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Dynamics of dissociative attachment of electrons to water through the 2B, metastable
state of the anion

Daniel J. Haxton,»?* Zhiyong Zhang,>'! Hans-Dieter Meyer,??
Thomas N. Rescigno,? ¥ and C. William McCurdy* > "1

"Department of Chemistry, University of California, Berkeley, California 94720
?Lawrence Berkeley National Laboratory, Computing Sciences, Berkeley, California 94720
?Theoretische Chemie, Universitit Heidelberg, Im Neuenheimer Feld 229, D - 69120 Heidelberg, Germany
4 Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720
®Department of Applied Science, University of California, Dawvis, California 95616

Calculations of cross sections for dissociative attachment to water through the >B; resonance
state are presented using the ab initio surfaces calculated previously for the energy, Er, and width,
I, of this resonance state as a function of nuclear geometry. The dynamics of the dissociative
attachment process are treated in full dimensionality using the local complex potential model. For
the H™ 4+ OH channel, the calculations presented here are in substantial agreement with experiment
with regard to total cross section and vibrational excitation of the OH fragment. Cross sections for
dissociative attachment to excited initial ro-vibrational states are presented and isotope effects are

also examined.
I. INTRODUCTION

Experiments[1-8] on the dissociative attachment of
electrons to gas-phase water molecules have suggested
that this process is governed by complex nuclear and
electronic dynamics. Three resonance peaks have been
identified with cross section maxima near incident elec-
tron energies of 6.4, 8.4, and 11.2 eV for the production
of the H~, O~ or OH™ products. It was observed that
each of these peaks exhibits a different product distribu-
tion. The three electronic resonance states corresponding
to these three cross section peaks, with 2B;, 24, and 2B,
symmetry, are now familar, and it is the dynamics of dis-
sociative attachment through the lowest of those, the 2B;
metastable state of the anion, that is the subject of this
paper.

Several salient features of the early experiments sug-
gest that the nuclear dynamics of this process may hold
some surprises. For dissociative attachment through the
2B, resonance, the cross section for producing H~ + OH
is roughly 40 times larger at its peak than the cross sec-
tion for producing the energetically favored products,
O~ +H, [4, 5]. The further observation that the pro-
duction of OH™ associated with this resonance peak in
these early experiments was not a product of direct disso-
ciative attachment [9] is contrary to the natural chemical
intuition from the condensed phase that OH~ should be
expected to be a major product. These observations indi-
cate that the products of this reaction are determined by
the dynamics of the process itself rather than by the en-
ergetics of the possible product channels, and that more-
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over those dynamics are different for each of the reso-
nance states of the water anion.

Both the detailed experiments of Belic, Landau and
Hall [8] in 1981, who measured the distribution of vi-
brational states of OH as well as angular distributions
of the accompanying H™, and those of Compton and
Christophorou [4], who measured the isotope effect for
production of H™ or D™ from H>O or D50, provide
strong tests of the theoretical understanding of this pro-
cess. The channel producing H~ + OH through the 2B,
resonance state is accompanied by extensive vibrational
excitation of the OH fragment. Given the competition
between dissociation channels and the observed product
vibrational excitation, one expects that the dynamics of
dissociative attachment to this molecule are intrinsically
polyatomic, and can only be described theoretically by
a treatment using the full dimensionality of nuclear mo-
tion. Such a treatment is what we report here.

In a previous paper [10], hereafter refered to as (I), we
presented the calculation of the potential surface for the
2B, resonance state in its full dimensionality. That sur-
face, V. = Ep — i'/2, is complex in the region in which
this state is metastable. Both the real part and the width,
I', were calculated by ab initio methods, the real part in
large-scale configuration interaction calculations and the
width from complex Kohn variational scattering calcu-
lations. Analytic fits of these quantities were performed
to construct a complete representation at all geometries
necessary for the dynamics calculations we describe here.

In this study we turn to the calculation of the cross
sections for dissociative attachment using that complex
potential surface. The calculations we present are all
peformed using the local complex potential model [11-
14], in which the energy and width of the resonance state
are sufficient to determine the nuclear dynamics and the
cross sections.

To apply the local complex potential model to a poly-
atomic system, we make use of a time-dependent ver-
sion of it that simplifies both the numerical calculations



and the physical interpretation of the dynamics. As in
earlier studies on resonant vibrational excitation of COy
[15, 16], we make use of the Multiconfiguration Time
Dependent Hartree (MCTDH) method [17] to solve the
working equations. This time-dependent, approach, com-
bined with the power of the MCTDH implementation, is
the key to treating polyatomic dissociative attachment
and resonant vibrational excitation problems.

The outline of this paper is as follows. In Section II we
discuss the bulk of the formalism involved in this work:
essentials of the local complex potential model, relevant
definitions of dissociative attachment cross sections, the
coordinate systems and Hamiltonians necessary for the
treatment of a triatomic system, and the application of
the MCTDH method to the computation of the quanti-
ties of interest. In Section III we present our results, and
conclude with the discussion in Section IV. An Appendix
is included in which we address the analysis of the rota-
tional degree of freedom for the OH fragment of the H™
+ OH channel, which is not straightforward.

II. TIME-DEPENDENT LOCAL COMPLEX
POTENTIAL TREATMENT OF DISSOCIATIVE
ATTACHMENT

A. Nuclear wave equation

The local complex potential (LCP) model [11 14, 18],
also known as the “Boomerang” model when applied to
vibrational excitation, describes the nuclear dynamics in
terms of the driven Schrédinger equation

(E - H) fw (‘D = ¢w (60)7 (1)

in which the Hamiltonian for nuclear motion in the res-
onant state is
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In Egs. (1-2), the nuclear degrees of freedom are col-
lectively denoted by ¢ and the nuclear kinetic energy is
denoted by K. The energy, F, is the energy of the en-
tire system, namely that of the target molecular state
plus the kinetic energy of the incident electron,

E=E, +k*/2. (3)

The driving term, ¢,, in Eq. (1), is defined as

6000 =\ 5D, @) (¥

in which x,, is the initial vibrational wave function of
the neutral target molecule, whose quantum numbers are
collectively denoted by v;. The factor which multiplies
Xv;, called the “entry amplitude,” is arrived at via cer-
tain approximations [11-14]. As we will see below, the

magnitude of the driving term ¢,, will largely control the
overall magnitude of the cross section.

The solution of Eq. (1) can be accomplished via time-
dependent methods, as first demonstrated by McCurdy
and Turner [19]. The solution &,, (§) satisfies the bound-
ary condition that it should contain only purely outgoing
waves,

£ (q) = (E — H +i€)"'$,,(7.0). (5)

By representing the Green’s function, (E — H +i€) ™!, by
the Fourier transform of the corresponding propagator,
the stationary solution &, (¢) of Eq. (1) can be obtained,

i) = lim i [ PG, (o)
e—
.OOO | | (6)
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0
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where we define the time-dependent nuclear wave func-
tion as

¢w ((T/ t) = eithd)w (‘i O) (7)

The essence of the LCP model is that the dynam-
ics of this wavepacket on the complex potential sur-
face of the metastable anion determine the cross sections
for dissociative attachment (DA) or vibrational excita-
tion through the electron scattering resonance. These
wavepacket dynamics provide a simple interpretation of
the physics of the dissociative attachment process that
is now well-known for diatomics, but, as we will see be-
low, is even more useful for understanding dissociative
attachment to polyatomic targets.

The LCP model is expected to describe the dynamics
of the case at hand well, since certain basic assumptions
of the model are clearly satisfied [20]. Our interest here is
in describing DA to water, whose electronic ground state
at equilibrium has ' 4; symmetry, through its lowest res-
onance anion state, which at the equlibrium geometry of
the neutral target has 2B; symmetry. This resonance lies
~6.5 eV above the neutral target state. The width of the
resonance, and therefore the coupling of the resonance
state to the background electron scattering continuum,
is small, and the incident electron energy is large com-
pared to the vibrational spacing of the neutral molecular
target.

Virtually all previous ab initio studies of dissociative
electron attachment have been carried out for diatomics,
or for polyatomics with a single active nuclear degree of
freedom. In such cases the quantum numbers | and m
of the initial state are conserved via the approximations
which yield Eq. (4), and therefore the coordinates, ¢,
reduce to a single internuclear distance, R. The radial
portion of the wave function given in Eq. (5), defined as

—
—
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behaves asymptotically as an outgoing wave:

2

k
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The total cross section for dissociative attachment in the
local complex potential model is then [21]
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where k is the relative nuclear momentum of the two
atoms with reduced mass pug, and g is a statistical ratio
of the electronic multiplicity of the resonant state to the
electronic multiplicity of the incoming state.

The generalization of this formulation to polyatomic
systems is, in principle, straightforward. However, there
are intrinsic complications that arise even in the simplest
polyatomic case of a triatomic molecule, because there is
more than one final arrangement channel. We therefore
must first specify the coordinate systems and Hamilto-
nians which we will employ, before addressing the issue
of the proper formulation of the dissociative attachment
problem for a triatomic.

B. Jacobi coordinate systems

A three-body system has nine degrees of freedom; nine
variables are required to specify the configuration of such
a system in space. Three of these variables, however, de-
scribe center-of-mass motion, which can easily be sepa-
rated from internal motion. The instantaneous positions
of three particles define a plane, so of the remaining six
variables, three can be chosen to specify motion in this
plane, while the remaining three are used to orient the
plane with respect to the space-fixed frame. There are
several possible choices for the three internal (body-fixed)
coordinates that describe motion in a plane. We will use
Jacobi coordinates, which are a natural choice for study-
ing dissociation.

There are two distinct Jacobi coordinate systems that
describe a triatomic system such as HoO. In the first
of these we define an OH bond length, r, the distance,
R, between that OH center of mass and the second H,
and the angle, v, between these two vectors, defined such
that v = 0 corresponds to a collinear H-H-O geometry.
The other coordinate system considers Hs as the diatomic
species and thus assigns r to the H-H separation, and R
to the distance between the Hy center of mass and and the
oxygen nucleus, with v defined as the angle between these
two vectors. These coordinate systems were described in
(I) when the construction of analytic fits of the calculated
ab initio complex potential surface were discussed.

The calculations described below made use of both co-
ordinate systems so that the cross sections for different

arrangements could be computed. The first Jacobi coor-
dinate system is convenient for the OH + H™ arrange-
ment channel; the second, for the the Hy, + O~ arrange-
ment channel.

The remaining three degrees of freedom of this center-
of-mass system are the three Euler angles which orient
the internal or body-fixed (BF) frame to the lab or space-
fixed (SF) frame, which we will denote a, 3, (. These are
shown in Figure 1 and will be discussed below.

C. Triatomic nuclear Hamiltonians

The angular momentum of a triatomic system can
be quantized in several different ways. In defining the
Hamiltonian for this system we will use the standard [22]
BF formulation in which we quantize total angular mo-
mentum, J, the projection of angular momentum onto a
SF axis, M, and the projection upon a BF axis, K. J
and M are constants of the motion. A six-dimensional
rovibrational wave function for a triatomic with partic-
ular J and M values can be expanded in a BF angular
momentum basis as follows,

=/ M(R,r,y)

J
\I!']M(R,T,’Y7CM7B7C): Z 5]{4K(a767(;) Rr

K=—J

(11)
where the basis of 15{“((04, B, () is the set of normalized
Wigner rotation matrices (and BF angular momentum
eigenstates)

3

~ 2J+1
Di (e, B8,¢) = \/8—7:;DX4K(a767<), (12)

such that

21 1 2 - -,
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(13)

In Eqgs.(12) and (13) we follow the conventions of
Zhang [22], which for the D, , are the same as those
of Edmonds [23].

By substituting the expansion (11) into the
Schrodinger equation and wusing the orthogonality
relation (13) for the D-functions, one can derive a
tridiagonal system of coupled equations for the radial
components, Z5M (R, r, ), of the full wave function. The
BF Hamiltonian operators that appear in this expansion



are given by [24, 25]
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where p, and ug are the reduced masses appropriate for
the Jacobi coordinate system in use and V' is the complex
potential energy surface. The Hamiltonian operators are,
of course, independent of the SF quantum number, M.
Thus the dynamics in the body-fixed frame are effectively
four-dimensional, with internal coordinates r, R, and -,
and with the expansion in terms of states of fixed K
representing the fourth dimension.

We use the “R-embedding” scheme [26] in which the
BF angular momentum number K is quantized around
the axis parallel to the R vector. Thus a and § are the
polar angles which orient the R vector with respect to
the SF frame, and ( is the third Euler angle specifying
orientation about the BF z axis. A schematic of the
coordinate system is shown in Fig. 1.

With this Hamiltonian, in the Jacobi coordinates ap-
propriate to the final arrangement of interest, we can
perform the time propagation of Eq. (7), expanding the
initial wave function ¢,, as in Eq. (11). With the under-
standing that the wave function being propagated corre-
sponds to a specific value of total angular momentum, we
will drop the .J and M superscripts on the wave function
for notational simplicity. Before we turn to the methods
we will use to perform that time propagation, we will
generalize the definition of the dissociative attachment
cross section in Eq. (10) using these coordinates.

D. Dissociative attachment cross sections

We can now address the problem of generalizing Eq.
(10), which expresses the cross section for dissociative
electron attachment to a diatomic target, to the case of
a triatomic system. The definition of the cross section de-
rives from the asymptotic form of the time-independent,
solution, &,,, of the driven Schrodinger equation in the
LCP model given by Eq. (1). Here and below, we use the
subscript v; to denote the quantum numbers that specify
the initial state of the target molecule. For the prod-
uct channels, consisting of an atom or atomic ion plus a
diatomic fragment, we will use the notation jv to label
the vibrational and rotational quantum numbers of the
product diatom.

FIG. 1: “R-embedding”[26] coordinate system with origin at
the center of mass. The body-fixed (BF) frame is labeled by
the X', Y’ and Z’' axes; the space-fixed (SF), by X, Y, and
Z. The BF axes are marked with thin lines, and the BF X'Z’
and X'Y’ planes are both marked with a thin line circle. The
SF axes are marked with dashed lines, and the SF XZ and
XY planes are marked with dashed circles. The molecule
resides in the BF X'Z' plane. The Euler angles a, 3, and ¢
orient the BF frame with respect to the SF frame. The line
of nodes is also drawn. The 7 vector connects the nuclei of
the diatomic. The R vector connects the center of mass of
the diatomic to the third atom and is collinear with the BF
Z' axis. R is the length of ff, r is the length of 7, and ~ is
the angle between the R and 7 vectors.

For the triatomic case, the asymptotic form of &,, (R, )
is expressed most easily in the spaced-fixed basis of cou-
pled spherical harmonics Q/ﬂIM(R, 7), where R -7 =
cos(y). The quantum numbers [ and j, as we will see
below, label the partial-wave angular momentum of the
dissociating fragments and the rotational quantum num-
ber of the diatomic product, respectively.

For our purposes, an important identity is the defini-
tion of the coupled spherical harmonics in terms of the
normalized Wigner rotation functions [22],

ZIM(R,7) = Cl D (. 8,00 (7)) (15)

where the coefficients CZ'ZK of this unitary transformation
are given in terms of Clebsch-Gordon coefficients by

20+ 1

JK — iK10|JK 1
and
05 (v) = V2rYjk (7,0). (17)

For a total energy of E = E,, + k?/2, where k is the
wavenumber of the incident electron and E,, is the energy



of the initial state, the asymptotic form of the dissociative
attachment wave function, written below in the space-
fixed frame, is that of a purely outgoing wave:

8 R, 7
Zfztiju(R)Xu( )%

ljv
EXp 1K
R~>oo Z 7’/
ljv

@]M(R A) kz
3’714 E
Rr tjv (B + 2

S_F(ﬁjf') _

Vi

—ilm/2)xu(r) x (18)
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where A4, (E,, + ’“2—2) is a partial-wave DA amplitude.
The relative momentum associated with the separating
fragments is

k?
Kjy = QHB (Eul + ?

where FEj, is the energy of the diatomic rovibrational
state with quantum numbers v and j of the rearrange-
ment channel in question.

Given the expansion of the dissociative attachment
wave function in Eq. (18), the generalization of the cross
section formula for diatomics in Eq. (10) to a triatomic
is straightforward. We begin by taking the overlap of &,,
with the final product states of interest and integrating
over the remaining angular degrees of freedom:

fSF>

where x,(r) is a vibrational state of the diatomic prod-
uct and ©F, defined in Eq. (17), is a corresponding
rotational state of the diatomic fragment. The curved
brackets indicate integration over all variables except R.
In principle x, also depends on the rotational quantum
number, j. However, in the calculations we report here,
no centrifugal term was included in the vibrational po-
tential for the diatomic fragment, for reasons that will be
made clear below; hence y has no j subscript here.

The quantity O;, (R) is fully analagous to the quantity

21, (R)|” of Eq. (10), and we therefore define the cross
section for dissociative attachment to a triatomic as

- E) (19)

2
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; 2k
v . 21
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By using the asymptotic expansion given by Eq. (18),
we obtain the expression

(22)

22 K k2
ohs = 2 g,u_R Z Aiju (B, + 7)
1

The rotational states of the products are not resolved in
most experiments, so to compare with measured DA cross
sections we will generally be interested in computing the
rotationally summed DA cross sections.

E. The Multiconfiguration Time-Dependent
Hartree Method

As previously stated, the solution of the time-
independent LCP equation (1) can be accomplished by
time-dependent wavepacket propagation methods. We
will first give a brief description of the MCTDH method
we used to carry out the time propagation and then, in
the following subsection, show how the dissociative at-
tachment cross section, defined above in Eq. (22), is cal-
culated directly from the time-propagated wavepacket.

To perform the propagation in Eq. (7) we use the
Heidelberg MCTDH package [27], which is an imple-
mentation of the Multi—-Configuration Time-Dependent
Hartree, or MCTDH [17, 28 30] method. The MCTDH
method has proven its utility in many applications (see
Ref. [17] and references therein) as an efficient adaptive
method for nuclear dynamics of molecular systems — in
particular, those with many degrees of freedom [31 33].

In the MCTDH method, as in the standard method
for solving the time-dependent Schrodinger equation, we
start with a time-independent orthonormal product basis
set,

0 @) AP @)y, Ge=10Ne o (23)
for a problem with f degrees of freedom and nuclear co-
ordinates labeled ¢;,...q¢. For computational efficiency,

the basis functions y'*’

;.. are chosen as the basis functions
of a discrete variable representation (DVR) [34].

The central idea of the MCTDH technique is the repre-
sentation of the nuclear wavepacket as a sum of separable

terms,

f

bv, (d, Z Z Aji.. Jf (t) H‘P;’f)(q’mt): (24)
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with n, <« N,. Each “single particle function” (or SPF)
<p§':) (g, t) is itself represented in terms of the primitive

basis:

N
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Since both the coefficients A, _;, and the single-particle

functions <p( *) are time- dependent, the wave function rep-
resentatlon is not unique. Uniqueness can be achieved
by imposing additional constraints on the single-particle
functions which keep them orthonormal for all times [17].

The size of the SPF expansion in Eq. (24) controls the
degree to which correlation among the various degrees of
freedom is included. Including a greater number of terms
in this expansion leads to a more precise but slower cal-
culation. Including the maximum number, i.e. n, = Ny,
gives a numerically exact calculation, while the opposite
limit n, = 1 yields the Time-Dependent Hartree (TDH)
method [35, 36] in which the propagating wavepacket is



uncorrelated with respect to the coordinate system cho-
sen to represent it.

As the single particle functions are time dependent,
matrix elements of the Hamiltonian have to be evaluated
at every time step. Hence it is essential that this evalua-
tion can be done quickly. A fast algorithm exists [17, 29]
if the Hamiltonian can be written as a sum of products
of single coordinate operators. Here the kinetic energy
operator is — as usual — already in product form, but the
potential energy surface is not. To profit from the advan-
tages of the product form we approximate the potentials
employed as a sum of separable terms, i.e.,

Vi ap) =

26

Z ZCJI gt 71 ) "'U_gf)(Qf)' (26)
Jj1=1 Jjr=1

The MCTDH package [27] includes a utility which per-
forms a fit of a given potential to a separable representa-
tion of this form. Details can be found in Beck et al.[17].
All potential energy surfaces used in the current calcu-
lation were represented in this manner, using this utility
to fit them specifically for each choice of the DVR grids.

F. Dissociative Attachment Cross Sections from
Outgoing Projected Flux

The cross sections for dissociative attachment, given
by Eq. (22), can be calculated directly from the
time-propagated wavepacket by computing the energy-
resolved, outgoing projected flux. The energy resolution
is achieved by Fourier transform and a final state res-
olution is achieved by the introduction of appropriate
projection operators. For DA leading to a specific ro-
vibrational final product, we use the projection operator

Xv 7 Xv 7
Pjv— ‘ DMK® ><7D1{4K9JK;

(27)

while for the case of the rotationally summed DA cross
sections, we use the operator

T T
The flux operator we employ, which measures the flux

passing through a surface defined by R = R,, is defined
as

P, = (28)

F =i[H,h(R - R.)] (29)

where h is a heaviside function. The energy-resolved pro-
jected flux is then given by

Fjy(E) =

1 oo o . R
— [ dt / dt' (¢, | =P, F P, e
2m Jy 0 : :

i(H-E)t |¢V>
(30)

The MCTDH package [27] includes a utility which com-
putes the outgoing projected flux. In the actual calcula-
tions, the flux operator appearing in the equation above
is replaced by a Complex Absorbing Potential (CAP)[37
39]. This formulation of the flux operator is very conve-
nient numerically and entirely equivalent to the tradi-
tional formal definition of the operator in this context.
The radius R, is to be interpreted as the point where the
CAP is switched on. For more details on this CAP flux
formalism see Refs. [17, 30, 40].

The resulting energy-resolved projected flux is that as-
sociated with the time-independent solution of the driven
Schrédinger equation of the LCP model in Eq. (1),

Pj,FP;,|E,,). (31)

1
Fiu(B) = 5 (&

By inserting the expansion of ¢,, in Eq. (18) into Eq.
(31) and using the properties of the coupled spherical
harmonics defined in Eqgs.(15-17), we obtain, after some
algebra,

k}2
Fj,, <Eyl + 7) == Z

l

o= i (RIF I (B, (32)

Then using the asymptotic form of the radial continuum
functions fltl_jV(R)7 some further manipulation gives

E2\|* [ ki

i (B ) =3 b (20 )| (52)

(33)
This equation gives us the desired relationship between
the energy-resolved projected outgoing flux and the am-
plitudes for dissociation that appear in the asymptotic
form of the wave function in Eq. (18. By comparing
Eq. (33) and (22), noting that in this case g = 1, the
relationship between the rotationally and vibrationally
resolved total dissociative attachment cross section and
the energy-resolved projected flux, Fj,, is found to be

” k2 4r? k2
Similarly, for the rotationally summed DA cross section,
we use:
k2 4r? k2
=—VF |E,+— ],
()= r (Bt S). o

where F, is defined as in Eq. (31), with P;, replaced by
P,. These formulas were used to compute cross sections
using the MCTDH method. For the H™ + OH channel,
an additional factor of two is multiplied into this expres-
sion to account for the fact that in a given calculation we
perform the flux analysis for only one of the two H™ +
OH arrangements, namely the one for which the Jacobi
coordinates are appropriate.



III. COMPUTATIONAL PROCEDURES
A. The DVR basis and other MCTDH parameters

In the calculations reported here we used DVR prim-
itive basis sets for all internal degrees of freedom [17],
choosing the standard sine DVR for the r and R degrees
of freedom and, for J = 0, the Legendre DVR for ~.
For J > 0, the DVR for v must be modified to account
for singularities in the Hamiltonian (see Eq. 14) due to
the term K2 /sin’(vy). This is done by using an extended
Legendre DVR [41, 42], which is implemented in the Hei-
delberg MCTDH package [27].

Most of the results we will report are for rotation-
ally summed cross sections and it is for these cases that
the following computational details apply. For the case
of rotationally resolved final states, there are additional
considerations that come into play; the details of the
rotational analysis we used are described in the Ap-
pendix. In the Jacobi r = ropg coordinate systems, we
obtained convergence with DVR bases of 70x120x40 for
(0.5 <r < 7.0), (0.0 < R < 12.0), and (0 < v < 7),
respectively. For this coordinate system, with the excep-
tion of the calculation incorporating an initial state with
one quantum of asymmetric stretch, the convergence of
the calculation with respect to the number of single par-
ticle functions was relatively slow compared, for exam-
ple, to our earlier studies on vibrational excitation of a
triatomic [15, 16]. Therefore we used a large SPF expan-
sion, 24x28x18 in r, R,7, to attain converged results.
For consistency, this SPF expansion was used for all cal-
culations presented in this paper performed in this Jacobi
coordinate system.

We also performed a few calculations in the Jacobi
(r = rgpg) coordinate system, to examine the Ho + O~
channel. We used a grid of 0.5 < r < 9.0, 0.0 < R < 9.0,
and 0 < v < 7 with DVR order 90x90x60 in an attempt
to calculate the total cross section only. For these calcu-
lations, which each took two to three days CPU time on
a desktop computer, an SPF expansion of 24x29x26 in
r, R,y was used. As we will discuss below, these calcula-
tions gave only an estimate of the total cross section for
the production of O~, and cannot be considered to have
been converged.

For every propagation, we used complex absorbing po-
tentials (CAPs) [37-39] at the edge of the grid to elim-
inate the propagated wave function before reaching the
end of the grid. In all cases our CAP’s began 3 bohr
before the end of the grid, were quadratic, and had a
strength, n in the notation of ref. [17], of 0.007au. For-

mally, the CAP’s provide the +ie limit in Eq. (6).

B. Initial states

To investigate the effect of excitation of the water
molecule on dissociative attachment, we performed calcu-
lations using various initial rovibrational states. We also

calculated a few of these initial states using the spec-
troscopically accurate ground-state surface of Polyanski,
Jensen and Tennyson [43], denoted here and by those au-
thors as the PJT2 surface, for the purpose of verifying
the quality of the initial states obtained from the ground
state CI surface calculated in (I), which we denote here
as the HZMR surface.

Vibrational states of HoO can be denoted by the no-
tation (nq,n2,n3), where n; is the quantum number of
symmetric stretch, ny is the quantum number of bend,
and ngz is the quantum number of asymmetric stretch.
For the Jacobi (r = rop) coordinate system, we obtained
and used initial states as follows: for J = 0, the (000),
(100), (010), (001), and (200) states, both for DyO and
Hy0; for J = 3, we studied the 7 lowest rovibrational
states of H,O; and for J = 10, we studied the ground
rovibrational state of HyO. To calculate initial rovibra-
tional states, we performed improved relaxation [30] with
a Davidson diagonalizer as implemented in the MCTDH
package [27].

Table I lists all initial states used for our calculations
on HyO. We computed the overlap of vibrational states
from the HZMR, surface and three corresponding states
we obtained by improved relaxation using the PJT2 sur-
face. As shown in Table I these overlaps are nearly unity.
In Table I we also present comparisons of our calculated
transition energies with values calculationed by Polyan-
ski et al. [43] and by Carter and Handy [44] and with
experimental values. In the course of investigating the
two different arrangement channels for this problem, we
calculated two of these transition energies in both dis-
tinct Jacobi coordinate systems, r = rog and r = rgpg,
and Table I also compares these results. Together, these
tests verify that any error in the cross sections we calcu-
late here due to errors in the initial rovibrational wave
functions is negligible.

Vibrational states for J = 0 for HoO, integrated over
cos 6 in valence coordinates, are shown in Fig. 2. This fig-
ure shows the probability density of each wave function in
the (r1,72) plane in valence-bond coordinates. The (000)
and (010) wavefunctions appear nodeless in this figure,
though of course (010) has a node in 4, and they are al-
most indistinguishable here, although the (010) state is
shifted slightly in the symmetric stretch direction. The
(100) state has a node parallel to the asymmetric stretch
direction, and is elongated in the symmetric stretch direc-
tion; conversely, the (001) state has a node along 7 = ro
and is elongated in the asymmetric stretch direction.

C. Propagation

The initial states obtained from the HZMR surface
were multiplied by the entrance amplitude and prop-
agated using the MCTDH procedure discussed above.
Propagation was performed for 75 fs (HyO) or 100 fs
(D20O) after which 99.9% of the density had typically
been either absorbed by the CAP or by the imaginary



State Energies Overlap
J K, K, Vib. Present (HZMR) Present (PJT2) Calc. Expt. [(PIT2|HZMR)|?
0 0 0 (000) 0.0 cm ™! 0.0 cm ™! 0.0 cm ™! 0.9975
0 0 0 (010) 1635.85" 1594.63° 1594.68° 1594.7° 0.9974
1635.93"
0 0 0 (020) 3219.95° 3151.53° 3151.6°
0 0 0 (100) 3745.06" 3657.05" 3657.15° 3657.1° 0.9923
0 0 0 (001) 3805.78" 3755.83° 3755.93°
0 0 0 (200) 7366.35 ¢ 7202.23¢ 7201.5°¢
3 0 3 (000) 138.78° 136.9¢ 136.87
3 1 3 (000) 144.16" 142.47 142.3
3 1 2 (000) 175.82¢ 173.6¢ 173.4/
3 2 2 (000) 208.80° 206.3° 206.37
3 2 1 (000) 214.82° 212.27 212.2f
3 3 1 (000) 288.26° 284.97 285.2f
3 3 0 (000) 288.47¢ 285.1¢ 285.4f
288.41°
10 0 10 (000) 1129.85"

%From calculation in Jacobi (r = rog) coordinates
bFrom calculation in Jacobi (r = rgp) coordinates
“From Polyansky, Jensen and Tennyson [43]
4From Carter and Handy [44]

€As quoted in [43]

fAs quoted in [44]

TABLE I: Initial states for HoO from the present calculations on both the HZMR and PJT2 surfaces compared with other
calculated and experimental results. The quantum numbers K, and K. are defined as in references [43, 44].

component of the resonance surface. A time-step plot of
the wave function density for a packet beginning with at-
tachment to the (000) state with .J = 0 is shown in Fig.3
and will be discussed further below.

IV. RESULTS AND DISCUSSION

A. Cross sections for attachment to the ground
vibrational state with J =0

The experimental determinations of dissociative at-
tachment to water in the gas phase with which we com-
pare here have been performed at low enough effective
temperatures that the target molecule is in its ground
vibrational state. To compare with those measurements,
we performed LCP calculations using the methods de-
scribed above beginning with the (000) state and with
J = 0. As we will see below, rotational excitation has
only a very small effect on the cross sections, at least up
to J = 10, so these calculations are appropriate for com-
parison with the experiments which have been performed
to date. These calculations yielded a total cross section
for the OH + H~ channel (summed over final rotational
and vibrational states of the OH fragment) which peaks
at 6.81eV incident electron energy with a value of 0.214a2
or 5.99 x107!® ¢cm? and which has an energy-integrated

total cross section of 5.74 x 1078 eV c¢m?.

Our computed cross sections for various final vibra-
tional states are shown in the top panel of Fig. 4 and
are compared with the experiments of Beli¢, Landau and
Hall[8] in Fig. 5. The value of the total cross section
at its peak nearly reproduces the experimental value of
6.4 x 10~ 18cm? and displays a shape very similar to the
experimental one, with the calculated maximum being
shifted slightly from the experimental maximum at an
incident energy of 6.5 eV. A similar level of vibrational
excitation of the OH fragment is observed, with similar
magnitudes. However, as is visible in Fig. 5, there are in-
creasing quantitative discrepancies for the cross sections
as v increases from 0 to 7 and the cross sections decrease
by two orders of magnitude. This level of agreement with
experiment suggests that the potential surface from (I)
is largely correct, at least for the geometries relevant to
the description of the H™ + OH channel, and that the
dynamics of the wavepacket shown in Fig. 3 are the ori-
gin of the extensive vibrational excitation of the product
OH fragment.

As described in (I) and as is apparent in Fig. 2, in
the vicinity of the equilibrium geometry of the neutral
(r1 = ro = 1.81 bohr; 8 = 104.5°) the gradient of the
real part of the resonance energy is steeply downhill in
the r1 or ry directions. In contrast, the potential is rela-
tively flat in 8. The Hy + O~ well can only be reached if



FIG. 2: Initial wave function density for radial solution of
(clockwise, from upper left) (000), (100), (001), and (010)
states, in valence-bond coordinates, integrated over cos 6,
with real part of >B; surface at § = 104.5°. Distances in
bohr; contours every 0.25eV.

the bond angle 6 is decreased substantially from the equi-
librium geometry of the neutral, whereas the OH + H~
channel is immediately adjacent to the initial wavepacket.
Therefore, the wavepacket proceeds downhill towards the
OH + H™ arrangement channel, with very little density
arriving in the Hy + O~ well.

Since the wavepackets for both ground and vibra-
tionally excited initial wavepackets begin high upon the
repulsive wall of the resonant state, they all initially ac-
quire a large amount of momentum in the symmetric
stretch direction, which becomes vibrational and trans-
lational motion in the H™ + OH wells. This effect is seen
clearly in Fig. 3 as the oscillation of the outgoing packet
in the exit wells of the potential surface. This dynam-
ics is the origin of vibrational excitation in the product
fragment, and it is one of the central qualitative results
of this study of the dynamics of dissociative attachment
through the 2B, resonance.

Dissociative attachment through the 2B, state is also
characterized by rotational excitation of the OH fragment
in these calculations. In Figure 7 we plot rotational dis-
tributions for the ground vibrational state, v = 0, and
the v = 4 state of OH, for attachment to the ground
state of water. These results were obtained via projec-
tions onto hindered-rotor or “pendular” states using an
extended potential energy surface, as described in the
Appendix. Some structure is seen in these cross sections,
although for the reasons discussed in the Appendix, these
distributions may be suspect for 7 < 4 or so.

The experiments of Beli¢, Landau and Hall [8] cite a
maximum in the rotational distribution at j = 7 for the
v = 0 state and 7 = 4 or 5 for v = 4, but those authors
did not report values of individual cross sections for ro-

tational excitation. The present results are consistent
with the results of these experiments to the extent that
they predict considerable rotational excitation of the OH
fragment in this channel. A detailed comparison is not
possible, and there is some uncertainty in the experiment,
but it seems that the maximum in the calculated final ro-
tational distribution may be different from that observed
experimentally and the calculations seem to show some-
what greater overall rotational excitation.

B. Effects of initial rotational and vibrational
excitation

In our calculations, initial rotational excitation had a
very little effect on the cross sections for dissociative at-
tachment. In Fig. 8 we plot the total cross section for
the OH + H™ channel obtained from the calculation on
the J = 0 (000) initial state, along with cross sections
from rotationally excited initial states. The curves in
that figure are almost indistinguishable, suggesting that
the cross sections for J = 0 should therefore be essentially
identical to the values for a thermally averaged popula-
tion of rotational states at the effective temperatures of
the experiments.

On the other hand, initial vibrational excitation of
the target molecule can affect the cross sections in the
OH + H™ channel dramatically and in ways that are very
much mode-specific, as can be seen in Figs. 4 and 6. For
example, one quantum of bend excitation, (010), has only
a small effect the cross sections, while a single quantum
of excitation in asymmetric stretch, (001), changes the
degree of vibrational excitation in the products signifi-
cantly, as is shown in Fig. 4.

Due to the node in the r; = ry direction for the
(001) state as shown in Fig. 2, the dynamics for this ini-
tial wavepacket are such that the bifurcating wavepacket
moves more directly down the H-OH wells and therefore
results in significantly less vibrational excitation than for
attachment to the other states examined. While this re-
sult indicates some of the mode specificity of the effects
of vibrational excitation, the initial states with quanta of
symmetric-stretch excitation provide the most dramatic
example of mode-specific behavior observed in these cal-
culations.

As seen in Fig. 6, the cross sections for dissociative at-
tachment to the (100) initial state has a strong minimum
near an incident electron energy of 6.5 eV, esentially in-
dependent of the final vibrational state of the products.
The value of the total cross section at this minimum is
0.0014a3, compared to its peak value of 0.21aZ at 5.89¢eV.
This behavior is reminiscent of an effect [45] predicted for
photodissociation of water through the 'B; state. The
13 B, states both correspond to the configuration which
is the parent of the 2B; resonance state, and in the re-
gion in which the initial vibrational state is nonzero they
have potential energy surfaces which are similar in shape
to that of the resonance state.
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FIG. 3: Radial wave function probability density for propagation of (000) initial state, in Jacobi (r = rom) coordinates,
integrated over cos~, at t =0, 4, 8, 12, 16, and 20 fs. Also shown is the real part of resonant surface at ¥ = 108°, which most
closely corresponds to 6§ = 104.5° at equilibrium geometry, with contours every leV. Distances in bohr.

In either dissociative attachment or photodissociation
of a diatomic molecule such an effect would be simple to
explain. The amplitude for dissociative attachment for
a diatomic molecule can be written in a form equivalent,
to that appearing in Eq. (10) so that it is proportional
to the matrix element () ;|T'/2|x,,), where 15 (R) is the
scattering wave function for atom-atom scattering on the
potential surface of the resonance. This form is of course
reminiscent of the matrix element for the photodissoci-
ation amplitude. If the initial vibrational wave function
Xv; (R) has a node, and we make the simple delta func-
tion approximation for ¢ at the classical turning point,
we can see that at some energy this matrix element will
be zero. If there are two nodes in y,,, this effect will
occur at two energies.

In a polyatomic system a similar argument can be
used, although the geometry of the multidimensional
wave functions makes it more complicated because no
single coordinate corresponds to the dissociation motion
near the Franck-Condon region. The effect here is es-
sentially polyatomic. Nonetheless, the similarity of the
present case of dissociative attachment to water initially
excited in the symmetric stretch mode to the case of pho-
todissociation is further underscored by the cross section
for the (200) initial state shown in Fig. 6. Here we see
two minima, as the simplest explanation would predict
from the presence of two nodes in the wave function of
the initial vibrational state, and multiple minima are also
seen in calculations on photodissociation of water [45].

C. Isotope effects

The experimental cross sections for D™ 4+ OD and
H™ 4+ OH show pronounced isotope effects. Compton
and Christophorou [4] have observed that not only does
the D~ 4+ OD cross section exhibit a lower peak maxi-
mum than does the H,O cross section, but also a smaller
peak width, and thus a significantly smaller energy-
integrated cross section.

In Figs. 9 and 10 we plot cross sections for dissociative
attachment to D2O for J = 0 beginning in the (000),
(100), (010), (001), and (200) states. The calculated iso-
tope effects evident in these figures can be summarized
collectively as follows. In the cross sections for the vari-
ous initial states of D>, we observe narrower peaks than
for HoO. We observe higher maxima at the peak values
for the DyO cross sections, and energy-integrated cross
sections with about the same values as those for the cor-
responding processes in HyO. We also observe onsets
at higher energy for D»O initial states, due to the fact
that the lower energes of the initial states for the heavier
isotope result in a larger incident electron energy being
required to access the resonant surface. Compton and
Christophorou [4] found energy-integrated cross sections
of 6.6 and 3.9x107 % eV cm? for H,O and D, 0, respec-
tively, and peak heights of 6.9 and 5.2 x10~'® cm?. We
find integrated cross sections of 5.79 and 5.33x107 1'% eV
cm? and peak heights of 5.99 and 7.04 x10!® cm? for
H,0 and DO, respectively.

Thus, the salient differences between our calculations
and experimental observations is that our peak heights
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FIG. 4: Total cross sections for (top to bottom) (000), (010),
and (001) initial states for J = 0 H2O, along with projections
into each final vibrational state of OH; channels which have
onsets left to right with increasing v.

for the D2O cross sections are larger, not smaller, than
for HyO, and our energy-integrated cross sections have
nearly the same value for the two isotopomers.

These results are puzzling, especially in light of the
fact that the calculated isotope effects are what are to
be expected if there is negligible autodetachment during
the dissociation process. Due to the small width of this
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FIG. 5: Cross sections for (000) initial state, total (heavy
line) and into vibrational channels v = 0 through v = 7 of
OH (dotted lines, left to right), on a logarithmic scale. Also
included is data from Beli¢, Landau and Hall’s[8] measure-
ments (thin lines with squares), shifted in energy so that the
maxima (present, 6.81eV, versus their value of 6.5eV) in the
total cross section coincide.

resonance, as calculated in (I) and by others [46, 47],
only one or two percent of the propagated wave func-
tion density is lost to autodetachment in our wavepacket
calculations. The expected isotope effect is particularly
evident if we first think about the process as though it
occurred in one dimension. In that case the semiclassical
“reflection principle”, in which one makes the approxi-
mation that the continuum function for dissociation is a
delta function at the classical turning point, results in
the shape of the cross section being determined by the
shape of the initial wavepacket, x,,1/I'/27. Because the
initial vibrational wave function for the heavier isotope is
more sharply peaked and narrower, we expect to see DO
cross sections which are also more strongly peaked and
narrower than those for HyO. In more than one dimen-
sion these arguments are complicated by the fact that no
single coordinate maps simply from the Franck-Condon
region inhabited by the initial states of the molecule to
the asymptotic region, but the results are qualitatively
the same as for a diatomic.

Compton and Christophorou [4] were entirely aware
of these arguments and explained the observed isotope
effects by invoking a much larger rate of autodetachment
than is suggested by modern ab initio calculations of the
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FIG. 6: Total cross sections from (100) initial state (top)
and (200) initial state (bottom) for J = 0 H20, along with
projections into each final vibrational state of OH; channels
which have onsets left to right with increasing v.

width of the 2B; state. They argued that since in the
deuterium case the dissociation process takes longer, a
large autodetachment probability would lead to a smaller
cross section for dissociative attachment in the case of
D,O. In this way they derived a lifetime of 2.1 x 10714
seconds, which corresponds to a width of approximately
' =0.197eV.

Unfortunately, the LCP model indicates that a width
of this magnitude would yield much larger cross sec-
tions via its effect on the entry amplitude. Increasing
the width in our calculations so as to match the isotope
effect yields cross sections that are several times those
of the experiments of Belic, Landau and Hall. Increas-
ing the width further so that autodetachment dominates
and finally reduces the cross section back to near the ex-
perimental values exagerates the isotope effect far beyond
that observed by Compton and Christophorou. To quan-
tify this assertion we repeated the ground-state HoO and
D50 calculations with widths multiplied by several fac-
tors; at 27 times the original width, the cross sections
are approximately 10 times those we calculated origi-
nally. Somewhere between 9 and 27 times our calcu-
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FIG. 9: Total cross sections for (000), (010), and (001) initial
states for D2O, J = 0, along with cross sections for production
of vibrationally excited OD, which have onsets left to right
with increasing v. Also plotted as the dotted lines are the
total cross sections for the corresponding H,O initial states.

lated width we find that the isotope ratio (in terms of
energy-integrated cross section) agrees with experiment.
For larger widths, where autodetachment dominates dis-
sociative attachment and cross sections have returned to
the magnitude observed in experiment, the isotope effect
is much larger — indicating a factor of three difference
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FIG. 10: Total cross sections for (100) and (200) initial states
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cross sections for production of vibrationally excited OD,
which have onsets left to right with increasing v. Also plot-
ted as the dotted lines are the total cross sections for the
corresponding H»Q initial states.

between the energy-integrated cross sections of HoO and
D50. Thus, we are not able to reproduce the experimen-
tally observed isotope effects and overall magnitude of
the cross section by simply adjusting the magnitude of
the calculated width.

However, we can speculate about the possible ways
in which we may have failed to reproduce physical ef-
fects leading to the experimentally observed isotope ef-
fect. There are two qualitatively different mechanisms
through which an isotope effect like that observed in ex-
periment, could be obtained, while still maintaining the
overall magnitude of the cross sections observed and cal-
culated in this study.

In the first of these, the form of the entrance ampli-
tude, 4/I'/27w, may preferentially weight portions of the
Franck-Condon region in which the initial HoO wavefunc-
tion has a significantly larger magnitude than that of the
corresponding D, O wavefunction. As a result, the driv-
ing term ¢,, of Eq. (1) may have a larger magnitude for
the HoO states than for the corresponding D>O states,



and as a result the energy-integrated cross section will
be larger for the HoO state. However, some investigation
into this mechanism revealed it to be highly implausible.
In spite of the large difference in the reduced masses for
the vibrational motion of these isotopomers, the initial
wavefunctions for corresponding states are actually not
very different. In a harmonic oscillator approximation,
the ground-state vibrational wavefunctions are Gaussians
with standard deviations in the ratio 1:2'/4 = 1:1.18 for
D>0:H50. Thus, the entrance amplitude would have to
be extremely sharply peaked to account fully for the ob-
served isotope effect. We observe no such radical struc-
ture in the entrance amplitude, and such extreme behav-
ior would be such a deviation from the results of this
study, and every other study of the widths of negative
ions of which we are aware, as to be extremely implausi-

ble.

The second mechanism which we have examined is
much more reasonable, given the calculations which we
describe in (I). As explained in that paper, we have ob-
tained the width I', which appears in both the entrance
amplitude and as the imaginary component of the po-
tential energy surface of the resonant state, exclusively
in terms of calculations at which the location of the reso-
nance does not exceed the energy of its parent ' B; state.
Thus, in the construction of the imaginary component
of the resonance energy we have disregarded any partial
width of the resonant state due to autodetachment to an
excited state of the neutral water molecule. However, as
we note in (I), there are many geometries at which the
Complex Kohn calculations place the resonance above its
parent. These geometries lie beyond the Franck-Condon
region — in particular, at geometries in which one O-H
bond length is increased from the equilibrium geometry
of the neutral. These geometries lie at the entrance of
the OH + H™ well. We note that the Complex Kohn cal-
culations in (I) employed a basis set optimized for the
description of the resonance state and the ground state
of the neutral water molecule, not for the excited states
of the neutral, and thus may actually have placed the
resonance even lower than it should be relative to the
neutral excited states. As a result, we consider it a pos-
sibility that the resonance may actually rise above not
only its 3B, parent state but also some or all of the ' By,
TAq, or 3A; states as it enters the OH + H~ well and
thus acquire a large negative imaginary component to
its energy at these geometries. Model calculations indi-
cate that such an increase in the width would have to be
large — on the order of 0.05eV or so — to duplicate the
experimentally observed isotope effects. However, this is
the only mechanism of which we are aware that could
account for these results.
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D. Dissociative attachment into the O~ + H»
Channel

The experimental value of the cross section for pro-
duction of O~ through the 2B; resonance at its peak is
about 40 times smaller than the peak of the cross sec-
tion for production of H~ through the same resonance
[5]. The dynamics on the potential surface computed in
(I) presented here are consistent with that result to the
extent that H™ is by far the dominant channel in our
calculations.

As we pointed out in (I), although the Hy + O~ exit
well includes the lowest points on the potential energy
surface, it is not as immediately accessible from ground-
state equilibrium geometry as is the OH + H™ well. The
steepest descent path of the potential energy surface does
in fact lead from equilibrium geometry into the O~ + Hy
well, but via a more indirect path (described in (I)) than
the path to the H™ + OH channel. Thus in the compet-
ing dynamics for the wavepacket to exit into these two
arrangements, the more direct path to the production of
H~ dominates, and the wavepacket has essentially all ex-
ited into that channel (with its two equivalent arrange-
ments) before more than a small amount of the quan-
tum flux begins to move into the channel producing O~.
Thus, the dynamics of the wave packet in the LCP model
shows it is the shape of the potential surface and not the
overall energetics that controls the branching ratio into
the two possible arrangement channels for anion produc-
tion.

Unfortunately, the ab initio potential surface com-
puted in (I)) seems to over estimate this effect. We were
not able to completely converge the calculations in this
channel, but preliminary indications are that the surface
from (I) produces cross sections about one order of mag-
nitude smaller than experiment for this channel. As these
calculations were not converged, we attempted no final
state analysis for this channel.

V. SUMMARY

The results we have presented here demonstrate that
it is now possible to perform completely ab initio calcula-
tions on dissociative attachment to a triatomic molecule
in full dimensionality. Such calculations require almost
the complete arsenal of contemporary techniques of first-
principles quantum chemistry and chemical dynamics,
and would have been difficult to obtain, even with today’s
powerful computers, without the MCTDH implementa-
tion of the wavepacket dynamics in the time-dependent,
version of the LCP model.

These calculations have achieved substantial agree-
ment with experimental observation in many respects.
The magnitude of the observed total cross section for
the H™ 4+ OH channel has been reproduced to within less
than ten percent, and the degree of vibrational excitation
of the OH fragment calculated is very similar to that ob-



served. The OH fragment is also produced in these calcu-
lations with considerable rotational excitation, as in the
experiment, although the degree of rotational excitation
is probably exaggerated in the present calculations.

The dominance of the production of H™ over that of
O~ is also confirmed by these calculations, and most im-
portantly, the combination of the dynamics presented
here and the potential surface presented in (I) ex-
plain why this channel dominates dissociative attachment
through the 2B; resonance. We speculate that the rea-
son why we understimate the cross section into the O~
channel is that the ab initio surface computed in (I) does
not represent the resonance potential energy surface in
the region between the H~ + OH and Hy, + O~ wells ac-
curately enough to correctly represent the minor chan-
nel in a dynamical competition that yields the observed
branching ratio of 40 to 1.

Considerable additional work will be necessary to com-
pletely unravel the dynamics of dissociative attachment
to water. Besides refining the understanding gained in
this study of attachment through the 2 B; resonance state
using a still better ab initio potential surface, similar
studies must be undertaken for the 24; and 2B, reso-
nances seen in the original experiments on this problem.
The questions of nonadiabatic couplings between these
states and its effect on branching ratios remain open as
well. Since the understanding of radiation damage to bi-
ological systems will require a complete understanding of
this most fundamental process and how it is modified in
the liquid phase and by the proximity of biomolecules,
this problem will continue to be a principal target of ex-
periment and theory in the near future.
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APPENDIX: ROTATIONAL ANALYSIS

The practical necessity of carrying out wavepacket
propagation on finite grids of limited range can cause
problems when long-range forces come into play. That is
the case here when we consider the computation of DA
cross sections for rotationally specific final states. The ro-
tational analysis for the H~ + OH channel is complicated
by the fact that this channel contains a long-range poten-
tial corresponding to the interaction of a polar diatomic
molecule and an ion, a potential which is significant for
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all geometries on our grid. The analysis of the rotational
degree of freedom for the OH fragment must therefore
be performed in terms of hindered-rotor or “pendular”
states, not free rotational states. (A previous discussion
of pendular states can be found in Ref.[48].) From the
point in R at which we perform this analysis, the pendu-
lar states are assumed to connect adiabatically with the
free rotational states of the asymptotic region. In other
words, we assume that the cross sections which we com-
pute for the jth pendular state correspond to the cross
sections observed in experiment, for the jth free rotational
state. We describe a test of this assumption below.

The long-range ion-dipole interaction causes mixing
among the rotational and, in principle, also the vibra-
tional levels of the product states. However, since the
dipole moment of OH is almost constant with bond
length, and the separation between vibrational levels is
very large compared to the ion-dipole interaction, the
mixing between vibrational states caused by motion in
or R should be very small.

On the other hand, the separation between the pen-
dular states is relatively small. Hence, there will be cou-
pling among these pendular states caused by motion in
the R degree of freedom. Therefore, in order to per-
form a meaningful rotational analysis, we were required
to ensure that this coupling be small enough not to in-
duce nonadiabatic transitions between pendular states
as they progress beyond the edge of our grid. To this
end we extended our potential energy surface beyond the
boundary at R = 12 that we used for the other calcula-
tions presented here. We computed additional points on
the potential surface using the methods of (I) at R = 16
and 24 bohr and extended our surface to 24 bohr so that
we could place the CAP at R = 21.

As described in (I), the procedure by which we con-
struct the real part of the resonance surface incorporates
both an analytic fit and a 3D cubic spline of the differ-
ence between the analytic fit and the computed points. In
order to optimize our surface for the rotational analysis,
we computed a new 3D spline representation of the entire
surface using the following analytic fit of the H™ + OH
potential well:

Va-ou(r,R,vy) =
— 0.69746 cos(vy)/R? — 38.349 cos?(v) /R*+

0.1652 ((1 — exp[1.2971 (1.8112 — 7)])% — 1)

(A.1)

3

which was obtained from a multidimensional fit of the ab
initio calculated points at R > 11, r < 4. The pendular
states with respect to which the rotational analysis was
performed are the eigenfunctions of the hindered rigid
rotor Hamiltonian, j2/2u,r? + V, using for V the first
two terms in the potential in Eq. (A.1) with R = 22.0
and with r* = (r?) for the vibrational state of OH in
question. The pendular states thus have a parametric
dependence on R and v.

In order to verify that the nonadiabatic couplings be-
tween pendular states were in fact small by the edge of



our recomputed and extended grid, we performed a calcu-
lation on an analogous model problem to compute sample
nonadiabatic couplings between pendular states. We ap-
proximated the dissociating H~ + OH channel as a rigid
static dipole in the field of the H™ ion. We thus defined
an R-dependent adiabatic pendular state basis ©;(v; R)
as eigenfunctions of the Hamiltonian

]. ~9 A
Hadiabatic(7; R) = W] + ﬁCOSW) (A.2)
with eigenvalue €;(R), i.e.
H{zdiabatic@j (71 R) =€ (R)@] (71 R) (A3)

We took the dipole moment A and expectation value
(r?) of the OH molecule to be that computed from the
first vibrational state of OH by a 1D wavefunction re-
laxation using the results of a CI calculation performed
on the OH molecule. The dipole moment from that cal-
culation was A = -1.658 Debye, and (r?)=3.497. The
coupling between the pendular states is caused by the
nuclear kinetic energy in the R direction in the full Hamil-
tonian for this rigid dipole-ion pair,

1 92

Hfull = Hudiabatic —

The adiabatic potentials €;(R) are combined with the
nonadiabatic couplings to produce the effective Hamilto-
nian in the R degree of freedom, which can be written in
matrix form as

1 92
Hjj =655 | €;(R) — 25 OR?

1 02
+(0;(7; R”%W‘@f’ (v: R)) (A.5)
1 0 o
+<@j(%R)|2,u—Rﬁ‘@j,(%R)>ﬁ

We computed the pendular states in the basis of the first
40 Legendre polynomials, in order to parallel the 40th
order Legendre DVR used in our MCTDH calculations.

The adiabatic potentials €;(R) are shown in Fig. 11.
Also plotted is the magnitude of the dipole potential,
|4=| in Eq. (A.2). As is apparent from this figure, the
energies of the pendular states tend to squeeze together
around this line. The second derivative coupling is also
at a maximum when adjacent pairs are close to this line,
but it was found to be negligible (a small fraction of an
meV). In contrast, the first derivative coupling is signifi-
cant for this system, given the large translational kinetic
energies (approximately 2eV) of the dissociating H™ +
OH system. Assuming an outgoing plane wave (e!*f),
the quantity ¢x multiplies the derivative coupling via the
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0/OR operator at the very end of Eq. (A.5). Given a
translational kinetic energy of x?/2ur = 2eV, the first
derivative coupling is plotted in Fig. 12. As is apparent
from comparing this figure to Fig. 11, the first derivative

200 . . : : : :
150 F*
100 E
50

0 E
_50 £

Energy (meV)

-100 f
-150

-200

10 12 14 16 18 20 22 24

FIG. 11: Diagonal potentials €; (R) of the first nine pendular
states ©;(y; R) (solid lines). Also plotted for reference is the
magnitude of dipole potential % (dotted line).

80
70 &,

Energy (meV)

FIG. 12: Absolute value of model nonadiabatic first-derivative
coupling between first 9 energetically adjacent pairs of pen-
dular states, assuming x?/2ur = 2eV.

coupling is comparable in magnitude to the separation
between pendular states only for the first few pendular
states, and drops monotonically with increasing R.

Given this analysis, we were confident that projec-
tions upon pendular states over the region spanned by
the CAP, which lies from R = 21 to R = 24, would yield
states that to a good approximation adiabatically change
to free rotational states upon continuing farther into the
asymptotic region. We expect that this approximation
will break down to a significant degree only for the first
few rotational states.
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