications of our theoretical results to the problem of simultaneously
testing many different hypotheses, based particularly on the two-sample t-statistics
and Studentized Mann–Whitney tests. Section 4 shows numerical studies. A dis-
cussion is given in Section 5. All the proofs are relegated to the supplementary
material [Chang, Shao and Zhou (2016)].

2. Moderate deviations for Studentized U -statistics. We use the following
notation throughout this paper. For two sequences of real numbers an and bn, we
write an � bn if there exist two positive constants c1, c2 such that c1 ≤ an/bn ≤
c2 for all n ≥ 1, we write an = O(bn) if there is a constant C such that |an| ≤
C|bn| holds for all sufficiently large n, and we write an ∼ bn and an = o(bn),
respectively, if limn→∞ an/bn = 1 and limn→∞ an/bn = 0. Moreover, for two real
numbers a and b, we write for ease of presentation that a ∨ b = max(a, b) and
a ∧ b = min(a, b).

2.1. A review of Studentized one-sample U -statistics. We start with a brief re-
view of Cramér-type moderate deviation for Studentized one-sample U -statistics.
For an integer s ≥ 2 and for n > 2s, let X1, . . . ,Xn be independent and identically
distributed (i.i.d.) random variables taking values in a metric space (X,G), and let
h : Xd �→ R be a symmetric Borel measurable function. Hoeffding’s U -statistic
with a kernel h of degree s is defined as

Un = 1(n
s

) ∑
1≤i1<···<is≤n

h(Xi1, . . . ,Xis ),

which is an unbiased estimate of θ = E{h(X1, . . . ,Xs)}. In particular, we focus on
the case where X is the Euclidean space R

r for some integer r ≥ 1. When r ≥ 2,
write Xi = (X1

i , . . . ,X
r
i )

T for i = 1, . . . , n.
Let

h1(x) = E
{
h(X1, . . . ,Xs)|X1 = x

}
for any x = (

x1, . . . , xr)T ∈ R
r
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and

σ 2 = var
{
h1(X1)

}
, v2

h = var
{
h(X1,X2, . . . ,Xs)

}
.

Assume that 0 < σ 2 < ∞, then the standardized nondegenerate U -statistic is given
by

Zn = n1/2

sσ
(Un − θ).

Because σ is usually unknown, we are interested in the following Studentized
U -statistic:

Ûn = n1/2

sσ̂
(Un − θ),(2.1)

where σ̂ 2 denotes the leave-one-out jackknife estimator of σ 2 given by

σ̂ 2 = (n − 1)

(n − s)2

n∑
i=1

(qi − Un)
2 with

qi = 1(n−1
s−1

) ∑
1≤�1<···<�s−1≤n

�j =i for each j=1,...,s−1

h(Xi,X�1, . . . ,X�s−1).

Shao and Zhou (2016) established a general Cramér-type moderate devia-
tion theorem for Studentized nonlinear statistics, in particular for Studentized U -
statistics.

THEOREM 2.1. Assume that vp := [E{|h1(X1) − θ |p}]1/p < ∞ for some
2 < p ≤ 3. Suppose that there are constants c0 ≥ 1 and κ ≥ 0 such that for all
x1, . . . , xs ∈ R,

{
h(x1, . . . , xs) − θ

}2 ≤ c0

[
κσ 2 +

s∑
i=1

{
h1(xi) − θ

}2
]
.(2.2)

Then there exist constants C,c > 0 depending only on d such that

P(Ûn ≥ x)

1 − �(x)
= 1 + O(1)

{
(vp/σ)p(1 + x)pn1−p/2 + (

a1/2
s + vh/σ

)
(1 + x)3n−1/2}

holds uniformly for 0 ≤ x ≤ c min{(σ/vp)n1/2−1/p, (n/as)
1/6}, where |O(1)| ≤ C

and as = max(c0κ, c0 + s). In particular, we have

P(Ûn ≥ x)

1 − �(x)
→ 1

holds uniformly in x ∈ [0, o(n1/2−1/p)).
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Condition (2.2) is satisfied for a large class of U -statistics. Below are some
examples.

Statistic Kernel function c0 κ

t-statistic h(x1, x2) = 0.5(x1 + x2) 2 0
Sample variance h(x1, x2) = 0.5(x1 − x2)2 10 (θ/σ )2

Gini’s mean difference h(x1, x2) = |x1 − x2| 8 (θ/σ )2

One-sample Wilcoxon’s statistic h(x1, x2) = I {x1 + x2 ≤ 0} 1 σ−2

Kendall’s τ h(x1, x2) = 2I {(x2
2 − x2

1 )(x1
2 − x1

1 ) > 0} 1 σ−2

2.2. Studentized two-sample U -statistics. Let X = {X1, . . . ,Xn1} and Y =
{Y1, . . . , Yn2} be two independent random samples, where X is drawn from a prob-
ability distribution P and Y is drawn from another probability distribution Q. With
s1 and s2 being two positive integers, let

h(x1, . . . , xs1;y1, . . . , ys2)

be a kernel function of order (s1, s2) which is real and symmetric both in its first
s1 variates and in its last s2 variates. It is known that a nonsymmetric kernel can
always be replaced with a symmetrized version by averaging across all possible
rearrangements of the indices.

Set θ := E{h(X1, . . . ,Xs1;Y1, . . . , Ys2)}, and let

Un̄ = 1(n1
s1

)(n2
s2

) ∑
1≤i1<···<is1≤n1

∑
1≤j1<···<js2≤n2

h(Xi1, . . . ,Xis1
;Yj1, . . . , Yjs2

),

be the two-sample U -statistic, where n̄ = (n1, n2). To lighten the notation, we
write Xi1,...,i� = (Xi1, . . . ,Xi�), Yj1,...,jk

= (Yj1, . . . , Yjk
) such that

h(Xi1,...,i�;Yj1,...,jk
) = h(Xi1, . . . ,Xi�;Yj1, . . . , Yjk

),

and define

h1(x) = E
{
h(X1,...,s1;Y1,...,s2)|X1 = x

}
,

(2.3)
h2(y) = E

{
h(X1,...,s1;Y1,...,s2)|Y1 = y

}
.

Also let v2
h = var{h(X1,...,s1;Y1,...,s2)}, σ 2

1 = var{h1(Xi)}, σ 2
2 = var{h2(Yj )} and

σ 2 = σ 2
1 + σ 2

2 , σ 2
n̄ = s2

1σ 2
1 n−1

1 + s2
2σ 2

2 n−1
2 .(2.4)

For the standardized two-sample U -statistic of the form σ−1
n̄ (Un̄ −θ), a uniform

Berry–Esseen bound of order O{(n1 ∧ n2)
−1/2} was obtained by Helmers and

Janssen (1982) and Borovskich (1983). Using a concentration inequality approach,
Chen and Shao (2007) proved a refined uniform bound and also established an
optimal nonuniform Berry–Esseen bound. For large deviation asymptotics of two-
sample U -statistics, we refer to Nikitin and Ponikarov (2006) and the references
therein.
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Here, we are interested in the following Studentized two-sample U -statistic:

Ûn̄ = σ̂−1
n̄ (Un̄ − θ) with σ̂ 2

n̄ = s2
1 σ̂ 2

1 n−1
1 + s2

2 σ̂ 2
2 n−1

2 ,(2.5)

where

σ̂ 2
1 = 1

n1 − 1

n1∑
i=1

(
qi − 1

n1

n1∑
i=1

qi

)2

, σ̂ 2
2 = 1

n2 − 1

n2∑
j=1

(
pj − 1

n2

n2∑
j=1

pj

)2

and

qi = 1(n1−1
s1−1

)(n2
s2

) ∑
1≤i2<···<is1≤n1

i� =i,�=2,...,s1

∑
1≤j1<···<js2≤n2

h(Xi,i2,...,is1
;Yj1,...,js2

),

pj = 1(n1
s1

)(n2−1
s2−1

) ∑
1≤i1<···<is1≤n1

∑
1≤j2<···<js2≤n2

jk =j,k=2,...,s2

h(Xi1,...,is1
;Yj,j2,...,js2

).

Note that σ̂ 2
1 and σ̂ 2

2 are leave-one-out jackknife estimators of σ 2
1 and σ 2

2 , respec-
tively.

2.2.1. Moderate deviations for Ûn̄. For p > 2, let

v1,p = [
E

{∣∣h1(X1) − θ
∣∣p}]1/p and v2,p = [

E
{∣∣h2(Y1) − θ

∣∣p}]1/p
.(2.6)

Moreover, put

s = s1 ∨ s2, n̄ = (n1, n2), n = n1 ∧ n2

and

λn̄ = vh

(
n1 + n2

σ 2
1 n2 + σ 2

2 n1

)1/2

with v2
h = var

{
h(X1,...,s1;Y1,...,s2)

}
.

The following result gives a Cramér-type moderate deviation for Ûn̄ given in (2.5)
under mild assumptions. A self-contained proof can be found in the supplementary
material [Chang, Shao and Zhou (2016)].

THEOREM 2.2. Assume that there are constants c0 ≥ 1 and κ ≥ 0 such that

{
h(x;y) − θ

}2 ≤ c0

[
κσ 2 +

s1∑
i=1

{
h1(xi) − θ

}2 +
s2∑

j=1

{
h2(yj ) − θ

}2
]

(2.7)

for all x = (x1, . . . , xs1) and y = (y1, . . . , ys2), where σ 2 is given in (2.4). Assume
that v1,p and v2,p are finite for some 2 < p ≤ 3. Then there exist constants C,c > 0
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independent of n1 and n2 such that

P(Ûn̄ ≥ x)

1 − �(x)
(2.8)

= 1 + O(1)

{ 2∑
�=1

v
p
�,p(1 + x)p

σ
p
� n

p/2−1
�

+ (
a

1/2
d + λn̄

)
(1 + x)3

(
n1 + n2

n1n2

)1/2
}

holds uniformly for

0 ≤ x ≤ c min
[
(σ1/v1,p)n

p/2−1
1 , (σ2/v2,p)n

p/2−1
2 , a−1/6

s

{
n1n2/(n1 + n2)

}1/6]
,

where |O(1)| ≤ C and as = max(c0κ, c0 + s). In particular, as n → ∞,

P(Ûn̄ ≥ x)

1 − �(x)
→ 1(2.9)

holds uniformly in x ∈ [0, o(n1/2−1/p)).

Theorem 2.2 exhibits the dependence between the range of uniform conver-
gence of the relative error in the central limit theorem and the optimal moment
conditions. In particular, if p = 3, the region becomes 0 ≤ x ≤ O(n1/6). See The-
orem 2.3 in Jing, Shao and Wang (2003) for similar results on self-normalized
sums. Under higher order moment conditions, it is not clear if our technique can
be adapted to provide a better approximation for the tail probability P(Ûn̄ ≥ x) for
x lying between n1/6 and n1/2 in order.

It is also worth noticing that many commonly used kernels in nonparametric
statistics turn out to be linear combinations of the indicator functions and, there-
fore, satisfy condition (2.7) immediately.

2.2.2. Two-sample t-statistic. As a prototypical example of two-sample U -
statistics, the two-sample t-statistic is of significant interest due to its wide appli-
cability. The advantage of using t-tests, either one-sample or two-sample, is their
high degree of robustness against heavy-tailed data in which the sampling distri-
bution has only a finite third or fourth moment. The robustness of the t-statistic
is useful in high dimensional data analysis under the sparsity assumption on the
signal of interest. When dealing with two experimental groups, which are typically
independent, in scientifically controlled experiments, the two-sample t-statistic is
one of the most commonly used statistics for hypothesis testing and constructing
confidence intervals for the difference between the means of the two groups.

Let X = {X1, . . . ,Xn1} be a random sample from a one-dimensional population
with mean μ1 and variance σ 2

1 , and let Y = {Y1, . . . , Yn2} be a random sample from
another one-dimensional population with mean μ2 and variance σ 2

2 independent
of X . The two-sample t-statistic is defined as

T̂n̄ = X̄ − Ȳ√
σ̂ 2

1 n−1
1 + σ̂ 2

2 n−1
2

,
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where n̄ = (n1, n2), X̄ = n−1
1

∑n1
i=1 Xi , Ȳ = n−1

2
∑n2

j=1 Yj and

σ̂ 2
1 = 1

n1 − 1

n1∑
i=1

(Xi − X̄)2, σ̂ 2
2 = 1

n2 − 1

n2∑
j=1

(Yj − Ȳ )2.

The following result is a direct consequence of Theorem 2.2.

THEOREM 2.3. Assume that μ1 = μ2, and E(|X1|p) < ∞,E(|Y1|p) < ∞ for
some 2 < p ≤ 3. Then there exist absolute constants C,c > 0 such that

P(T̂n̄ ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)p

2∑
�=1

(v�,p/σ�)
pn

1−p/2
�

holds uniformly for 0 ≤ x ≤ c min�=1,2{(σ�/v�,p)n
1/2−1/p
� }, where |O(1)| ≤ C

and v1,p = {E(|X1 − μ1|p)}1/p , v2,p = {E(|Y1 − μ2|p)}1/p .

Motivated by a series of recent studies on the effectiveness and accuracy of
multiple-hypothesis testing using t-tests, we investigate whether a higher order ex-
pansion of the relative error, as in Theorem 1.2 of Wang (2005) for self-normalized
sums, holds for the two-sample t-statistic, so that one can use bootstrap calibra-
tion to correct skewness [Delaigle, Hall and Jin (2011), Fan, Hall and Yao (2007)]
or study power properties against sparse alternatives [Wang and Hall (2009)].
The following theorem gives a refined Cramér-type moderate deviation result for
T̂n̄, whose proof is placed in the supplementary material [Chang, Shao and Zhou
(2016)].

THEOREM 2.4. Assume that μ1 = μ2. Let γ1 = E{(X1 − μ1)
3} and γ2 =

E{(Y1 − μ2)
3} be the third central moment of X1 and Y1, respectively. Moreover,

assume that E(|X1|p) < ∞,E(|Y1|p) < ∞ for some 3 < p ≤ 4. Then

P(T̂n̄ ≥ x)

1 − �(x)
= exp

{
− γ1n

−2
1 − γ2n

−2
2

3(σ 2
1 n−1

1 + σ 2
2 n−1

2 )3/2
x3

}
(2.10)

×
[

1 + O(1)

2∑
�=1

{
v3
�,3(1 + x)

σ 3
� n

1/2
�

+ v
p
�,p(1 + x)p

σ
p
� n

p/2−1
�

}]
holds uniformly for

0 ≤ x ≤ c min
�=1,2

min
{
(σ�/v�,3)

3n
1/2
� , (σ�/v�,p)n

1/2−1/p
�

}
,(2.11)

where |O(1)| ≤ C and for every q ≥ 1, v1,q = {E(|X1 − μ1|q)}1/q , v2,q =
{E(|Y1 − μ2|q)}1/q .

A refined Cramér-type moderate deviation theorem for the one-sample t-
statistic was established in Wang (2011), which to our knowledge, is the best result
for the t-statistic known up to date, or equivalently, self-normalized sums.
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2.2.3. More examples of two-sample U -statistics. Beyond the two-sample t-
statistic, we enumerate three more well-known two-sample U -statistics and refer to
Nikitin and Ponikarov (2006) for more examples. Let X = {X1, . . . ,Xn1} and Y =
{Y1, . . . , Yn2} be two independent random samples from population distributions P

and Q, respectively.

EXAMPLE 2.1 (The Mann–Whitney test statistic). The kernel h is of order
(s1, s2) = (1,1), defined as

h(x;y) = I {x ≤ y} − 1/2 with θ = P(X1 ≤ Y1) − 1/2,

and in view of (2.3),

h1(x) = 1/2 − G(x), h2(y) = F(y) − 1/2.

In particular, if F ≡ G, we have σ 2
1 = σ 2

2 = 1/12.

EXAMPLE 2.2 (The Lehmann statistic). The kernel h is of order (s1, s2) =
(2,2), defined as

h(x1, x2;y1, y2) = I
{|x1 − x2| ≤ |y1 − y2|} − 1/2

with θ = P(|X1 −X2| ≤ |Y1 −Y2|)−1/2. Then under H0 : θ = 0, E{h(X1,X2;Y1,

Y2)} = 0, and

h1(x) = G(x)
{
1 − G(x)

} − 1/6, h2(y) = F(y)
{
F(y) − 1

} + 1/6.

In particular, if F ≡ G, then σ 2
1 = σ 2

2 = 1/180.

EXAMPLE 2.3 (The Kochar statistic). The Kochar statistic was constructed
by Kochar (1979) to test if the two hazard failure rates are different. Denote by F
the class of all absolutely continuous cumulative distribution functions (CDF) F(·)
satisfying F(0) = 0. For two arbitrary CDF’s F,G ∈ F , and let f = F ′, g = G′
be their densities. Thus, the hazard failure rates are defined by

rF (t) = f (t)

1 − F(t)
, rG(t) = g(t)

1 − G(t)
,

as long as both 1 − F(t) and 1 − G(t) are positive. Kochar (1979) considered the
problem of testing the null hypothesis H0 : rF (t) = rG(t) against the alternative
H1 : rF (t) ≤ rG(t), t ≥ 0 with strict inequality over a set of nonzero measures.
Observe that H1 holds if and only if δ(s, t) = F̄ (s)Ḡ(t) − F̄ (t)Ḡ(s) ≥ 0 for s ≥
t ≥ 0 with strict inequality over a set of nonzero measures, where F̄ (·) := 1 −F(·)
for any F ∈F .

Recall that X1, . . . ,Xn1 and Y1, . . . , Yn2 are two independent samples drawn
respectively from F and G. Following Nikitin and Ponikarov (2006), we see that

η(F ;G) = E
{
δ(X ∨ Y,X ∧ Y)

}
= P(Y1 ≤ Y2 ≤ X1 ≤ X2) + P(X1 ≤ Y2 ≤ Y2 ≤ X2)

− P(X1 ≤ X2 ≤ Y1 ≤ Y2) − P(Y1 ≤ X1 ≤ X2 ≤ Y2).
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Under H0, η(F ;G) = 0 while under H1, η(F ;G) > 0. The U -statistic with the
kernel of order (s1, s2) = (2,2) is given by

h(x1, x2;y1, y2) = I {yyxx or xyyx} − I {xxyy or yxxy}.
Here, the term “yyxx” refers to y1 ≤ y2 ≤ x1 ≤ x2 and similar treatments apply to
xyyx, xxyy and yxxy. Under H0 : rF (t) = rG(t), we have

h1(x) = −4G3(x)/3 + 4G2(x) − 2G(x),

h2(y) = 4F 3(y)/3 − 4F 2(y) + 2F(y).

In particular, if F ≡ G, then σ 2
1 = σ 2

2 = 8/105.

3. Multiple testing via Studentized two-sample tests. Multiple-hypothesis
testing occurs in a wide range of applications including DNA microarray exper-
iments, functional magnetic resonance imaging analysis (fMRI) and astronomi-
cal surveys. We refer to Dudoit and van der Laan (2008) for a systematic study
of the existing multiple testing procedures. In this section, we consider multiple-
hypothesis testing based on Studentized two-sample tests and show how the theo-
retical results in the previous section can be applied to these problems.

3.1. Two-sample t-test. A typical application of multiple-hypothesis testing in
high dimensions is the analysis of gene expression microarray data. To see whether
each gene in isolation behaves differently in a control group versus an experimental
group, we can apply the two-sample t-test. Assume that the statistical model is
given by {

Xi,k = μ1k + εi,k, i = 1, . . . , n1,
Yj,k = μ2k + ωj,k, j = 1, . . . , n2,

(3.1)

for k = 1, . . . ,m, where index k denotes the kth gene, i and j indicate the ith and
j th array, and the constants μ1k and μ2k , respectively, represent the mean effects
for the kth gene from the first and the second groups. For each k, ε1,k, . . . , εn1,k

(resp., ω1,k, . . . ,ωn2,k) are independent random variables with mean zero and vari-
ance σ 2

1k > 0 (resp., σ 2
2k > 0). For the kth marginal test, when the population vari-

ances σ 2
1k and σ 2

2k are unequal, the two-sample t-statistic is most commonly used
to carry out hypothesis testing for the null Hk

0 : μ1k = μ2k against the alternative
Hk

1 : μ1k = μ2k .
Since the seminal work of Benjamini and Hochberg (1995), the Benjamini and

Hochberg (B–H) procedure has become a popular technique in microarray data
analysis for gene selection, which along with many other procedures depend on
p-values that often need to be estimated. To control certain simultaneous errors, it
has been shown that using approximated p-values is asymptotically equivalent to
using the true p-values for controlling the k-familywise error rate (k-FWER) and
false discovery rate (FDR). See, for example, Kosorok and Ma (2007), Fan, Hall
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and Yao (2007) and Liu and Shao (2010) for one-sample tests. Cao and Kosorok
(2011) proposed an alternative method to control k-FWER and FDR in both large-
scale one- and two-sample t-tests. A common thread among the aforementioned
literature is that theoretically for the methods to work in controlling FDR at a
given level, the number of features m and the sample size n should satisfy logm =
o(n1/3).

Recently, Liu and Shao (2014) proposed a regularized bootstrap correction
method for multiple one-sample t-tests so that the constraint on m may be re-
laxed to logm = o(n1/2) under less stringent moment conditions as assumed in
Fan, Hall and Yao (2007) and Delaigle, Hall and Jin (2011). Using Theorem 2.4,
we show that the constraint on m in large scale two-sample t-tests can be relaxed to
logm = o(n1/2) as well. This provides theoretical justification of the effectiveness
of the bootstrap method which is frequently used for skewness correction.

To illustrate the main idea, here we restrict our attention to the special case in
which the observations are independent. Indeed, when test statistics are correlated,
false discovery control becomes very challenging under arbitrary dependence. Var-
ious dependence structures have been considered in the literature. See, for exam-
ple, Benjamini and Yekutieli (2001), Storey, Taylor and Siegmund (2004), Ferreira
and Zwinderman (2006), Leek and Storey (2008), Friguet, Kloareg and Causeur
(2009) and Fan, Han and Gu (2012), among others. For completeness, we gener-
alize the results to the dependent case in Section 3.1.3.

3.1.1. Normal calibration and phase transition. Consider the large-scale sig-
nificance testing problem:

Hk
0 : μ1k = μ2k versus Hk

1 : μ1k = μ2k, 1 ≤ k ≤ m.

Let V and R denote, respectively, the number of false rejections and the num-
ber of total rejections. The well-known false discovery proportion (FDP) is de-
fined as the ratio FDP = V/max(1,R), and FDR is the expected FDP, that is,
E{V/max(1,R)}. Benjamini and Hochberg (1995) proposed a distribution-free
method for choosing a p-value threshold that controls the FDR at a prespecified
level where 0 < α < 1. For k = 1, . . . ,m, let pk be the marginal p-value of the kth
test, and let p(1) ≤ · · · ≤ p(m) be the order statistics of p1, . . . , pm. For a prede-
termined control level α ∈ (0,1), the B–H procedure rejects hypotheses for which
pk ≤ p

(k̂)
, where

k̂ = max
{

0 ≤ k ≤ m : p(k) ≤ αk

m

}
(3.2)

with p(0) = 0.
In microarray analysis, two-sample t-tests are often used to identify differen-

tially expressed genes between two groups. Let

Tk = X̄k − Ȳk√
σ̂ 2

1kn
−1
1 + σ̂ 2

2kn
−1
2

, k = 1, . . . ,m,
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where X̄k = n−1
1

∑n1
i=1 Xi,k , Ȳk = n−1

2
∑n2

j=1 Yj,k and

σ̂ 2
1k = 1

n1 − 1

n1∑
i=1

(Xi,k − X̄k)
2, σ̂ 2

2k = 1

n2 − 1

n2∑
j=1

(Yj,k − Ȳk)
2.

Here and below, {Xi,1, . . . ,Xi,m}n1
i=1 and {Yj,1, . . . , Yj,m}n2

j=1 are independent ran-
dom samples from {X1, . . . ,Xm} and {Y1, . . . , Ym}, respectively, generated accord-
ing to model (3.1), which are usually non-Gaussian in practice. Moreover, assume
that the sample sizes of the two samples are of the same order, that is, n1 � n2.

Before stating the main results, we first introduce a number of notation. Set
H0 = {1 ≤ k ≤ m : μ1k = μ2k}, let m0 = #H0 denote the number of true null hy-
potheses and m1 = m−m0. Both m = m(n1, n2) and m0 = m0(n1, n2) are allowed
to grow as n = n1 ∧ n2 increases. We assume that

lim
n→∞

m0

m
= π0 ∈ (0,1].

In line with the notation used in Section 2, set

σ 2
1k = var(Xk), σ 2

2k = var(Yk),

γ1k = E
{
(Xk − μ1k)

3}
, γ2k = E

{
(Yk − μ2k)

3}
and σ 2

n̄,k = σ 2
1kn

−1
1 + σ 2

2kn
−1
2 . Throughout this subsection, we focus on the normal

calibration and let p̂k = 2 − 2�(|Tk|), where �(·) is the standard normal distribu-
tion function. Indeed, the exact null distribution of Tk and thus the true p-values
are unknown without the normality assumption.

THEOREM 3.1. Assume that {X1, . . . ,Xm,Y1, . . . , Ym} are independent non-
degenerate random variables; n1 � n2, m = m(n1, n2) → ∞ and logm = o(n1/2)

as n = n1 ∧ n2 → ∞. For independent random samples {Xi,1, . . . ,Xi,m}n1
i=1 and

{Yj,1, . . . , Yj,m}n2
j=1, suppose that

min
1≤k≤m

min(σ1k, σ2k) ≥ c > 0, max
1≤k≤m

max
{
E

(
ξ4
k

)
,E

(
η4

k

)} ≤ C < ∞(3.3)

for some constants C and c, where ξk = σ−1
1k (Xk −μ1k) and ηk = σ−1

2k (Yk −μ2k).
Moreover, assume that

#
{
1 ≤ k ≤ m : |μ1k − μ2k| ≥ 4(logm)1/2σn̄,k

} → ∞(3.4)

as n → ∞, and let

c0 = lim inf
n,m→∞

{
n1/2

m0

∑
k∈H0

σ−3
n̄,k

∣∣γ1kn
−2
1 − γ2kn

−2
2

∣∣}.(3.5)

(i) Suppose that logm = o(n1/3). Then as n → ∞, FDP� →P απ0 and
FDR� → απ0.
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(ii) Suppose that c0 > 0, logm ≥ c1n
1/3 for some c1 > 0 and that logm1 =

o(n1/3). Then there exists some constant β ∈ (α,1] such that

lim
n→∞P(FDP� ≥ β) = 1 and lim inf

n→∞ FDR� ≥ β.

(iii) Suppose that c0 > 0, (logm)/n1/3 → ∞ and logm1 = o(n1/3). Then as
n → ∞, FDP� →P 1 and FDR� → 1.

Here, FDR� and FDP� denote, respectively, the FDR and the FDP of the B–H
procedure with pk replaced by p̂k in (3.2).

Together, conclusions (i) and (ii) of Theorem 3.1 indicate that the number of
simultaneous tests can be as large as exp{o(n1/3)} before the normal calibration
becomes inaccurate. In particular, when n1 = n2 = n, the skewness parameter c0
given in (3.5) reduces to

c0 = lim inf
m→∞

{
1

m0

∑
k∈H0

|γ1k − γ2k|
(σ 2

1k + σ 2
2k)

3/2

}
.

As noted in Liu and Shao (2014), the limiting behavior of the FDR� varies in dif-
ferent regimes and exhibits interesting phase transition phenomena as the dimen-
sion m grows as a function of (n1, n2). The average of skewness c0 plays a crucial
role. It is also worth noting that conclusions (ii) and (iii) hold under the scenario
π0 = 1, that is, m1 = o(m). This corresponds to the sparse settings in applications
such as gene detections. Under finite 4th moments of Xk and Yk , the robustness of
two-sample t-tests and the accuracy of normal calibration in the FDR/FDP control
have been investigated in Cao and Kosorok (2011) when m1/m → π1 ∈ (0,1).
This corresponds to the relatively dense setting, and the sparse case that we con-
sidered above is not covered.

3.1.2. Bootstrap calibration and regularized bootstrap correction. In this sub-
section, we first use the conventional bootstrap calibration to improve the accuracy
of FDR control based on the fact that the bootstrap approximation removes the
skewness term that determines first-order inaccuracies of the standard normal ap-
proximation. However, the validity of bootstrap approximation requires the under-
lying distribution to be very light tailed, which does not seem realistic in real data
applications. As pointed in the literature of gene study, many gene data are com-
monly recognized to have heavy tails which violates the assumption on underlying
distribution used to make conventional bootstrap approximation work. Recently,
Liu and Shao (2014) proposed a regularized bootstrap method that is shown to
be more robust against the heavy tailedness of the underlying distribution and the
dimension m is allowed to be as large as exp{o(n1/2)}.

Let X †
k,b = {X†

1,k,b, . . . ,X
†
n1,k,b}, Y†

k,b = {Y †
1,k,b, . . . , Y

†
n2,k,b}, b = 1, . . . ,B , de-

note bootstrap samples drawn independently and uniformly, with replacement,
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from Xk = {X1,k, . . . ,Xn1,k} and Yk = {Y1,k, . . . , Yn2,k}, respectively. Let T
†
k,b be

the two-sample t-statistic constructed from {X†
1,k,b − X̄k, . . . ,X

†
n1,k,b − X̄k} and

{Y †
1,k,b − Ȳk, . . . , Y

†
n2,k,b − Ȳk}. Following Liu and Shao (2014), we use the follow-

ing empirical distribution:

F
†
m,B(t) = 1

mB

m∑
k=1

B∑
b=1

I
{∣∣T †

k,b

∣∣ ≥ t
}

to approximate the null distribution, and thus the estimated p-values are given by
p̂k,B = F

†
m,B(|Tk|). Respectively, FDPB and FDRB denote the FDP and the FDR

of the B–H procedure with pk replaced by p̂k,B in (3.2).
The following result shows that the bootstrap calibration is accurate provided

logm increases at a strictly slower rate than (n1 ∧ n2)
1/2, and the underlying dis-

tribution has sub-Gaussian tails.

THEOREM 3.2. Assume the conditions in Theorem 3.1 hold and that

max
1≤k≤m

max
{
E

(
et0ξ

2
k
)
,E

(
et0η

2
k
)} ≤ C < ∞

for some constants t0,C > 0.

(i) Suppose that logm = o(n1/3). Then as n → ∞, FDPB →P απ0 and
FDRB → απ0.

(ii) Suppose that logm = o(n1/2) and m1 ≤ mρ for some ρ ∈ (0,1). Then as
n → ∞, FDPB →P α and FDRB → α.

The sub-Gaussian condition in Theorem 3.2 is quite stringent in practice,
whereas it can hardly be weakened in general when the bootstrap method is ap-
plied. In the context of family-wise error rate control, Fan, Hall and Yao (2007)
proved that the bootstrap calibration is accurate if the observed data are bounded
and logm = o(n1/2). The regularized bootstrap method, however, adopts the very
similar idea of the trimmed estimators and is a two-step procedure that combines
the truncation technique and the bootstrap method.

First, define the trimmed samples

X̂i,k = Xi,kI
{|Xi,k| ≤ λ1k

}
, Ŷj,k = Yi,kI

{|Yj,k| ≤ λ2k

}
for i = 1, . . . , n1, j = 1, . . . , n2, where λ1k and λ2k are regularized parameters to
be specified. Let X̂ †

k,b = {X̂†
1,k,b, . . . , X̂

†
n1,k,b} and Ŷ†

k,b = {Ŷ †
1,k,b, . . . , Ŷ

†
n2,k,b}, b =

1, . . . ,B , be the corresponding bootstrap samples drawn by sampling randomly,
with replacement, from

X̂k = {X̂1,k, . . . , X̂n1,k} and Ŷk = {Ŷ1,k, . . . , Ŷn2,k},
respectively. Next, let T̂

†
k,b be the two-sample t-test statistic constructed from

{X̂†
1,k,b − n−1

1
∑n1

i=1 X̂i,k, . . . , X̂
†
n1,k,b − n−1

1
∑n1

i=1 X̂i,k} and {Ŷ †
1,k,b − n−1

2 ×
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j=1 Ŷj,k, . . . , Ŷ

†
n2,k,b − n−1

2
∑n2

j=1 Ŷj,k}. As in the previous procedure, define the
estimated p-values by

p̂k,RB = F̂
†
m,RB

(|Tk|) with F̂
†
m,RB(t) = 1

mB

m∑
k=1

B∑
b=1

I
{∣∣T̂ †

k,b

∣∣ ≥ t
}
.

Let FDPRB and FDRRB denote the FDP and the FDR, respectively, of the B–H
procedure with pk replaced by p̂k,RB in (3.2).

THEOREM 3.3. Assume the conditions in Theorem 3.1 hold and that

max
1≤k≤m

max
{
E

(|Xk|6)
,E

(|Yk|6)} ≤ C < ∞.(3.6)

The regularized parameters (λ1k, λ2k) are such that

λ1k �
(

n1

logm

)1/6

and λ2k �
(

n2

logm

)1/6

.(3.7)

(i) Suppose that logm = o(n1/3). Then as n → ∞, FDPRB →P απ0 and
FDRRB → απ0.

(ii) Suppose that logm = o(n1/2) and m1 ≤ mρ for some ρ ∈ (0,1). Then as
n → ∞, FDPRB →P α and FDRRB → α.

In view of Theorem 3.3, the regularized bootstrap approximation is valid under
mild moment conditions that are significantly weaker than those required for the
bootstrap method to work theoretically. The numerical performance will be inves-
tigated in Section 4. To highlight the main idea, a self-contained proof of Theo-
rem 3.1 is given in the supplementary material [Chang, Shao and Zhou (2016)].
The proofs of Theorems 3.2 and 3.3 are based on straightforward extensions of
Theorems 2.2 and 3.1 in Liu and Shao (2014), and thus are omitted.

3.1.3. FDR control under dependence. In this section, we generalize the re-
sults in previous sections to the dependence case. Write � = n1/n2. For every
k, � = 1, . . . ,m, let σ 2

k = σ 2
1k + �σ 2

2k and define

rk� = (σkσ�)
−1{

cov(Xk,X�) + � cov(Yk, Y�)
}
,(3.8)

which characterizes the dependence between (Xk,Yk) and (X�,Y�). Particularly,
when n1 = n2 and σ 2

1k = σ 2
2k , we see that rk� = 1

2{corr(Xk,X�) + corr(Yk, Y�)}. In
this subsection, we impose the following conditions on the dependence structure
of X = (X1, . . . ,Xm)T and Y = (Y1, . . . , Ym)T.

(D1) There exist constants 0 < r < 1, 0 < ρ < (1 − r)/(1 + r) and b1 > 0 such
that

max
1≤k =�≤m

|rk�| ≤ r and max
1≤k≤m

sk(m) ≤ b1m
ρ,
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where for k = 1, . . . ,m,

sk(m) = {
1 ≤ � ≤ m : corr(Xk,X�) ≥ (logm)−2−γ

or corr(Yk, Y�) ≥ (logm)−2−γ }
for some γ > 0.

(D2) There exist constants 0 < r < 1, 0 < ρ < (1 − r)/(1 + r) and b1 > 0 such
that max1≤k =�≤m |rk�| ≤ r and for each Xk , the number of variables X� that are
dependent of Xk is less than b1m

ρ .

The assumption max1≤k =�≤m |rk�| ≤ r for some 0 < r < 1 imposes a constraint
on the magnitudes of the correlations, which is natural in the sense that the correla-
tion matrix R = (rk�)1≤k,�≤m is singular if max1≤k =�≤m |rk�| = 1. Under condition
(D1), each (Xk,Yk) is allowed to be “moderately” correlated with at most as many
as O(mρ) other vectors. Condition (D2) enforces a local dependence structure on
the data, saying that each vector is dependent with at most as many as O(mρ) other
random vectors and independent of the remaining ones. The following theorem ex-
tends the results in previous sections to the dependence case. Its proof is placed in
the supplementary material [Chang, Shao and Zhou (2016)].

THEOREM 3.4. Assume that either condition (D1) holds with logm =
O(n1/8) or condition (D2) holds with logm = o(n1/3).

(i) Suppose that (3.3) and (3.4) are satisfied. Then as n → ∞, FDP� →P απ0
and FDR� → απ0.

(ii) Suppose that (3.3), (3.6) and (3.7) are satisfied. Then as n → ∞,
FDPRB →P απ0 and FDRRB → απ0.

In particular, assume that condition (D2) holds with logm = o(n1/2) and m1 ≤ mc

for some 0 < c < 1. Then as n → ∞, FDPRB →P απ0 and FDRRB → απ0.

3.2. Studentized Mann–Whitney test. Let X = {X1, . . . ,Xn1} and Y = {Y1,

. . . , Yn2} be two independent random samples from distributions F and G, respec-
tively. Let θ = P(X ≤ Y) − 1/2. Consider the null hypothesis H0 : θ = 0 against
the one-sided alternative H1 : θ > 0. This problem arises in many applications in-
cluding testing whether the physiological performance of an active drug is better
than that under the control treatment, and testing the effects of a policy, such as
unemployment insurance or a vocational training program, on the level of unem-
ployment.

The Mann–Whitney (M–W) test [Mann and Whitney (1947)], also known as
the two-sample Wilcoxon test [Wilcoxon (1945)], is prevalently used for testing
equality of means or medians, and serves as a nonparametric alternative to the
two-sample t-test. The corresponding test statistic is given by

Un̄ = 1

n1n2

n1∑
i=1

n2∑
j=1

I {Xi ≤ Yj }, n̄ = (n1, n2).(3.9)
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The M–W test is widely used in a wide range of fields including statistics, eco-
nomics and biomedicine, due to its good efficiency and robustness against para-
metric assumptions. Over one-third of the articles published in Experimental Eco-
nomics use the Mann–Whitney test and Okeh (2009) reported that thirty percent of
the articles in five biomedical journals published in 2004 used the Mann–Whitney
test. For example, using the M–W U test, Charness and Gneezy (2009) devel-
oped an experiment to test the conjecture that financial incentives help to foster
good habits. They recorded seven biometric measures (weight, body fat percent-
age, waist size, etc.) of each participant before and after the experiment to assess
the improvements across treatments. Although the M–W test was originally in-
troduced as a rank statistic to test if the distributions of two related samples are
identical, it has been prevalently used for testing equality of medians or means,
sometimes as an alternative to the two-sample t-test.

It was argued and formally examined recently in Chung and Romano (2016)
that the M–W test has generally been misused across disciplines. In fact, the M–W
test is only valid if the underlying distributions of the two groups are identical.
Nevertheless, when the purpose is to test the equality of distributions, it is recom-
mended to use a statistic, such as the Kolmogorov–Smirnov or the Cramér–von
Mises statistic, that captures the discrepancies of the entire distributions rather
than an individual parameter. More specifically, because the M–W test only rec-
ognizes deviation from θ = 0, it does not have much power in detecting overall
distributional discrepancies. Alternatively, the M–W test is frequently used to test
the equality of medians. However, Chung and Romano (2013) presented evidence
that this is another improper application of the M–W test and suggested to use the
Studentized median test.

Even when the M–W test is appropriately applied for testing H0 : θ = 0, the
asymptotic variance depends on the underlying distributions, unless the two pop-
ulation distributions are identical. As Hall and Wilson (1991) pointed out, the ap-
plication of resampling to pivotal statistics has better asymptotic properties in the
sense that the rate of convergence of the actual significance level to the nominal
significance level is more rapid when the pivotal statistics are resampled. There-
fore, it is natural to use the Studentized Mann–Whitney test, which is asymptotic
pivotal.

Let

Ûn̄ = σ̂−1
n̄ (Un̄ − 1/2)(3.10)

denote the Studentized test statistic for Un̄ as in (3.9), where σ̂ 2
n̄ = σ̂ 2

1 n−1
1 + σ̂ 2

2 n−1
2 ,

σ̂ 2
1 = 1

n1 − 1

n1∑
i=1

(
qi − 1

n1

n1∑
i=1

qi

)2

, σ̂ 2
2 = 1

n2 − 1

n2∑
j=1

(
pj − 1

n2

n2∑
j=1

pj

)2

with qi = n−1
2

∑n2
j=1 I {Yj < Xi} and pj = n−1

1
∑n1

i=1 I {Xi ≤ Yj }.
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When dealing with samples from a large number of geographical regions (sub-
urbs, states, health service areas, etc.), one may need to make many statistical
inferences simultaneously. Suppose we observe a family of paired groups, that is,
for k = 1, . . . ,m, Xk = {X1,k, . . . ,Xn1,k}, Yk = {Y1,k, . . . , Yn2,k}, where the index
k denotes the kth site. Assume that Xk is drawn from Fk , and independently, Yk is
drawn from Gk .

For each k = 1, . . . ,m, we test the null hypothesis Hk
0 : θk = P(X1,k ≤ Y1,k) −

1/2 = 0 against the one-sided alternative Hk
1 : θk > 0. If Hk

0 is rejected, we con-
clude that the treatment effect (of a drug or a policy) is acting within the kth area.
Define the test statistic

Ûn̄,k = σ̂−1
n̄,k (Un̄,k − 1/2),

where Ûn̄,k is constructed from the kth paired samples according to (3.10). Let

Fn̄,k(t) = P
(
Ûn̄,k ≤ t |Hk

0
)

and �(t) = P(Z ≤ t),

where Z is the standard normal random variable. Then the true p-values are pk =
1 − Fn̄,k(Ûn̄,k), and p̂k = 1 − �(Ûn̄,k) denote the estimated p-values based on
normal calibration.

To identify areas where the treatment effect is acting, we can use the B–H
method to control the FDR at α level by rejecting the null hypotheses indexed
by S = {1 ≤ k ≤ m : p̂k ≤ p̂

(k̂)
}, where k̂ = max{1 ≤ k ≤ m : p̂(k) ≤ αk/m}, and

{p̂(k)} denote the ordered values of {p̂k}. As before, let FDR� be the FDR of the
B–H method based on normal calibration.

Alternative to normal calibration, we can also consider bootstrap calibra-
tion. Recall that X †

k,b = {X†
1,k,b, . . . ,X

†
n1,k,b} and Y†

k,b = {Y †
1,k,b, . . . , Y

†
n2,k,b}, b =

1, . . . ,B , are two bootstrap samples drawn independently and uniformly, with re-
placement, from Xk = {X1,k, . . . ,Xn1,k} and Yk = {Y1,k, . . . , Yn2,k}, respectively.
For each k = 1, . . . ,m, let Û

†
n̄,k,b be the bootstrapped test statistic constructed from

X †
k,b and Y†

k,b, that is,

Û
†
n̄,k,b = σ̂−1

n̄,k,b

[
Un̄,k,b − 1

n1n2

n1∑
i=1

n2∑
j=1

I {Xi,k ≤ Yj,k}
]
,

where Un̄,k,b and σ̂n̄,k,b are the analogues of Un̄ given in (3.9) and σ̂n̄ specified
below (3.10) via replacing Xi and Yj by X

†
i,k,b and Y

†
j,k,b, respectively. Using the

empirical distribution function

Ĝ
†
m,B(t) = 1

mB

m∑
k=1

B∑
b=1

I
{∣∣Û†

n̄,k,b

∣∣ ≤ t
}
,

we estimate the unknown p-values by p̂k,B = 1 − Ĝ
†
m,B(Û

†
n̄,k,b). For a prede-

termined α ∈ (0,1), the null hypotheses indexed by SB = {1 ≤ k ≤ m : p̂k,B ≤
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p̂
(k̂B),B} are rejected, where k̂B = max{0 ≤ k ≤ m : p̂k,B ≤ αk/m}. Denote by

FDRB the FDR of the B–H method based on bootstrap calibration.
Applying the general moderate deviation result (2.9) to Studentized Mann–

Whitney statistics Ûn̄,k leads to the following result. The proof is based on a
straightforward adaptation of the arguments we used in the proof of Theorem 3.1,
and hence is omitted.

THEOREM 3.5. Assume that {X1, . . . ,Xm,Y1, . . . , Ym} are independent ran-
dom variables with continuous distribution functions Xk ∼ Fk and Yj ∼ Gk . The
triplet (n1, n2,m) is such that n1 � n2, m = m(n1, n2) → ∞, logm = o(n1/3)

and m−1#{k = 1, . . . ,m : θk = 1/2} → π0 ∈ (0,1] as n = n1 ∧ n2 → ∞. For
independent samples {Xi,1, . . . ,Xi,m}n1

i=1 and {Yj,1, . . . , Yj,m}n2
j=1, suppose that

min1≤k≤m min(σ1k, σ2k) ≥ c > 0 for some constant c > 0 and as n → ∞,

#
{
1 ≤ k ≤ m : |θk − 1/2| ≥ 4(logm)1/2σn̄,k

} → ∞,

where σ 2
1k = var{Gk(Xk)}, σ 2

2k = var{Fk(Yk)} and σ 2
n̄,k = σ 2

1kn
−1
1 + σ 2

2kn
−1
2 . Then

as n → ∞, FDP�,FDPB →P απ0 and FDR�,FDRB → απ0.

Attractive properties of the bootstrap for multiple-hypothesis testing were first
noted by Hall (1990) in the case of the mean rather than its Studentized counter-
part. Now it has been rigorously proved that bootstrap methods are particularly
effective in relieving skewness in the extreme tails which leads to second-order ac-
curacy [Delaigle, Hall and Jin (2011), Fan, Hall and Yao (2007)]. It is interesting
and challenging to investigate whether these advantages of the bootstrap can be
inherited by multiple U -testing in either the standardized or the Studentized case.

4. Numerical study. In this section, we present numerical investigations for
various calibration methods described in Section 3 when they are applied to two-
sample large-scale multiple testing problems. We refer to the simulation for two-
sample t-test and Studentized Mann–Whitney test as Sim1 and Sim2, respec-
tively. Assume that we observe two groups of m-dimensional gene expression data
{Xi}n1

i=1 and {Yj }n2
j=1, where X1, . . . ,Xn1 and Y1, . . . ,Yn2 are independent random

samples drawn from the distributions of X and Y, respectively.
For Sim1, let X and Y be such that

X = μ1 + {
ε1 −E(ε1)

}
and Y = μ2 + {

ε2 −E(ε2)
}
,(4.1)

where ε1 = (ε1,1, . . . , ε1,m)T and ε2 = (ε2,1, . . . , ε2,m)T are two sets of i.i.d. ran-
dom variables. The i.i.d. components of noise vectors ε1 and ε2 follow two
types of distributions: (i) the exponential distribution Exp(λ) with density function
λ−1e−x/λ; (ii) Student t-distribution t (k) with k degrees of freedom. The exponen-
tial distribution has nonzero skewness, while the t-distribution is symmetric and
heavy-tailed. For each type of error distribution, both cases of homogeneity and
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TABLE 1
Distribution settings in Sim1

Homogeneous case Heteroscedastic case

Exponential distributions ε1,k ∼ Exp(2) ε1,k ∼ Exp(2)

ε2,k ∼ Exp(2) ε2,k ∼ Exp(1)

Student t-distributions ε1,k ∼ t (4) ε1,k ∼ t (4)

ε2,k ∼ t (4) ε2,k ∼ t (3)

heteroscedasticity were considered. Detailed settings for the error distributions are
specified in Table 1.

For Sim2, we assume that X and Y satisfy

X = μ1 + ε1 and Y = μ2 + ε2,(4.2)

where ε1 = (ε1,1, . . . , ε1,m)T and ε2 = (ε2,1, . . . , ε2,m)T are two sets of i.i.d. ran-
dom variables. We consider several distributions for the error terms ε1,k and
ε2,k : standard normal distribution N(0,1), t-distribution t (k), uniform distribu-
tion U(a, b) and Beta distribution Beta(a, b). Table 2 reports four settings of
(ε1,k, ε2,k) used in our simulation. In either setting, we know P(ε1,k ≤ ε2,k) = 1/2
holds. Hence, the power against the null hypothesis Hk

0 : P(Xk ≤ Yk) = 1/2 will
generate from the magnitude of the difference between the kth components of μ1
and μ2.

In both Sim1 and Sim2, we set μ1 = 0, and assume that the first m1 = �1.6m1/2�
components of μ2 are equal to c{(σ 2

1 n−1
1 + σ 2

2 n−1
2 ) logm}1/2 and the rest are zero.

Here, σ 2
1 and σ 2

2 denote the variance of ε1,k and ε2,k , and c is a parameter employed
to characterize the location discrepancy between the distributions of X and Y. The
sample size (n1, n2) was set to be (50,30) and (100,60), and the discrepancy pa-
rameter c took values in {1,1.5}. The significance level α in the B–H procedure
was specified as 0.05,0.1,0.2 and 0.3, and the dimension m was set to be 1000
and 2000. In Sim1, we compared three different methods to calculate the p-values
in the B–H procedure: normal calibration given in Section 3.1.1, bootstrap cali-

TABLE 2
Distribution settings in Sim2

Identical distributions Nonidentical distributions

Case 1 ε1,k ∼ N(0,1) ε1,k ∼ N(0,1)

ε2,k ∼ N(0,1) ε2,k ∼ t (3)

Case 2 ε1,k ∼ U(0,1) ε1,k ∼ U(0,1)

ε2,k ∼ U(0,1) ε2,k ∼ Beta(10,10)
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bration and regularized bootstrap calibration proposed in Section 3.1.2. For regu-
larized bootstrap calibration, we used a cross-validation approach as in Section 3
of Liu and Shao (2014) to choose regularized parameters λ1k and λ2k . In Sim2,
we compared the performance of normal calibration and bootstrap calibration pro-
posed in Section 3.2. For each compared method, we evaluated its performance
via two indices: the empirical FDR and the proportion among the true alternative
hypotheses was rejected. We call the latter correct rejection proportion. If the em-
pirical FDR is low, the proposed procedure has good FDR control; if the correct
rejection proportion is high, the proposed procedure has fairly good performance
in identifying the true signals. For ease of exposition, we only report the simula-
tion results for (n1, n2) = (50,30) and m = 1000 in Figures 1 and 2. The results
for (n1, n2) = (100,60) and m = 2000 are similar, which can be found in the sup-
plementary material [Chang, Shao and Zhou (2016)]. Each curve corresponds to
the performance of a certain method and the line types are specified in the cap-
tion below. The horizontal ordinates of the four points on each curve depict the
empirical FDR of the specified method when the pre-specified level α in the B–H
procedure was taken to be 0.05,0.1,0.2 and 0.3, respectively, and the vertical or-
dinates indicate the corresponding empirical correct rejection proportion. We say
that a method has good FDR control if the horizontal ordinates of the four points
on its performance curve are less than the prescribed α levels.

In general, as shown in Figures 1 and 2, the B–H procedure based on (regu-
larized) bootstrap calibration has better FDR control than that based on normal
calibration. In Sim1 where the errors are symmetric (e.g., ε1,k and ε2,k follow the
Student t-distributions), the panels in the first row of Figure 1 show that the B–H
procedures using all the three calibration methods are able to control or approxi-
mately control the FDR at given levels, while the procedures based on bootstrap
and regularized bootstrap calibrations outperform that based on normal calibration
in controlling the FDR. When the errors are asymmetric in Sim1, the performances
of the three B–H procedures are different from those in the symmetric cases. From
the second row of Figure 1, we see that the B–H procedure based on normal cal-
ibration is distorted in controlling the FDR while the procedure based on (regu-
larized) bootstrap calibration is still able to control the FDR at given levels. This
phenomenon is further evidenced by Figure 2 for Sim2. Comparing the B–H pro-
cedures based on conventional and regularized bootstrap calibrations, we find that
the former approach is uniformly more conservative than the latter in controlling
the FDR. In other words, the B–H procedure based on regularized bootstrap can
identify more true alternative hypotheses than that using conventional bootstrap
calibration. This phenomenon is also revealed in the heteroscedastic case. As the
discrepancy parameter c gets larger so that the signal is stronger, the correct rejec-
tion proportion of the B–H procedures based on all the three calibrations increase
and the empirical FDR is closer to the prescribed level.
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FIG. 1. Performance comparison of B–H procedures based on three calibration methods in Sim1
with (n1, n2) = (50,30) and m = 1000. The first and second rows show the results when the compo-
nents of noise vectors ε1 and ε2 follow t-distributions and exponential distributions, respectively; left
and right panels show the results for homogeneous and heteroscedastic cases, respectively; horizon-
tal and vertical axes depict empirical false discovery rate and empirical correct rejection proportion,
respectively; and the prescribed levels α = 0.05,0.1,0.2 and 0.3 are indicated by unbroken horizon-
tal black lines. In each panel, dashed lines and unbroken lines represent the results for the discrep-
ancy parameter c = 1 and 1.5, respectively, and different colors express different methods employed
to calculate p-values in the B–H procedure, where blue line, green line and red line correspond to
the procedures based on normal, conventional and regularized bootstrap calibrations, respectively.

5. Discussion. In this paper, we established Cramér-type moderate deviations
for two-sample Studentized U -statistics of arbitrary order in a general framework
where the kernel is not necessarily bounded. Two-sample U -statistics, typified by
the two-sample Mann–Whitney test statistic, have been widely used in a broad
range of scientific research. Many of these applications rely on a misunderstanding
of what is being tested and the implicit underlying assumptions, that were not
explicitly considered until relatively recently by Chung and Romano (2016). More
importantly, they provided evidence for the advantage of using the Studentized
statistics both theoretically and empirically.
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FIG. 2. Performance comparison of B–H procedures based on two different calibration methods in
Sim2 with (n1, n2) = (50,30) and m = 1000. The first and second rows show the results when the
components of noise vectors ε1 and ε2 follow the distributions specified in cases 1 and 2 of Table 2,
respectively; left and right panels show the results for the cases of identical distributions and non-
identical distributions, respectively; horizontal and vertical axes depict empirical false discovery rate
and empirical correct rejection proportion, respectively; and the prescribed levels α = 0.05,0.1,0.2
and 0.3 are indicated by unbroken horizontal black lines. In each panel, dashed lines and unbroken
lines represent the results for the discrepancy parameter c = 1 and 1.5, respectively, and different
colors express different methods employed to calculate p-values in the B–H procedure, where blue
line and red line correspond to the procedures based on normal and bootstrap calibrations, respec-
tively.

Unlike the conventional (one- and two-sample) U -statistics, the asymptotic be-
havior of their Studentized counterparts has barely been studied in the literature,
particularly in the two-sample case. Recently, Shao and Zhou (2016) proved a
Cramér-type moderate deviation theorem for general Studentized nonlinear statis-
tics, which leads to a sharp moderate deviation result for Studentized one-sample
U -statistics. However, extension from one-sample to two-sample in the Studen-
tized case is totally nonstraightforward, and requires a more delicate analysis on
the Studentizing quantities. Further, for the two-sample t-statistic, we proved mod-
erate deviation with second-order accuracy under a finite 4th moment condition
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(see Theorem 2.4), which is of independent interest. In contrast to the one-sample
case, the two-sample t-statistic cannot be reduced to a self-normalized sum of in-
dependent random variables, and thus the existing results on self-normalized ratios
[Jing, Shao and Wang (2003), Wang (2005, 2011)] cannot be directly applied. In-
stead, we modify Theorem 2.1 in Shao and Zhou (2016) to obtain a more precise
expansion that can be used to derive a refined result for the two-sample t-statistic.

Finally, we show that the obtained moderate deviation theorems provide theo-
retical guarantees for the validity, including robustness and accuracy, of normal,
conventional bootstrap and regularized bootstrap calibration methods in multiple
testing with FDR/FDP control. The dependence case is also covered. These results
represent a useful complement to those obtained by Fan, Hall and Yao (2007),
Delaigle, Hall and Jin (2011) and Liu and Shao (2014) in the one-sample case.
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SUPPLEMENTARY MATERIAL

Supplement to “Cramér-type moderate deviations for Studentized two-
sample U -statistics with applications” (DOI: 10.1214/15-AOS1375SUPP; .pdf).
This supplemental material contains proofs for all the theoretical results in the
main text, including Theorems 2.2, 2.4, 3.1 and 3.4, and additional numerical re-
sults.
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