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thickness of each arm are fixed at 200nm and 125nm, respectively. The complex relative 

permittivities of the Al and SiO2 at 4.3µm are -1601.3-j609.4 and 1.9-j0.018, respectively.
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horizontal line in the focal plane (x=0, z=35µm), the highlighted rectangle shows the focus 

region. 24 
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Fig. 3.2 (a) Geometry of a Y-shaped nanoantenna together with its current distribution 

for symmetric (top left) and anti-symmetric modes (top right), and the 3D view of each MS 

cell (bottom). (b) Reflection phase  of the anti-symmetric mode, upon x-polarized 
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arm length, l1, and the angle between the two arms, Δ, for l2= 200nm. Results for other 
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      Conventional optical devices such as lenses with aberration correction, quarter-wave 

plate made of birefringent and chiral materials, spatial light modulators, and spiral phase-

plates may meet the performance demand in both bandwidth and efficiency, but they are 

usually bulky, and difficult to integrate in nanophotonic systems. Nevertheless, the market 

constantly demands cheaper and thinner devices with better performance. In the last few 

years with the availability of nanoscale fabrication tools, plasmonic metasurfaces with 

subwavelength unit cells have attracted increasing attention in optics and photonics due to 

their capability to manipulate beams’ wavefront over a subwavelength distance. 

Metasurfaces can introduce vast flexibility in the design of optical devices by tailoring the 

polarization state and wavefront of the beams. The manipulation of the light beams can be 

realized with resonant elements, which provide phase change discontinuities as the light 

travels across the metasurface (i.e., structured surface). The possibility of creating abrupt 

phase changes at optical/infrared frequencies can eliminate the need for propagation path 

compensation in lensing, or reduce the physical dimensions required for a quarter-wave 

plate or a phase-plate, because the tailoring of the beam is achieved by resonant printed 
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elements on a metasurface with an extremely subwavelength thickness. Probably even 

more importantly such abrupt phase changes recently enabled the generation of complex 

optical beams with orbital angular momentum a reality. Such beam characteristics are 

desired in many applications such as free space communications, remote sensing, multi-

mode communication systems and secure communications.  

 This dissertation focuses on flat thin metasurfaces for wavefront engineering. We 

demonstrate the exotic capability of the metasurface in local phase, amplitude and 

polarization control of the electromagnetic waves along the surface populated with 

resonant antennas. A new class of flat, compact, multifunctional components, so-called 

polarizing lens, is introduced in an attempt to merge two important optical components, a 

circular polarizer and a lens, into a thin plasmonic metasurface. The concept of polarizing 

lens is then further extended to the investigation and development of multi-focus lenses 

and lenses with extended depth of focus. Another exotic application of metasurfaces is 

transforming incident beams into complex beams such as vector beams with non-uniform 

local polarization distributions. In particular, we focus on realizing azimuthally polarized 

beams which contain a magnetic dominant region within which longitudinal magnetic field 

is strong and electric field is ideally null. Such beams are promising for studying weak 

magnetic transitions in optical frequency range. Lastly, the exotic properties of the orbital 

angular momentum carrying beams, such as annular-shaped intensity profile and helical 

wavefront, motivated us to generate such beams in radio frequencies. We demonstrate that 

reflectarrays are an efficient vehicle to generate such beams and show their potential novel 

applications in wireless communication systems. 
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CHAPTER 1 
 
INTRODUCTION 

1 INTRODUCTION 

Sec. 1.1 The Concept of Metasurface 

This dissertation is based on metasurface concepts developed over the course of electromagnetics engineering in a quest to manipulate the electromagnetic wavefront over a subwavelength distance. Metasurface, also called metafilm, is an artificial flat surface populated with subwavelength antennas whose physical parameters or/and orientations are locally varying to manipulate the incident beam wavefront over a subwavelength distance [1]–[9]. The metasurface concept is analogous to the reflectarray concept proposed to replace bulky reflector antennas with flat light-weight reflectarray antennas in microwave/millimeterwave frequencies [10]–[12]. The metasurface’s exotic features such as light-weight, low-profile, flat two-dimensional surface, and their compatibility with integrated CMOS technologies make them a great candidate to replace the conventional bulky three-dimensional electromagnetic components, such as lenses and polarizers, which are taking advantage of the physical dimension of the components to manipulate the beams.  
The antennas, which are the building blocks of the metasurfaces, are arranged in a semi-periodic order in a scale smaller than the operating wavelength. Over the past few years, 
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metasurfaces have found many applications in communication systems from microwave and millimeter wave to optical ranges, such as beam steering, spatial light modulator (SLMs), optical communication networks, generation of structured beams, OAM communication systems, to name only a few. The theory and applications of metasurfaces have been thoroughly discussed and presented in the literature [3], [5], [6], [13]–[19]. 
This thesis elaborates on the fundamental design of the electromagnetic metasurfaces (in particular multifunctional metasurfaces) as the extension of metamaterials, and their functionality in manipulation of the electromagnetic wave properties. The schematic of a representative metasurface developed in chapter 2 is shown in Fig. 1.1. A broad guideline of designing metasurfaces is also provided throughout the thesis. Based on the proposed subwavelength metasurfaces, multiple potential applications in both microwave and THz/optical frequencies are demonstrated. The fundamental goal of this dissertation lies in that the interaction of electromagnetic beams with metasurface (isotropic or anisotropic) can enable engineering of its local polarization and phase distribution. To this aim, both anisotropic and isotropic nanoantennas (scatters) are utilized.  

 Fig. 1.1. (a) Schematic of a representative metasurface lens, proposed in Chapter 2, made of an array of anisotropic Y-shaped nanoantennas at 4.3µm. 



3  

(b) The Scanning electron microscope (SEM) image of the representative polarizing metasurface lens.  
In the following, the Generalized Snell’s laws [2] which are the basis of the metasurface concept are briefly introduced and then the content of each chapter is explained, leaving the detailed introduction and literature survey of each chapter to the motivation sections of respective chapter. 
Sec. 1.2 The Generalized Snell’s Laws  

The main frame of the dissertation is based on the concept of the generalized Snell’s laws that are utilized for wavefront manipulation of the electromagnetic beams. Here we briefly explain such concept and leave the detailed discussions and explanation to Chapter 2. It is known that the angle of refraction at the interface of two different media only depends on the angle of incidence and refractive indices of the two media and is imposed by the Snell’s laws, as shown in Fig. 1.2(a). However, by introducing an artificial abrupt phase change along the interface of the two media, it is possible to redirect the refracted wave toward an arbitrary direction. Such a phase shift can be artificially realized and controlled by populating the interface of the two media by electromagnetic scatters (e.g., nanoantennas), as shown in Fig. 1.2(b). The conventional Fermat principle at the presence of such phase discontinuities on the interface between the two media would be then modified as 
1 2sin sini tk k d dx    , where d dx  is the gradient of the phase discontinuity along the interface, 1k and 2k are the wavenumbers in the first and the second media, i and t are the angles of incidence and refraction, respectively [2]. As a result, by populating the interface of the two media by electromagnetic scatters (e.g., antennas) whose dimensions and/or 
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orientations are varying along the interface of the two media, we would be able to manipulate the wavefront of the incident electromagnetic wave. Such gradient surfaces, also called metasurfaces, have been extensively used, especially in the last decade, to replace the bulky 3D optical components, such as lens and polarizers, [1], [3], [5], [6], [17] similar to the flat reflectarrays which have been used to replace 3D bulky reflector antennas [10]–[12]. However, here the challenge is the metal loss at THz/optical ranges and how to design, optimize, fabricate and measure such THz/optical components.  

 Fig. 1.2. The schematic representation of (a) conventional Snell’s law, and (b) generalized Snell’s law, of refraction at the interface of two media. In (b), the interface of the two media is artificially decorated with scatterers (here antennas) in order to introduce an abrupt phase shift in the wave path, which is a function of the position along the interface. Here d dx is the local gradient of the phase discontinuity along the interface imposed by the antennas, 1k and 
2k are the wavenumbers in the first and second media, i and t are the angle 
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of incidence in the first medium and the angle of refraction in the second medium, respectively.  
Sec. 1.3 Reflectarrays: Historical Background and Their Analogy to Metasurfaces 

In early 1960s, the Berry, Malech, and Kennedy conceived for the first time the reflectarray concept by using short-ended waveguide elements [20], as schematically shown in Fig. 1.3. The incident wave from the feed horn couples into the waveguide elements and reflects from the short end of the waveguides. The lengths of the waveguides are locally changed such that the reflected wave from the reflectarray surface forms a co-phasal reradiated far-field beam [12], [20]. However, such a reflectarray antenna was very bulky and heavy. With the development of light-weight, low-loss, printable microstrip antennas, the possibility of combining the microstrip antenna with the reflectarray concept has been extensively investigated in the late 1980s and early 1990s [11], [21]–[23]. Since then, the reflectarray antennas have progressed rapidly and gained increasing popularity in electromagnetics community, due to their compelling features such as, flat surface, light weight, low loss and low cost [12]. The required local phase shift at each reflectarray element can be achieved by varying the physical parameters of the element.  Different reflectarray elements have been proposed in the literature, such as rectangular, circular, and ring patches, resonant dipoles and cross-dipoles, to name a few [12]. 
In the past few years, due to the developments in nanofabrication technologies, mapping the success of the reflectarrays to optical and acoustic domain has been pursued. In this regard, optical [2] and acoustical metasurfaces [24], [25] have been proposed and 
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experimentally realized.  In this thesis, we propose some unique metasurfaces with novel applications at both optical and microwave frequencies, as summarized in Sec. 1.5.  

 Fig. 1.3. Schematic of an early reflectarray antenna made of an array of short-ended waveguide elements of variable length [20]. 
Sec. 1.4 Other Techniques and Apparatus for Wavefront Manipulations 

Various electromagnetic components have been employed to manipulate the wavefront of the electromagnetic waves by locally changing their phase, amplitude, and polarization. Such components also serve as the basis for optical holography technology, which is the use of amplitude and phase information of an optical field to reconstruct and display a 3D image. One conventional approach to manipulate the wavefront of an electromagnetic wave is to engineer the shape of the interface between the media of given refractive indices and therefore control the optical path of an electromagnetic beam based on the conventional reflection, refraction, and diffraction laws and the phase it accumulates through the refractive media. Such a principle is the basis for many 3D optical components such as lenses, prisms, gratings, and waveplates [26]. Another approach to control the optical path of a light 
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beam is to employ engineered subwavelength media, so-called metamaterials, to realize the spatially dependent refractive indices [27]–[30]. Metamaterials have been used in many applications such as developing Superlenses [31], [32] and cloakings [33] to name a few. Another technique for wavefront modulation is based on typical optoelectronic devices such as liquid-crystal based spatial-light-modulators (LC-SLMs) [34]. The liquid crystal modulator here has a planar configuration and its molecules’ directions are titled with respect to the incident beam direction depending on the applied voltage. The change in the molecules’ orientations (from aligned with respect to the incident beam direction when no voltage is applied) directly translates to the change of refractive index and therefore modifies the optical path of the incident beam in the desired way. 
In this thesis, we focus on developing novel metasurfaces because of their unique and compelling features [35] as follows: (i) the wavefront manipulation in metasurfaces is performed over a flat 2D surface with a sub-wavelength thickness [2], [35], (ii) metasurface not only gives rise to the manipulation of the electric field but also the magnetic field component of the incident beam [36]–[39], and (iii) metasurfaces are potentially useful to realize multifunctional components and in particular they allow for simultaneous control of phase, magnitude, and polarization of the incident beams [5].  
Sec. 1.5 Content of Each Chapter 

The dissertation is organized into Chapters that involve metasurface designs and their novel applications from microwave to terahertz and optical ranges. 
Chapter 2: The possibility of integration of two important categories of optical components, i.e., circular polarizer and lens, into a thin plasmonic metasurface is studied in 
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detail. We demonstrate that a single thin plasmonic metasurface is capable of simultaneous tailoring of two important features related to the electromagnetic beams: (i) polarization, and (ii) focusing properties. Since the circular polarizer and lens are at the heart of many optical systems, the possibility of having both light focusing and polarization manipulation capabilities with a thin single layer plasmonic MS would significantly reduce the cost, volume, optical loss, and system complexity. 
Chapter 3: A novel metasurface lens with a single elongated depth of focus is presented in this chapter. Novel multifocal flat metasurface lenses are developed using two techniques: (i) polarization diversity, and (ii) annular segmentation of the lens aperture. The polarization-diversity technique enables overall lens aperture reuse, thus doubling the number of foci through the simultaneous focusing of two orthogonal linearly polarized incident beams at two distinct foci using the lens aperture. The annular-segmentation technique, on the other hand, is independent of incident beam polarization and is only based on dividing the lens aperture into concentric annular segments that converge different portions of the illuminating beam at different foci. The total number of foci can be further increased by combining the polarization-diversity and the annular-segmentation techniques. Subsequently, the concept of multifocality is further extended to design a novel flat lens with an overall single needle-like focal region with elongated depth of focus without loss of lateral resolution. To this goal, we design a multifocal lens with overlapping profiles of foci superposed into a single elongated needle-shaped focal region. Using the combination of polarization-diversity and annular-segmentation techniques, we develop a novel MS flat lens made of Y-shaped nanoantennas, whose polarization-dependent reflection phase and amplitude can be controlled independently via their geometrical parameters. Via numerical 
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calculations, we demonstrate that the proposed MS lens has an overall single focal region with an extremely long DOF of about 74.1 λ, a lateral full width at half maximum varying in the range of 1.37 λ to 2.8 λ, and a numerical aperture of about 0.26 (considering the center of the focal region as the effective focal point). In this chapter, the MS lens’s capability to synthesize extremely long DOF is conceptually demonstrated without resorting to time-consuming and complicated wavefront synthesis methods. 
Chapter 4: An azimuthally polarized vector beam (APB), with a polarization vortex, has a salient feature that it contains a magnetic-dominant region within which the electric field is ideally null while the longitudinal magnetic field is maximum. In this chapter, we thoroughly investigated such beams and their focusing properties. Fresnel diffraction theory and plane-wave spectral calculations are applied to quantify field features of such a beam upon focusing through a lens. The diffraction-limited full width at half-maximum (FWHM) of the beam’s longitudinal magnetic field intensity profile and complementary FWHM of the beam’s annular-shaped total electric field intensity profile are examined at the lens’s focal plane as a function of the lens’s paraxial focal distance. Then, we place a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging APB and demonstrate for the first time, to the best of our knowledge, that a very-high-resolution magnetic near-field at optical frequency is achieved with total magnetic near-field FWHM of 0.23λ (i.e., magnetic near-field spot area of 0.04λ2) within a magnetic-dominant region located one radius (0.12λ) away from the scatterer. In particular, the utilization of the nanosphere as a magnetic nanoantenna (so-called magnetic nanoprobe) illuminated by a tightly focused APB is instrumental in boosting the photoinduced magnetic response and suppressing the electric response of a sample matter. The access to the weak photoinduced 
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magnetic response in sample matter would add extra degrees of freedom to future optical photoinduced force microscopy and spectroscopy systems based on the excitation of photoinduced magnetic dipolar transitions [6], [40]–[45]. 
Chapter 5:  A novel method of generation and synthesis of azimuthally polarized vortex beams, introduced in chapter 4, is presented based on the metasurface concept in this chapter. We show how such beams can be constructed through the interference of Laguerre–Gaussian beams carrying orbital angular momentum (OAM), and then quantify the longitudinal magnetic field of such beams. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. 
Chapter 6: Inspired by unique and compelling traits of orbital angular momentum (OAM) laser beams, such as twisted wavefront and annular-shaped intensity pattern, we design, in this chapter, antennas generating OAM beams at radio frequencies, in particular to tailor antenna’s far-field characteristics. We demonstrate that metasurface reflectarray antenna is an efficient apparatus to generate and manipulate OAM-carrying beams at radio frequencies. Novel metasurface reflectarray designs are developed at Ka-band, namely circularly-polarized Bessel-beam and helical-beam reflectarrays radiating cone-shaped patterns and single-feed azimuthal multi-beam reflectarrays, that are potentially beneficial for satellite and wireless communication systems. A parametric study is also conducted to further 
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characterize the proposed cone-shaped pattern reflectarrays. The OAM approach proposed in this chapter may also provide a vehicle for further developing antennas with complex radiation patterns. 
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CHAPTER 2 

 

Thin Anisotropic Metasurface Lenses 

For Simultaneous Light Focusing And 

Polarization Manipulation   

2. THIN ANISOTROPIC METASURFACE LENSES FOR SIMULTANEOUS LIGHT FOCUSING 

AND POLARIZATION MANIPULATION   

Sec. 2.1 Motivation 

In this chapter, we first investigate the possibility of integration of two important 

categories of optical components, i.e., circular polarizer and lens, into a thin plasmonic 

metasurface (MS), for the realistic case when metal losses cannot be neglected (for example 

when operating in the visible spectrum, or at infrared when non-noble metals are used). 

Since the circular polarizer and lens are at the heart of many optical systems, the possibility 

of having both light focusing and polarization manipulation capabilities with a thin single 

layer plasmonic MS would significantly reduce the cost, volume, optical loss, and system 

complexity. In this regards, we first develop a theoretical formulation based on phase-

amplitude synthesis method for a polarizing lens and then we present an optimal design at 

mid-infrared ranges near Ͷ.͵μm. The first challenge is to find an appropriate nanoantenna 

which can simultaneously satisfy both a wide reflection phase range and polarization 

conversion. Hence, an anisotropic nanoantenna, which allows for independent tuning of the 
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phase changes experienced by the x- and y-pol. incident fields, is needed. A two-

dimensional array of Y-shaped nanoantennas with polarization dependent and spatially 

varying phase response offers the possibility of balancing the losses experienced by the x- 

and y-polarized incident fields and is the basis for such a compact polarizing lens. The 

theory and the example developed here will enable improvement of several devices, such 

as (i) reflecting/transmitting focusing lenses, (ii) polarizing lenses, (iii) lenses with dual 

foci, one for each polarization, and (iv) lenses with dual foci one for each wavelength.  

We show that anisotropic Y-shaped nanoantennas possess an additional degree of 

freedom compared to the other nanoantennas studied in the literature such as V-shaped 

[1]–[3], cross-shaped and rectangular-shaped ones [4]. Such an extra degree of freedom in 

Y-shaped nanoantennas gives rise to the possibility of balancing the losses experienced by 

the two orthogonally polarized incident fields that eventually improves the performance of 

the polarizing lens. In this chapter, nanoantennas are assumed to be made of low cost 

aluminum with non-negligible loss at mid-infrared to account for the loss in the design 

process. Although, we focus on the reflection-type geometry due to its high focusing [5], [6] 

and polarization conversion efficiencies [7], the theory and application of Y-nanoantennas 

can be straightforwardly extended to the transmission-type geometry. 

The outline of the chapter is as follows. We first develop the theory of the proposed 

polarizing MS lens in Sec. 2.2 where we also proposed and characterize an anisotropic Y-

shaped nanoantenna element for the polarizing lens design.  To have an engineering 

guideline, we conduct in Sec. 2.3 a parametric study on the polarizing MS made of Y-shaped 

elements. We then design and characterize a polarizing lens at infrared range in Sec. 2.4. 

Conclusions and final remarks are stated in Sec. 2.5. 
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Sec. 2.2 Theory of Polarizing MS lenses 

The proposed polarizing lens design consists of an array of Y-shaped nanoantennas 

patterned on one side of a dielectric layer deposited onto a metallic ground plane as 

illustrated in Fig. 2.1. The MS is in the x-y plane, and it is illuminated by a normally incident 

slant-polarized plane wave whose transverse–to–z electric field phasor is 

0 ˆ ˆ( cos sin )i jkz
t i iE e  E x y , where E0 is its magnitude, k is the free-space wavenumber, 

and i   is the angle of the electric field vector with respect to the x-axis. In the following we 

assume a 
j t

e


time-harmonic convention with ω being the angular frequency. Here vectors 

are denoted by bold fonts and unit vectors are denoted by a hat. The transverse-to-z 

electric field phasor of the wave normally reflected by the polarizing lens is 

 
1 1 0ˆ ˆtan ; cosy x x

jy jr j kz
t i x i

x

E e E E e e
   

 
 
    
  

E x y   (2.1) 

where G x,y = G x,y e
jf x,y is the reflection coefficient pertaining to the x- and y-pol. components, 

respectively. In order to change the polarization state of the incident wave, we consider 

here a plasmonic MS made of anisotropic Y-shaped nanoantennas able to manipulate both  

x  and y . At a certain wavelength such that the phase difference between the y- and x-

pol. reflection coefficients, ( )y x   , is 90° and the ratio of the wave reflection magnitude 

for the y-pol. to that of x-pol. is almost constant,  / coty x i   , the reflected wave is 

purely left-hand circularly polarized (LHCP). It is purely right-hand circularly polarized 

(RHCP) when ( ) 90y x     . Although the above conclusions have been derived for 
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waves normally reflected from the MS, they are still reasonably valid for reflected waves 

with small oblique reflection angles (usually less than 30°-40°) 

 

Fig. 2.1 Schematic of a MS composed of Y-shaped nanoantennas illuminated 

by a plane wave with transverse electric fields shown. The blue line 

represents a typical incident ray that is locally bended by the MS at a 

designed angle. The direction of the reflected wavevector, ˆt
r r r

zkk k z  , 

depends on the phase of x-pol. and y-pol. reflection coefficients. 

For a general case, consider a oblique incident ray tube as in Fig. 2.1, propagating with a 

wavevector, i
k , impinging on the MS and experiencing reflection. The direction of the 

reflected wave can be controlled based on the generalized Fermat principle [1], [8]–[10] by 

a proper gradient of the phase of the reflection coefficient. Therefore the reflected beam 

can be steered toward a desire direction r
k  given by ˆ ˆ( / ) ( / )t

r i
t x y       k k x y  where 

i
tk   and  r

tk are, respectively, the transverse–to–z wavevectors of the incident and reflected 

fields and / / / , ,x yi i i i x y           . Note that the condition / /x yi i       is 

straightforwardly obtained by taking the derivative of the polarization conversion 

condition ( ) 90y x    . The local values of phase and magnitude of the reflection 

coefficient are controlled by a proper choice of the unit cell elements of the MS. The 
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elements should be modulated along the MS to provide the required gradient of the phase 

   to achieve focusing. In the following element locations are denoted with 

00 ˆ ˆmn
ma nb  r r x y  where m and n are integers, a and b are the local periods along x and 

y. Considering the generalized Fermat principle with the discretized MS unit cells, the 

phase of the reflection coefficient is changed adiabatically along the MS according to the 

expression  

 

   1 1

ˆ ˆ
m n m nmn mn

r i
t t

a b

             
   
   

k k x y   (2.2) 

in order to bend the corresponding ray toward a certain direction r
k . The above procedure 

is repeated for all other unit cells on the MS and the required phase of the reflection 

coefficient is found for each element. It is a common procedure to calculate the required 

reflection coefficient associated to a certain MS unit cell by assuming the MS periodic. This 

procedure provides accurate results if unit cells change gradually over the MS [10]. If all 

rays are focused at a certain focal point fr  the required phase of the reflection coefficient  

mn   at the mnth MS unit cell is found to be [10] 

 0 . 2 , 0,1,..mn mn mn i
fk s s         r r r k   (2.3) 

Here,   is an arbitrary phase constant, and the subscripts x and y have been dropped since 

this equation applies to both polarizations. In summary, the focusing and polarization 

conversion mechanism of the anisotropic plasmonic metalens under the linearly polarized 

wave is conceptually described by Eq. (2.1) and (2.3), where two approximations 

extensively used in reflectarray research have been applied [10]–[15]: (i) the concept of 
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local periodicity, and (ii) the reflected phases ,
mn
x y  are evaluated at normal incidence. The 

latter approximation has been considered to be accurate especially for small to moderate 

incidence angles and focal length to diameter ratio larger than unity (in our case  f/D=1.25). 

Note that all possible polarizations (linearly polarized (LP), RHCP, and LHCP) can be 

achieved by also adjusting the i   angle. To independently vary the reflection phases f x,y

and amplitudes ,x y  of each principle polarization of the incident wave, along the x and y 

directions, each unit cell should possess enough degrees of freedom. Hence, a Y-shaped 

nanoantenna shown in Fig. 2.2 (a) is utilized as a unit cell. Its symmetric and asymmetric 

current modes are depicted in Fig. 2.2 (a). Varying   and 1  leads to changes in both the x- 

and y-directed current paths. Note that 2  affects only the extension of the y-directed 

surface current path and has a negligible effect on the asymmetric mode. In the design, 

first, the two physical parameters of the Y-shaped elements, arm length 1  and arm angle   

are tuned to satisfy the focusing condition in Eq. (2-3) for the x-pol incident wave at each 

mnth location on the MS as 

 (1) 1 1( , ) ( , )mn mn simulated
x xerr        (2.4) 

where 
simulated
x is phase of the reflected x-pol. at the design wavelength λ, obtained from a 

simulation with the geometrical parameters optimized to meet the required 
mn
x  from Eq. 

(2-3). The elements are optimized using the frequency domain finite-element method 

(FEM) (provided by HFSS by Ansys Inc.) in a fully periodic arrangement (based on local 

periodicity assumption).  
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 Fig. 2.2 (a) schematic of a MS Y-shaped nanoantenna together with its 

current distribution for symmetric (top left) and asymmetric modes (top 

right), and the 3D view of each MS cell (bottom). (b) The reflection phase of 

the asymmetric mode for a MS made of identical Y-shaped nanoantennas at Ͷ.͵µm as a function of the arm length, and the angle between the two arms, Δ, 
for 2 50nm . Although results are not plotted here, a similar trend is 

observed for other values of the stub length 2  ranging from 50nm to 

1100nm. (c) The reflection phase of symmetric mode for a MS made of 

identical Y-shaped nanoantennas at 4.3µm as a function of the arm length, and stub length, for Δ=ͳͳͲ°. The lateral width and thickness of each arm are 
fixed at 200nm and 125nm, respectively. The complex relative permittivities 

of the Al and SiO2 at 4.3µm are -1601.3-j609.4 [16] and 1.9-j0.018 [17], 

respectively. 

To achieve circularly polarized focused beam upon reflection from the MS, it is necessary 

to tailor both the spatial phase and amplitude distributions of the reflected field by tuning 

each element on the MS. Therefore, the stub length 2  is then tuned to meet the proper 

condition for converting the polarization from linear to circular and to meet the focusing 

condition in Eq. (2-3) also for the y-pol. Note that tuning the stub length has a negligible 

effect on the asymmetric mode of the Y-shaped elements and thus on the x-pol. focusing. 

Therefore, a second error function is defined based on the axial ratio (AR) of the reflected 

wave as 

 (2) 1 2 1 2( , , ) 1 ( , , )mn
err AR       (2.5) 
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where plus or minus sign stands  for a desired LHCP or RHCP, respectively. The AR depends 

on the physical parameters of the elements and is expressed as 

 1 2 1 2
1 2

1 2 1 2

| ( , , ) | | ( , , ) |
( , , )

| ( , , ) | | ( , , ) |
R L

R L

E E
AR

E E

 


 


 


  (2.6) 

where RE  and LE  are projections of the reflected electric field  
r
tE , [see Eq. (2-1)] onto the 

RHCP and LHCP unit vectors   ˆ ˆ ˆ 2
R

j e x y  and  ˆ ˆ ˆ 2
L

j e x y , respectively. The 

AR can be rewritten in terms of linear components as [18] 
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  (2.7) 

where  ,
, ,

x yj

x y x yE E e
  are the x- and y-pol. components of Et

r  , [see Eq. (2-1)]. Note that 

for each MS element the phase difference 
y

mn mn
x   between the x- and y-pol. reflection 

coefficients is set very close to 90° when minimizing (2)
mn

err  in Eq. (2-5). Therefore, the 

focusing condition for 
mn
y  in Eq. (2-3) is automatically satisfied provided that mn

x  satisfies 

it, as already imposed by Eq. (2-4). 

Sec. 2.3 PARAMETRIC STUDY OF A METASURFACE MADE OF Y-SHAPED 

NANOANTENNAS 

The range of phases of the x- and y-pol. reflection coefficients for a MS made of identical 

aluminum (Al) Y-shaped nanoantennas as a function of the physical parameters (arm 
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length, stub length, and arm angle) at λ=4.3µm are shown in Fig. 2.2 (b-c). It is observed 

that the 360° phase range required for the full control of the wavefront of the reflected 

wave is achieved. The low loss silica substrate with low dielectric constant (εr = 1.9 at λ = 

4.3µm) is chosen here instead of higher dielectric constant substrates such as silicon  to 

increase the MS bandwidth and at the same time decrease the rate of variation of reflection 

phase with the Y-shaped nanoantenna dimensions. The latter effect results in a lower 

sensitivity to manufacturing tolerances.  

 

Fig. 2.3 (a) the effect of stub length on the phase difference between the x-

pol. and y-pol. reflection coefficients. The horizontal line shows the 90° phase 

difference between the x-pol. and y-pol. reflection coefficients. (b) The effect 

of stub length on the amplitude ratio of the x-pol. to y-pol. reflection coefficient. The arm angle, Δ, is fixed at ͷͲ°. 
 

 

Fig. 2.4 Axial ratio of the reflected wave from a MS consists of an infinite 

periodic array of identical Y-shaped nanoantennas as a function of the arm length and the stub length. The arm angle, Δ, is fixed at ͷͲ°. 
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The phase difference between the x- and y-pol. reflection coefficients versus the arm 

length, 1 , for different stub lengths, 2 , is plotted in Fig. 2.3(a). As the stub length, 2 , 

increases, the resonant length of the symmetric mode (y-directed current mode) increases, 

while the resonant length of the asymmetric mode (x-directed current mode) remains 

unchanged. Thus, for a given arm length, the phase difference between the x- and y-pol. 

reflection coefficients increases as the stub length increases [see Fig. 2.3(a)]. Fig. 2.3(b) also 

shows the amplitude ratio of the x-pol. to the y-pol. reflection coefficient versus the arm 

length, 1 , for different stub lengths, 2  . For 2 = Ͳ.Ͷμm and 1= Ͳ.ͺ͹μm, the amplitude 
ratio of the x-pol. to the y-pol. reflection coefficient is equal to 1 and the phase difference 

between the x- and y-pol. reflection coefficients is 90° (see Fig. 2.3). Under these conditions, 

the reflected beam is purely RHCP. 

The axial ratio of the reflected wave from a MS made of an infinite periodic array of 

identical Y-shaped nanoantennas is calculated from Eq. (2-7) and plotted, as a function of 

the arm length, 1  , and the stub length, 2 , in Fig. 2.4. Positive and negative axial ratios 

define the LHCP and the RHCP waves, respectively. Although the results provided in Fig. 2.3 

and Fig. 2.4 calculated for a specific value of the arm angle ȋΔ=ͷͲ°Ȍ, similar plots can be 
obtained for other values of the arm angle. Fig. 2.4 reveals that for arbitrary pairs of the 

arm length and the arm angle, a proper stub length can be found such that the axial ratio of 

the reflected wave is positive and its magnitude is less than 1.42 or 3dB (LHCP). 

Sec. 2.4 Polarizing Metasurface Lens Design 

Based on the results and the theory provided in the previous sections of this chapter, 

here we show the performance of a designed square, flat, polarizing lens with dimensions 
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28µm×28µm (6.51λ×6.51λ) with focal length f =35µm, corresponding to a numerical 

aperture (NA) of 0.37. It is supposed to focus an incident beam with oblique incidence of 

α=30°, shown in Fig. 2.5(a). The beam waist of the incident Gaussian wave (w0=25µm) is 

chosen so that almost the entire surface of the polarizing lens is illuminated by a plane-

wave-like wavefront. Fig. 2.5 shows the schematic of the simulation setup together with the 

intensity of the scattered field in the longitudinal and transverse planes at λ=4.3µm, 

calculated by FEM full wave simulations (provided by HFSS by Ansys Inc.). 

 

Fig. 2.5 (a) simulation setup together with the full wave simulated results of 

the normalized scattered field intensity (
22

0E E ) in x-z plane at λ=4.3µm: 

for a 28µm by 28µm sized flat polarizing lens with f=35µm, and α=30°, (b) 

the normalized intensity of the scattered field in x-y transverse focal plane. 

(c) Axial ratio of the scattered wave along a horizontal line in the focal plane 

(x=0, z=35µm), the highlighted rectangle shows the focus region. 

The focus generated by the MS is clearly observed. The simulation result for the axial 

ratio of the scattered wave along the y transverse direction, in the focal plane, is plotted in 

Fig. 2.5(c). The axial ratio is around 3dB in the focal region. The designed polarizing lens 

preserves good focusing and polarization conversion properties over a relatively broad wavelength range from ͵.ͺμm to Ͷ.ͺμm. Fig. 2.6 shows the normalized intensity 

distribution for the scattered field at different incident wavelengths around the central wavelength of Ͷ.͵μm.  
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Fig. 2.6 Full wave simulation results of the normalized scattered electric field 

intensity in the x-z longitudinal plane (top) and x-y transverse focal plane, 

z=35µm (bottom) at operating wavelength of (a) 3.8µm, (b) 4µm, (c) 4.6µm, 

and (d) 4.8µm. Each case has been normalized to its own maximum. 

The axial ratio of the scattered field along a y-directed line passing through the center of 

the focal spot in the transverse focal plane is shown in Fig. 2.7. The focal spot slightly shifts 

in the positive x-direction as the wavelength increases from ͵.ͺμm to Ͷ.ͺμm. This lateral 
chromatic aberration is mainly attributed to the oblique incidence angle of α=30° [see Fig. 

2.5(a)]. In principle, the extra degree of freedom available in Y-shaped nanoantennas 

allows also to control the phase and amplitude of the reflection coefficient at other 

wavelengths than the central one, though this capability should be further investigated and 

may lead to a better control of chromatic aberration.   
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 Fig. 2.7 Axial ratio in the focal plane (z=35µm) evaluated along the y-

directed line passing through the center of the focal spot. The y-directed line 

is located at x = 2.5µm, 1.5µm, 1.5µm, 2.5µm for wavelengths 3.8µm, 4µm, 

4.6µm, and 4.8µm, respectively. 

Fig. 2.8 shows the absorption of the focusing MS, defined as the ratio of the power loss in 

the MS to the total power illuminating it, versus wavelength. The power lost in the MS is 

calculated by integrating 
2

0.5  E  over the whole metal volume of the Y-nanoantennas, 

substrate and ground plane, where    is the imaginary part of the respective material 

permittivity. Absorption peaks at λ=4.3µm and it is less than 0.36 over a broadband 

wavelength ranging from 3.8um to 4.8um. 

 

Fig. 2.8 Absorption of the MS-based polarizing lens versus wavelength. 

Absorption is defined as the power lost in the reflecting MS normalized by 

the incident power upon the MS. 
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Note that optical paths from nanoantennas at or close to the edge of the MS to the focal 

point differ significantly even between neighboring nanoantennas. This requires a large 

variation of nanoantenna dimensions between neighboring nanoantennas located at or 

close to the edges [10] to guarantee focusing. Moreover nanoantennas at the MS edges are 

not surrounded by other nanoantennas on all sides. Therefore the local periodicity 

assumption discussed earlier in this chapter is invalid for those nanoantennas [10]; as a 

result, the simulated reflection coefficients used to establish focusing may not model the 

scattering from these nanoantennas accurately. However, these edge-nanoantennas 

constitute only a small percentage of the total number of nanoantennas in the MS and their 

inaccurate modeling does not cause a significant change in the focusing field properties. 

Increasing the size of the MS not only reduces the effect of undesirable MS edge diffraction 

on both focusing and polarization conversion but also increases the number of the 

nanoantennas for which the local periodicity assumption used in the design process is 

accurate. Larger MSs would improve the polarizing lens performance and result in finer 

focus spots with smaller axial ratio. 

Sec. 2.5 Conclusion 

In this chapter, we introduced the concept and the design procedure for flat polarizing 

metasurface lenses, capable of simultaneous polarization and focusing manipulation, in the 

presence of non-negligible losses. For this purpose, a planar array of anisotropic Y-shaped 

nanoantennas is employed to generate light focusing and polarization state conversion 

because it provides enough degrees of freedom to balance the losses experiences with 

orthogonal polarizations. Indeed, the Y-shaped nanoantenna allows for the independent 
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tuning of the phases of both x- and y-pol. reflected fields, and at the same time compensate 

for the natural changes of the magnitude of the reflection coefficient due to losses, which 

eventually is important to improve the quality of the polarizing lens. The integration of 

polarizer and lens into a single thin MS layer may have an impact on significantly reducing 

cost, volume, optical loss, and system complexity. 

This chapter is reproduced based on the material in [M. Veysi, C. Guclu, O. Boyraz, and F. 

Capolino, "A thin anisotropic metasurface for simultaneous light focusing and polarization 

manipulation," Journ. Opt. Soc. Am. B, Vol. 32, No. 2, pp. 318-323, 2015], © Optical Society of 

America 2015. 
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CHAPTER 3 

 

Metasurface Lens with an Elongated 

Needle-shaped Focus  

3 METASURFACE LENS WITH AN ELONGATED NEEDLE-SHAPED FOCUS 

Sec. 3.1 Motivation 

Increasing depth of focus (DOF) without losing lateral spatial resolution has been a 

classical challenge in optical systems such as data recording systems and microscopy [1]–
[5]. Particularly, a shallow DOF limits the capability of the imaging systems for thick 

specimen. Therefore such systems usually use ǲoptical sectioningǳ technique [6], [7] by 

moving the specimen along the beam axis. Different extended DOF algorithms are then 

employed to restore a single image of the specimen from a range of images taken at 

different positions of the specimen along the beam axis [8]. Another approach to overcome 

the shallow DOF barrier is to use a variable focus hologram together with a restoring 

extended DOF algorithm while keeping the specimen position fixed on the beam axis [9]. To 

reduce the complexity of such focal scanning systems, a particular class of lenses with a 

single focal region featuring a narrow lateral width and an elongated DOF is employed for 

data recording systems and microscopy [10]–[12]. Such lenses with a long DOF provide a 

longer interaction range between the focused beam and the specimen in optical systems 
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and therefore remedy the problems caused by the specimen being out of focus. In this 

regard, the use of optical power absorbing apodizers has been thoroughly examined to 

increase the DOF in optical systems [12], [13]. It has been also demonstrated that upon 

focusing optical vector beam modes with annular intensity shape possessing radial [14]–
[16] and azimuthal [17]–[19] polarizations through a conventional lens, a focal region is 

achieved with a very long DOF and narrow lateral full width at half maximum (FWHM). The 

narrower the annular-width of the incident radially polarized beam the longer the DOF. 

However, these methods usually suffer from a decrease of the optical power in the focal 

plane due to the partial blockage of the illuminating beam. Recently, a method based on 

optical ǲsuper-oscillationsǳ (see [20] for more details) has been developed to generate a 

needle-shaped focus with a spot size smaller than the diffraction limit and a DOF of ~ͳͷɉ 

[21]. However, such technique usually suffers from high intensity side lobes surrounding 

the focal region. 

In this chapter, we demonstrate that a single elongated focal range with a very narrow 

lateral FWHM is obtained by generating multiple overlapping foci using, for the first time to 

the authors’ knowledge, a novel multifocal metasurface (MS) lens. The techniques 

described here together with its realization using MS technology (that provides 

independent control of phase, amplitude, and polarization of the illuminating beam) would 

result in an extended DOF with reduced power loss. The only source of the power loss in 

our proposed method is the metal losses, which cannot be neglected when operating in the 

visible spectrum or at infrared when non-noble metals are used. Note that a multifocal lens 

by itself is an important optical component and is at the heart of many optical devices, such 

as multifocal plane microscopy [22], [23], dual field-of-view optical imaging systems [24], 
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digital versatile disc (DVD) drivers [25], optical coherence tomography (OCT) imaging 

systems, and intraocular contact lenses [26]. A conventional bifocal 3D lens is realized by 

dividing the lens aperture into two sub lenses: (i) a central zone with focal distance f1 and 

(ii) a peripheral concentric zone with focal distance f2 greater than f1 [27], in which the 

incident beam illuminates the central and peripheral zones of the lens with a specific 

power proportion. In addition, conventional multifocal lenses are usually designed based 

on diffractive optics approach and found their use in many practical applications [28]. 

The novel multifocal MS lenses proposed here have a flat, compact configuration and 

therefore are easier to fabricate and integrate in nanophotonic systems as compared to 

their conventional bulky counterparts. In addition, they provide more functionalities by 

allowing to independently tailor not only the local phase and amplitude but also the 

polarization of the beam [29]. In order to design proposed multifocal MS lenses, two 

techniques are investigated here: (i) polarization-diversity [simultaneous focusing of two 

orthogonal linearly polarized incident beams at two distinct foci, as shown in Fig. 3.1 (a)] 

that uses the overall lens aperture, and (ii) annular-segmentation [dividing the lens 

aperture into multiple concentric sub-lenses that converge the incident beam at distinct 

foci, as shown in Fig. 3.1(b)]. We also describe a novel combination of these two techniques 

either with spatially-separated foci [see Fig. 3.1(c)] or with a single needle-like focal region 

with an elongated DOF. Recently, with the availability of planar fabrication technologies, 

various flat optics devices have been developed and received increasing attention in 

modern optics and photonics. In particular, flat monofocal MS lenses comprising 

nanoantennas have been extensively investigated in the literature [30]–[32], however such 

designs usually have a shallow DOF. It has been recently demonstrated that a flat MS lens 
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forms a single focal range with a DOF of about ʹͳɉ and a lateral FWHM of ͳ.8ɉ ȋat 

λ=ͶʹͷɊm) by properly tailoring the local phase and amplitude of the scattered field from 

the MS lens through an iterative phase-amplitude optimization algorithm [33]. However, 

due to the large number of elements on the MS lens, more than hundreds of elements, it 

would be difficult and time consuming to optimize the phase of reflection/transmission 

coefficient at all MS elements using local or global search algorithms.  

In this chapter, we employ the flat MS lens technology due to its flexibilities in the 

engineering of the focal intensity profile by spatially tailoring the local phase, amplitude 

and polarization state of the incident beam. Note that, in principle, MSs can be realized 

either with metallic or dielectric nanoantennas. First, we design a novel bifocal flat MS lens 

based on the first technique, the polarization-diversity technique illustrated in Fig. 3.1(a). A 

slant-polarized incident beam (here represented as a superposition of two xʹ-pol. and yʹ-

pol. beams such that the projections of the incident electric field on the x- and y-axes are of 

equal amplitude and phase) illuminates the bifocal MS lens. The angle of incidence defined 

as the angle between the beam axis zʹ and the MS normal z is  . The lens focuses the two 

orthogonally polarized linear components of the incident beam at two spatially separated 

foci whose separation is determined by the design. Upon choosing the proper separation 

distance of these two orthogonally polarized foci, a needle-like intensity profile forms along 

the axis of propagation with a very fine lateral resolution and an extended DOF. The simple 

design procedure makes this method promising for applications which are sensitive to 

intensity rather than polarization such as microscopy and data storage devices to name a 

few.  
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Fig. 3.1 Schematic of representative multifocal MS lenses based on 

(a) polarization-diversity technique, (b) annular-segmentation 

technique (in this representative example, the lens aperture is 

divided into two concentric annular segments, central and 

peripheral segments, focusing the illuminating beam onto two well-

separated foci), and (c)  combined polarization-diversity annular-

segmentation  technique. The illuminating beam is defined in the 
primed coordinate system and the xʹ-axis is aligned with the x-axis 

while the angle between the z-axis and the zʹ-axis is α. The subscripts 

x and y refer to the electric field polarization direction, and the 

superscripts c and p refer to the central and peripheral MS segments. 

Next, the multifocal lens concept is further developed via the second technique discussed 

here, the annular-segmentation technique as illustrated in Fig. 3.1(b), in which the lens 

aperture divides into separate concentric annular sub-MSs. Different portions of the 

incident beam illuminate different sub-MSs and thus are focused into different closely-

spaced/separated foci. In conventional multifocal diffractive lenses, foci are symmetrically 

distributed and equally spaced on the beam axis around the zeroth diffractive order focus, 

which is the focus corresponding to the rays diffracted according to the conventional 

Snell’s law. In contrast, the foci locations and separations for the flat multifocal circular lens 

proposed in this paper can be chosen arbitrarily in three-dimensional space. Furthermore, 

a lens with an extraordinarily elongated DOF is realized with the combination of the two 

techniques just described: polarization-diversity and annular-segmentation, in such a way 

that each sub-MS exhibits two foci for two orthogonal linearly polarized components of the 

illuminating beam [see Fig. 3.1(c)]. Simulation results show that the proposed multifocal 
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lens design procedure, albeit simple and time-effective, is a great candidate for the design 

of various versions of multifocal lenses and monofocal lenses with elongated DOF. Note 

that although we here utilize the reflection-type geometry due to its high efficiency and 

polarization conversion efficiencies, the techniques proposed in this paper (see Fig. 3.1) 

can be straightforwardly extended to the transmission-type geometry using highly efficient 

metallic and dielectric MSs. 

Sec. 3.2 Polarization-Diversity Technique 

First, the concept of polarizing lens introduced in the chapter. 2 is extended here to the 

investigation and development of bifocal lenses. Let us denote the coordinates of the center 

of MS cells with 00 ˆ ˆmn
ma nb  r r x y  where m and n are integers that denote MS cells, a 

and b denote the unit cell periods along the x and y directions, respectively. In order to 

refract an incident ray propagating with the wave vector 
i

k  onto a point-like spot at fr ,  

the required local phase of the reflection coefficient at the mnth MS cell, denoted by mn , 

can be found as [34] 

 0 2 ,mn mn mn i
fk s         r r r k   (3.1) 

where 0, 1,...s    is an arbitrary integer and   is an arbitrary phase offset, constant with 

varying n and m. Note that this equation holds for both x and y polarizations, and different 

fr can be chosen depending on different polarizations. The proposed flat MS lens consists 

of anisotropic Y-shaped nanoantennas. The advantages of these Y-shaped nanoantennas 

compared to the previously employed V-shaped designs as in [30] consist in having an 
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extra degree of freedom (stub length) that helps in balancing the reflection intensities of x- 

and y-polarized waves and having two different and independent reflection phase profiles 

for two orthogonal linear polarizations. The Y-shaped nanoantennas as discussed in 

chapter 2 are made of Al and patterned on one side of a silica substrate with thickness of 

400nm, while a sufficiently thick aluminum layer is deposited on the other side of the 

substrate to act as a ground plane. In this chapter, the operating wavelength of the MS lens is Ͷ.͵Ɋm. Fig. 3.2(a) shows the geometry of the Y-shaped nanoantenna together with the 

current paths for symmetric and anti-symmetric resonance modes that correspond to y and 

x polarized electric fields, respectively. While tuning the arm angle  and the arm length l1 

changes both the reflection coefficients of x- and y-polarized waves, tuning the stub length 

l2 mainly changes the y-polarized wave's reflection coefficient and has a slight effect on the 

x-polarized wave's reflection coefficient (anti-symmetric mode). In order to focus the slant-

polarized incident beam (i.e., the projections of the incident electric field on the x- and y-

axes are of equal amplitude and phase) onto two foci at locations 
xf

r and 
yfr upon 

reflection, the physical parameters of the Y-shaped element at  mnth cell’s location on the 

MS must be properly tuned. It is required that the simulated reflection phases from the 

mnth element for both principal polarizations ( sim
x  and sim

y ) meet the required phases of 

the reflection coefficients at mnth location ( sim
x  and sim

y ) from Eq. (3-1). 

 

D
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Fig. 3.2 (a) Geometry of a Y-shaped nanoantenna together with its current 

distribution for symmetric (top left) and anti-symmetric modes (top right), 

and the 3D view of each MS cell (bottom). (b) Reflection phase  of the anti-

symmetric mode, upon x-polarized incidence, for a MS made of identical Y-

shaped nanoantennas at 4.3µm as a function of the arm length, l1, and the angle between the two arms, Δ, for l2= 200nm. Results for other values of the 

stub length l2 ranging from 50nm to 1100nm provide analogous trends not 

shown here for simplicity. (c) Reflection phase   of symmetric mode, upon y-

polarized incidence, for a MS made of identical Y-shaped nanoantennas at 

4.3µm as a function of the arm length l1, and stub length l2, for Δ=8Ͳ°. In Fig. 

3.2(a) we keep the arm angle fixed at Δ=8Ͳ°, however the reflection phase of 
the symmetric mode also changes in a similar manner when using other values of the arm angle Δ, which is not shown here for brevity. The lateral 
width and thickness of each arm are fixed at 200nm and 125nm, respectively. 

The complex relative permittivities of the Al and SiO2 at 4.3µm are -1601.3-

j609.4 and 1.9-j0.018, respectively. 

Owing to the three physical parameters  of the Y-shaped nanoantenna, we have enough 

degrees of freedom to control the reflection coefficients of orthogonally polarized incident 

waves almost independently. Fig. 3.2(b-c) shows the range of phases of the x- and y-

polarized waves' reflection coefficients ( sim
x and 

sim
y ) as a function of the Y-shaped 

nanoantenna’s design parameters ( 1 2, ,andl l  Ȍ at Ͷ.͵Ɋm. The frequency domain finite-

element method (FEM) (commercially available in HFSS by Ansys Inc.) is used to simulate 

the Y-shaped nanoantennas in a fully periodic arrangement with normal incidence 
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illumination, applying the local periodicity assumption. The bifocal lens is subsequently 

designed to work under beam incidence angle of  30    (i.e., the beam is coming at an 

angle of 30    from the MS normal, z-axis) as shown in Fig. 3.1(a). In this figure, the slant-

polarized beam impinges on the lens with an electric field vector having two orthogonal x- 

and y-polarized components with identical amplitude and phase. Upon reflection from the 

lens surface, the x- and y-polarized components of the incident beam are focused into two 

spatially separated spots at ˆ
xf xfr z  and ˆ

yf yfr z , respectively. Based on the element 

characterization provided in Fig. 3.2(b-c) and using Eq. (3-1), an illustrative flat bifocal 

circular lens of radius 25λ (wavelength is λ=4.3µm) is designed to have foci at 42.8xf   

(numerical aperture, NA, of 0.5xNA  ) and 89.5yf  ( 0.27yNA  ). The transverse 

scattered electric field within the focal range is numerically computed from the transverse 

electric field on the MS by using the plane wave spectrum decomposition. The 

corresponding longitudinal component of the scattered electric field is also found by 

applying Maxwell’s divergence equation in the spectral domain followed by an inverse 

Fourier transform. The Fourier and inverse Fourier transform integrals in plane wave 

spectral calculations (see Eqs. (24)-(25) in [17]) are implemented numerically via a two-

dimensional  FFT algorithm where the size of the spatial domain size and spatial resolution 

are 102.4 102.4   and 20 , respectively. The transverse field on the MS lens is stepwise 

approximated and the reflected electric field at each MS cell is assumed uniform and equal 

to the reflected electric field calculated via the simulated reflection coefficient of the 

element multiplied by the transverse incident field at the center of the cell.  
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The electric field is assumed null outside of the overall MS equivalent aperture. A 

linearly polarized Gaussian beam, whose electric field and power density at the beam 

center are 1V m  and 21.32mW m , respectively, illuminates the MS lens with 30    angle 

of incidence. The total power carried by the beam is 246.8pW , which is calculated by the 

surface integral of its longitudinal Poynting vector. The beam waist of the incident Gaussian 

beam in the MS plane is chosen three times larger than the radius of the MS ( 0 75w  ) 

such that incident beam has a plane-wave-like wavefront over the entire aperture of the 

lens. The intensities of the x- and y-polarized scattered fields in the longitudinal plane (x-z 

plane) are shown in Fig. 3.3(a)-(b). The slant-polarized incident beam is focused onto two 

spatially separated foci having different polarizations, i.e., x- and y-polarized. Note that the 

actual foci centers observed in Fig. 3.3 (obtained by PWS calculations) occurring at 42.5

and 89.1 slightly deviate from the designed geometrical point-like spot at 42.8 and 89.3   

[used in Eq. (3-1)]. The larger the lens diameter the smaller the difference between the 

designed geometrical focal distances and the actual ones. Note that such a shift occurs in all 

the reported cases in this thesis. Since the bifocal lens has a higher NA for the x-polarized 

component of the incident field, the x-polarized spot (located closer to the lens) has a 

narrower lateral FWHM and shorter DOF compared to the y-polarized spot (the farther 

spot). The designed bifocal lens also works as a monofocal lens for an incident beam that is 

polarized purely either along xʹ- or yʹ-axis.  

In the next step, the farther spot at yf  is placed very close to the closer spot at xf  

aiming at increasing the DOF. The design parameters of the Y-shaped nanoantennas on the 
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MS are locally modified based on the aforementioned algorithm such that now we have two 

foci designed to be at 42.8xf   0.5xNA  , and 47.7yf    0.46yNA  . 

 

Fig. 3.3 Simulation results for an illustrative bifocal MS lens shown in Fig. 

3.1(a) (with two well-separated foci of orthogonal polarizations) of radius 

25 , placed at the z = 0 transverse plane, upon plane wave incidence from an 

angle 30    in the x-z plane, at 4.3μm  . The projections of the incident 

electric field on the x-and y-axes are of equal amplitude and phase. The 

intensity (normalized to its maximum) of (a) the x-polarized scattered field 

and (b) the y-polarized scattered field, in the x-z longitudinal plane: 

42.8xf    0.5 ,xNA   89.5yf   0.27yNA  . 

Under the slant-polarized incident beam illumination with the incidence angle of 

30    with respect to the MS normal, we plot the intensity maps of the x- and y-

component of the scattered electric field in Fig. 3.4(a-b), respectively. Moreover, the 

intensity of the total scattered electric field vector, accounting also for the longitudinal 

component, is reported in Fig. 3.4(c). The foci of different polarizations are at distinct 

locations whereas the focal range for the total field intensity extends over the two foci. The 

overall focal region has a uniform intensity distribution with a lateral FWHM of less than λ 

and a DOF, axial FWHM, of about 10.1λ (extends from z=ͶͲ.Ͷɉ to ͷͲ.ͷɉȌ. The proposed 
bifocal lens has a single elongated focal region [Fig. 3.4(c)] with a DOF which is 1.6 times 

longer than that of a simple monofocal lens of the same aperture size [Fig. 3.4(a-b)], while 
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the lateral FWHM is kept almost the same. In other words, the bifocal lens designed based 

on the polarization-diversity technique increases the DOF without compromising the 

lateral resolution and aperture efficiency of the monofocal lens of the same aperture size. 

Although the polarization diversity technique is used here to generate linearly-polarized 

spatially-separated foci with orthogonal polarization vectors, such technique can be 

straightforwardly used with other pairs of orthogonal polarizations, such as right- and left-

hand circularly polarized beams, by employing a proper MS element. However, this should 

be further investigated in a future publication.  

 

Fig. 3.4 Simulation results for an illustrative bifocal MS lens (with two 

overlapping foci of orthogonal polarizations) of radius 25 featuring a single 

elongated focal region and operating at Ͷ.͵Ɋm with: 42.8xf  , 47.7yf  . 

The illuminating beam has slant polarization and its incidence angle is set at  

30   . Intensity  (normalized to its maximum) of (a) x-polarized scattered 

field, (b) y-polarized scattered field, and (c) total scattered field in the x-z 

longitudinal plane. 

Sec. 3.3 Annular-Segmentation Technique 

In order to further extend the DOF of the lens, an annular-segmentation technique is 

proposed such that the circular MS lens aperture is divided into a few annular regions, each 

region associated to an individual focal spot. In contrast to the polarization-only technique 

proposed in the previous section, which only offers two degrees of freedom (bifocal 

lenses), the annular-segmentation technique simply offers an increase in the degrees of 
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freedom. By allowing extra foci, we design multiple overlapping foci that collapse into a 

needle-like focal region with elongated DOF. Here, we need to make an important remark 

regarding the superposition of fields scattered by different sub-MSs along the focal axis. In 

contrast to the polarization-diversity technique, the annular-segmentation technique leads 

to foci mainly with the same polarization. The co-polarized fields scattered from different 

sub-MSs are not necessarily in phase all along the focal range. Therefore, when using only 

annular-segmentation technique, it is difficult to avoid destructive interference, which 

would inhibit a single elongated focal region with uniform intensity distribution by 

bringing multiple foci close to each other. To demonstrate this, a representative circular flat 

lens consisting of two concentric sub-MS regions of outer radii  and c
r , p

r  where 

superscripts c and p refer to the central and peripheral sub-MS regions respectively [see 

Fig. 3.1(b) and Fig. 3.5(a)], is designed to work under yʹ-polarized incident beam only. 

Therefore, the electric field at the foci is mainly y-polarized. The Y-shaped MS elements are 

oriented as in Fig. 3.5(a). The electric field scattered only from the central (peripheral) sub-

MS is calculated by setting the field amplitude on the peripheral (central) sub-MS to zero. 

The outer radius of the peripheral sub-MS and the geometrical focus for the central sub-MS 

are fixed at p 17.5r   and c 30f  , respectively. The outer radius of the central sub-MS 

and the geometrical focus for the peripheral sub-MS are then tuned such that the maximum 

magnitudes of the scattered fields from the central and peripheral sub-MSs are almost 

equal at their individual focal distances. Furthermore, field amplitudes are designed to 

drop to around half of their peak field amplitude between the two foci (here at the distance 

of 38.3z  ). For constructive superposition, it is important for these two contributions to 
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be in phase at 38.3z  . Fig. 3.5(b) shows the scattered field intensity (normalized to its 

maximum) from the overall lens aperture on the x-z longitudinal plane.  

 

Fig. 3.5 (a) Geometry of a circular flat MS lens operating at   that consists of 

two annular sub-MSs and (b) normalized total scattered field intensity from 
the MS lens illuminated by a yʹ-polarized incident beam with the incidence 

angle of  with respect to MS normal [see Fig. 3.1]. The electric field intensity 

plot is normalized to the maximum intensity within the focal range. (c) 

Magnitude of the electric field scattered from the central, the peripheral and 

the overall MSs along the focal axis (z-axis). (d) Phase difference between the 

electric fields scattered from the central and peripheral sub-MSs along the 

focal axis. The MS is located at z=0 transverse x-y plane and the outer radii 

and the designed focal distances corresponding to central and peripheral 

sub-MSs are set as: c 10.3 ,r  p 17.5r  c 30 ,f   
p

53f  . 

It is observed that the scattered field intensity from overall MS lens drops by about 

5.6dB at the distance z = Ͷ͸.͵ɉ away from the MS with respect to the maximum scattered 
field intensity along the focal z-axis that occurs at z = 27.5λ. The magnitude of the electric 

fields scattered from the central and peripheral sub-MSs together with the magnitude of 
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the electric field scattered from the overall MS aperture are plotted in Fig. 3.5(c). We 

observe that the fields due to the central and peripheral sub MSs are in comparable 

amplitude, thus the dip in the total field is attributable to a degree of destructive 

interference. Note that although the maximum magnitude of the focal fields focused by the 

central and the peripheral sub-MSs are almost equal (see Fig. 3.5), the axial FWHM (i.e., the 

DOF) of the focal field for the peripheral sub-MS is longer than that for the central sub-MS. 

This is attributed to the fact that the peripheral sub-MS lens has a lower NA (i.e., a wider 

focus) and a higher incident illumination power (i.e., higher scattered field power) as 

compared to the central sub-MS lens. The phase difference between the electric fields 

scattered from the central and peripheral sub-MSs is also plotted in Fig. 3.5(d). This plot 

clearly shows that the fields scattered from the central and peripheral sub-MSs possess a 

varying phase difference along the z-axis, therefore it is not easy to guarantee constructive 

interference between the fields scattered from two sub-MSs and uniform focal field 

amplitude along the z-axis. This fact is clearly noticed at around z = 48λ marking the 

destructive interference since the phase difference is 180°. Based on this remark, in the 

next section we design the multifocal lens with the combination of the polarization-

diversity and the annular-segmentation techniques to eliminate the destructive 

interference and achieve a flat intensity profile along the extended DOF. Note that for a 

given MS lens radius, the number of foci can be increased by increasing the number of 

annular sub-MSs in Fig. 3.5(a). However an important limitation must be kept in mind: the 

annular width of each sub-MS must be large enough such that the local periodicity 

assumption remains valid (note that nanoantennas’ dimensions might change considerably 

from one sub-MS to another since each sub-MS has a distinct focal distance). Note that the 
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scattered field polarization upon reflection from the elements is mainly the same as the 

incident field polarization when the latter is polarized along the symmetry axis (y-axis) or 

along the asymmetry axis (x-axis) of the Y-shaped elements (similarly to the V-shaped 

elements [30]). Moreover, since the plane of incidence (yz) coincides with the symmetry 

plane of the Y-shaped elements, the MS lens is also symmetric with respect to the incidence 

(yz) plane. Due to these symmetry properties the cross-polarized scattered field is 

minimized. 

Sec. 3.4 Metasurface Lens With a Single Elongated DOF  

In this section, we combine the polarization-diversity and annular-segmentation 

techniques to design a lens with an overall single focal region with an elongated DOF. This 

is achieved by exploiting the degrees of freedom offered by the Y-shaped nanoantennas. 

The proposed lens aperture consists of two concentric sub-MSs, each with two separate 

foci of different polarizations, leads to a total of four foci. Importantly, consecutive foci 

along the focal axis are always chosen from orthogonal polarization, such that the focal 

fields with the same polarization and scattered from separate sub MSs are farther 

separated to minimize destructive interference wherever they are in comparable 

amplitudes. Next, we optimize the x- and y-polarized focal distances and the outer radius of 

central sub-MS to achieve a single focal region with uniform intensity distribution and 

elongated DOF. Considering the dependence of the spot size and DOF on the ratio of focal 

distance to lens diameter (i.e., the NA), the peripheral sub-MS (which has a larger 

diameter) is set to obtain the focus with the longer focal distance such that an overall focal 

region with uniform transverse resolution is achieved. The outer radius of peripheral sub-
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MS is also fixed at 17.5λ. The radius of central sub-MS and the distances of the 

corresponding x- and y-polarized foci for each sub-MS are selected by minimizing the error 

function defined as  

 
   

 
2 2

2

max (0,0, ) min (0,0, )

mean (0,0, )

z z
error

z




E E

E

  (3.2) 

where  30 ,80z   , 
c c p p
x y x yf f f f   , (in which subscripts x and y denote the 

polarization) (0,0, )zE  is the total electric field vector on the z-axis (focal axis), and mean 

function mean   represents the average over  30 ,80z   . In this procedure, we use the 

genetic algorithm technique to minimize the error function in Eq. (3-2), where the number 

of sampling points along the z-axis is 51. The field (0,0, )zE  is evaluated using plane-wave 

spectrum decomposition where the field on MS is step-wise approximated as explained in 

the previous section of this chapter and in [17]. The optimal design in the end consists of 

two annular regions of outer radii 10.7λ and 17.5λ whose expected geometrical foci are 

allocated, respectively, at c c40.2 , 50.5 ,x yf f   p p71.4 , and 78.4x yf f   . The scattered 

field intensity (normalized to its maximum) on the x-z longitudinal plane and along the z-

axis are reported in Fig. 3.6 (a) and (b), respectively. In the end, a needle shape focal region 

with axial FWHM (DOF) of about 74.1λ (extending from z=27.7λ to 101.8λ) is formed.  

A very shallow dip of about -0.58dB (with respect to the maximum scattered field 

intensity) along the focal axis (z-axis) is observed at distance z=50λ away from the MS 

[marked as III in Fig. 3.6 (b)]. The NA of the lens, considering the center of the focal region 

as the effective focal point, is about 0.26. The reported elongated DOF of ~74.1λ is much 
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longer than the theoretical DOF of a conventional lens (i.e., 2/n NA  in which n is 

refractive index of the host medium) which is ~14.8λ. In Fig. 3.6 (c-g) we report the field 

intensity maps on different x-y transverse planes at z locations within the focal range, 

marked by roman numerals in Fig. 3.6(b).  

 

Fig. 3.6 Normalized scattered filed intensity for a MS lens consists of 2 

annular sub-MSs of outer radii of 10.7λ and 17.5λ and operating at Ͷ.͵Ɋm: (a) 

in x-z longitudinal plane, (b) along the focal axis (z-axis). Below, field maps at 

different z-dependent x-y transverse planes: (c) z=27.7λ, (d) z=37λ, (e) 

z=50λ, (f) z=70λ, (g) z=101.8λ. All intensity plots are normalized to the 

maximum intensity within the focal range. The MS lens is located at z=0 

plane and the four focal distances of the lens are set at c 40.2 ,xf 
c 50.5 ,yf  p 71.4 ,xf  and

p 78.4yf  , respectively. 
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Moreover, the FWHM of the focus field in the x-y transverse plane (lateral resolution) is 

shown in Fig. 3.7 varying the transverse plane location within the focal region. It is 

observed that the lateral FWHM slightly changes from ~1.37λ to ~2.8λ along the focal 

range extended from z = 27.7λ to 101.8λ. The absolute efficiency of the MS lens is also ~ʹ8% at Ͷ.͵Ɋm. In order to determine the absolute efficiency [35], we first calculate the 

waist of the scattered field in the transverse focal plane. Here the transverse plane located 

in the middle of the focus range (extending from z = 27.7λ to 101.8λ) is considered as the 

focal plane, which is z ≈ ͸ͷλ transverse plane. The waist of the scattered field (in the focal 

plane) is defined as the full width of the normalized intensity at 21 e and is evaluated by 

fitting the scattered field intensity distribution at the focal plane to a Gaussian function. The 

absolute efficiency is then defined as the total power flowing within the waist at the above 

defined focal plane, divided by the incident power illuminating the MS [35]. 

 

Fig. 3.7 The FWHM (lateral resolution) of the electric field scattered from the 

MS lens in Fig. 3.6 at different transverse (x-y) planes within the focal region. 

Sec. 3.5 Conclusion 

We have shown a novel concept and design for flat metasurface multifocal lenses, which 

provides multiple foci with arbitrary locations and separations. Instead of forming only a 
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single spot, the proposed lens can focus the incident beam into multiple closely-

spaced/spatially-separated foci. Thanks to the proposed Y-shaped antenna elements that 

add a degree of freedom compared to the V-shaped elements used in other works, bifocal 

lenses are implemented based on the polarization-diversity technique in which each 

polarization contributes to one focal spot. Furthermore, the flat metasurface lens consisting 

of multiple concentric annular regions, on the other hand provides the possibility of 

focusing the incident beam into multiple well-separated foci. Subsequently, a flat lens with 

a single elongated focal region with depth of focus (DOF) of about 74.1λ and lateral FWHM 

of about 1.7λ is successfully implemented by combination of the polarization-diversity and 

the annular-segmentation techniques. The implementation of multifocal lenses and 

monofocal lenses with elongated DOF by thin flat MS would significantly reduce cost, 

volume, optical loss, and system complexity in integrated optics. 

This chapter is reproduced based on the material in [ M. Veysi, C. Guclu, O. Boyraz, and F. 

Capolino, "Reflective metasurface lens with an elongated needle-shaped focus," Journ. Opt. 

Soc. Am. B, Vol. 34, No. 2, pp. 374-382, 2017], © 2017 Optical Society of America. 
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CHAPTER 4 

 

THEORY OF FOCUSED AZIMUTHALLY 

POLARIZED VECTOR BEAMS AND 

SPATIAL MAGNETIC RESOLUTION 

BELOW THE DIFFRACTION LIMIT 

4. Theory of focused azimuthally polarized vector beams and spatial 

magnetic resolution below the diffraction limit 

Sec. 4.1 Motivation 

Vector beams [1]–[7] are a class of optical beams whose polarization profiles on the 

transverse plane, perpendicular to the beam axis, can be engineered to have an 

inhomogeneous distribution. Among them, beams with cylindrical symmetry (so-called 

cylindrical vector beams), particularly radially [3], [4], [8]–[10] and azimuthally [11]–[13] 

electric-polarized vector beams, are exceptionally important in the optics community. 

Owing to the presence of the longitudinal electric field component, a radially polarized 

vector beam with ring-shaped field profile after tight focusing through a lens provides a 

tighter electric field spot compared to the well-known linearly and circularly polarized 

beams [8], [9]. Such a beam has been extensively examined under tight focusing and has 

found many prominent applications in  particle manipulation, high-resolution microscopy 

and spectroscopy systems [3], [5], [6], [8], [9], [14]–[24]. In this chapter, we are particularly 
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interested in studying the azimuthally electric-polarized vector beam primarily due to its 

unique magnetic field features, a strong longitudinal magnetic field where the electric field 

is null. In the following, we denominate such a beam simply as azimuthally polarized beam 

(APB) referring to the local orientation of its electric field vector. APBs possess an electric 

field purely transverse to the beam axis and a strong longitudinal magnetic field 

component in the vicinity of the beam axis where the transverse electric and magnetic 

fields are negligible and even vanish on the beam axis (See Fig. 4.1) [12]. This so-called 

magnetic-dominant region is characterized by the presence of a tight magnetic field with 

longitudinal polarization. Especially, focusing an APB through a lens boosts its longitudinal 

magnetic field component relatively more than its transverse electric and magnetic fields 

[12].  

 

Fig. 4.1 Schematic of a converging azimuthally electric-polarized beam (APB), 

with a longitudinal magnetic field on its axis. 

Due to such unique property, the APB may be beneficial by adding an extra feature to 

future spectroscopy and scanning probe microscopy systems based on the excitation of 

magnetic dipolar transitions [11], [12], [25], [26]. At optical range, the magnetic dipolar 

transitions in matter are several orders of magnitude weaker than their electric 

counterparts [26]–[28] and therefore require an excitation beam with an enhanced 
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magnetic-dominant region to be explicitly excited [26]. In this regards, the APBs are an 

intriguing choice for the illumination beam in such spectroscopy and scanning probe 

microscopy systems. Even though various methods have been proposed to generate APBs 

[12], [29]–[38], characterization of the magnetic field of these beams under tight focusing, to 

the authors’ best knowledge, remains to be fully elucidated. Especially, this study is the 

basis for the successful implementation of magnetically sensitive nanoprobes at optical 

frequency which are crucial in the development of magnetism-based spectroscopy 

applications and the study of weak photoinduced magnetism in matter [25], [39], [40]. 

In this Chapter, we report the diffraction-limited tight field (especially magnetic field) 

features of an APB, represented in terms of paraxial Laguerre Gaussian (LG) beams, with 

beam parameter 0w  that is a measure of the spatial extent of the beam in the transverse 

plane at its minimum waist. The two main figures of merit used in quantifying the field 

features in this paper are the full width at half maximum (FWHM) of the longitudinal 

magnetic field intensity and the complementary FWHM (CFWHM) of the annular-shaped 

total electric field intensity. Keeping in mind that for a very small beam parameter 0w  the 

expressions obtained via paraxial approximation may not be accurate, we also report 

results using the accurate analytical-numerical plane-wave spectral (PWS) calculations 

[41], which is analogous to the Richards and Wolf theory [42]. 

We first elaborate on the diffraction-limited tight focus of an APB through a converging 

lens using both paraxial Fresnel diffraction integral formulation, leading to analytical 

assessments, and the accurate PWS calculations (see [12] for more details on PWS). We 

demonstrate using the Fresnel integral under paraxial approximation that upon focusing 
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through a lens an incident APB converts to another APB whose beam parameter is linearly 

proportional to the lens paraxial focal distance and inversely proportional to the incident 

APB parameter (see Appendix A at the end of this chapter). The minimum-waist plane 

position of the focused beam predicted by the Fresnel integral coincides with the lens 

paraxial focal plane, which deviates from the actual focal plane position calculated by PWS. 

The figures of merit of an APB focused by a lens are therefore calculated both by the 

Fresnel integral at the lens’s paraxial focus and by the PWS at the actual focal plane as a 

function of the lens paraxial focal distance. 

In addition to the case of focusing an APB by a lens mentioned above, the tight field 

features of a self-standing converging APB are also examined and its figures of merit are 

calculated using the paraxial LG beam expressions and the PWS calculations at the 

minimum-waist planes predicted by the respective methods. Recently it has been 

experimentally confirmed that cylindrical vector beams may selectively excite the electric 

or magnetic dipolar resonances of a subwavelength-sized dense dielectric nanosphere (e.g., 

a silicon nanosphere) [24]. In this paper, we use a silicon nanosphere as a magnetic 

nanoantenna (so-called magnetic nanoprobe) and place it at the focus of a converging APB, 

which selectively excites a magnetic dipolar resonance in the nanosphere as in [24]. The 

aim is to achieve a subwavelength magnetic field resolution. In general, such a 

subwavelength-sized scatterer hosts a magnetic Mie resonance with a circulating electric 

displacement current in addition to an electric dipolar resonance. However the latter is not 

excited by an APB due to its cylindrical symmetry, which ideally leads to a null average 

displacement current over the nanosphere. The induced electric displacement currents 

with a net magnetic dipole moment in the Si nanosphere along the z direction are shown to 
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boost not only the total longitudinal magnetic field but also the spatial magnetic field 

resolution below the diffraction limit in the vicinity of the scatterer. A total magnetic field 

enhancement of about 2.3 (with respect to the total incident magnetic field) and a total 

magnetic field spot area as small as 0.04λ2 are achieved within a magnetic-dominant 

region, evaluated at a transverse plane one nanosphere radius (0.12λ) away from the 

scatter surface.  

Note that the FWHM is an effective feature to characterize the magnetic near-field 

intensity, and is also here used as a shorthand measure of resolution, i.e. the minimum 

resolvable distance between two closely-spaced point sources. The FWHM, here, is used as 

a measure of resolution since the side-lobe peak of the magnetic near-field intensity profile 

is for all cases by far less than half of its main peak. Throughout this chapter we consider 

time harmonic fields with an exp( )i t  time dependence, which is suppressed for 

convenience. Furthermore bold symbols denote vectors and hats (^) indicate unit vectors. 

Sec. 4.2  Characterization of an APB  

APB is here expressed as a superposition of a left and a right hand circularly polarized 

beam, carrying orbital angular momentum (OAM) with orders of +1 and -1, respectively. In 

paraxial regimes, OAM-carrying beams are analytically represented as LG beams [1]. Thus 

the APB’s electric field is expressed in terms of self-standing paraxial LG beams in 

cylindrical coordinate system as [12] 
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where  RHˆ ˆ ˆ 2i e x y  and  LHˆ ˆ ˆ 2i e x y  are, respectively, right and left hand 

circularly polarized unit vectors and the LG beam expression is 
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where V  is an  amplitude coefficient, 
2
0 /Rz w   is the Rayleigh range, and 2 /k    

and λ are the wavenumber and wavelength in the host medium, respectively. The beam 

parameter 0w  controls the transverse spatial extent of the beam at its minimum-waist 

plane. Vaguely speaking 0w corresponds to the minimum waist which is very well defined 

for the fundamental Gaussian beam (FGB), but since the actual waist of the APB differs 

from 0w we prefer to call it simply as ǲbeam parameterǳ because this difference is of 

relevance in this paper. Here the term ǲbeam waistǳ is reserved for the minimum of the 

actual waist size as discussed next. The electric field in Eq. (4.1) is equivalently expressed 

as [12] 
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that clearly shows the purely azimuthal polarization of the beam. The electric field 

intensity profile of an APB is plotted at the beam’s minimum-waist plane (i.e., 0z  ) in 

Fig. ‎4.2(a). It is observed that the APB’s electric field has an annular-shaped intensity 

profile whose CFWHM is of interest to us as a measure of the beam’s tightness. The APB 

examined in Fig. ‎4.2 is carrying a power of 1mW, obtained by setting 0.89VV  in Eq. 
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(4.3), and its beam parameter is set to 0 0.9w  . In Appendix B and section IV of this 

paper, we show that the converging APB expressed by Eq. (4.1) with such an illustrative 

beam parameter ( 0 0.9w  ) represents, by a good approximation, a self-standing beam. 

The strength of the APB’s electric field given in Eq. (4.3) is proportional to  2 2exp / w   

in any given z transverse plane, and it reaches its maximum 
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at / 2M w  . Therefore on the minimum-waist plane (i.e., 0z  ) the electric field 

magnitude peaks at 0 / 2M w  , that is in an agreement with what is shown in Fig. ‎4.2(a). 

The magnetic field of the APB with the electric field given in Eq. (4.3) is subsequently found 

by using i H E  in cylindrical coordinates, yielding a longitudinal magnetic field 

component as [12] 
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alongside a radial magnetic field component as 
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It is observed from Eq. (4.6) that for 1Rkz   the radial magnetic field component follows 

the electric field profile of the beam. In summary, the APB possesses only , ,zE H  and H

field components. The intensity of the APB’s longitudinal magnetic field [given in Eq. (4.5)] 
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is plotted in Fig. ‎4.2(b) where it peaks on the beam axis ( 0  ) and is characterized by its 

FWHM. The maximum of the longitudinal magnetic field strength at any z is given by 

  2( 0, ) 4 /zH z V w      (4.7) 

and is thus inversely proportional to 2
w . It is observed from Eq. (4.7) that the longitudinal 

magnetic field of the APB peaks at the beam’s minimum-waist plane (i.e., 0z  where

0w w ), where its magnitude is inversely proportional to the square of the beam 

parameter 
2

0w . The transverse magnetic field [which is purely radial and given in Eq. 

(4.6)] increases together with the electric field (which is purely azimuthal) as the radial 

distance   from the beam axis increases and peaks away from the beam axis alongside the 

azimuthal electric field, as shown in Fig. ‎4.2(c).  

 

Fig. 4.2 Intensity profile of (a) electric field, (b) axis-confined longitudinal 

magnetic field, and (c) purely radial transverse magnetic field for an APB 

carrying  1mW power and with beam parameter of  0 0.9w   at λ=523nm. 

By duality, this is analogous to the case of the radially polarized beam in which electric 

field intensity is purely longitudinal on the beam axis and its transverse component peaks 

off the beam axis [3], [4], [6], [11]. Here, we define the CFWHM for the annular-shaped 

electric field intensity profile of the APB as the width across its null where the field 
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intensity rises to the half of its maximum, i.e., to 
2

0.5 ( , )ME z  [see Eq. (4.4) and 

Fig. ‎4.2(a)]. In addition, the FWHM of the longitudinal magnetic field intensity is also 

calculated as the width across its peak on the beam axis where the longitudinal magnetic 

field intensity drops to the half of its maximum, i.e., to 
2

0.5 ( 0, )zH z  [see Fig. ‎4.2(b)]. 

Based on the azimuthally polarized electric field and the longitudinally polarized magnetic 

field expressions given, respectively, in Eq. (4.3) and Eq. (4.5), the CFWHM of the electric 

field intensity and the FWHM of the longitudinal magnetic field intensity at the minimum-

waist plane are calculated and given by  
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One may be also interested in the ratio of the longitudinal magnetic field on the beam axis, 

where it is maximum, to the maximum of the electric field at M  . This ratio, normalized 

with respect to the inverse of the host-medium wave impedance  
1 /    , is equal to 

 1/2
( 0, ) 2

0.74
( , )
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H z
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Note that such ratio is inversely proportional to w   and it reaches its maximum at 0z  , 

i.e., in the minimum-waist plane. Therefore the maximum magnitude of the longitudinal 

magnetic field increases relatively more than the maximum magnitude of the electric field 

as 0w  decreases (tighter beams). Note that decreasing 0w  also has the effect of decreasing 

the area of the longitudinal magnetic field spot.  
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Finally, we should note that on the minimum-waist plane ( 0z  ) the ratio 

( ,0) / ( ,0)zH E    is equal to unity at the radial distance 
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and inside this radius, the longitudinal magnetic to total electric field contrast ratio for 

APB is larger than the magnetic to electric field contrast ratio (the admittance) of a plane 

wave 1 . The optical power carried by the APB is calculated by the integral of its 

longitudinal Poynting vector over its minimum-waist plane as 
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After substituting the APB’s azimuthal electric and radial magnetic fields formulas given 

in Eq. (4.3) and Eq. (4.5) into Eq. (4.11), the power carried by the APB is evaluated as  
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After a change of variable from  202 w to t , the integral term in Eq. (4.12) is found to be  

equal to  0.5 (3) 1   where ( )   is the gamma function. Therefore Eq. (4.12) is reduced to 
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  (4.13) 

Eq. (4. 13) clearly shows that power carried by the APB is explicitly expressed as a function 

of 0w   and the absolute value of the amplitude coefficient V . Therefore, the APB’s 

amplitude coefficient V is obtained for certain beam parameter 0w  and required power 

using Eq. (4.13). 

 

Fig. 4.3 Comparison between a FGB and an APB of equal powers (1mW) at   

and beam parameters at λ=523nm their minimum-waist planes (i.e., z=0): 

(top row) 0 0.9w   and (bottom row) 0 0.5w  . Strength of the total 

electric field (first column), strength of the total magnetic field (second 

column), and the ratio of the total magnetic to the total electric field 

intensities normalized to that of a plane wave (third column) (Note how this 

ratio grows for the APB when approaching the beam axis.). 

In order to have a better assessment of the APB’s significance in providing a magnetic-

dominant region, here we compare an APB with a FGB of equal powers and beam 

parameters. The electric and magnetic field distributions of a paraxial APB and a FGB at 

their paraxial minimum-waist planes, i.e. at z = 0, are compared in Fig. ‎4.3 for two 



63 

 

illustrative beam parameters set to (top row) 0 0.9w  and (bottom row) 0 0.5w  . Here 

the APB and the FGB carry equal powers of 1mW [See Eq. (4.13)]. In order to have 

azimuthally symmetric magnetic field distribution for the FGB, we consider circularly 

polarized FGB in Fig. ‎4.3, however similar conclusions would be obtained if we used 

linearly polarized FGB.  In contrast to the FGB whose magnetic and electric fields peak on 

the beam axis (i.e., the z axis), the APB contains a pure longitudinal magnetic field 

component on the beam axis where its electric field vanishes. The magnetic-to-electric field 

intensity ratio normalized to that of a plane wave is also plotted for the APB and the FGB in 

Fig. ‎4.3 (third column) varying radial distance from the beam axis. Note that the magnetic-

to-electric field intensity ratio of the FGB is very close to that of a plane wave. In contrast 

the APB has a very large magnetic-to-electric field intensity ratio in the vicinity of the beam 

axis denoting the magnetic-dominant region. This ratio for the APB tends to infinity when

0 . For 0 0.9w   [Fig. ‎4.3(top row)], even though the strength of the APB’s magnetic 

field on the beam axis is half of that of the FGB carrying the same power, the APB uniquely 

has only magnetic field and no electric field there, which is an important feature that can be 

used in various applications. In addition, it is observed from Fig. ‎4.3(top row) that the 

FWHM of the total magnetic field for the APB with 0 0.9w   is larger than that for the 

FGB with the same 0w , this is attributed to the fact that the APB contains an annular-

shaped radial magnetic field component [see Fig. ‎4.2(c)]. However, decreasing the beam 

parameter (tightening the beam) from 0 0.9w   to 0 0.5w  boosts longitudinal 

magnetic field component relatively more than the radial one, and therefore significantly 

decreases the FWHM of the total magnetic field, as shown in Fig. ‎4.3(bottom row). To 
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further reduce the FWHM of the total magnetic field of the APB approaching to that of its 

longitudinal magnetic field component, one approach might be to use ring-shaped lenses 

with high numerical apertures for focusing of the APB. This technique has been used for 

generating very sharp electric field focuses using radially polarized beams [8], [9]. 

Sec. 4.3 Focusing an APB through a lens 

Let us now assume that an APB illuminates a converging lens. In Appendix A, using the  

Fresnel integral [Eq. (4. A3)] we show how a lens, under paraxial approximation, converts 

an incident APB, whose minimum-waist plane  occurs at the lens surface, to another 

converging self-standing APB whose paraxial minimum-waist plane coincides with the 

lens’s paraxial focal plane. This is schematically represented in Fig. ‎4.4 for a specific 

example where we show the total electric and the longitudinal magnetic field magnitudes 

of the APB before and after focusing through the lens.  

In this section, we aim to characterize magnetic and electric fields of an APB upon 

focusing through a lens at the focal plane of the lens. To have an analytical assessment, we 

first calculate the fields at the lens’s paraxial focal plane using the paraxial Fresnel integral 

(See Appendix A for more details) as a function of the lens paraxial focal distance using Eq. 

(4.1) and Eq. (4.A10). Next in order to confirm the analytical calculations and to provide a 

guide to where the Fresnel integral expressions valid, we characterize the APB upon 

focusing through a converging lens using the accurate PWS calculations. As for the PWS 

calculations, we assume the thin lens approximation such that each ray entering one side of 

the lens exits the other side at the same transverse  ,   coordinates as the entrance 
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position. We model the transmission through the lens by imposing a phase shift, which 

varies in radial direction, added to the  -dependent phase of the incident APB.  

 

Fig. 4.4 Schematic of a converging lens transforming an incident APB with 

beam parameter 0,iw  into another converging APB with beam parameter 

0, fw . The magnitudes of the total electric (which is purely azimuthal) and 

the longitudinal magnetic fields are plotted. The radial component of the 

magnetic field, also experiencing focusing, is not shown here for brevity. In 

this representative example, the incident APB carries 1mW power, and the 

lens radius and focal distance are set at a=40λ and f=80λ, respectively. The 

beam parameters of the incident and focusing APBs are 0, 29iw  and

0, 1.3fw  , respectively. 

The transmission phase shift that is added, relative to a spherically converging wave, is 

given by 
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  (4.14) 

where f is the paraxial focal distance of the lens (on the right panel of Fig. ‎4.4), ρ is the 

local radial coordinate of the lens, and λ is the wavelength in the host medium on the right 
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side of the lens. Note that we are assuming that the lens does not vary the ρ-dependent 

amplitude of the incident APB’s field across the lens. We also remind that in the Fresnel 

integral equation the phase term in Eq. (4.14) is paraxially approximated as a quadratic 

phase [see Eq.(4.A2)] term [43]. The Fourier and inverse Fourier transform integrals in 

PWS calculations (see Eq. (24)-(25) in [12]) are then numerically calculated via a two-

dimensional FFT algorithm where the size of the entire spatial domain and spatial 

resolution are 2048 2048   and / 20 , respectively. Moreover, to model the hard-edged 

aperture, the electric field is assumed null outside of the overall lens aperture in the lens 

plane.  

We now characterize the FWHM of 
2

zH  and the CFWHM of 
2

E  at the lens focal plane 

for an incident APB. As a representative example, we set the lens radius a equal to 40λ and 

characterize the focusing beam at the lens’s focal plane as the lens’s paraxial focal distance f 

changes. The incident APB has a beam parameter of 0, 29iw   such that the beam cross-

section is much wider than the wavelength and 90% of the incident beam power 

illuminates the lens surface. In Fig. ‎4.5 we plot the FWHM of 
2

zH  and CFWHM of 
2

E  

calculated at the lens’s focal plane as a function of the lens radius to focal distance ratio a/f, 

where a is kept constant and f is varied. We recall that the right side of Fig. ‎4.4 corresponds 

to the field maps for a specific case with a=f/2, which is a point on the curves reported in 

Fig. ‎4.5. The quantities plotted in Fig. ‎4.5 are calculated using both the Fresnel integral 

formula [given in Eq. (4.A10)] at the lens’s paraxial focal plane (z=f) and PWS calculations 

(refer to [12] for more details on PWS) at the lens’s actual focal plane. 
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It is observed from Fig. ‎4.5 that the paraxial Fresnel integral results (denoted by FI) 

agree very well with the accurate PWS results especially for large focal distances (small 

a/f). We also observe from the PWS results that for the case with f=a, the FWHM of the 

longitudinal magnetic field intensity and CFWHM of the total electric field intensity at the 

lens actual focal plane are 0.715λ and 0.53 λ, respectively. Note that the actual focal plane, 

obtained from PWS calculations, is slightly displaced from the lens’s paraxial focal plane as 

described in the next section. In Appendix B, we elaborate more on this as we examine the 

plane wave spectrum of converging beams. 

 

Fig. 4.5 (a) FWHM of the longitudinal magnetic field intensity 
2

zH , and (b) 

CFWHM of the annular-shaped electric field intensity 
2

E calculated using (i) 

PWS at the actual focal plane and (ii) Fresnel integral (FI) at the lens’s 

paraxial focal plane, upon illuminating the lens by an incident APB, varying 

normalized lens’s focal distance f. 

Sec. 4.4 Self-standing converging APB 

As we discussed in the previous section, a lens converts an incident APB to another 

converging self-standing APB whose constituent evanescent components in its spectrum 

are negligible (see Fig. ‎4.4 and Appendix A). This simplifies the calculations of the focusing 

beam due to a lens assuming the paraxial approximation (See Appendix A). Therefore, in 
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this section we examine propagation of a self-standing converging APB, assuming it is 

focused by the lens, and quantify its properties at its minimum-waist plane. We show some 

important tight field features of self-standing converging APBs as a function of their beam 

parameter 0, fw  (as shown in Fig. ‎4.4) where we pay particular attention to the FWHM of 

their longitudinal magnetic fields at the minimum waist. Since we only elaborate on a self-

standing converging beam we drop the subscript f and denote the converging beam 

parameter simply as 0w . The spectral components of the converging APBs are examined in 

Appendix B where we show that more than 95% of the spectral energy of the converging 

APBs with 0 0.5w   is confined in the propagating spectrum. Thus, in the subsequent 

studies the beam parameter of the converging APB is set larger or equal to 0.5 . The 

results pertaining to the paraxial beam propagation are also compared to those obtained 

from the analytical-numerical computation based on the PWS. We assume to know the 

initial APB’s field distribution, with converging features, at a certain z-plane (so-called 

reference plane) and observe the beam propagating toward its minimum-waist plane in +z 

direction. In other words, we investigate the converging properties of the beam on the right 

side of the lens in Fig. ‎4.4. 

We first assess the validity of the paraxial approximation for APBs as in Eq. (4.1). It is 

known that the paraxial approximation for a beam holds under the following condition [2], 

[44], [45] 
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where 
ikz

eE ψ  represents paraxial field distribution for a beam propagating in +z 

direction. In order to determine the validity range of the paraxial field, we define a 

paraxiality figure as 
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p 2
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  (4.16) 

which is a function of local coordinate. We also define the normalized weighted average 

figure of the paraxiality at each transverse z-plane as 
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where the numerator is the average paraxiality figure weighted by the intensity of the 

transverse field and the denominator is the total weight of the transverse field intensity 

with respect to which we normalize the weighted average paraxiality figure. The value of 

p,aveF for the paraxial APB’s electric field in Eq. (4.1) is calculated and plotted in Fig. ‎4.6 as a 

function of the beam parameter 0w , at the beam’s paraxial minimum-waist plane z=0. The 

larger the paraxiality figure p,aveF is, the better the paraxial approximation is. Ιt is observed 

from Fig. ‎4.6 that p,ave 50F   (i.e., 10 p,avelog ( ) 1.7F  ) for the beam parameters larger than 

0.9λ. We assume that p,aveF  values larger than 50 represent reasonably valid paraxial 

beams for practical purposes. Thus, for such values of 0w  the paraxial electric field 

expression given in Eq. (4.1) represents a self-standing APB’s field distribution with a good 

approximation. Remarkably, the signature of this ǲvalidity rangeǳ manifests itself in the 
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comparison of the paraxial beam propagation and the accurate PWS results discussed in 

the following. 

 

Fig. 4.6 The normalized weighted average figure of paraxiality p,aveF (in 

logarithmic scale) for a converging APB at the beam’s paraxial minimum-

waist plane (z=0) as a function of the beam parameter 0w . 

We now examine the magnetic and electric field features of a self-standing converging 

APB at its minimum-waist plane as a function of the beam parameter 0w (for 0 0.5w  ). 

With this in mind, we characterize self-standing converging APB using PWS calculations. 

We start with an APB’s paraxial transverse field distribution on a transverse reference 

plane located at rz z  ( ,r fz z see Fig. 4.1 for fz ) given by Eq. (4.1). Subsequently the 

evolutions of the beam’s magnetic and electric fields in the positive z-direction are 

examined using the PWS calculations. The location of the actual minimum-waist plane of a 

converging APB ǲlaunchedǳ from a reference plane at 3.5rz    with the field 

distribution given in Eq. (4.1) is calculated using PWS and plotted in Fig. ‎4.7 as a function of 

the beam parameter 0w . We observe that the actual minimum-waist plane of the 

converging APB does not occur at z=0, that is the location of the focus predicted by the 
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paraxial field expression. This difference is attributed to the presence of plane-wave 

constituents with large transverse wave numbers in the field spectrum of the converging 

APB which are not properly modeled in the paraxial field expressions (See Appendix B for 

more details on spectral content of the APB). For an APB, with decreasing 0w  a larger 

amount of constitutive propagating plane wave spectral components of the beam’s field 

will have large transverse wavenumbers. 

 

Fig. 4.7 The position of the actual minimum-waist plane of the beam fz as a 

function of the beam parameter 0w  for both APB and FGB (calculated using 

the PWS). The minimum-waist plane estimated by using the simple paraxial 

field expression is at z=0. 

Hence, the difference between the actual minimum-waist plane’s location (here denoted 

by fz ) and the one predicated by the paraxial field expressions (here at z = 0) becomes 

more significant, because of the loss of accuracy of the paraxial approximation with 

decreasing 0w . As a reference, in Fig. ‎4.7 we also plot the minimum-waist plane’s position 

of a converging FGB as a function of its 0w . We observe that the difference between the 

actual and the paraxial minimum-waist plane’s positions for a FGB is also increasing as 0w  

decreases. However, the difference between the actual minimum-waist plane’s position and 
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the paraxial one is larger for an APB than for a FGB with an equal 0w . This is due to the fact 

that the transverse wavenumber spectrum of an APB’s field is broader than that of a FGB’s 

field with the same beam parameter; hence the paraxial approximation is coarser for the 

APB compared to the FGB. 

Next the FWHM of 
2

zH  and the CFWHM of 
2

E   of the converging APB are calculated 

using both paraxial and PWS calculations and plotted in Fig. ‎4.8. The FWHM and the 

CFWHM in the PWS calculations are evaluated at the actual minimum-waist plane of the 

APB ( fz z ), that depends on 0w  (see Fig. ‎4.7). Instead, the FWHM and CFWHM under the 

paraxial approximation are evaluated using Eq. (4.1) at z = 0 for all the 0w cases. It is 

observed from the paraxial calculations that the FWHM and CFWHM curves decrease 

monotonically as the beam parameter 0w  decreases. However, in practice, the decrease in 

FWHM of the longitudinal magnetic field intensity profile as well as CFWHM of the electric 

field intensity profile is hampered by an ultimate limit imposed by the diffraction of the 

beam. It is observed from the PWS curves in Fig. ‎4.8 that the FWHM and CFWHM of the 

converging APB are saturated by the diffraction to about 0.56  and 0.43 , respectively, 

despite the paraxial approximation estimates much smaller FWHM and CFWHM. Thus, 

according to accurate PWS calculations, longitudinal magnetic field intensity profile with 

FWHM as small as 0.56  (spot area of about
20.25 ) is achievable with 0 0.5w  . The 

spot area is defined here as the circular area whose diameter is equal to the FWHM. 

Here, based on what discussed in Appendix B, we stress that the transverse 

wavenumber spectrum of the APB’s field in Eq. (4.1) with very small 0w  ( 0 0.5w  ) is not 
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confined only in the propagating wavenumber spectrum and it starts to extend to the 

evanescent spectral region and therefore is not shown in Fig. ‎4.8. However, the spatial field 

distribution in Eq. (4.1) with 0w  as small as 0.5λ has wavenumber spectral constituents still 

confined in the propagating spectrum (see Appendix B) and it has a relatively large 

normalized weighted average figure of paraxiality p,ave 14F  . Therefore, though it may not 

represent a strictly self-standing APB, the paraxial approximation is not too coarse. 

 

Fig. 4.8 Plane-wave spectral (PWS) and paraxial calculations for (a) the 

FWHM of the longitudinal magnetic field intensity and (b) the CFWHM of the 

annular-shaped electric field intensity of the converging APB as a function of 

the beam parameter 
0w . 

When the beam parameter 0w  is larger than 0.9 , the paraxial curves for the FWHM and 

the CFWHM in Fig. ‎4.8 follow very well the accurate PWS ones, and they start to deviate 

from PWS curves when 0w  decreases to smaller values, which is in agreement with our 

finding in Fig. ‎4.6. In order to clarify the effect of beam parameter 0w  on different magnetic 

field components of the APB, in Fig. ‎4.9 we plot the strength of the longitudinal ( zH ) and 

the radial ( H ) magnetic field components as well as the strength of the azimuthal electric 

field normalized to the host-medium wave impedance for two illustrative 0w values at 
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523nm  , using PWS calculations. We recall that the APB has a zH  profile that peaks on 

the beam axis ( 0  ), whereas its transverse magnetic field component is purely radial 

and peaks off the beam axis. It is observed from Fig. ‎4.9 that the longitudinal magnetic field 

spot areas as small as 
20.25 and 

20.49 are obtained with converging APBs with 0w  of 

0.5  and 0.9 , respectively. However, since APB possesses a radial magnetic field 

component over an annular-shaped region in addition to the longitudinal one (see Fig. ‎4.9), 

the FWHM of the total magnetic field is always larger than the FWHM of the longitudinal 

magnetic field component. 

 

Fig. 4.9 Strength of the longitudinal ( zH ) and radial ( H ) magnetic fields of 

an APB for two different beam parameters 0w  at 523nm  , evaluated 

using accurate PWS calculations. The strength of the azimuthal electric field (

E ) normalized to the wave impedance is also plotted for comparison. 

It is also observed from Fig. ‎4.9 that when 
0w  of the APB decreases from 0.9λ  to 0.5λ, the 

strength of its longitudinal magnetic field component increases by about 2.2 times, which is 

relatively more than the increase in the strength of its radial magnetic field component 

(1.24 times). Indeed, as the beam parameter 
0w  decreases, the plane-wave spectral 

distribution of the APB includes large transverse wavenumbers. For smaller beam 

parameters such like 0 0.5w  , a larger portion of the constitutive TE (transverse electric 
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with respect to z) plane waves in the spectrum of the APB possess large transverse 

wavenumbers meaning that they propagate in directions with larger angles   with respect 

to the beam axis, as shown in Fig. ‎4.10. Therefore the magnetic fields of the TE constitutive 

plane waves, which are perpendicular to the plane wave propagation directions, are more 

aligned with the beam axis. The depth of focus (DOF, or longitudinal FWHM) of the 

longitudinal magnetic field intensity profile for a converging APB is also shown in Fig. ‎4.11 

as a function of 0w , using accurate PWS calculations. For the sake of comparison, in 

Fig. ‎4.11 we also plot the DOF of the electric field intensity profile for a converging 

circularly polarized FGB. As 0w  increases, the Rayleigh range Rz  increases as  20w and as 

a result the beam waist w  varies less with respect to z (see Eq. (4.2) where w  is written as 

a function of z and  Rz ). Therefore the DOF is much longer for larger 0w  which also means 

the field features are less tight. 

 

Fig. 4.10 Raytracing model of an APB focusing through a lens. Magnetic field 

vectors are denoted by blue arrows. Spectral components with large 

transverse wavenumber provide strong longitudinal magnetic field. 
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Fig. 4.11 The depth of focus (DOF) of the longitudinal magnetic field intensity 

profile for a converging APB as a function of the beam parameter 0w , 

evaluated using PWS. For comparison, the depth of focus of the electric field 

intensity profile of a FGB is also plotted. 

Sec. 4.5 Spatial magnetic resolution below the diffraction limit 

So far, we have demonstrated that fields in focal plane of a converging APB with 

0 0.5w   are constructed only from the propagating spectrum and therefore are 

diffraction limited (see Appendix B). We have shown using PWS calculations in Fig. ‎4.8 that 

the FWHM of the longitudinal magnetic field intensity and the CFWHM of the total electric 

field intensity for such a converging APB are limited by the diffraction to 0.56  and 

0.43 , respectively. In addition, we have also shown that the total magnetic field intensity 

is less collimated than the longitudinal magnetic field due to the presence of the strong 

annular-shaped transverse magnetic field. In this section, we aim at enhancing the 

longitudinal magnetic field of an APB and boosting its spatial magnetic resolution below 

the diffraction limit. To overcome the diffraction barrier, evanescent waves should be 

excited. One popular approach to generate evanescent waves, required for achieving spatial 

resolutions below the diffraction limit in microscopy, is to use a subwavelength scatterer 

[46]. 
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Fig. 4.12 Schematic of a converging APB with 0 0.9w   illuminating a 

subwavelength-size Silicon nanosphere (as a magnetic nanoprobe) placed at 

the actual minimum-waist plane of the beam: 62nm,r  0.55 ,fz  

523nm  . 

Here, we show that a super tight magnetic-dominant spot is achieved using a 

subwavelength-size dense dielectric Mie scatterer (here Silicon nanosphere) having a ǲmagneticǳ Mie resonance as a magnetic nanoprobe [39]. We adopt an initial paraxial 

electric field distribution for the APB at a reference plane rz z  (here 3.5rz   ) away 

from the minimum-waist plane based on Eq. (4.1), as shown in  Fig. ‎4.12. We remind that 

based on Appendix B, Fig. ‎4.6 and Fig. ‎4.8 and their corresponding discussions in this 

chapter, the APBs with beam parameters larger than 0 0.9w   can be, by a good 

approximation, represented by Eq. (4.1). Therefore, here we adopt 0 0.9w   for the 

illuminating APB to have a tight magnetic field spot. In the previous section, the 

propagation of such an APB was modeled using the PWS and its accurate minimum-waist 

plane position and field distributions are calculated. Here, we import the APB’s paraxial 

transverse electric field distribution [given by Eq. (4.1)] into the finite integration 

technique in time domain solver implemented in CST Microwave Studio as a boundary field 

source. As a consequence of the Schelkunoff equivalence principle (PEC equivalent) 

implemented in CST Microwave Studio, the APB propagates towards the +z direction in 
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Fig. ‎4.12. The coefficient V in Eq. (4.2) is set to 0.89V such that the total power of the 

incident APB given in Eq. (4.13) is 1mW. In the full-wave simulations we assume a free 

space wavelength of 523nm  . The magnetic field map of the incident APB (without any 

scatterer yet), calculated by the time domain solver implemented in CST Microwave Studio 

in the y-z longitudinal plane, is shown in Fig. ‎4.13(a). We observe from Fig. ‎4.13(a) that the 

APB’s minimum-waist plane occurs at 0.55fz    which is also obtained by the PWS 

calculations according to Fig. ‎4.7 (the paraxial approximation instead would estimate a 

focus at z=0). Next, a subwavelength-size Silicon nanosphere scatterer is placed at the 

APB’s actual minimum-waist plane ( 0.55fz z    ), assumed to be in vacuum. The 

Silicon nanosphere has a relative permittivity equal to 17.1 0.084rε i   and radius of 

62nmr  , such that its magnetic Mie polarizability magnitude peaks at 523nm  [25]. 

The total magnetic field’s magnitude at the presence of nanosphere (superposition of 

incident and scattered fields) locally normalized to the magnitude of the incident magnetic 

field is also shown in the y-z longitudinal plane in Fig. ‎4.13(b), where we observe large 

magnetic field enhancement at the scatterer cross section and in the vicinity of the 

scatterer. Note that the enhanced magnetic field is strongly localized close to the scatterer 

with a relatively very low side-lobe levels resulting in a very high spatial magnetic 

resolution. Moreover, starting from the surface of the scatterer the tight magnetic spot 

extends into the surroundings and drops rapidly away from the nanosphere’s surface, 

revealing the presence of evanescent spectral fields in the near field close to the scatterer. 



79 

 

 

Fig. 4.13 Full-wave simulation results for the magnitude of (a) the incident 

magnetic field and (b) the total magnetic field (summation of incident and 

scattered field from the nanosphere) locally normalized to the incident 

magnetic field. 

The normalized magnetic and electric field intensities without the presence of the 

scatterer (only the incident APB) at the APB’s minimum-waist plane (at fz z ) and with 

the scatterer at two different x-y transverse planes (at fz z r  and 2fz z r  ) slightly 

away from the scatterer are also shown in Fig. ‎4.14(a)-(b). In addition, Fig. ‎4.14(c) shows 

the FWHM of the total and the longitudinal magnetic near-field intensity patterns on x-y 

transverse planes versus the distance on the z axis from the nanosphere center at f
z z  

in positive z-direction. We observe from Fig. ‎4.14 that high resolution total magnetic near-

field spots with FWHMs of 0.108 and 0.23 and relative side-lobe peaks of 0.018 and 

0.29 (relative to the peak of the total magnetic near-field) are obtained in the transverse 

planes tangential to the scatterer and one radius away from the scatterer in the positive z 

direction, respectively. Note that as the distance from the nanosphere surface increases the 

strength of the annular-shaped transverse magnetic field component (relative to that of 

longitudinal magnetic field component) increases, eventually restoring the illuminating 
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APB’s magnetic field profile. As such, the side-lobe level of the total magnetic near-field 

intensity pattern increases quickly for transverse planes more than 2.5r away from the 

nanosphere center, where the FWHM is not a measure of resolution anymore and therefore 

it is not reported for that range in Fig. ‎4.14(c). 

 

Fig. 4.14 Normalized total (a) magnetic and (b) electric near-field intensities 

(each case is normalized to its own maximum) without (black solid curves) 

and with (blue dashed and red dotted curves) the presence of the Silicon 

nanosphere centered at fz z , evaluated at different x-y transverse planes. 

(c) The FWHM of the total and the longitudinal magnetic near-field intensity 

patterns at different x-y transverse planes after the nanosphere. 

The total magnetic field spot areas reported here (i.e., 
20.009 and 20.04 ) are much 

smaller than the ultimate spot area obtained for the longitudinal magnetic field of a tightly 

focused APB with 0 0.5w   without the nanosphere which is 20.25 . The enhancement of 

the total magnetic field with respect to that of the incident APB at two different transverse 
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planes are also plotted in Fig. ‎4.15(a) where we observe a significant enhancement of the 

total magnetic field close to the nanosphere. The longitudinal magnetic field of the incident 

APB induces a magnetic dipole moment in the nanosphere polarized along the z direction 

which in turn boosts the total magnetic field thanks to the dipolar magnetic near fields. The 

square of the near-field admittance, defined as the total magnetic field intensity divided by 

the total electric field intensity, normalized to that of a plane wave (
2

1 ) is also plotted in 

Fig. ‎4.15(b), which clearly shows a very high contrast ratio between magnetic and electric 

field especially around the beam axis. On the beam axis ( 0  ) where the electric field 

has a null, magnetic to electric field contrast ratio goes to infinity (not shown here). 

 

Fig. 4.15 (a) Total magnetic field (summation of incident and scattered fields) 

of the scatter system locally normalized to that without the nanosphere at 

fz z , evaluated at different transverse planes away from the scatterer. (b) 

Ratio of the total magnetic field intensity to the total electric field intensity of 

the scatter system normalized to that of plane wave (this defines the local 

near-field admittance normalized to that of the plane wave). 

The utilization of a silicon nanosphere as a magnetic nanoprobe excited by a converging 

APB, which provides a tight magnetic-dominant region with enhanced magnetic and 

negligible electric near-fields, is especially crucial for explicit excitation of magnetic dipolar 

transitions in sample matters with weak magnetism at optical range. The magnetic dipolar 
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transitions are in general weak at optical range and overshadowed by their stronger 

electric counterparts. Note that when the nanosphere is utilized as a magnetic nanoprobe 

that boosts the magnetic response of a sample matter in its extreme vicinity, it is clear that 

the beam axis and the nanosphere should be perfectly aligned in order to boost only the 

magnetic response of the sample matter. This would be advantageous in scanning probe 

microscopy based on magnetism, as the extreme sensitivity to alignment would result in a 

high resolution mapping. In addition, in most fabrication techniques the nanosphere is 

either deposited on top of a substrate or embedded inside a dielectric. Most importantly, 

the presence of the dielectric/substrate would (i) shift the focal plane of the converging 

APB (depending on the relative position of the focal plane and the dielectric interface) 

which could be compensated when known, and (ii) change the FWHM of the longitudinal 

magnetic and CFWHM of the total electric near-fields inside the dielectric medium. Note 

that the electric field [which is purely transverse and given in Eq. (4.3)] and also the 

magnetic field of the APB should be continuous across the dielectric surface according to 

the field boundary conditions. However, since the effective wavelength inside the dielectric 

is shorter than that in the vacuum, the fields’ features of the illuminating APB would be 

tighter than those belonging to the same APB propagating inside unbounded vacuum. 

Nevertheless, the magnetic-dominant region would be preserved across the dielectric 

surface. 

Although in this paper a silicon nanosphere is proposed as an illustrative example of 

magnetic nanoprobe, other kind of the magnetic nanoprobes (such as circular clusters 

made of nanospheres of different geometries [39]) may be advantageous in terms of 
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increasing the magnetic near-field enhancement level, increasing the magnetic-dominant 

region size, or facilitating experimental setups. 

Sec. 4.6 Conclusion 

We have characterized the focusing of an azimuthally E-polarized vector beam (APB) 

through a lens with special attention on its magnetic-dominated region. When focusing the 

APB the longitudinal magnetic field strength grows relatively more than the azimuthal 

electric field strength, leading to a region of a boosted longitudinal magnetic field. We have 

also elaborated on self-standing converging APBs using plane-wave spectral (PWS) 

calculations and shown that longitudinal magnetic field intensity spot with full width at 

half maximum (FWHM) of 0.56  and annular-shaped electric field intensity spot with 

complementary FWHM of 0.43 can be achieved using a converging APB with 

0 0.5w  . However, the resolution of the total magnetic field intensity at a diffraction-

limited APB focus is limited by the presence of the radial magnetic field in an annular-

shaped region around the beam axis with comparable magnitude to the longitudinal one. In 

order to enhance the longitudinal magnetic field and obtain a very high total magnetic field 

resolution, we have proposed to utilize a magnetically polarizable (at optical frequency) 

particle leading to sharp magnetic near-field features. Full-wave simulation results 

reported here demonstrate that by placing a subwavelength-size dense Mie scatterer (here 

Silicon nanosphere) at the minimum-waist plane of a converging self-standing APB one 

achieves an extremely high resolution magnetic-dominant region with a magnetic field 

enhancement of about 2.3 (with respect to the incident magnetic field) and a magnetic field 

spot area of 
20.04  at a transverse plane 0.12  away from the scatterer surface. Such a 
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super tight magnetic-dominant region, with enhanced magnetic and negligible electric 

near-fields, is essential for unambiguous excitation of magnetic dipolar transitions in 

materials. Especially this may be beneficial by adding an extra feature, based on magnetic 

near-field signature, to the future magnetism-based scanning probe microscopy and 

spectroscopy systems. 

This chapter is reproduced based on the material in [M. Veysi, C. Guclu, F. Capolino, 

"Focused azimuthally polarized vector beam and spatial magnetic resolution below the 

diffraction limit," Journ. Opt. Soc. Am. B, Vol. 33, No. 11, pp. 2265-2277, 2016], © 2016 OSA. 

Appendix A Field at the focal plane of a lens upon APB illumination 

Let us assume that an incident paraxial APB as in Eq. (4.1)-(4.2) with beam parameter 

0,iw  illuminates an infinitely-thin converging lens (Fig. ‎4.4). We assume the lens to be 

positioned at 0z   transverse plane where the incident APB has its minimum CFWHM. In 

other words, the lens is located at the incident beam’s paraxial minimum-waist plane. 

Accordingly, the following conclusions would be still approximately valid if the incident 

beam’s minimum-waist plane occurs at Rz z  leading to 1  and 0w w in Eq. (4.2). 

The electric field at the lens’s paraxial focal plane z f , on the right side of the lens in 

Fig. ‎4.4, is subsequently calculated using the  Fresnel diffraction integral that in cylindrical 

coordinate system is written as [43] 
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where f  is the lens paraxial focal distance ,  ', ', ' 0i z  E  is the incident APB’s 

electric field vector at the lens plane (given by Eq. (4.1) with 0z  ),  'P   is the pupil 

function to account for the physical extent of the lens, and    is the lens-induced 

spherical phase given in Eq. (4.14) required to focus the beam. Under paraxial 

approximation, the phase term   in Eq. (4.14) is approximated as 
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Substituting Eq. (4.A2) into (4.A1), the electric field at the lens’s paraxial focal plane can 

be subsequently approximated as 
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For simplicity, let us first assume that the physical diameter of the lens (i.e., 2a) is 

sufficiently larger than the beam waist of the incident beam, implying that almost all the 

incident beam power illuminates the lens. Under such assumption, the pupil function in Eq. 
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(4.A3) is set to one. The incident APB’s electric field  ', ', ' 0i z  E  in Eq. (4.A3) is a 

superposition of four linearly polarized LG beams, two x-pol. LG beams with    , 1,0l p  

and two y-pol. LG beams with    , 1,0l p    [see Eq. (4.1)], where l and p are the 

azimuthal and radial LG beam’s mode numbers, respectively. Therefore, for the sake of 

simplicity, we first show the steps for a general linearly polarized LG beam with mode 

number  ,l p  and beam parameter 0,iw  as the incident beam. Analogous treatment is 

readily applied to the all four linearly polarized LG beams that form the APB in Eq. (4.1). 

For an incident x-pol. LG beam, the electric field at the lens plane ( 0z  ) is given as 

   , ˆ', ', ' 0 ', ', ' 0i l pz u z     E x . Here, we use the following integral identities [47] 
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where  J .l  is the Bessel function of the first kind and  order of l ,  sgn l denotes the sign of 

l , and  .l
pL  is the associated Laguerre polynomial [1], [12]. Accordingly, the x-pol. LG 

beam’s field at the paraxial focal plane of the lens is then written as 
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where 

 0,
0,

f
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f
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w


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For practical cases (as for the lens physical parameters provided in this chapter), almost all 

the focused beam power on the lens focal plane is confined in a circular region whose area 

is much smaller than f  , i.e., the focused area is within a radial distance f  . 

Therefore, the phase factor  2exp / 2ik f 
   in Eq. (4.A5) can be neglected and Eq. (4.A5) 

would clearly represent a paraxial LG beam at its minimum-waist plane with beam 

parameter of 0, fw . In other words, under paraxial assumption, focusing an incident LG 

beam through a simple lens placed at its minimum-waist plane results in another LG beam 

whose minimum-waist plane coincides with the lens’s focal plane ( z f ) and its beam 

parameter relates to the focal distance of the lens and the incident beam parameter 

through the Eq. (4.A6). Note that, in principle and according to Eq. (4.A6), if the radial 

spread of the incident LG beam determined through 0,iw  is in comparable length to the 

focus distance f, then the beam parameter of the converged beam 0, fw  would be 

subwavelength. However as shown in Sec. 4, physical limitations accounted by using the 

PWS (see  [12] for details on the PWS calculations)  shows that there is a limit in the 
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minimum achievable 0, fw . The electric field at the lens paraxial focal plane due to an 

incident APB is subsequently obtained by the superposition of the focal plane fields of its 

four constitutive linearly polarized LG beam terms leading to 
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In order to take into account for the physical extent of the lens, we also consider the 

following pupil function 
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where a  is the lens radius. The pupil function in (4.A8) is expanded into a summation of 

Gaussian functions that come handy in taking the Fresnel integral in (4.A3) analytically. 

Such a pupil function is approximated with a finite summation of basis Gaussian functions 

as [47] 
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where complex coefficients nA  and nB  are, respectively, expansion and Gaussian 

coefficients. It is demonstrated in [47] that for N = 10 the pupil function in Eq. (4.A8) is  

well represented by Eq. (4. A9) with proper coefficients given in [47]. By substituting Eq. 

(4.A9) into Eq. (4.A3), the focusing field at the focal plane z f  of the finite-size lens upon 

illumination by an incident x-pol. LG beam with  ,l p  is calculated as 
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where 
2 2
0 /n nB w a  , 0, fw is given in Eq. (4.A6), and the summation over the Gaussian 

expansion index n appears in the focal field distribution term. In this way the paraxial 

approximation of the focusing field at the lens focal plane due to an incident x-pol. LG beam 

is conveniently expressed in series terms Eq. (4.A10) for the case of a pupil function of 

finite extent. The electric field at the lens paraxial focal plane due to an incident APB 

illumination is then calculated by the superposition of the four constitutive linearly 

polarized LG beam terms. 

Appendix B Spectral interpretation of the beam propagation in non-paraxial regime 

The electric field distribution for APB given in Eq. (4.1) represents a self-standing beam 

in the paraxial regime. Therefore it is important to address limitations of these paraxial 

expressions in the cases of beams with very tight spatial extents (small 0w ). With this goal 

in mind, here we report in Fig. ‎4.16 the normalized magnitude of the plane-wave spectrum 

for APBs, i.e., the 2-D Fourier transform of the transverse field of the APB as 

    , , , , x yik x ik y

x yk k z x y z e dxdyE E
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 (see [12] for details on the numerical calculation of the integral). In Fig. ‎4.16 we show 

the wavenumber spectrum of three APBs with different beam parameters: (a) 0 3w  , (b)

0 0.9w  , and (c) 0 0.5w  . It is observed from Fig. ‎4.16 that the plane-wave spectrum of 

the tighter beam (beam with smaller 0w ) covers a wider region in the x yk k  plane where 

0 2 /k    is the free space wavenumber. Moreover the field spectral distribution for all 

three beams is well confined in the propagating wave spectrum with 2 2 2
0x yk k k   , hence 

they are mainly constructed by propagating spectral components only. They propagate 

along the z axis with  exp zik z  where zk  is real and is evaluated as 

  2 2 2
0z x yk k k k     (4.B2) 

All spectral magnitude distributions in Fig. ‎4.16 are representative at any z plane as 

these field spectral distributions propagate with no magnitude variation (implied by the 

propagator with magnitude  exp 1zik z  ). 

Let us now consider these three field distributions and look at the paraxial wave 

approximation. The paraxial wave equation is valid under the assumption that most of the 

field spectrum is confined to a region with 2 2 2
0x yk k k  . Under this condition the accurate 

PWS evaluation can be approximated with the paraxial field expression of a propagating 

beam as in Eqs. (4.1)-(4.2) [44]. 
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Fig. 4.16 Normalized magnitude of the transverse field spectrum E  for APBs 

with (a) 0 3w  , (b) 0 0.9w  , and (c) 0 0.5w  . Note that these APBs are 

made mainly by propagating spectrum (such that 
2 2 2

0x yk k k  ), and 

therefore the spectral magnitude profiles  are basically similar  at any 

transverse plane (here we show only the propagating spectrum region). 

Indeed, the required condition for deriving the paraxial field expressions using PWS 

calculations is to approximate Eq. (4.B2) as 

    2 2
0 02z x yk k k k k     (4.B3) 

It is observed from Fig. ‎4.16 that for 0 0.9w   and 0 0.5w   cases the spectral 

distributions cannot be fully confined to a region with 2 2 2
0x yk k k   in contrast to the case 

with 0 3w  . Therefore, the prediction of the paraxial beam propagation is expected to 

deviate from the actual propagation of the beam, much more for 0 0.5w   than for 

0 0.9w   and much more for 0 0.9w   than for 0 3w  . The spectrums with 0 0.5w   

and 0 0.9w   generate tight field spots but the z location of the tight spots cannot be 

accurately predicted by the paraxial field equations. 

Especially, when considering a converging beam with 0 0.5w  or 0 0.9w  , we can 

expect that the actual tight spot location (minimum-waist plane) will be formed closer to 

the reference plane than the one predicted by the paraxial expressions. This is due to the 
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fact that the field of the APB with 0 0.5w   or 0 0.9w   constitutes plane-wave spectral 

components with large transverse wave numbers which are not modeled accurately in the 

paraxial field expressions and propagate at larger incidence angles with respect to the 

beam axis (the z axis) and thus a tight spot forms closer than the one predicted by paraxial 

field expressions. The time-average spectral energy of the APB per unit length along the z-

direction is calculated as 

 
2 2

0 0

1 1
W =  

4 4
 E H   (4.B4) 

We define here the figure of APB’s spectral energy as the ratio of the APB’s spectral 

energy per unit length in the propagating spectrum to its total spectral energy per unit 

length 

 
2 2 2

0

W W W

x y

x y x y

k k k

F dk dk dk dk

 

  

      (4.B5) 

Fig. ‎4.17 shows the figure of APB’s spectral energy as a function of the beam parameter. 

It is observed that for 0 0.5w   more than 95% of the APB’s spectral energy is confined in 

the propagating spectrum.   

 



93 

 

Fig. 4.17 Ratio of the APB’s spectral energy per unit length (in z-direction) 

confined in the propagating spectrum to its total spectral energy per unit 

length (so-called figure of APB’s spectral energy) defined in Eq. (4.B5) as a 

function of the beam parameter 0w . 
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CHAPTER 5 

 

GENERATION OF AZIMUTHALLY 

POLARIZED BEAMS USING 

METASURFACE 

5 Generation of azimuthally polarized beams using metasurface 

Sec. 5.1 Motivation 

Spectroscopy systems usually work based on electric dipole transitions, which are 

dominant effects in interaction of molecules and atoms with electromagnetic fields. 

However, it would be desirable to boost the magnetic dipole transitions, which are weaker 

than the electric ones, to a level that can be directly detected. It is demonstrated in [1] that 

the ratio of magnetic dipole to electric dipole absorption rate is proportional to the square 

ratio of the magnetic and the electric field, 
2 2

H E . Thus, detection of magnetic dipole 

transitions can be selectively boosted to rates comparable to electric dipole transitions by 

driving the particles with beams whose magnetic-to-electric-field ratio is purposely 

engineered. The magnetic-to-electric-field ratio is significant in the near field region of a 

very small circular aperture (like a fiber tip), and greatly enhances as the aperture radius 

decreases [2]. However, for practical aperture radii, the enhancement in magnetic field 

intensity is negligible [2]. For an azimuthally polarized beam, the magnetic-to-electric-field 
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ratio is significantly larger than that of a plane wave 01/H E   on the beam axis where,

0  is the free-space wave impedance [1]. Azimuthally beams are therefore promising for 

microscopy and spectroscopy methods based on detection of both magnetic and electric 

dipole transitions. Optical circular dichroism to study a vast amount of organic chiral 

molecules [3] would also benefit from enhancing magnetic fields. 

Azimuthally polarized beams can be directly generated by coherent interference of two 

orthogonally polarized TEM01 laser modes [4]. In the past decades, there has been also a 

growing interest in novel azimuthal and radial polarizers comprising anisotropic metallic 

and dielectric structures with the ability to mimic polarization manipulation capabilities of 

the natural birefringent media. These include interferometric techniques [5], holograms 

[6], liquid crystal devices [7], spatial light modulators [8], multi elliptical core fibers [9]. 

Various flat optics devices can be also realized by plannar fabrication technologies that 

received considerable attention recently [10]–[12]. Space-variant gratings have been also 

used to convert the circularly polarized incident beams into radially or azimuthally 

polarized beams at far-infrared [13] and visible [14] ranges. Optical metasurfaces 

comprising nanoantennas offer vast flexibility in the design of space variant polarizers by 

spatially tailoring the polarization state of incident beam. A superposition of the radial 

polarizer and the fork diffraction hologram is proposed in [15] to generate radially 

polarized beam from circularly polarized beam. A metasurface comprising spatially rotated 

linear polarizers (rectangular apertures) is also proposed in [16] to convert a circularly 

polarized beam into vector beams. Recently, a set up consisting of an inhomogeneous half-

wave plate metasurface to generate vector beams is demonstrated in [17], [18]. In this 

chapter, we adopt an approach similar to those in [17], [18] but with a different 
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metasurface element in order to increase efficiency. Furthermore, the main goal is different 

from [17], [18], because here we focus only on the properties and generation of 

azimuthally polarized beams for controlling and quantifying the longitudinal magnetic 

field. 

In the previous chapter, we thoroughly examined the characteristics of the azimuthally 

polarized beams.In this chapter, we examine both analytically and numerically generation 

of azimuthally polarized vortex beams through interference of Laguerre Gaussian (LG) 

beams and study the evolution of their electric and magnetic field distributions as they 

propagate in a host medium. Ideally such beams possess no electric field along the beam 

axis where only longitudinally polarized magnetic field is present. This characteristic is the 

main interest of this investigation. After showing the basic principles for generating such 

beams, we show how these specific beams can be generated by using metasurfaces and 

investigate the physical parameters they should possess. The azimuthally polarized vortex 

beam is generated from a linearly polarized incident Gaussian beam passing through a flat 

inhomogeneous half-wave plate metasurface made of anisotropic nanoantennas, as shown 

in Fig. 5.1. Although here we are only interested in the generation of the azimuthally 

polarized vector beam, the proposed metasurface can be used to generate a vector beam 

with any desired spatial polarization distribution on the higher-order Poincaré sphere [19]. 

We also show where large magnetic-to-electric-field contrast ratio is obtained with the goal 

to describe where only intense magnetic field is present. Finally we show how focusing the 

generated azimuthally Polarized vortex beam through a high numerical aperture (NA) lens 

provides strong longitudinally-polarized magnetic field in a narrow spot on the beam axis 

where the total electric field is vanishing. 
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Fig. 5.1 Illustration of a flat azimuthal polarizer made of an array of 

anisotropic nanoantennas. The metasurface converts a focusing linearly 

polarized Gaussian beam to an azimuthally polarized beam with a strong 

longitudinally polarized magnetic field on the beam axis where the total 

electric field is zero. 

Sec. 5.2 Theory of Azimuthally Polarized Beam Generation  

In this section, a thin plasmonic metasurface capable of converting a linearly polarized 

incident beam into an azimuthally polarized vortex beam is conceived. In the previous 

chapter, we demonstrated that an azimuthally polarized vortex beam can be realized by 

interference of two circularly polarized LG modes with l numbers of 1. In this section, we 

first introduce the method of phase control by rotating the unit cell. Then, this phase 

control method is utilized to generate azimuthally polarized beams by tailoring the 

transverse phase profile of circularly polarized waves of opposite handedness. The 

transmitted wave through such a polarizing surface is analytically investigated by taking 

into account non-ideal unit cell characteristics; and provide analytical expressions for the 

resultant beam. 
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5.2.1 Phase Control Principle 

Let us assume that a linearly polarized incident wave,
i

E , propagating in +z direction 

normally illuminates a metasurface made by an arbitrary shaped nanoantenna. As shown 

in Fig. ‎5.2, the reference metasurface unit cell is rotated by angle   about the propagation 

axis ( z z axis). We define local (primed) coordinate system attached to the unit cell and 

global (non-primed) coordinate system with the common z z axis. It is assumed that the 

transmission matrix in local (primed) coordinate system related to a unit cell with a 

specific rotation angle  is known. The transmission matrix in the global coordinate system 

is then derived by applying rotational coordinate transformation as in [23], [24] leading to 
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Fig. 5.2 Top view of an arbitrary shaped anisotropic slot nanoantenna unit 

cell. (a) Reference unit cell with zero rotation angle (local and global 

coordinate systems coincide with each other). (b) The same unit cell rotated 

by   degrees, indicating both local (primed) and global (non-primed) 

coordinate systems. 

 



101 

 

Here the subscript x , and y denote, respectively, the x  and y  components of electric 

field and the superscripts t  and i  stand for the transmitted and incident fields, 

respectively. Note here that the transmission matrix of reference unit cell case in primed 

coordinate system is particularly chosen with null off-diagonal entries. The linearly 

polarized incident wave is decomposed into right ( rh ) and left ( lh ) hand circularly 

polarized waves as 

 ˆ ˆ
rh lh

i i i
rh lhE E E e e   (5.2) 

The transmitted wave 

 ˆ ˆ
rh lh

t t t
rh lhE E E e e   (5.3) 

is therefore composed of  
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2 2

2 2

rh lh

rh lh

t i i i
rh

t i i i
lh

A B
E E E e

B A
E E e E


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 

 
  (5.4) 

in which x yA T T   and x yB T T   . Note that for the ideal case with 0A  , the transmitted 

waves are purely circularly polarized waves whose phases, upon transmission through the 

metasurface, are delayed or progressed by twice the rotation angle of unit cell [23]–[25]. 

The azimuthal phase profile on the metasurface plane is achieved by spatially tailoring the 

metasurface with elements having varying transmission coefficients. In doing so, the unit 

cell is kept stationary and the phases of circularly polarized waves are locally manipulated 

by rotating the nanoantennas about their own axes. This approach is accurate when the 

mutual coupling between nanoantennas is negligible [23]–[25]. If the metasurface elements 

do not change rapidly along the surface, i.e., only a small variation is imposed to adjacent 
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elements, the local transmission properties of the metasurface can be inferred by resorting 

to the concept of local periodicity [10], [23], [26]. The transmission matrix of reference unit 

cell can be characterized in a two-dimensional infinitely periodic setup in full-wave 

simulations. The phase control method described here has been explored widely  in the 

area of transmitarray and reflectarray antenna design [23]–[26]. These concepts are used 

in Sec. 5.3 to design a metasurface which converts a linearly polarized beam to an 

azimuthally polarized beam that possesses a longitudinally polarized magnetic field. 

5.2.2 Metasurface Theory  

Let us assume that the MS is in the x y  plane and it is illuminated by a normally 

incident Gaussian beam linearly polarized in ˆ ˆx ya ax y  direction, where 
22

1x ya a   and 

/x ya a  is a real number. The transverse-to-z electric field phasor of incident wave is 

represented in terms of circular polarizations as 

   FG 0,0 ˆ ˆ,
i i i

rh rh lh lhu z a a E e e   (5.5) 

Where   / 2
i
rh x ya a ia   and   / 2

i
lh x ya a ia   are given coefficients and  0,0 ,u z is 

given in Eq. (4.2). Using the phase control method explained in the previous subsection, the 

phase distribution of the right and left hand circularly polarized waves on the transverse 

plane can be locally tailored. By rotating a nanoantenna element centered at coordinates 

( , )  , by an angle 0 / 2l   about its center, the right- and left-hand circularly polarized 

incident beams, whose amplitudes are a function of incident beam polarization, are 

converted into left- and right-hand circularly polarized LG modes with OAM numbers 0l  
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and 0l , respectively. A vector beam with any desired spatial polarization distribution on 

the higher-order Poincaré sphere with order 0l [17], [19] can be then generated by 

selecting a proper incident beam polarization. Nevertheless the vector vortex beam of 

interest here is solely the azimuthally polarized beam as formulated in Eq. (4.1). Choosing 

0 1l   leads to spatial phase dependences of OAM states i
e
  and i

e
  for left- and right-

hand polarized transmitted waves, respectively.  

In the following we construct the transmitted field expressions for a general case with 

0A  . After a certain distance from the metasurface, the resultant modes are established 

and the total transmitted wave is the sum of four terms with regard to Eqs. (5.3) and (5.4) 

yielding 

 FG LG
t t t E E E   (5.6) 

where the subscripts ǲFGǳ and ǲLGǳ stand for fundamental Gaussian and Laguerre-

Gaussian, respectively. The sum of fundamental Gaussian beams, whose phases are not 

controlled by the rotation angle as seen in Eq. (5.4), yields a linearly polarized beam 
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  (5.7) 

 and the sum of LG modes with l  numbers +1 and -1 generated by the rotational phase 

control method, is represented as 

    LG 1 ˆ ˆ,
2

t i i i i
lh rh rh lh

B
E z a e a e

   E e e   (5.8) 
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Here    1 1, ,E z E z   represents the radial field profile of LG
t

E  transmitted beam, and it 

is composed of LG modes with l  numbers 1 , and 0,1,2,...p  , 

  1 1, 1,

0

,
i

p p

p

E z e a u





  


    (5.9) 

as shown in Appendix B. For the case with fundamental Gaussian mode incidence as 

investigated here, the modes with 0p   (with the coefficients 1,0a ) will be the dominant 

modes in Eq. (5.9). Note that 1, 1,/ /
i i

p pu e u e
 

  , hence from Appendix B it can be shown 

that 1, 1,p pu u  . 

Equation (5.6) represents the two contributions to the total transmitted wave. The first 

one is a linearly polarized beam whereas the second one is what we want to generate for 

obtaining beams with space-variant polarization. It is convenient to represent the radial 

and azimuthal components of the total transmitted wave ˆ ˆt t t
E E  E ρ φ  as 

 

     
     

0,0 1

0,0 1

1
, ,

2

, ,
2

t i i i i i i
rh lh lh rh

t i i i i i i
rh lh lh rh

E Au z a e a e BE z a a

i
E Au z a e a e BE z a a

 


 


 

 





    
 

     

  (5.10) 

For a purely y polarized incident wave (i.e., with i i
rh lha a  ), when y xT T    (thus

0, 2 xA B T   ), it is clear from Eq. (5.10) that 0
t

E   and an azimuthally polarized vortex 

beam is obtained. This is also confirmed from Eq. (5.7) where the fundamental Gaussian 

beam contribution vanishes, and from Eq. (5.8) where the LG contribution takes the form of 



105 

 

Eq. (4.1) describing an azimuthally polarized beam. On the other hand, for a x polarized 

incident wave with i i
rh lha a , when y xT T   , a pure radially polarized beam is obtained.  

Our goal is to show that one can achieve high magnetic-to-electric-field contrast by 

creating an azimuthally Polarized beam under y polarized incident wave. In practice, 

guaranteeing 0A   is not realistic, whereas one can implement A B  and create a 

mainly azimuthally polarized beam. For this case, due to the  interference of the y 

polarized FG
t

E and the - polarized LG
t

E  contribution, the transverse electric field null does 

not appear at 0   and slightly shifts on the x axis (where ˆ ˆ φ y  and 0
t

E  ).  By setting 

0
t

E   on the x  axis, the null transverse E-field location is found by solving 

    0,0 1, , 0Au z BE z      (5.11) 

When A B , one can still realize extremely small E-field close to the beam axis. On the 

other hand, there is a strong longitudinal magnetic field close to the beam axis due to the 

generation of azimuthally Polarized beam LG
t

E  in Eq. (5.8). Note that all the LG 

contributions in Eq. (5.9) with l numbers 1 , and 0,1,2...p  , contribute to the strong zH

on the beam axis. Thus, the strength of total zH on the beam axis is found with a 

summation as 

    
  1

2 1 tan

1,2
0

2
1 R

z
i p

zi i
z lh rh p

p

B
H a a a p e

w  

  
   

 


   .  (5.12) 
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Sec. 5.3 Design of a Metasurface Generating an Azimuthally Polarized Beam 

The proof of the proposed concept is shown in this section for a flat azimuthal polarizer 

metasurface of radius 20λ designed to operate at λ =6μm to convert the linearly polarized 

incident Gaussian beam to an azimuthally Polarized vortex beam. A double layer double 

split-ring slot element illustrated in Fig. ‎5.3 is adopted to satisfy x yT T    condition 

required for generation of an azimuthally polarized beam. Two ring slots, one rotated by 

90° relative to the other, are independently excited by orthogonal linear polarizations. 

Depending on the chosen dimensions, the two polarizations experience distinct resonance 

frequencies. By tuning the physical parameters, the condition x yT T    can be realized at 

the operating frequency, which lies between the two properly designed resonance 

frequencies. The double layer cell is chosen due to its higher transmission amplitude than 

that of the single layer cell [27]. Other geometries can be also devised for analogous 

transmission property, i.e., the condition x yT T   .  

 

Fig. 5.3 (a) top view, and (b) 3D view of a double-layer double-ring slot 

resonator: 1 0.63μm,r  2 0.79μm,r  3 0.9μm,r  4 1.06μmr  1 66 ,  

2 20 ,   1μm,h  2.4μmp  . 
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The array element with rotation angle 0    is characterized in an infinite array setup 

under normal incidence using the finite element method implemented in CST Microwave 

Studio frequency domain solver, and its amplitude and phase of transmission coefficients 

are plotted in Fig. ‎5.4 versus frequency. It is observed that at the operating frequency 

(50THz) the transmission coefficients for x and -y polarized waves are of equal 

amplitude (with the insertion loss of 4.6dB) and have a 164° phase difference. This 

characteristic means that x yT T   , i.e. 0.1697A  and 1.2072B   with A B . Hence 

the resultant transmitted beam will be mainly azimuthally Polarized with weight B, and 

there will be a remnant of Gaussian beam with linear polarization in the transverse plane, 

with weight A. In general, other unit cell elements can be used, considering also more 

metasurface layers, to further decrease the insertion losses at mid-infrared and to further 

minimize the ratio /A B . 

 

Fig. 5.4 (a) amplitude and (b) phase of the transmission coefficients for the 
x and y   polarized incident waves. The results obtained for the reference 

nanoantenna with rotation angle 0   . 

 

Based on the phase control method described in Sec. 5.2, the transmission 
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characteristics of rotated elements are derived from the characteristics of reference one 

with 0   . One can estimate the transmitted field at every cell location by resorting to 

the concept of rotation and local periodicity discussed in Sec. 5.2, without the need of 

characterizing all possible unit cell configurations and the whole metasurface in full-wave 

simulation environment. The transmitted field through the metasurface polarizer is 

approximated as a step function over its surface.  

In the following, we utilized 2-D forward and inverse Fourier transform implemented 

numerically in order to model the propagation of transmitted beam through the 

metasurface. The transmitted electric field over a unit cell at a very short distance of the 

metasurface  is approximated with uniform distribution over each unit cell and evaluated 

as      , / 2 ,
i

cell cell cell cell g cell cell     E T E   where  T  is the transmission 

tensor of the nanoantenna element rotated by the angle  , ( cell , cell ) is the position of 

the center of unit cell. This is the field profile over the metasurface that generates the beam 

as in Eq. (5.6) further away from the surface. Propagation of the transmitted field through 

the metasurface is determined by first Fourier transforming the transverse piece-wise 

approximated electric field just over the transmission side of the polarizing metasurface 

assumed to be at 0z z . This spectral transverse E-field is evaluated based on the Fourier 

transform formula 

    0 0, , , , x yik x ik y

x yk k z x y z e dxdy

 
 

 

  E E .  (5.13) 

Then the field is reconstructed by the inverse Fourier transform at any arbitrary transverse 

plane as  



109 

 

      0
02

1
, , , ,

4

x yz ik x ik yik z z
x y x yx y z k k z e e dk dk



 


 

     E E .  (5.14) 

Where 

 
   

   

2 2 2 2 2 2
0 0

2 2 2 2 2 2
0 0

x y x y

z

x y x y

k k k k k k

k

i k k k k k k

    
 
    


.  (5.15) 

The double integrals in Eqs. (5.13) and (5.14) are efficiently calculated by using a 2D FFT 

algorithm, where the size of entire spatial domain is 81.92 81.92   with spatial 

resolution of / 50 . The metasurface located at 0z z  covers a circular area with a 

diameter of 40  and the transverse E-field is set to zero outside of the metasurface area. 

Note that the evanescent near-field components are significant at distances very close to 

metasurface. The incident wave is a linearly polarized Gaussian beam and its electric field 

and power density at the beam center are 1V/m and 1.3mW/m2, respectively. The total 

incident beam power is 
11

3 10 W
 . The beam waist of the incident Gaussian wave is set 

equal to the radius of azimuthal polarizer metasurface ( 20 ) so that 86% of the total 

incident beam power illuminates the metasurface. Via numerical implementations of the 

plane wave spectrum computations [Eqs. (5.13) and (5.14)], we first show the generated 

azimuthally Polarized beam's field intensities and its evolution, and then the same beam is 

focused using a lens, to further boost the magnetic-to-electric-field contrast. 

In Fig. ‎5.5(a)-(b), obtained via numerical calculations, we report the intensities of total 

electric field and longitudinal magnetic field (polarized along the propagation axis) of the 
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azimuthally polarized beam generated by the metasurface on three transverse planes

0.5 ,5 ,and10 ,z    respectively.  

 

Fig. 5.5 (a) Intensity of the total electric field and (b) the longitudinal 

magnetic field of the azimuthally Polarized vortex beam generated by the 

metasurface on different transverse planes:  0.5 , 5 , and 10 ,  , and  away 

from the polarizer metasurface. (c) Local polarization ellipses, centered at 

several sample locations, superimposed to the transverse electric field 

intensity (left) and the phase of the azimuthally polarized electric field 

component on the   transverse plane. All the plots are obtained through 

numerical calculations of Fourier transform formulas in  Eqs. (5.13) and 

(5.14). 
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The beam clearly has an electric field null and a hot spot of the longitudinal magnetic 

field at the center on all transverse planes. These features are broadened in space as the 

azimuthally polarized beam propagates and diverges. Moreover we report in Fig. ‎5.5(c) the 

polarization ellipses (i.e., the trajectories of the time-domain electric field vector tip during 

a cycle) at several locations (superimposed to the intensity map) on the 5z   transverse 

plane. We also plot the phase of 
t

E  on this plane in Fig. ‎5.5(c). The electric field has a slight 

polarization ellipticity (deviation from a purely linear polarization) due to the ǲleakageǳ of 

the incident linearly polarized Gaussian beam through the metasurface as in Eq. (5.7). A 

detailed discussion on this phenomenon is provided later on in a discussion regarding 

Fig. ‎5.8. Nonetheless, the azimuthally polarized electric field component is dominant as 

indicated by the long axes of the ellipses. As shown on the right panel, the azimuthal E-field 

component on a constant radius is almost in phase (a mere 20° phase variation is 

observed); this constitutes a clear prove of the presence of the azimuthally polarized beam. 

Next, we investigate the features of azimuthally Polarized vortex beam when a focusing 

lens of radius 20 is placed 0.5 away from the polarizer surface. In order to focus the 

azimuthally Polarized beam, a hyperboloid phase profile is added to the spatial field 

distribution on the lens plane [28]. The intensity of focused beam is then found in any 

transverse plane by numerically implementing the plane wave spectrum computations as 

in Eqs. (5.13) and (5.14). In  Fig. ‎5.6, the magnitude of the total electric field (left), the 

longitudinal magnetic field (middle), and the normalized ratio of the total magnetic field to 

total electric field (right), of the focused azimuthally polarized beam at the lens focal plane 

are reported using lenses with different NAs. The on-axis zero electric field and annular 

electric field intensity distribution characteristics are clearly observed in Fig. ‎5.6 in 
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consistency with the electric field intensity distribution results reported in [29], [30], in 

which only the electric field intensity distribution of a tightly focused azimuthally polarized 

beam is examined. In contrast, here we provide a comprehensive investigation and discuss 

properties of the longitudinal magnetic field component of a tightly focused azimuthally 

polarized beam. The resultant tightly focused azimuthally Polarized vortex beam creates a 

strong longitudinally polarized magnetic field in a very narrow spot (vortex region) where 

the magnitude of total electric field is negligibly small. By duality, this is analogous to the 

radially polarized beam for which the longitudinal electric field component is strong in a 

narrow spot [1], [31]. 

 

Fig. 5.6 The total electric field |E| (left), the longitudinal magnetic field |Hz| 

(middle), and the normalized magnetic-to-electric-field ratio 0 H E  

(right) of a tightly focused azimuthally polarized beam at the focal plane for 

lenses of radius 20λ with different NAs: (a) NA=0.45 ( 40 )f  , and (b) 

NA=0.7 ( 20 )f  . The magnetic-to-electric-field contrast ratio is normalized 

to its value for plane wave. 
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Note that the electric field null slightly shifts away from the exact origin, this is due to 

the ǲleakageǳ of the original linearly polarized Gaussian beam in Eq. (5.7) through the 

metasurface as we will discuss in details regarding Fig. ‎5.8. Focusing the azimuthally 

Polarized vortex beam through a lens with either NA of 0.45 or 0.7 enhances the magnetic 

field levels up to 7.2 to 18 times, respectively. Moreover this results in boosted levels of

0 H E . Even though we observe circular regions of 0 H E  maxima in Fig. ‎5.6 the 

magnetic field is maximum at the central region. In both cases the null of electric field and 

the maximum of longitudinal magnetic field are close to the center, because of the 

interference of the fundamental Gaussian beam with the LG modes.  

In Fig. ‎5.7, the total electric field intensity, the longitudinal magnetic field intensity and 

the magnetic-to-electric-field-contrast ratio on the x-z plane are reported, clearly showing 

the large magnetic field and ratio 0 H E  values on the beam axis along the depth of 

focus. The null of electric field along the z axis region is clearly visible, where the magnetic 

field reaches maximum. In Fig. ‎5.8, we report the square of the normalized magnetic-to-

electric-field-contrast ratio 
22

0 H E  versus the radial position on the x axis for the same 

cases in Fig. ‎5.6. The square of the normalized contrast ratios exhibit maxima of 1600 and 

1684 for lenses with NAs of 0.45 and 0.7, respectively. The location of maxima moves 

toward to the origin with increasing NA. The slight shift of the maximum of magnetic-to-

electric-field-contrast ratio from the origin in the x-y plane is attributed to the interference 

with the linearly y-polarized Gaussian beam leaking (i.e., transmitted) through the 

metasurface, because 0A   in Eq. (5. 7). The non-zero coefficient A  is due to the designed 

unit cell which locally introduces a 164° phase difference between the transmission 



114 

 

coefficients for the x  and y  polarized incident waves rather than the ideal required 

180° phase difference. Indeed, the azimuthally Polarized beam is y-polarized along the x 

axis, which explains why the y-polarized fundamental Gaussian and the LG beams interfere 

there.  Moreover, the leaked linearly polarized Gaussian beam also possesses a very small 

longitudinally polarized electric field component at 0  , therefore the normalized 

magnetic-to-electric-field-contrast ratio assumes finite value, though still very large, at its 

maximum, and it does not tend to infinity on the axis as it would occur for a symmetric and 

ideal azimuthally polarized LG beam. 

 

Fig. 5.7 Simulation results for fields in the longitudinal plane generated by a 

system composed by a polarizer metasurface followed by a lens. The 

polarizer and lens are placed at 0z  , and 0.5z  , respectively. The focal 

length of lens with NA =0.7 is 20f  .  (a) Magnitude of the total electric 

field and (b) the longitudinally polarized magnetic field, of tightly focused 

azimuthally Polarized beam in the longitudinal x-z plane. (c) Normalized 

magnetic-to-electric-field ratio, showing large values along the z-axis region. 

Note that both the azimuthal polarizer and lens cannot be simply integrated into a single 

metasurface by using the double-layer double split-ring element, with the phase control 

method explained in Sec. 5.2. This method dictates that the phase shift introduced to right- 

and left-hand circularly polarized waves possess opposite signs [Eq. (5.4)]. Therefore, if 

lensing was integrated in the metasurface, the phase shift distribution designed for 
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converging the right-hand circularly polarized wave would lead to a divergent left-hand 

circularly polarized beam and vice versa due to the opposite sign of phases introduced in 

Eq. (5.4). Thus the azimuthally Polarized beam could not be synthesized since both right- 

and left-hand circularly polarized beams should have the same amplitude distribution over 

any transverse plane. 

 

Fig. 5.8 The square of the normalized magnetic-to-electric-field contrast ratio 

of a tightly focused azimuthally Polarized beam as in Fig. ‎5.6, for the two 

lenses considered. The field is evaluated on the focal plane of each case, as a 

function of radial coordinate, for 0   . 

Sec. 5.4 Conclusion 

We have investigated how to form an electromagnetic beam with a very large magnetic-

to-electric-field ratio. It is demonstrated, both theoretically and numerically, that 

azimuthally Polarized vortex beams acquire a strong longitudinal magnetic field on the 

beam axis where the electric field vanishes. We have shown the properties a metasurface 

should possess in order to form such a beam and explored a specific metasurface 

implementation made of an array of double split ring slots. Focusing the resultant 
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azimuthally Polarized vortex beam significantly boosts the magnetic-to-electric-field-

contrast ratio in a narrow spot on the propagation axis. The performance is limited by the 

fundamental Gaussian beam suppression as the beam traverses through the metasurface. 

Such beams may find interesting applications in the optical manipulation of particles with 

optical magnetic polarizability. It may also open the way to future spectroscopy systems 

based on magnetic dipole transitions. 

This chapter is reproduced based on the material in [ M. Veysi, C. Guclu, and F. Capolino, 

"Vortex beams with strong longitudinally polarized magnetic field and their generation by 

using Metasurfaces," Journ. Opt. Soc. Am. B, Vol. 32, No. 2, pp. 345-354, 2015.], © 2015 OSA. 

Appendix A Vanishing Longitudinal Component of Electric Field for an 

Azimuthally Polarized Vortex Beam 

We derive here the longitudinal electric field component of an azimuthally Polarized 

vortex beam. The transverse electric field of an azimuthally Polarized beam given in Eq. 

(4.1) is rewritten as 

 ˆ ˆt
x yE E E x y   (5.A1) 

where x and y components of electric field are 

    1, 1, 1, 1,

1
,

2 2
x p p y p p

i
E u u E u u       (5.A2) 

By defining 1, 1,/ /
i i

p pu u e u e
 

   , the azimuthally Polarized electric field in Eq. (5.A1) 

can be rewritten as 
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   ˆ ˆ, sin cosu z    E x y   (5.A3) 

The longitudinal electric field component can be then found from the transverse electric 

field components using Maxwell equations under paraxial approximations as [22] 

 
     , sin , cosyx

z

E u z u zEi i
E

k x y k x y

        
              

  (5.A4) 

After taking the derivatives and using the chain rule 
u u

x x




   


  
, the Eq. (5.A4) is 

further simplified into 

    

0 0

,cos sin
, cos sin 0z

u zi i
E u z

k y x k y x

     


 

                    
  (5.A5) 

which demonstrates that the longitudinal component of electric field is zero everywhere in 

paraxial regime. Note that this salient feature of azimuthally Polarized beams is valid in the 

paraxial regime regardless of the radial mode number p of constituent LG modes with

1l   .  

Appendix B Projection of Transmitted Field Onto LG Modes 

We show how to calculate the radial field profile of higher order LG modes  generated by 

manipulating the phase distribution of the incident fundamental Gaussian mode 0,0u  upon 

transmission through a proper surface. When an azimuthal phase profile 1il
e

  is added 

upon phase manipulation through a surface, one has a total field equal to 1
0,0

il
u e

  which 

itself does not constitute an individual LG mode solution of the paraxial wave equation. For 
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example, LG modes of order 1l  are characterized by a phase distribution of 1il
e

 , however 

the field radial profile of LG modes of order 1l , 
1,l pu , differ greatly from that of the incident 

fundamental Gaussian mode 0,0u . The field profile 1
0,0

il
u e

 , on the other hand, generates all 

the LG modes 
1,l pu  with 0,1,2,...p  . Therefore, the total field profile of generated beam is 

represented as  

 1

1 10,0 , ,

0

il
l p l p

p

u e a u





    (5.B1) 

 

which is a weighted summation of those LG modes 
1,l pu , with mode coefficients 

1,l pa . The 

mode excitation coefficients 
1,l pa  are found by taking the projection of transmitted field 

profile  1
0,0

il
u e

  onto the LG modes 
1,l pu  owing to the orthonormality of LG modes [32] 

 1

1 1

2
*

, 0,0 ,

0 0

il
l p l pa u e u d d


   



     (5.B2) 

Note that due to the orthogonality of LG modes, no LG mode with 1l l  can be generated 

by a phase profile  1il
e

  . As used in Eq. (5.8), the established beam's amplitude distribution 

 
1

,lE z can be defined using 

   1

1 1 1, ,

0

,
il

l l p l p

p

E z e a u





    (5.B3) 
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In general, the coefficients 
1,l pa  depend strongly on the initial field profile impinging on 

the azimuthal polarizer metasurface (here taken as 0,0u ), moreover they can be calculated 

numerically for any arbitrary incident field profile. Note that reversing the azimuthal phase 

profile added to the original field profile, which in turn becomes 1
0,0

il
u e

 , would result in 

the same radial field profile    
1 1

, ,l lE z E z    which can be easily concluded using the 

identity 1 1

1 1, ,/ /
il il

l p l pu e u e
 

   in Eqs. (5.B2) and (5.B3). 

In a more general setting, the azimuthal polarizer metasurface also scales the field 

strength as it manipulates the phase profile of transmitted beam. These coefficients are 

provided for the specific case in Eq. (5.8).  
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CHAPTER 6 

 

Reflectarrays Carrying Orbital 

Angular Momentum (OAM) and Their 

Applications in Satellite 

Communications 

6. Reflectarrays Carrying Orbital Angular Momentum (OAM) and Their Applications in 

Satellite Communications 

Sec. 6.1 Motivation 

The orbital angular momentum (OAM) of light plays an important role in optics and 

electromagnetics and has been considered in various wireless communication systems [1]–
[4]. In this chapter, we revisit the OAM beam concept by focusing on its far-field features. In 

particular, based on our findings we propose novel cone-shaped pattern and azimuthal 

multi-beam antennas for wireless and satellite communication systems. 

A. Orbital Angular Momentum (OAM) beams: background and applications 

It is known in classical electrodynamics that electromagnetic waves carry angular 

momentum in addition to the linear momentum [5]. The angular momentum of an 

electromagnetic wave is calculated as the volume integral of the cross product of the wave 

Poynting vector and the position vector (i.e., r ) over a free space volume V as 
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 0 Re dV   J r E B  where 0  is the free space permittivity and asterix    denotes 

complex conjugate [5]–[7]. Therefore, in order for a beam traveling along the z-axis, to have 

a non-vanishing angular momentum along the beam axis (i.e.,  0zJ  ), the Poynting vector 

of the beam must have a non-zero component transverse to the beam axis. The angular 

momentum of an electromagnetic beam has two components: (i) intrinsic, also named spin 

angular momentum (SAM) with a mode number denoted by s, and (ii) extrinsic which is 

OAM with mode number denoted by l. The SAM is associated with the circular polarization 

of a beam, while the OAM of a beam is associated with its fieldǯs azimuthal phase 

distribution rather than its polarization. The total angular momentum mode number is 

j=l+s, and is explicitly calculated by /zj J W , where W is the beam energy in the same 

volume V [5]–[7]. Since the detection of OAM in helical beams in 1992 [1], laser beams with 

twisted wavefronts carrying OAM have attracted increasing attention in the optics 

community and have given rise to many groundbreaking developments in optical 

communication systems [2]–[4], [8], [9].  An OAM-carrying beam is characterized by a 

unique phase distribution linearly changing with the azimuth angle (i.e., as l where   

denotes the azimuth angle and l  is an integer so-called OAM number or azimuthal index 

number) and therefore featuring a phase vortex on the beam axis (i.e., z-axis). The Poynting 

vector, as well as the dominant local wavevector, of such beams traces a helical path 

around the beam axis, also so-called phase vortex, and thus they are sometimes referred to 

as vortex beams. The properties of the well-known families of optical beams with twisted 

wavefronts, such as helical (Laguerre-Gaussian) beams, fundamental (zero-order) and 

higher-order Bessel-Gaussian beams, are summarized in Fig. 6.1. Among them the field 
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distributions of the OAM-carrying vortex beams (i.e., helical beams and higher-order 

Bessel-Gaussian beams) feature similar linearly varying azimuthal phase distributions [i.e., 

both contain a complex exponential term  exp jl ] but they entail different radial-phase 

distributions. 

 

Fig. 6.1 Three known families of optical beams with twisted wavefronts and 

representative schematics of their generation from a fundamental Gaussian 

beam at its minimum waist [10], [11] (@ IEEE, 2017). 

In particular, OAM-carrying vortex beams provide a complete orthogonal modal basis 

set [1], [3], and thus give rise to an additional set of data carriers, which does not rely on 

polarization or frequency. Therefore, they have the potential to increase the capacity and 

spectral efficiency of wireless communication links at optical range [3] and at radio 
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frequency (RF) [12], [13]. However, the advantage of OAM-carrying beams to increase the 

efficiency of RF wireless communication links is yet much of a debate since they inherently 

diverge with increasing distance from the transmitter [12]–[17], and therefore a very large 

(compared to wavelength) receiver antenna or a combination of a few antennas is required 

in far-field to detect the azimuthal phase variation of the field rather than sampling only the 

local field phase. Several techniques have been developed to generate OAM-carrying vortex 

beams at optical frequency ranges (such as spiral phase-plates [17], liquid crystal based 

spatial light modulators (SLMs) [3], plasmonic metasurfaces [4] and holograms [18]) and 

RF ranges (such as twisted parabolic reflectors [12], circular arrays of antennas [19], spiral 

phase plates [13], dielectric resonator antennas  [20], and using phased array [21] and 

transmitarray [22] concepts). However, in order to detect the OAM information in far-field 

of an OAM-carrying beam source, one needs a receiving antenna which covers a sufficiently 

large solid angle of OAM beam to resolve the OAM phase variation. In other words, the size 

of the receiving antenna should linearly scale with the distance from the OAM-carrying 

beam source, as the OAM information is conveyed in the spatial (azimuthal) variation of the 

beamǯs phase rather than being a local property. As such, conditions of the OAM-based 

communication at RF and possible MIMO (multiple-in-multiple-out) applications are 

mainly limited to the radiating near-field (i.e., the Fresnel region) links rather than the far-

field ones. Note that this may be of a less problem in OAM-based free-space optical 

communications with a link distance of a few meter, where the transmitter and receiver 

aperture diameters are usually extremely large compared to wavelength (in the order of 

several hundred wavelengths) [3].  OAM information can be also transferred at RF by using 

very large antennas (compared to wavelength) where the receiver is in the Fresnel region. 
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In this study we merely focus on the far-field signature of OAM-carrying beams rather than 

the detection of OAM information. 

B. Far-field signature of OAM-carrying beams and its application 

An immediate, yet remarkable, trait of the OAM-carrying vortex beams is that their field 

vanishes on the phase vortex center featuring an annular-shaped intensity pattern in near-

field which is potentially beneficial for optical trapping [10]. Accordingly, the OAM-carrying 

beams lead to a cone-shaped pattern in far-field. One particular RF application that may 

take advantage of the vortex beamǯs unique field distribution is the local satellite-based 

navigation and guidance system serving moving vehicles. For such application satellite is 

usually placed in the geostationary orbit (GEO) and employs contoured beam antenna to 

cover a certain geographical area. In most cases, distinct location of the satellite (at a given 

east/west orbital position) requires a circularly polarized (CP) conical-scanned beam 

antenna on the mobile vehicles. In other words, the pencil beam pattern of the mobile 

vehicleǯs antenna sweeps out mechanically/electronically a cone in space. Another 

approach is to use an antenna, on the mobile vehicle, which radiates a fixed CP cone-shaped 

pattern with high azimuthal symmetry. The peak of the antennaǯs cone-shaped pattern 

points towards the satellite at the elevation angle c  (so-called radiation cone angle) in 

order to improve the signal to noise ratio, as shown in Fig. 6.2. Although different kinds of 

antennas have been developed to generate cone-shaped radiation pattern, such as circular 

patch antennas operating at higher order modes [23], phased arrays [24], bird-nest 

antennas [25], crosspatch fed surface wave antennas [26], leaky-wave antennas [27], and 
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arrays of antennas generating cone-shaped patterns [28], to name a few; they  usually 

suffer from low bandwidth or low gain. 

 

 Fig. 6.2 Schematic of a GEO satellite-based navigation and guidance system 

serving moving vehicles (@ IEEE, 2017). 

In this chapter, inspired by the unique cone-shaped far-field pattern of Bessel-Gaussian 

and helical beams, we investigate the generation of such beams for satellite applications 

with mobile vehicles at Ka-band (28GHz-32GHz). We demonstrate that reflectarray 

antenna is a powerful machine to systematically generate a cone-shaped OAM-carrying 

beam with high azimuthal symmetry. In general, the three categories of the optical beams 

summarized in Fig. 6.1 (i.e., helical beams, fundamental, and higher-order Bessel-Gaussian 

beams) feature cone-shaped far-field patterns. Here, we start our investigation by focusing 

on the higher-order Bessel-Gaussian beams which have both radial and azimuthal phase 

dependences (it provides two degrees of freedom in the design). We impose a combination 

of an azimuthal phase gradient and a radial one (the phase terms required for the 

generation of the higher-order Bessel-Gaussian beam) onto the wave reflecting back from 

the reflectarray surface to emulate a helical axicon phase plate at Ka-band (refer to Fig. 

6.1). The proposed OAM-carrying Bessel-beam reflectarray with conical far-field pattern is 

a high-gain, wideband, conformal antenna, and it is simple in both design and fabrication as 
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an alternative to its conventional counterparts mentioned above for satellite-based 

navigation systems. As a proof of concept we design a reflectarray composed of CP double 

split-ring elements, operating from 27GHz to 33GHz. The phase profile imposed by the 

reflectarray surface onto the illuminating beam is then tailored by using the rotational 

phase control principle [29], [30]. Full-wave simulation and Fourier transform 

computation results of the reflectarrayǯs far-field pattern are in good agreement exhibiting 

a highly symmetrical CP cone-shaped pattern. Subsequently, helical-beam reflectarray 

antennas are then conceived to generate cone-shaped patterns by imposing only an 

azimuthal phase gradient onto the wave reflecting back from the reflectarray surface, to 

emulate a spiral phase plate at Ka-band (see Fig. 6.1). 

  Next, the helical beam concept is further extended to generate multiple simultaneous 

pencil beams azimuthally distributed in space. To this goal, we divide the reflectarray 

surface into two concentric annular segments where azimuthal phase gradients (without 

radial phase gradients) with distinct azimuthal index numbers (OAM numbers) are 

imposed onto different portions of the wave illuminating the reflectarray. The interference 

of the overlapping cone-shaped patterns with different azimuthal phase variations radiated 

from these individual annular segments forms a set of finely azimuthal sectorized pencil 

beams in the far field with potential applications in single-point to multi-point 

communications, diversity, and MIMO concepts. 

Sec. 6.2 FAR-FIELD FEATURES OF OAM-CARRYING BEAMS 

Optical beams with twisted wavefronts as that of Laguerre-Gaussian (helical) beams, or 

that of fundamental and higher-order Bessel-Gaussian beams, have been thoroughly 
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studied within their Fresnel region [31], however, to the authorǯs best knowledge, they 

have not been examined in far-field. In this section, we mainly focus on the Laguerre-

Gaussian (helical) beams and the higher-order Bessel-Gaussian beams (see Fig. 6.1) and 

theoretically examine far-field characteristics of such beams by using the aperture field 

method (i.e., taking the Fourier transform of the aperture field) [32].  

A. Bessel-Gaussian beams 

Let us first consider a linearly polarized ideal Bessel beam which is an exact solution of 

the Helmholtz equation in the cylindrical coordinate system with the field distribution as 

[33] 

      BB BB
0 ˆ ˆ, , 2zjk zjl

lz E J k e e j


          E x y   (6.1) 

where  lJ   is the  order Bessel function of first kind [34], th -l is here an integer number 

(so-called OAM number), BB
0E   is a complex amplitude coefficient,  , , z     are cylindrical 

coordinates, and k , zk , and 
2 2

0 zk k k   are radial, longitudinal and free-space wave 

vectors, respectively. In addition, the plus and minus signs in Eq. (6-1) indicate right-hand 

circularly polarized (RHCP) and left-hand circularly polarized (LHCP) waves, respectively. 

Throughout this paper, bold letters denote vectors and carets (^) mark unit vectors. In this 

chapter, we also assume the time harmonic dependence as  exp j t  which is suppressed 

in notation for convenience. Note that equation (6-1) for 0l   simplifies to the field 

distribution of a fundamental (zero-order) Bessel beam which does not carry OAM (See Fig. 

6.1). However, the ideal Bessel beams as in Eq. (6-1) are nonphysical because they carry 

infinite power, similar to the uniform plane waves. In this regards, Bessel-Gaussian beams 
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have been introduced and experimentally realized by illuminating an axicon phase plate 

with a Gaussian beam (see Fig. 6.1). In the following, we consider a general CP paraxial 

Bessel-Gaussian beam (which satisfies wave equation under paraxial approximation) in the 

transverse plane 0z   with field distribution as [33] 

      2 2
BG BG

0

ˆ ˆ
, , 0

2

gw jl
l

j
z E J k e e

 
      

    
x y

E   (6.2) 

where gw is the beam waist of the Gaussian term controlling the transverse extent of the 

beam and BG
0E  is a complex amplitude coefficient. The far-field of the Bessel-Gaussian 

beam with the transverse field distribution (at 0z   plane) given in Eq. (6.2) is calculated 

using the aperture field method which in cylindrical coordinate system is written as (see 

[32], chapter 12, page 711) 
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  (6.3) 

Where 

    0BG BG
0 0

ˆ ˆ2 cos 2
jk r j

E jk e r e j
   Q θ φ   (6.4) 

Note that equation (6.3) represents the Fourier transform of the transverse aperture field 

(with Bessel-Gaussian distribution) given in Eq. (6.2). Using the following integral 

identities [33], [34] 
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the far-field expression for the Bessel-Gaussian beam is then found as 
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  (6.6) 

Here  lI   is the th
l order modified Bessel function of first kind [34]. For elevation angles 

    away from the beam axis (i.e., the 0    axis), and for beams with large beam waist gw  

(i.e., large apertures) the argument of the function  lI   (i.e., 21
02

singw k k  ) is very large. 

Using the asymptotic expansion of the modified Bessel function for a large argument [33], 

[34] 

    2 2 2
0 0 0sin 2 ~ exp sin 2 sinl g g gI w k k w k k w k k        (6.7) 

the far-field expression for the Bessel-Gaussian beam given in Eq. (6.6) is then simplified as 
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  (6.8) 

The above far-field equation is analogous to the equation describing field distribution in 

the focal plane of a lens illuminated by a Bessel-Gaussian beam (calculated using Fresnel 

integral) as in [33]. The far-field expression in Eq. (6.8) represents a CP cone-shaped 
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pattern with perfect azimuthal symmetry (i.e., amplitude of the far-field expression in (6.8) 

is independent of  ) which peaks at the elevation angle of  

  BG 1
r 0

sin k k    (6.9) 

It is observed from Eq. (6.9) that the peak elevation angle for the Bessel-Gaussian beam in 

the far-field (i.e., BG
r ) only depends on the radial wavenumber k and is independent of the 

beam waist gw . The axial ratio (ratio of the magnitudes of E  and E  components) of the 

ideal theoretical far-field expression given in Eq. (6.8) at the elevation angle BG
r is then 

obtained as 

 BG
r1 cosAR    (6.10) 

Equation (6.10) shows that as the peak elevation angle BG
r increases, the minimum 

theoretically achievable axial ratio increases. The Bessel-Gaussian field distribution as in 

Eq. (6.2) can be generated by imposing a combination of the phase function of an axicon 

phase plate [which implies a radial-phase term, see Fig. 6.1] and that of a spiral phase plate 

[which implies an azimuthal-phase term, see Fig. 6.1] upon reflection or transmission of an 

incident Gaussian beam [35]. The equivalent beam waist of the Bessel-Gaussian 

distribution (i.e., gw ) is the half width of the normalized aperture field amplitude at 1 e . The 

generated Bessel-Gaussian field distribution radiates a cone-shaped far-field pattern [as 

given in Eq. (6.8)] which peaks toward elevation angle BG
r imposed only by the aperture 

fieldǯs radial phase gradient (i.e., k  parameter). On the other hand, the aperture fieldǯs 

azimuthal phase gradient (i.e., l parameter) gives rise to a phase vortex on the beam axis 
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(i.e., the boresight direction) in far-field [due to the phase term  exp jl  in Eq. (6.8)], 

which in turn results in a null in the boresight (field vanishes on the phase vortex). 

B. Laguerre-Gaussian (helical) beams 

Laguerre-Gaussian (helical) beams are cylindrically symmetric solutions to the paraxial 

wave equation in the cylindrical coordinate system and their electric field distributions in 

the transverse plane 0z   are given as [4] 
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where LG
0E  is a complex amplitude coefficient, l and p are integer numbers (so-called 

azimuthal and radial mode numbers, respectively), and  l
pL   is the associated Laguerre 

polynomial [34]. Here we consider a Laguerre-Gaussian beam with circular polarization in 

Eq. (6.11). The far-field of the Laguerre-Gaussian beam with the transverse field 

distribution given in Eq. (6.11) is then calculated using the aperture field method as 
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where LGQ  is given in Eq. (6.4) with BG
0E  replaced by LG

0E . Using the integral identities 

given in [36] (see (A4) in [36]), the far-field expression for the Laguerre-Gaussian beam 

with the field distribution given in Eq. (6.11) is then calculated as 
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where 0 singw k   . In the case of generation of such beams by imposing the azimuthal 

phase gradient onto the incident Gaussian beam (as investigated in this chapter), the 

Laguerre-Gaussian mode with p=0 is the dominant mode and therefore the far-field 

expression in Eq. (6.13) is simplified as 

    

2

4LG LG 2 sgn( )
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! 2
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r w j e e
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E Q   (6.14) 

The above far-field expression represents a CP cone-shaped pattern with perfect azimuthal 

symmetry. The radiation cone angle of the cone-shaped pattern in Eq. (6.14) is then 

calculated as 

  LG 1
r 0sin 2 gl k w        (6.15) 

Equation (6.15) shows that for a constant l parameter the cone radiation angle decreases 

with increasing the beam waist of the Laguerre-Gaussian beam (i.e., the aperture diameter 

as we numerically show in the following sections). To make use of the far-field signatures 

of the Bessel-Gaussian and Laguerre-Gaussian beams, we here use reflectarray antennas to 

emulate the radial and azimuthal phases required for the generation of such beams with 

cone-shaped far-field patterns. In the following section we introduce a proper element best 

suited for CP reflectarray antennas operating at Ka-band (28-32GHz). 
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Sec. 6.3 CP Reflectarray Element 

The proposed cone-shaped pattern reflectarray comprises a PEC backed flat surface 

decorated with CP antenna elements and is illuminated by a CP feed horn antenna. The CP 

reflectarray elements must highly suppress cross-polarized reflection with respect to the 

incident CP sense. Based on the rotational phase control principle to be used [30], we can 

then control the phase of the CP reflected wave (from reflectarray surface) maintaining the 

same CP sense as the incident wave by locally rotating the CP reflectarray elements around 

their centers. In order to obtain a wideband response, we here consider a double split-ring 

element, whose unit cell geometry is shown in Fig. 6.3. The element is characterized in a 2-

D periodic-array environment under normally incident plane waves using the frequency 

domain solver based on the finite elements method implemented in CST microwave studio. 

This is a common approach that takes into account the mutual coupling between the 

reflectarray elements by a local periodicity assumption. The geometrical parameters of the 

double split-ring element (see Fig. 6.3) are optimized such that the difference between the 

phases of the reflection coefficients pertaining to x- and y-polarized waves [see Fig. 6.4(a)] 

is about 180° within the desired bandwidth (28GHz-32GHz). Therefore when a RHCP wave 

impinges onto the reflectarray surface, the reflected wave remains mainly RHCP. 
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Fig. 6.3 Unit cell geometry of a double split-ring reflectarray element. 

The optimized parameters of the element at Ka-band are: 

0.81mm,h  5mm,p  1g 0.85mm, 2g 0.2mm, 1 1mm,r 

2 1.4mmr  . The ring width is also set at 0.2mm(@ IEEE, 2017). 

 

The amplitudes of the CP reflection coefficients for the co- and cross- (X-) polarized 

components are plotted in Fig. 6.4(b), where we observe a wide X-polarized suppression 

bandwidth ( X pol 10dB    ) from 27.2GHz to 32.8GHz. Note that the sense of the incident 

circular polarization and the element angular orientation   have no effect on the 

amplitudes of the CP reflection coefficients. The full-wave simulated reflection phase of the 

co-polarized component as a function of the elementǯs angular orientation   is plotted at 

f=30GHz in Fig. 6.4(c) when the element is illuminated by a normally incident RHCP wave. 

It is observed that the reflection phase of the co-polarized component is linearly increasing 

by twice the angular orientation of the element as expected from the rotational phase 

control principle. In contrast, for an incident LHCP wave the reflection phase of the co-

polarized component linearly decreases by twice the angular orientation, which is not 

shown here for brevity. We also observe from Fig. 6.4(c) that the reflection phase of the co-

polarized component covers the full 360° phase span required to fully control the 

wavefront of the reflected wave. In the following section, we populate the reflectarray 

surface with the proposed CP elements with the fixed geometrical parameters (provided in 

the caption of Fig. 6.3) but an individual orientation angle   [as in Fig. 6.4(a)] to emulate 

helical axicon and spiral phase plates (See Fig. 6.1). 
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Fig. 6.4 (a) Schematic of proposed CP element unit cell and its rotation 

around z-axis. (b) Amplitude of the co- and cross- (X-) polarized reflection 

coefficients when the unit cell is illuminated by a normally incident CP wave. 

(c) Reflection phase of the co-polarized component versus the angular 

orientation of CP element for RHCP incident wave at 30GHz (@ IEEE, 2017). 

Sec. 6.4 Cone-shaped Pattern Reflectarrays 

By use of the CP reflectarray element designed in the previous section and the rotational 

phase control technique, in this section we develop Ka-band CP Bessel-beam and helical-

beam reflectarrays radiating cone-shaped patterns. 

A. Bessel-beam reflectarrays 

In order for a reflectarray to radiate a CP Bessel beam, the required phase shift ,r i  

imposed by the th
i element on the reflectarray surface must vary depending on the element 

position as 

 , 0 0 rsinr i i i ik d k l        (6.16) 
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where 0k is the free-space wavenumber, id  is the distance between the reflectarray focal 

point (the phase center of the feed horn as in Fig. 6.5) and the center of  the th
i  cell on the 

reflectarray surface, r  is the peak elevation angle [see Eq. (6.16)], and  ,i i   is the 

cylindrical coordinate of the th
i  cellǯs center (see Fig. 6.5). The so-called OAM number l here 

is considered to be an integer; however, it can take generally any real number. The first 

term on the right-hand side of Eq. (6.16) cancels the propagation phase of the wave 

traversing from the phase center of the feed horn to the th
i  cellǯs center while the second 

and third terms are, respectively, the required radial and azimuthal phases for generation 

of the Bessel-Gaussian beam. Note that in Eq. (6.16) a non-zero azimuthal index number 

(i.e., 0l  ) is required to form a phase vortex around  the z-axis [see Eq. (6.8)].  

We first assume an ideal cos-q shaped RHCP incident beam illuminating the reflectarray 

surface. The q-parameter is chosen such that the incident field amplitude drops by 12dB at 

the reflectarray edge with respect to that at the reflectarray center [30]. Let us first 

consider a center-fed reflectarray with the diameter of D=7.5λ and the focal length to 

diameter ratio of F/D=0.7, where λ=10mm. The q-parameter is set to 5.7 to achieve a -12dB 

reflectarray edge taper for the given F/D ratio. The aim is to generate a RHCP cone-shaped 

pattern with cone angle of c 15  (see Fig. 6.2) and a phase vortex in boresight direction 

(e.g., with l=1). The Bessel-beam reflectarray ideally imposes a local phase obtained from 

Eq. (6.16) (with c 15  ) onto the incident beam. For far-field evaluations, the reflected 

field on the reflectarray surface is step-wise approximated and the reflected electric field at 
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each reflectarray cell is assumed to be uniform and equal to the incident field at the center 

of the cell multiplied by the required exponential phase term,   ,exp r ij , with ,r i  

calculated via Eq. (6.16). 

 

Fig. 6.5 Schematic of a reflectarray generating an OAM-carrying cone-shaped 

pattern (@ IEEE, 2017). 

The ideal phase and amplitude of the step-sized approximated reflected field on the 

reflectarray surface are plotted in Fig. 6.6. Note that reflected field has a spiral-shaped 

phase profile on the reflectarray surface, similar to that imposed by a helical axicon phase 

plate onto an incident beam (See Fig. 6.1). The RHCP far-field radiation pattern is then 

numerically calculated via the Fourier transform of the reflected field on the reflectarray 

surface and plotted in Fig. 6.7. Furthermore, we also perform a full-wave simulation of the 

combined feed horn-reflectarray system using the CST microwave studio. The split-rings 

on the reflectarray surface are systematically oriented based on Fig. 6.4(c) such that the 

reflected wave has the spiral-shaped phase profile [as shown in Fig. 6.6(a)] over the 

reflectarray surface. The RHCP feed horn is oriented normal to the reflectarray surface and 

has a boresight gain of 13.6dB required to achieve a -12dB reflectarray edge taper. 



140 

 

 

Fig. 6.6 Ideal (a) phase and (b) amplitude of the field on the Bessel-beam 

reflectarrayǯs cells upon reflection from reflectarray surface. The reflectarray 

diameter is D=7.5λ (@ IEEE, 2017). 

 

Fig. 6.7 Comparison between full-wave (FW) and Fourier-transform (FT) 

results for the RHCP radiation patterns of the Bessel-beam reflectarray (with 

D=7.5λ) at 31GHz on two different elevation planes: (a) φ = 0°,  and (b) φ = 

90° (@ IEEE, 2017). 

 The full-wave simulation also takes into account the undesirable scattering due to the 

illumination horn and the reflectarrayǯs edge diffraction. The Fourier transform and the 

full-wave simulation results for the reflectarrayǯs RHCP radiation patterns at two 

orthogonal elevation planes are compared at 31GHz in Fig. 6.7. It is observed that the 

Fourier transform and the full-wave simulation results are in good agreement especially 

around the radiation cone angle. Furthermore, the peaks of both the Fourier transform and 
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the full-wave radiation patterns point toward c 15   which matches well with the 

theoretical prediction [i.e., setting r 15   in Eq. (6.16)]. Note that the presence of the feed 

horn (i.e., blockage of the reflected fields), that is only accounted for in the full-wave 

simulation, does not significantly degrade the radiation of the reflectarray antenna even for 

a cone-shaped pattern with a radiation cone angle as small as 15° owing to its placement at 

the coneǯs vortex. 

The full-wave co-polarized (RHCP) and cross-polarized (LHCP) radiation patterns of the 

Bessel-beam reflectarray are plotted at various frequencies in Fig. 6.8. The maximum 

antenna directivity in the elevation angle (radiation cone angle) of c 15   is ~14.6dB and 

occurs at 31GHz. It is also observed from Fig. 6.8 that the cone-shaped radiation pattern of 

the reflectarray is mostly preserved over the frequency range of interest from 28GHz to 

33GHz. However the cross-polarized radiation (whose phase is not tailored by the 

rotational phase control method utilized here) becomes significant at 33GHz. This is mainly 

attributed to the high cross-polarized reflection coefficient amplitude of the element at 

33GHz [see Fig. 6.4(b)]. The RHCP radiation pattern of the Bessel-beam reflectarray is also 

plotted on the c 15    azimuth cone for various frequencies in Fig. 6.9 which 

demonstrates a good azimuthal symmetry for the cone-shaped radiation pattern within the 

frequency band of interest. The maximum directivity variation in the   azimuth cone within 

the frequency range of interest is about 2dB and occurs at 32GHz. Since the Fourier 

transform results agree well with the full-wave results (see Fig. 6.7), in the following we 

conduct the parametric analyses based on just the Fourier transform calculations. 
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Fig. 6.8 Full-wave radiation patterns (in dB) of the Bessel-beam reflectarray 

(with D=7.5λ)  in φ = 0° elevation plane at (a) 28GHz, (b) 29GHz, (c) 30GHz, 

(d) 31GHz, (e) 32GHz, (f) 33GHz (@ IEEE, 2017). 
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Fig. 6.9 Full-wave RHCP radiation pattern (in dB) of Bessel-beam reflectarray 

(with D = 7.5λ) in θ=15° azimuth cone at various frequencies (@ IEEE, 2017). 

Let us first examine the effect of the azimuthal phase gradient [third term on the right 

hand side of Eq. (6.16)] on the Bessel-beam reflectarrayǯs radiation pattern. Here, we 

increase the reflectarray diameter from 7.5λ to 30λ (with λ=10mm) while keeping the edge 

taper, the F/D ratio, and r  parameter constant as the previous design. Fig. 6.10 shows the 

RHCP radiation patterns for the Bessel-beam reflectarrays with [l=1 in Eq. (6.16)] and 

without [l=0 in Eq.(6.16)] azimuthalz phase gradient.  

 

Fig. 6.10 Fourier-transform radiation pattern (in dB) of the Bessel-beam 

reflectarray (with D = 30λ) in φ = 0° elevation plane with (l=1) and without 

(l=0) azimuthal phase gradient at 31GHz (@ IEEE, 2017). 
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The first and foremost observation is that both cases have equal radiation cone angles 

that correspond to the design one (i.e., c r 15    ) and their radiation patterns are almost 

identical around the cone angle. Furthermore, we observe that the presence of the 

azimuthal phase gradient (in addition to the radial phase gradient) features a deep null in 

the boresight direction as compared to the Bessel-beam reflectarray without the azimuthal 

phase gradient (i.e., case with l=0). This is expected due to the presence of the phase term 

in the far-field expression of a higher-order Bessel-Gaussian beam given in Eq. (6.7). Note 

that a Bessel-beam reflectarray with a larger azimuthal phase gradient (i.e., 2,3,...l  ) does 

not have any superiority to the one with l=1 in terms of the boresight null, and therefore is 

not shown here for the sake of brevity. Next we examine the effects of the reflectarray 

diameter and the r  parameter on the reflectarrayǯs cone-shaped pattern. In each case, we 

only change the corresponding parameter and keep F/D=0.7, l=1, and edge taper (-12dB) 

constant as the previous design. 

We observe from Fig. 6.11(a) that increasing the reflectarrayǯs diameter by a factor of 

two increases the antenna directivity in the cone angle direction ( c 15   ) by about 2.9dB. 

Therefore, by increasing the reflectarray diameter, one can increase the antenna directivity 

for a certain cone angle. Furthermore, Fig. 6.11(b) shows the effect of the radial phase 

gradient [i.e., r  in Eq.(6.16)] on the cone angle of the reflectarrayǯs cone-shaped pattern. It 

is observed that the proposed Bessel-beam reflectarray features a wide-angle cone-shaped 

pattern scanning capability. One way to achieve a Bessel-beam reflectarray with radiation 

cone angle scanning capability is to properly integrate RF MEMS switches or varactors into 
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each of its elements to dynamically adjust the local elementsǯ angular orientations and thus 

the radial phase gradient on the reflectarray surface. 

 

Fig. 6.11 The effect of (a) the diameter of the cone-shaped Bessel-beam 

reflectarray (with l=1 and r 15   ), and (b) the radial phase gradient 

amount (i.e.,  r ) in Eq. (6.9), on the cone angle (@ IEEE, 2017). 

B. Helical-beam reflectarrays 

In this subsection, we examine reflectarrays that generate OAM-carrying helical-beams 

(i.e., Laguerre-Gaussian beams theoretically investigated in Sec. 2-B) by imposing only 

azimuthal phase gradient [i.e., excluding the radial phase gradient in Eq. (6.16) by setting 

r 0  ] on the illuminating beam to emulate a spiral phase plate (see Fig. 6.1). Despite the 

design parameter r 0  , such beams do generate a cone-shaped radiation pattern (see Sec. 

II-B). Indeed, Fig. 6.12(a) shows the RHCP radiation pattern of such a reflectarray (with 

diameter D=7.5λ where λ=10mm) for various azimuthal index numbers l in 0   

elevation plane. As the l number increases from 1 to 2 to 3, the radiation cone angle (i.e.,  c

) of the reflectarrayǯs cone-shaped pattern increases from 7.5° to 11° to 14°, respectively.  
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Fig. 6.12 RHCP radiation pattern (in dB) of an OAM-carrying cone-shaped 

helical-beam reflectarray designed based on only azimuthal phase gradient 

versus (a) azimuthal index number l (D=7.5λ), and (b) reflectarray diameter 

(l=±3), in φ = 0° elevation plane. Patterns evaluated by using Fourier-

transform of the aperture field (@ IEEE, 2017). 

However, such radiation cone angles are different from the theoretical cone angles 

calculated from Eq. (6.15) (i.e., 4.14°, 5.86°, and 7.17°, respectively). In equation (6.15), the 

equivalent beam waist of the generated Laguerre-Gaussian beam by the reflectarray (i.e., 

gw ) is calculated as the half width of the normalized aperture field magnitude on the 

reflectarray surface at 1/ e  and is equal to 0.415gw D for the reflectarray with F/D=0.7.  

Note that the theoretical cone angle in Eq. (6.15) is calculated based on the paraxial 

approximation and is only valid for large beam waists (i.e., large reflectarray diameters   

and thus small cone angles). As we show in the following, when the reflectarray diameter 

increases the theoretical radiation cone angle, calculated by Eq. (6.15), approaches to the 

simulated one. We also observe from Fig. 6.12(a) that the HPBW solid angle of the cone-

shaped pattern increases with the azimuthal index number l, which in turn decreases the 

maximum directivity of the reflectarray. Note that increasing the azimuthal index number 

to the values larger than 3 features a large azimuthal phase gradient that may not be 
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effectively resolved for a reflectarray with D=7.5λ and by reflectarray elements with cell 

size as large as λ/2. This would in turn perturb the azimuthal symmetry of the 

reflectarrayǯs desired cone-shaped pattern and therefore has not been examined here. Note 

that the radiation pattern for a helical-beam reflectarray with azimuthal index number –l is 

identical to that for a helical-beam reflectarray with azimuthal index number +l (see Fig. 

6.12), and they only differ by variation of their phase with the azimuthal position in far-

field. 

Although a helical-beam reflectarray with radiation cone angle as large as c 14    is 

designed here by only imposing the azimuthal phase gradient (with l=±3), the radiation 

cone angle shifts toward smaller angles as the reflectarray diameter ( 0.415gw D ) 

increases for high-gain applications. Fig. 6.12(b) shows the effect of the reflectarray 

diameter on the radiation cone angle for a helical-beam reflectarray with the azimuthal 

index number l=±3. We observe that the radiation cone angle shifts from about 3.5° to 

1.72° to 0.9° as the reflectarray diameter increases from 15λ to 30λ to 60λ which are in 

good agreement with the theoretical cone angles calculated from Eq. (6.15), i.e., 3.58°, 

1.79°, and 0.9°, respectively. Therefore, range of the radiation cone angle achieved by the 

helical-beam reflectarray (which is merely based on azimuthal phase gradient) is much 

narrower than that achieved by the Bessel-beam reflectarray (which is designed based on 

both azimuthal and radial phase gradients), especially for high-gain applications (i.e., large 

reflectarray diameters). Note that Eq. (6.15) also shows that the radiation cone angle 

decrease with increasing the reflectarray diameter (here 0.415gw D ). Although 

reflectarrays with larger diameters can generally resolve larger azimuthal index numbers, 
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given that the element period is constant there is always a limit on the maximum azimuthal 

index number that can be resolved with a reflectarray with a certain diameter. In the next 

section, we exploit helical beams featuring only azimuthal phase gradients to achieve 

multiple azimuthally-distributed pencil beams. 

Sec. 6.5 Azimuthal Multi-Beam Reflectarray 

Let us assume two OAM-carrying helical beams featuring azimuthal phases with 

azimuthal index numbers l1 and l2 are superimposed. The electric field of the interference 

beam is calculated by the vector sum of the two superimposed beamsǯ electric fields (i.e., 

1 2E E E  ). The local electric field intensity of the interference beam in far-field (i.e., 

    2
, ,I    E ) is then calculated as 

             1 2 1 2, 2 cos ,I I I I I             (6.17) 

where 1I  and 2I  are the electric field intensities of the helical beams with azimuthal index 

numbers of 1l  and 2l , respectively, and they are only a function of the elevation angle  . 

Note that the phase of each superimposed beam generally contains two terms: (i) the 

azimuthal phase term, and (ii) the elevation phase term. In Eq. (6.17), the parameter 

     1 2, l l         is the phase difference between the two beamsǯ fields, where 

 0,2   and   is the difference between the elevation phase terms of the two beams 

and is only a function of the elevation angle  . Individually, each helical beam with an 

azimuthal index number l  features a cone-shaped radiation pattern in far-field as 

demonstrated in the previous sections (see Eq. (6.14) and also Fig. 6.12). Let us assume 
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that the two interfering helical beams (with different azimuthal index numbers) peak at the 

same elevation angle with comparable field intensities around the peak (cone) angle i.e., 

   1 c 2 cI I      . The far-field intensity of the interference beam given by Eq. (6.17) 

is then simplified around the radiation cone angle as 

     2
1 2 1 21 cos[ ] 2cos 2I l l l l              (6.18) 

We observe from Eq. (6.18) that the interference beam has a cosine-shaped standing wave 

pattern versus   with total number of 1 2l l maxima equally spaced on a ring whose 

central axis is aligned with the beam axis. 

In the following, we demonstrate that the interference of two OAM-carrying helical radio 

beams with different azimuthal index numbers (and zero radial phase gradients) is an 

efficient apparatus to generate multiple azimuthally-distributed pencil-beams in far-field. 

Such a radiation pattern exhibits a great potential for sectorization of the 360° azimuthal 

coverage of the space, single point to multi-point communication, diversity, and MIMO 

concepts. As an illustrative example, we design an azimuthal multi-beam reflectarray 

radiating multiple pencil beams pointing toward the elevation angle of 15°. To this aim, we 

divide the reflectarray surface into two concentric segments, as shown in Fig. 6.13 (a), each 

radiating a distinct helical beam with a certain azimuthal index number. Here, the 

azimuthal index number of the inner segment (i.e., 1l ) is fixed at +1 while the corresponding 

parameter of the outer segment is changing accordingly such that we have different 

numbers of pencil beams as set by the design. 
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Fig. 6.13 (a) Schematic of a reflectarray antenna with two concentric annular 

segments featuring different azimuthal index numbers. (b) Fourier-

transform RHCP radiation pattern radiated only from the inner segment of 
the reflectarray in (a) with l1=±1 in φ=0 elevation plane. Also the directivity 

patterns radiated only from the outer segments with l2=±3 and l2=±4 are 

plotted. The radius of the inner segment is fixed at rin = 1.5λ and the outer 

segment radius for l2=±3 and l2=±4 are set as rout = 3.75λ and rout = 4λ, 

respectively, where λ =10mm (@ IEEE, 2017). 

The radius of the inner segment ( inr ) is also chosen as 1.5λ in order to have a cone-

shaped pattern with 1 1l   and radiation cone angle of 15°. The required reflection phase 

from each cell on each segment with a specific azimuthal index number is obtained from 

Eq. (6.16) (by setting r 0  , i.e., excluding the radial phase gradient). The directivity 

pattern radiated only from the inner segment (by setting the field amplitude on the outer 

segment to zero) is shown in Fig. 6.13(b). Accordingly, the radius of the outer segment ( outr

) for the azimuthal index number 2 3l    ( 2 4l   ) is found to be 3.75λ (4λ), in order to 

radiate a cone-shaped pattern with cone angle of 15°. The directivity patterns radiated only 

from the outer segment (i.e., setting the field amplitude on the inner segment to zero) with 

two different azimuthal index numbers (and two different aforementioned radii) are 

plotted in Fig. 6.13(b). We observe from Fig. 6.13 that the directivity patterns for all three 
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cases peak at around 15° elevation angle with comparable values. 

Next we plot in Fig. 6.14 the RHCP radiation pattern of the azimuthal multi-beam 

reflectarray, shown in Fig. 6.13(a), in the u v plane for different sets of the inner and outer 

segmentsǯ azimuthal index numbers  1 2,l l . Note that the outer segment radius is rout = 

3.75λ for the case with l2 = ±3 and is rout = 4λ for the case with l2 = ±4. We observe from Fig. 

6.14 that the total number of the pencil beams for each case is 1 2l l  and that they are 

uniformly distributed around the center (i.e., antennaǯs boresight direction) and well 

separated by azimuth angle 2 1360 l l .  

 

Fig. 6.14 (a) Fourier-transform RHCP radiation pattern (in dB) of an 

azimuthal multi-beam reflectarray composed of two concentric annular 

segments [as shown in Fig. 6.13(a)] for different  1 2,l l  combinations at 

30GHz. The inner segment radius and azimuthal index number are set at rin = 

1.5λ and l1 = +1, respectively, while the outer segment radius and azimuthal 

index number are rout = 3.75λ (4λ) and l2 = ±3 (±4), respectively, where λ 

=10mm (@ IEEE, 2017). 
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As an illustrative example, the full-wave 3-D radiation pattern for a CP quad-beam 

reflectarray (with 1 1,l  2 3,l   in 1.5r   and out 3.75r  ) is reported in Fig. 6.15. Note 

that the full-wave radiation pattern here takes into account the aperture blockage due to 

the illuminating horn and the undesirable diffraction from reflectarray edges. The full-wave 

RHCP radiation pattern and the axial ratio of the quad-beam reflectarray at 15    azimuth 

cone are also reported at various frequencies in Fig. 6.16. We observe that the maximum 

directivity of the quad-beam reflectarray changes by about 1.5dB within the operating 

bandwidth (where the maximum directivity is 16.4, 16.9, 17.6, 17.9, 18, and 18dB, at 28, 29, 

30, 31, 32, and 33GHz, respectively). Furthermore, the maximum variation between the 

maximum directivities of the four pencil-beams is about 0.9, 0.4, 0.6, 0.3, 0.6, and 0.4dB at 

28, 29, 30, 31, 32, and 33GHz, respectively. 

 

Fig. 6.15 Full-wave RHCP radiation pattern of a quad-beam reflectarray with 

rin = 1.5λ, rout = 3.75λ (λ =10mm), l1=1, and l2=-3 at 31GHz (@ IEEE, 2017). 

This shows that the maximum directivity doesnǯt change significantly from one pencil-

beam to the other at each frequency. We also observe from Fig. 6.16 that the reflectarray 

radiates four well-separated RHCP pencil-beams whose axial ratios are less than 3dB 

around the main beamsǯ directions from 28GHz to 32GHz. However, the axial ratio slightly 
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shifts above 3dB at 33GHz as expected from the elementǯs high cross-polarized reflection 

coefficient magnitude in Fig. 6.4(b). Note that, based on Eq. (6.10), the minimum 

theoretically achievable axial ratio in the elevation angle of 15° is ~0.3dB. 

 

Fig. 6.16 Full-wave RHCP radiation pattern and axial ratio for the quad-beam 

reflectarray with diameter of 7.5λ in θ=15° azimuth cone at various 

frequencies (@ IEEE, 2017). 

Sec. 6.6 Conclusion 

We revisit the concept of the orbital angular momentum (OAM) beams with special 

attention to their far-field features. In particular, we harness the intrinsic feature of the 

OAM beams that possess annular-shaped field intensity distribution, to generate cone-

shaped radiation patterns. In this regard, novel circularly-polarized reflectarray antennas 

radiating cone-shaped patterns with high azimuthal symmetry and a deep null in boresight 

direction are conceived at Ka-band. Such reflectarrays are efficiently realized by taking 
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advantage of the cone-shaped far-field pattern of the OAM-carrying Bessel-Gaussian and 

helical beams. In particular, we show that Bessel-beam reflectarrays are capable of 

radiating cone-shaped patterns with high gain and a wide range of cone angles up to ~45°.  

In contrast, the helical-beam reflectarray generates a cone-shaped pattern with a much 

smaller radiation cone angle. Moreover, the OAM-concept is further developed here to 

design multi-beam reflectarrays with multiple pencil-beams azimuthally distributed in 

space. To this goal, we divide the reflectarray surface into two concentric annular segments 

that radiate two overlapping cone-shaped helical (Laguerre-Gaussian) radio beams with 

different azimuthal index numbers (OAM numbers). The proposed Bessel-beam and 

helical-beam reflectarrays may find interesting applications in satellite communications 

with mobile vehicles, beam shaping, as well as short-range wireless communication links. 

This chapter is reproduced based on the material in [M. Veysi, C. Guclu, F. Capolino, Y. 

Rahmat-samii, "Revisiting the Orbital Angular Momentum Beams: Fundamentals, 

Reflectarray Generation, and Novel Antenna Applications," in review with IEEE Antenna 

and Propagation Magazine]. 
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