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Abstract of the dissertation

A Disturbance Attenuation Controller

Adaptive through a Nonlinear Modi�ed Gain Observer

for

an Air Breathing Hypersonic Vehicle

by

Wei Huang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Jason L. Speyer, Chair

This paper presents an adaptive robust control strategy for a class of uncertain linear systems with

disturbance input. The uncertain linear system contains unknown parameters in both the system

and the input matrices. The system makes perfect partial measurement of the state. A disturbance

attenuation function is transformed into a minimax di�erential game where the disturbance and

the unknown parameters act as the cooperative players that maximize the cost function, whereas

the controller is the opposing player that minimizes the cost function. Having shown the existence

of a saddle point in the cost function, the optimization yields a minimax controller coupled with

a stable nonlinear modi�ed gain observer, which estimates the state and the unknown parameters.

By maximizing the cost function with respect to the uncertain parameters, the minimax controller

takes the parameter estimation con�dence level into account to generate the worst case input for a

given instance of time. This leads to two sets of Riccati equations, one for the controller and one

for the observer.
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In this class of parameter estimation problem, the measurement function and the augmented system,

which is composed of the state and the uncertain parameters, are modi�able functions or can be

transformed into modi�able functions using an appropriate change of coordinate system, such as

the observable canonical form. The essence of a modi�able function is that although the observer

dynamics are nonlinear, the error in the observer's estimation error is linear. The existence of

the saddle point in the performance index is presented. Under certain conditions, such as the

observability and controllability of the system, the existence of the solution to the two Riccati

equation and �niteness of the value function, the close loop system is stable and the estimation error

is bounded, which demonstrates the disturbance attenuation properties of the observer.

We present an unstable single-input single-output (SISO) four state vector case example with four

unknown system parameters, subject to worst case disturbance. The simulation demonstrates the

applicability of the disturbance attenuation controller coupled with the nonlinear modi�ed gain

observer, and assess its performance against the linear quadratic regulator (LQR) coupled with a

modi�ed gain extended Kalman observer (MGEKO).

Furthermore, the derived disturbance attenuation controller is applied to an air breathig hypersonic

�ight vehicle with full state measurement. The nonlinear longitudinal dynamics of the aircraft,

which is subject to large aerodynamic uncertainty, is linearized around a nominal trim condition

to derive a nominal linearized perturbation model. The nonlinear modi�ed gain observer estimates

four system parameters to yield an estimated linearized perturbation model and the corresponding

estimation error weightings for the worst case controller. The simulation result demonstrates the

applicability of the worst case controller coupled with the nonlinear modi�ed gain observer and its

superior performance when compared against the Sum-of-Squares method shown in the previous

literature.

iii



The dissertation of Wei Huang is approved.

Tetsuya Iwasaki

James S. Gibson

Panagiotis D. Christo�des

Jason L. Speyer, Committee Chair

University of California, Los Angeles

2021

iv



To my beloved parents and my forever cheerful sister.

v



Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Robust Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dual Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Background to the Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Overview of the Current Research and Dissertation Layout . . . . . . . . . . . . . . 8

2 Disturbance Attenuation Control Adaptive Through a Modi�ed Gain Observer 12

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Performance Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dynamic Programming Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 The Optimal Return Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Modi�ed Gain H∞ Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 The Connection Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Existence of Saddle-Point 30

4 In�nite-Time Problem: Stability of Close-Loop System 34

vi



5 A Case Study: A Modi�able Nonlinear SISO Example 46

5.0.1 Application of the Modi�ed Gain Observer . . . . . . . . . . . . . . . . . . . 52

5.0.2 Application of Worst Case Control . . . . . . . . . . . . . . . . . . . . . . . . 54

5.0.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.0.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Application to Autonomous Hypersonic Flight Cruise Control 67

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Autonomous Hypersonic Flight Cruise Control . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Aerodynamics of Hypersonic Flight . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Linearization of the Nonlinear Longitudinal Dynamics . . . . . . . . . . . . . . . . . 75

6.4 De�ning the Augmented System and Weightings for Worst Case Controller . . . . . 83

6.5 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion and Future Work 95

Bibliography 97

vii



List of Figures

5.1 xo, x̂o and x∗o plots using disturbance attenuating controller (solid lines). xo and x̂o

plots using LQR controller (dash lines). The disturbance attenuation controller yields

better performance than the LQR controller. . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Various types of state estimation errors for both control algorithms. . . . . . . . . . 59

5.3 Parameter estimates from nonlinear modi�ed gain observer and MGEKO. . . . . . . 61

5.4 Worst case parameter estimation error. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Control gain and input for worst case control and LQR. . . . . . . . . . . . . . . . . 64

6.1 True state x, state estimate x̂ and worst-case state x∗ are displayed in blue, red and

green, respectively. Since V (6.4.7) is small, the three lines are very close to each

other. The error in the nominal equilibrium point leads to the small steady state bias

between the pitch rate estimate and the true pitch rate. . . . . . . . . . . . . . . . . 89

6.2 This is a close up look of the state history for the �rst 0.1 seconds. The initial worst

case state is di�erent than the initial state estimate as well as initial state. Since the

system is assumed to have perfect measurement and V is very small, then the state

estimate is very close to the true state. The initial di�erences between the worst case

velocity and the inital velocity is about 65 ft/s. The initial di�erences between the

worst case height and the inital height is about 950 feet. . . . . . . . . . . . . . . . 90

viii



6.3 ζ̂ and ζ∗ are displayed in blue and green lines, respectively. Since initial error weight-

ing in ζ is very small, ζ̂ and ζ∗ is very close to each other, hence the blue and green

lines are on top of each other. The large equilibrium change in�uences the lineariza-

tion terms Ai and Bi, and mask the actual values of the unknown parameters, which

are being estimated. Hence ζ̂ does not tend to actual ζ. However, the observer does

yield a stable worst case controller, even though the linearization is violated. . . . . 91

6.4 The input history of 1000 seconds are displayed here. The thrust setting θ was

saturated initially to increase velocity towards ve. After velocity reaches past ve,

the thrust setting converges towards the true equilibrium setting of the aircraft. The

de�ection angle also saturated initially, but quickly converges towards the equilibrium

de�ection angle after the aircraft reaches su�ciently close to the target velocity ve. . 92

6.5 The input history of 70 seconds are displayed here. . . . . . . . . . . . . . . . . . . 93

6.6 Worst case control input gain history for 1000 seconds. The blue lines represent the

top row of the input gain, which is associated with the thrust. The red lines represent

the bottom row of the input gain, which is associated with the de�ection angle. . . 94

ix



List of Tables

6.1 Constant and variable de�nition for hypersonic �ight simulation. . . . . . . . . . . . 72

6.2 The e�ect of κ on the perturbation model . . . . . . . . . . . . . . . . . . . . . . . . 80

x



NOTATIONS

x State Vector, Rn

u Input Vector, Rm

α Unknown System Parameter Vector, Rl

β Unknown Control Parameter Vector, Rk

ξr Unknown Parameter Vector, Composed of Both α and β

ξ Augmented State Vector, Composed of x, α, and β

A(α) System Matrix with Unknown System Parameters α

B(β) Control Matrix with Unknown System Parameters β

G Process Disturbance Coe�cient Matrix, Rn×p

ω State Process Disturbance Vector of Size p

z Perfect Partial Measurement of State x

(·)∗ Worst Case (·), for example u∗ is the worst-case input generated using α∗ and β∗.

(̂·) Estimate of (·)

‖ · ‖2Q (·)′Q(·), Vector Norm Weighted by Symmetric Q.

0n Zero Matrix of Size n

In Identity Matrix of Size n

τ Running Variable for Time

T Terminal Time

xi



(·)0 (·) at Initial Time

(·)t (·) at Current Time

(·)T (·) at Terminal Time

Daf Disturbance Attenuation Function

(·)t0 The Set of (·) From Initial Time to Current Time t

(·)Tt The Set of (·) From Current Time t to Final Time T

R Weighting on Input

W Weighting on Process Disturbance

Q Weighting on State

QT Weighting on Terminal State

P0 Weighting on Initial Estimate Error

J Cost Function

U Set of Possible Input

Ω Set of Possible Process Disturbance

Jc Return Function

Jf Accumulation Function

xii



ACKNOWLEDGEMENTS

First and foremost, I would like to extend my sincere gratitude to my advisor and mentor, Professor

Speyer. I am extremely grateful for your patience, kindness, and insightful guidance throughout my

academic journey. Thank you for your words of encouragement, immense support and con�dence

in my work, especially when I wanted to give up after the rejection of a paper. Thank you for all

the long hours of discussion throughout the years. Without your encouragements and mentorship,

I would not have made it this far. I would also like to thank Professor Yoneyama, for helping

me understand his previous papers as well as the discussion on the existence of multiple optimal

strategies for a di�erent class of disturbance attenuation cost function.

I want to thank my friends at Sysense for all their help and support during my time there. Fur-

thermore, Sung, thank you for assigning me to the aircraft cruise control project, which served as a

motivation for this work. Thank you, Andre and Emmanuell, for all the technical discussions and

guidances on various projects. I want to thank Tom and Jay for all their help in studying for the

prelim.

I want to thank my family for all the emotional and �nancial support during my academic journey.

Thank you Evelyn, for challenging me to do HIIT workouts every week, so that I can actually do

push-ups. Thank you, Charles, for inspiring me towards the path of PhD.

This work was supported by the Ronald and Valerie Sugar Chair in Engineer Endowment.

xiii



VITA

2012-2016 Research Engineer, Sysense

2008-2010 M.S., Aeronautics, University of Southern California

2007-2011 Systems Engineer, Northrop Grumman

2003-2007 B.S., Mechanical Engineering, Caltech

PUBLICATIONS

1. W. Huang and J. L. Speyer, "Adaptive control based on disturbance attenuation and the mod-

i�ed gain observer for parameter uncertain linear systems.", Proceedings of the 2021 American

Control Conference, New Orleans, LA, USA, 2021.

2. W. Huang and J. L. Speyer, "Disturbance attenuation controller for parameter uncertain linear

systems adaptive through a modi�ed gain observer", IEEE Transaction on Automatic Control,

submitted.

3. W. Huang and J. L. Speyer, "Hypersonic cruise using a disturbance attenuation controller

adaptive through a nonlinear modi�ed gain observer", AIAA Journal of Guidance, Control

and Dynamics, submitted.

xiv



Chapter 1

Introduction

Plant uncertainties and disturbances are inevitable hinderances in control design problem for many

physical systems, as it is often di�cult to obtain true system dynamics for physical systems, such

as the aerodynamic tables of hypersonic �ight vehicles. Uncertainties may enter the system through

many channels. It can enter as an external plant disturbance such as unexpected wind gust in

the case of hypersonic �ight control, or it can enter as an internal disturbances such as sensor

noise and actuator noise. Uncertainties can also enter the system through in system parameter

error due to our limited understanding of the system parameters and system model. In the case

of �ight control, the nominal parameter identi�cation of �ight dynamic may be based on sub-scale

dynamic wind tunnel experimentation as well as full-scale �ight tests [1]. However, even the most

throughly researched nominal parameter tables may be insu�cient for the controller to guarantee

close loop stability. For example, in the case of hypersonic �ight, the wind-tunnel test may yield

a set of nominal aerodynamic tables, but if the shape of the airfoil were changed during the �ight

test due to ablation, the nominal aerodynamic values might be drastically di�erent than the true

values, rendering the nominal controller useless in maintaining airplane stability. Therefore, besides

a thorough investigation of plant dynamics, it is also important to estimate the system parameters

online to accommodate for the parameter uncertainties.
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The control of continuous-time linear systems with unknown constant parameters have been exten-

sively studied in the past decades. Various approaches dealing with unknown disturbances ranges

from robust control [2]-[6], adaptive control [7]-[14], dual control [15]-[17], to machine learning [18]

[19] and many more. In this thesis, we present an adaptive disturbance attenuation controller adap-

tive through a nonlinear modi�ed gain observer for a class of time-invariant linear systems with

unknown system parameters in both system and control matrices. This control approach attempts

to address the question of given the disturbances, such as process noise and uncertainties, play their

worst case strategies in accordance to a disturbance attenuation based cost function, what is the

optimal input strategy that can stabilize the uncertain plant?

1.1 Robust Control

Robust control methods are designed to guarantee desired system performance and system stability

given the unknown parameters vary within a set of known bound. The controller is robust against

a set of known bounded parameter uncertainties and modelling error [2] [3]. Robust controllers

employ static gain policy, which means its control parameters do not change in spite of measurement

history. Since robust controllers are designed to work without additional parameter estimation, as

the uncertainties are assumed to be within a certain bounded compact set, then to guarantee robust

performance and stability for a wide range of uncertainties, the resulting controller can be overly

conservative. There are many types of robust controls, such as H∞ loop-shaping and µ synthesis.

The goal of the H∞ control problem is to �nd all controller that yield the norm of the close-loop

transfer function less than a positive given scalar. In 1988, [20] derived the results of the �nite-

horizon time varying H∞ control problem with zero initial condition using the maximum principle.

The state space solution to the standard H∞ control problem is presented by Doyle et al. in 1989

[5].

H∞ control are typically applied to plant with unstructured uncertainties, and µ synthesis extends

H∞ to systems with structured uncertainties, hence µ synthesis are typically less conservative than

H∞ controller [3] [2] [4] [5] [6]. However, both controllers does not consider the cases where the true

uncertainty bounds might be bigger than expected. For example, going back to autonomous �ight,
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engineers can design the robust controller to handle disturbances such as wind gust up to a certain

magnitude, as well as variations in aerodynamic tables. However, if the airplane wings ablated

during mid-�ight due to any reason, the disturbances from uncertain parameters may exceed what

the controller is designed to handle, and the controller may eventually fail to stabilize the aircraft.

Therefore, one control design approach is to estimate the uncertain parameters online, which is

called adaptive controllers.

1.2 Adaptive Control

By the 1950s, the �xed gain controllers could no longer yield satisfying the tracking performance

requirement for the pilot control command for the new classes of advanced manned aircrafts. These

new advanced manned aircrafts operate in a wide range of �lght envelope, various range of speeds

and altitudes, wide range of center of gravity, di�erent aircraft geometry, as well as a large range of

control e�ectiveness. Adaptive control was one approach proposed to deal with the e�ect of unknown

time-varying aerodynamic control e�ectiveness. By 1956, researchers had shown the theoretical

feasibility of using adaptive control in aircrafts. The US government then proceed to test the

practical implementation of the adaptive control in aircraft using F-94, the F-101 and eventually

the X-15, which is a hypersonic rocket-powered aircraft [7] [21].

The basis of adaptive control is parameter estimation. Adaptive controller can automatically adjust

its control parameters in response to system dynamics and disturbances, while satisfying certain

performance criteria subject to the unknown plant dynamics. To update the control parameters,

adaptive controllers require only the measurement history and a priori initial system information,

such as initial parameter estimate and its covariance in the stochastic formulation or the initial

parameter error weighting in the deterministic case [7] [8] [22]. Adaptive control can be classi�ed

into two catagories: direct versus indirect. Direct adaptive control methods will directly update

the controller parameters, whereas the indirect adaptive controllers will �rst estimate the system

parameters, then use those system parameter estimates to calculate for the controller parameters.

Since the 1950s, various types of adaptive control came to existence. Examples of adaptive control are

model reference adaptive control (MRAC), self-tuning regulators (STR), gain scheduling, adaptive

3



pole placement, extremum-seeking control, multiple model control [7] [22].

Adaptive control can also follow these two approaches, one approach is to solve the control problem

and estimation problem separately via certainty equivalence principle, such as the self-tuning regula-

tor [23]. This yields an adaptive control policy that treats the output of the parameter estimation as

the truth without accounting for the uncertainties in the parameter estimation. Adaptive controllers

obeying the certainty equivalence principle are typically easier to solve and are less complicated than

the adaptive control schemes that abide by the non-certainty equivalence principle. However, by

taking parameter estimation error variance or the con�dence level of the parameter estimates into

account, one can generate a controller that is less susceptible to stochastic variations. Examples of

non-certainty equivalence adaptive controllers are the current disturbance attenuation control cou-

pled with a nonlinear modi�ed gain observer as shown in this thesis, as well as [17], [24], [25], [26]

and [27].

1.3 Dual Control

The approach of taking into account the con�dence level of the parameter estimation is also part of

the central theme in dual control proposed by Feldbaum in 1960. Feldbaum addresses the question

of generating a controller that stabilize the plant using information available at current time, while

generating a probe signal to improve parameter estimation, which enhances future controller per-

formance. These two objectives can have con�icting interests, as the better one controls the plant,

the less observable the system parameters might be. If a probe is used on the system, then it may

perturb the system away from optimal trajectory to gain observability of system parameter, thereby

yielding a higher cost. Feldbaum has shown the optimal solution to the dual control can be derived

using dynamic programming [15] [16]. Unfortunately, the solution is di�cult to solve, and hence

researchers have turned to sub-optimal dual controller, such as [17].

In [17], a stochastic discrete-time linear system with uncertain parameters is examined via the dual

control approach. A cost-to-go expression is formulated base on quadratic functions of the state and

the control, and included the cost of using the current control to improve future estimation and the
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enhancement of the future estimation on future control. Hence, the cost function demonstrates the

dual purpose of the control, which is to improve the estimation of the uncertain parameters and

to enhance the control of the uncertain system. Once solved, according to the dual control cost

function, the resulting controller can appropriately use a portion of the control input to improve

estimation and the remaining input energy for control purpose. Unfortunately, the optimization of

the dual control cost function is di�cult to solve, the authors deviced an ad-hoc scheme to perturb

around a nominal certainty equivalent control and obtained an approximation of the optimal cost-

to-go function using a second-order perturbation analysis. The derived control input is suboptimal

and [17] does not prove stability of the controller.

1.4 Background to the Current Research

Various works formulate the H∞ or disturbance attenuation control problem for linear systems base

on the linear quadratic (LQ) game. Following the publication of [20] and [5], [28] extends these

results by reformulating the standard �nite-horizon time varying H∞ control problem with zero

initial condition using a game theoretic approach, and solving for the solution using the completion

of squares method. The optimization yields two inde�nite Riccati di�erential equations. The solution

to the optimization exists if there exists solutions to the two Riccati equations.

Furthermore, [29] extended the results in [28] to a �nite-time disturbance attenuation problem

for time-varying systems with uncertain initial state and partial state measurement. A zero-sum

LQ game is formulated, pitting the controller against the measurement noise, process noise and

uncertainties in the initial state. The solution is found using calculus of variation technique. Around

the same time frame, similar results were also shown in [30], [31] and [32]. [33] obtained a minimax

controller for the discrete �nite time linear system with hard bound on the disturbances subject to

linear quadratic game cost function. The linear system is subject to a nonzero �xed initial conditions.

In [34], a minimax control problem is considered for a �nite time nonlinear system subject to pro-

cess and noise disturbance. The noise disturbances are square integrable. The optimization of the

quadratic games cost function with respect to the input, the process disturbance and noise distur-
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bance leads to a controller and an observer with a Kalman �lter structure that satis�es the certainty

equivalence principle. The control gain is a function of the estimated state.

Extending the results in [29], [35] conducted a game theoretic analysis of a linear compensator in the

presence of process disturbance, measurement noise disturbance, as well as time-varying uncertain

parameters in the system, input and measurement matrix. The system makes partial measurement

of the state. The system is subject to a di�erential games cost function that pits the weighted

norm of the terminal state, the state history and the input history against the process and the noise

disturances. The goal is to maximize the cost function with respect to the disturbances and initial

state, and minimize with respect to the control input. Given the initial state and the parameters

are contained within a certain region, the optimization yields a compensator that satis�es the saddle

point inequality. Furthermore, the saddle point solutions might not be unique due to the uncertain

parameters. The in�nite-time problem were also presented for the time-invariant lnear system.

In [36], a scalar system with a single unknown parameter in the control matrix is examined. The

system has a zero coe�cient as its system matrix, and is subject to no process noise. For such a

simple plant, the resulting worst case solution is a �fth order polynomial, whose solution can only

be solved numerically. For more complicated plants, one can expect the complexity of the worst case

solution to increase, and the closed-form solution do not exist except for very specialized cases. To

obtain the worst case solution, one would most likely employ the use of numerical methods.

Around the same time, [37] formulated a minimax adaptive control for a class of parameter uncertain

linear systems subject to process disturbance. The system has full state information as well as full

state derivative information. The system is also subject to a performance index that is quadratic in

disturbance and the unknown constant parameters. For both �nite time and in�nite time cases, a set

of necessary and su�cient conditions for the existence of the control strategy were presented. Since

it is di�cult to access the full state derivative information in practice, [38] formulates a worst-case

parameter identi�er in deterministic uncertain plants, which are linear with respect to the unknown

parameters, with full state measurement.

Following the publication of [29], [35] and [36], [39], [26], and [40] derives a set of worst-case control
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coupled with an estimator for linear systems with unknown parameters only in the input matrix using

dynamic programming. This system is subject to process disturbance and measurement noise. Since

the system matrix is known, then the estimator and the error dynamics are linear. A disturbance

attenuation controller coupled with a linear estimator is derived using the dynamic programming

method. The optimization yields a parameter connection condition that ties the worst case controller

and estimator together. In [39], a minimax formulation and a dynamic programming approach are

presented. It is shown that the control strategy from either approaches are equivalent to each other

and the control strategy represent the saddle-point strategy of the game theoretic cost function. A

generalized version of the example in [36] were also examined in [39], where the process disturbance

is now included in the dynamics of the state. The resulting parameter connection condition, which

is used to derive the optimality conditions, can be transformed into a �fth order polynomial in terms

of the scalar worst case parameter.

The stability of the close loop sytem is presented in [26] by �nding a value function that satis�es

the Hamilton-Jacobi-Issac's equation. Furthermore, [26] also proved the disturbance attenution

properties of the estimator. The same example examined in [39] were also shown in [40], and it is

demonstrated that at the initial time, the optimal return function can have two strategies which

yields an equal optimal value. In [41], the adaptive robust controller derived in [26] and [40] is applied

to the short period nonlinear longitudinal dyamics of the F-18 aircraft. The plant consists of two

states, angle of attack and pitch rate, and is subject to elevator de�ection and thrust vector command

inputs. Linearizing the nonlinear dynamics yields a linear model of the aircraft. A single parameter

is estimated in the input matrix associated with the control e�ectiveness of the elevator de�ection,

because the control e�ectiveness can vary at di�erent �ight conditions. The robust compensator

stabilizes the aircraft by estimating the unknown parameters using the state measurements. Similar

uncertain system was also studied in [42] with norm bound on the uncertainties in the input matrix.

Motivated by the results in [29], [39], [26] and [40], [27] considers a linear time-invariant stochastic

system, subject to process and measurement noise, with constant uncertain parameters in both

system and input matrix. A worst case control coupled with a linear estimator is presented in

[27]. No stability results were discussed in [27]. Since the augmented system matrix Ā used in
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the estimator contains the noisy measurement of the state, the estimate of the unknown parameter

might be biased, leading to a suboptimal or even an unstable controller. Furthermore, the stability

of the estimator cannot be guaranteed, so the stability of the controller cannot be guaranteed. The

only uncertainty in example [27] is the mass, which enters into both the system and input matrix.

To the best of our knowledge, there has been no extension to the work in [27].

In contrast to previous work, this thesis presents a rigorous structure to the control of linear systems

with partial state information in the presence of uncertain system parameters in both the system

matrix and the input matrix. Rather than using a stochastic approach, a disturbance attenuation

approach induces the structure of a stable controller. To avoid using ad-hoc parameter estimators,

the nonlinear modi�ed gain observer, which estimates both the state and system parameters, is

formally introduced into the disturbance attenuation formulation. Given certain assumptions on

controllability and observability, and the existence of control and estimation Riccati equations and

value function, controller stability is assured.

1.5 Overview of the Current Research and Dissertation Lay-

out

This thesis presents an adaptive control strategy for a class of parameter uncertain linear systems

with disturbance input. The uncertain linear system contains unknown parameters in both the

system and the input matrices. The system makes perfect partial measurement of the system states.

The goal is to �nd the worst case control strategy assuming the system is perturbed by the worst case

disturbances, the unknown parameters as well as the worst case state. The disturbance attenuation

function, which often appears in H∞ control, is the ratio between the norm of the output and the

norm of input disturbance. In the standard H∞ control, the goal is to �nd a feedback controller that

can keep the disturbance attenuation function below a certain desired value for all possible input

disturbances. In this thesis, the disturbance attenuation function is transformed into a minimax

di�erential game where the disturbance, the unknown parameters and the unknown states act as

the cooperative players that maximize the cost function, whereas the controller is the opposing player
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that minimizes the cost function. Applying dynamic programming to the cost function naturally

divides it into two sequential operations, one projected into the future forming the return function

and the other related to the past yielding the accumulation function. Assuming the existence of a

saddle point in the cost function, the optimization yields a minimax controller coupled with a stable

nonlinear modi�ed gain observer (MGO), which estimates the state and the unknown parameters.

In this class of parameter estimation problem, the measurement function and the augmented system,

which is composed of the state and the uncertain parameters, are modi�able functions or can be

transformed into modi�able functions using an appropriate change of coordinate system, such as

the observable canonical form. The essence of a modi�able function is that although the observer

dynamics are nonlinear, in this case the uncertain system matrix is multiplied by the uncertain state,

the error in the observer's estimation error is linear. By maximizing the cost function with respect

to the uncertain parameters, the minimax controller takes the parameter estimation con�dence level

into account to generate the worst case input for a given instance of time. A connection condition

between the two sequential operations at current time t is derived, yielding the �rst order necessary

condition and the second order su�cient condition. Chapter 2 presents the problem formulation,

derivation of the performance index, and the dynamic programming solution, which is a disturbance

attenuation controller coupled with nonlinear MGO. The derivation of the controller and observer

can also be found in [43] [44].

Since the assumption of the existence of saddle point is used to derive the adaptive controller, Chapter

3 presents the proof for the existence of the saddle point in the cost function, demonstrating that

the minimax decomposition in chapter 2 is valid. Given certain condition, such as the existence of

the control and observer Riccati equations, the stability of the disturbance attenuation controller

coupled with the nonlinear MGO is presented in Chapter 4. The close loop system is stable and

the estimation error is bounded, which demonstrates the disturbance attenuation properties of the

observer and the stability of the disturbance attenuation controller. The saddle point derivation can

be found in [43] and [44]. The stability condition of the disturbance attenuation controller can be

found in [44].
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To illustrate the adaptive controller developed in this thesis, the adaptive controller is applied to

an unstable single-input single-output (SISO) four state vector case example with four unknown

system parameters subject to worst case disturbance. The unknown system parameters multiplies

all elements of the state, but only one element of the state is measured perfectly. Hence, the system

must be transformed to an observable canonical form such that only one measurement is required to

estimate a di�erent set of unknown system parameters. The new set of unknown parameters di�ers

from the original set of unknown parameters due to the coordinate tranformation of the original

system into the observable canonical form. This is acceptable for control and close-loop system

stability purposes, because once the observable canonical state tends to zero, so does the original

state. The simulation demonstrates the applicability of the disturbance attenuation controller cou-

pled with the nonlinear MGO, and assess its performance against the linear quadratic regulator

(LQR) coupled with a modi�ed gain extended Kalman observer (MGEKO). The MGEKO is chosen

as a comparison strategy because MGEKO has similar observer structure as the current proposed

MGO. Furthermore, MGEKO is proven to be globally convergent. This simulation is presented in

chapter 5. The SISO example can also be found in [43] and [44].

In chapter 6, the disturbance attenuation controller coupled with a nonlinear modi�ed gain observer

(MGO) is proposed to stabilize the HFV with similar �ight conditions and aerodynamic uncertainties

as those in [45]. The nominal longitudinal dynamics model is linearized to yield a nominal linearized

model at a certain trim condition. However, due to the large aerodynamic uncertainties, the derived

nominal equilibrium point and the nominal linearized model deviates signi�cantly from the true

equilibrium point and the true linearized model of the true nonlinear longitudinal dynamics. Hence,

certain parameters in the nominal linearized model need to be estimated to accommodate for the

error contributed by the large aerodynamic uncertainties. This problem can be viewed as a linear

system with unknown parameters in both the system matrix and the input matrix. An observer is

used to estimate the unknown parameters in the system and input matrices to yield an estimated

linearized model for the controller. Without additional parameter adaptations, controllers based

on the nominal linearized model might not be able to stabilize the true plant or yield satisfactory

tracking performance. The worst case controller coupled with the nonlinear MGO, derived based
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on an estimated linear model, is applied to the true longitudinal dynamics with large aerodynamic

uncertainties. The simulation demonstrates the stability of the close loop system and the tracking

performance of the worst case control scheme. The performance of the disturbance controller is

shown to perform better than the performance of the Sum-of-Squares method and the nonlinear

dynamic inversion method in [45]. The application of the worst case controller to the hypersonic

aircraft can be found in [46].

Chapter 7 is the summary of this work and possible future work.

11



Chapter 2

Disturbance Attenuation Control

Adaptive Through a Modi�ed Gain

Observer

2.1 Problem Formulation

In this chapter, we consider the class of deterministic linear time-invariant systems with unknown

parameters in both the system matrix and the input matrix. These constant, uncertain parameters

are assumed to enter the plant linearly. We denote the unknown parameters in the system matrix

as α ∈ Rl and the unknown parameters in the control coe�cient matrix as β ∈ Rk. The state-space

representation of the plant dynamics and measurement over the time interval [0, T ] is:

ẋ = A(α)x+B(β)u+Gω (2.1.1)

z = Hx, (2.1.2)
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where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and ω ∈ Rp is the unknown square

integrable process disturbance vector on the time interval [0, T ]. The coe�cient G ∈ Rn×p is the

process disturbance coe�cient matrix. The system makes perfect partial measurement of the state

x, as denoted by z ∈ Rr. The system matrix A(α) ∈ Rn×n and input matrix B(β) ∈ Rn×m are

linear functions of the constant unknown parameter vectors α and β as de�ned below. De�ne 0 as

a zero matrix of appropriate size:

α =

[
α1 α2 · · · αl

]′
, α̇ = 0 (2.1.3)

β =

[
β1 β2 · · · βk

]′
, β̇ = 0 (2.1.4)

A(α) = A0 +

l∑
i=1

αiAi, 1 ≤ i ≤ l, i ∈ Z+ (2.1.5)

B(β) = B0 +

k∑
i=1

βiBi, 1 ≤ i ≤ k, i ∈ Z+. (2.1.6)

The coe�cients Ai and Bi are known matrices. The goal is to �nd a controller u ∈ U that minimizes

a linear quadratic game cost function in the presence of ω ∈ Ω. U is the class of admissible controls.

Ω is the class of admissible disturbances.

Since the unknown parameters α and β are linear in both the dynamic and the control matrices

respectively, it can be estimated by concatenating α and β to the state x to de�ne an augmented

state:

ξ =

[
x′ α′ β′

]′
. (2.1.7)

The respective augmented state dynamics is:

ξ̇ =

˙
x

α

β

 =


A(α)x+B(β)

0l×1

0k×1


︸ ︷︷ ︸

F (ξ,u)

+


G

0l×p

0k×p


︸ ︷︷ ︸

Γ

ω = F (ξ, u) + Γω.
(2.1.8)
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The dynamics of ξ (2.1.8), which consists of x and α, is nonlinear due to the nonlinear term A(α)x. In

this class of nonlinear system, the augmented system and measurement functions can be transformed

into modi�able functions (see de�nition 2.1), through appropriate coordinate system, such as the

observable canonical form. The essence of a modi�able function is that although the observer

dynamics are nonlinear, the observer's estimation error is linear. The discrete-time de�nition of

a modi�able nonlinearity was de�ned in [47] and [48], whereas the continuous-time de�nition was

de�ned in [49].

De�nition 1. [47] [48] [49] For any x, x̄ ∈ Rn, x̄ a known vector, if there exists a time-varying

matrix function L : Rp×Rn → Rp×n such that the time-varying function f : Rn → Rp can be written

as:

f(x)− f(x̄) = L(z, x̄)(x− x̄), z = Hx, (2.1.9)

then f is a modi�able nonlinear system function.

2.2 Performance Index

This section aims to derive a disturbance attenuation controller that can stabilize the system in the

presence of worst-case process noise and system parameter uncertainty. In the following, we derive

the performance index from the disturbance attenuation function de�ned as Daf = ‖ȳ‖2
‖ω‖2 , where the

norms ‖ȳ‖2 and ‖ω‖2 are de�ned as:

‖ȳ‖2 = ‖xT ‖2QT +

∫ T

0

‖x‖2Q + ‖u‖2Rdτ (2.2.1)

‖ω‖2 = ‖ξ0 − ξ̄0‖2P−1
0

+

∫ T

0

‖ω‖2W−1dτ. (2.2.2)

xT is the terminal state. The initial estimate of the unknown system parameters α and β are denoted

as ᾱ0 and β̄0. ξ̄0 is de�ned as the initial estimate of ξ. The weightings in the disturbance attenuation
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function are de�ned as follows, where the subscript of 0 indicates the size of the zero matrix:

R > 0m, W > 0p, Q ≥ 0n

QT ≥ 0n, P0 > 0q,

(2.2.3)

where q = n + l + k is the length of the vector ξ. As in past literatures [39] and [26], the goal is

typically to �nd an input such that Daf ≤ 1
θ , where θ is a positive real number. Extending the

results from [39] [26], uncertainties are also present in the system matrix. The Daf is rewritten in

the di�erential game format to be used as the performance index. The cost function is multiplied

by 1
2 as a convenience for later analysis. De�ne the initial estimation error as:

e0 = ξ0 − ξ̄0. (2.2.4)

The cost function is then de�ned as:

J =
1

2
{‖ȳ‖2 − ‖ω‖2}

=
1

2
{‖xT ‖2QT − ‖ξ0 − ξ̄0‖

2
P−1

0
+

∫ T

0

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ},
(2.2.5)

where θ = 1 for convenience. In this minimax game, the input is playing against four players. The

unknown disturbance ω, the system uncertainties α and β, and the initial state x0 are trying to

maximize the cost function in (2.2.5), while the control u is trying to minimize the cost function.

The optimal cost function can be written as:

J∗ = min
u∈U

max
x0,α,β,ω∈Ω

J, (2.2.6)

where (·)∗ represent the optimal value of (·). For now, assume J has a saddle point. The order of

max and min operators is then irrelevant and will yield the same optimal cost. After optimization of

all players, the optimal values are used to prove that J (2.2.6) indeed does have a saddle point. In

the next section, the optimization of the cost function is derived via dynamic programming method.

15



2.3 Dynamic Programming Solution

At the current time t, the cost function (2.2.5) is split into two parts: an accumulation function

Jf (0, t) and a return function Jc(t, T ). The accumulation function contains the cost for the time

interval τ ∈ (0, t), and the return cost function contains the cost for the time interval τ ∈ [t, T ].

Dynamic programming is applied to the cost function (2.2.5). The cost function is then naturally

divided into two sequential operations: a minimax of the Jc(t, T ) with respect to the controller and

disturbances constructed going backwards in time followed by a maximization of the Jf (0, t) with

respect to the disturbance, the unknown parameters, and initial state processed going forwards in

time. Using (2.2.4), the decoupled costs are:

Jf (0, t) =
1

2

{
− ‖e0‖2P−1

0
+

∫ t

0

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ

}
(2.3.1)

Jc(t, T ) =
1

2

{
‖xT ‖2QT +

∫ T

t

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ

}
(2.3.2)

J = Jf (0, t) + Jc(t, T ). (2.3.3)

Let (·)t0 and (·)Tt represent the (·) strategy for the time intervals [0, t] and [t, T ], respectively. For

t ≤ τ ≤ T , both uTt and ωTt are optimized to yield their respective optimal strategies. Assuming

there exists a saddle point, then the operations of min and max can be interchanged. The optimal

cost function (2.2.6) can be written as:

J∗ = min
u∈U

max
ω∈Ω,α∈Rl,β∈Rk,x0

[Jf (0, t) + Jc(t, T )]

= max
α∈Rl,β∈Rk,x0

max
ωt0

[Jf (0, t) + min
uTt

max
ωTt

Jc(t, T )].

(2.3.4)

For 0 < τ < t, the state xt0 and the control input ut0 have all occurred; hence, no minimization of

ut0 can be done for the accumulated cost function. Although ω has played its strategy in the past,

ωt0 is not available to the designer. The goal is to determine the worst strategy that ωt0 could have

played in the past to undermine the estimation of the initial state and the unknown parameters

α and β; therefore, the maximization of the disturbance ωt0 is required in the optimization of the
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accumulation function. The optimization of the return function is performed �rst followed by the

optimization of the accumulation function.

2.4 The Optimal Return Function

In this section, the optimization of the Jc(t, T ), through maximizing Jc(t, T ) with respect to ωTt

and minimizing with respect to uTt , is performed to yield a worst-case controller. The completion

of squares method is applied to Jc(t, T ) to optimize (2.3.2) with respect to the future process

disturbance and input. To accomplish this, the zero term 1
2

{
−x′Πx|Tt +

∫ T
t

d
dτ x
′Πxdτ

}
is added to

the return function (2.3.2). Note that:

1

2

{
−x′Πx|Tt +

∫ T

t

d

dτ
x′Πxdτ

}
=

1

2

{
−x′TΠT (α, β)xT + x′tΠt(α, β)xt +

∫ T

t

2x′Πẋ+ x′Π̇xdτ

}
,

(2.4.1)

where xt is de�ned as x at current time t. Πt(α, β) and ΠT (α, β) are de�ned as Π at current time

t and terminal time T . respectively. Shown below, the system dynamic (2.1.1) is substituted into ẋ

in the integrand of the return function to yield:

Jc(t, T ) =
1

2

{
‖xT ‖2QT − ‖x‖

2
Π|Tt +

∫ T

t

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1 +
d

dτ
‖x‖2Πdτ

}

=
1

2

{
‖xT ‖2QT−ΠT (α,β) + ‖xt‖2Πt(α,β) +

∫ T

t

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1 + 2x′Πẋ+ ‖x‖2
Π̇
dτ

}

=
1

2
{‖xT ‖2QT−ΠT (α,β) + ‖xt‖2Πt(α,β) +

∫ T

t

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1

+ 2x′Π(A(α)x+B(β)u+Gω) + ‖x‖2
Π̇
dτ}.

(2.4.2)

Now the return function (2.4.2) is ready to be optimized with respect to ω and u. Applying the

completion of the squares method to solve for the worst-case process disturbance ω∗ that maximizes
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the return function is shown as follows:

−‖ω‖2W−1 + 2x′ΠGω − ‖WG′Πx‖2W−1 + ‖WG′Πx‖2W−1

= −‖(ω −WG′Πx)‖2W−1 + ‖WG′Πx‖2W−1 .

Completion of the squares method is also used to solve for the worst-case input u∗ that minimizes

the return function (2.3.2):

‖u‖2R + 2x′ΠB(β)u+ ‖R−1B(β)′Πx‖2R − ‖R−1B(β)′Πx‖2R

= ‖u+R−1B(β)′Πx‖2R − ‖R−1B(β)′Πx‖2R.

Simplify and rearrange some terms in Jc(t, T ) (2.4.2) yields:

Jc(t, T ) =
1

2
{‖xT ‖2QT−ΠT (α,β) + ‖xt‖2Πt(α,β) +

∫ T

t

‖x‖2
Q+A(α)′Π+ΠA(α)+Π̇

+ ‖WG′Πx‖2W−1

+ ‖u+R−1B(β)′Πx‖2R − ‖ω −WG′Πx‖2W−1 − ‖R−1B(β)′Πx‖2Rdτ}

=
1

2
{‖xT ‖2QT−ΠT (α,β) + ‖xt‖2Πt(α,β)

+

∫ T

t

‖x‖2
Q+A(α)′Π+ΠA(α)+Π(GWG′−B(β)R−1B(β)′)Π+Π̇

+ ‖u+R−1B(β)′Πx‖2R − ‖ω −WG′Πx‖2W−1dτ}.

(2.4.3)

The return function (2.4.3) is minimized by choosing:

u∗ = −R−1B(β)′Πx (2.4.4)

ω∗ = WG′Πx (2.4.5)

and by choosing Π as:

−Π̇ = Π(GWG′ −B(β)R−1B(β)′)Π +A(α)′Π + ΠA(α) +Q

ΠT (α, β) = QT .

(2.4.6)
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As all other terms go to zero, only ‖xt‖2Πt(α,β) remains in (2.4.3). Hence, the optimal return function

(2.3.2) is:

J∗c (t, T ) = min
uTt

max
ωTt

Jc(t, T ) =
1

2
‖xt‖2Πt(α,β). (2.4.7)

Using the derived J∗c (t, T ) in (2.4.7), the optimal cost function can now be written as:

J∗ = max
ωt0,ξ0

1

2

{
‖xt‖2Πt(α,β) − ‖e0‖2P−1

0
+

∫ t

0

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ
}
. (2.4.8)

In the next section, the optimization of the accumulation function is performed to yield a modi�ed

gain estimator for ξ.

2.5 Modi�ed Gain H∞ Observer

A nonlinear observer will be derived through the optimization of the accumulation function. In [47],

Song and Speyer derived a modi�ed gain extended Kalman �lter (MGEKF) for a class of modi�able

nonlinear dynamics subject to nonlinear measurement function. Song applied the MGEKF to param-

eter identi�cation in linear systems and proved that when used as a nonlinear observer (MGEKO)

for a system with perfect partial measurement, MGEKO is globally exponentially convergent.

Motivated by the results in [47] and [48], a modi�able gain disturbance attenuation observer is

developed for linear systems with unknown system parameters. By de�ning:

f(ξ, u) = A(α)x+B(β)u, (2.5.1)

the system dynamics in (2.1.1) can then be rewritten as:

ẋ = f(ξ, u) +Gω. (2.5.2)
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Let us �rst introduce a pseudo measurement noise ν̃ to the measurement:

z =

[
H 0

]
︸ ︷︷ ︸

H̄

ξ + ν̃ = H̄ξ + ν̃. (2.5.3)

The addition of this pseudo noise will be justi�ed after the optimization of the accumulation function.

Since z is a perfect partial measurement, ν̃ is nominally zero. Adding the zero term ‖ν̃‖2V −1 , where

V > 0, to the cost function (2.4.8) and rewriting the optimal cost function using the augmented

state yields:

J∗ = max
ωt0,ξ0

1

2

{
‖ξT ‖2Q̄T − ‖e0‖2P−1

0
+

∫ T

0

‖ξ‖2Q̄ + ‖u‖2R − ‖ω‖2W−1 − ‖ν̃‖2V −1dτ
}
, (2.5.4)

where the augmented weights are:

Q̄T =


QT 0n×l 0n×k

0l×n 0l 0l×k

0k×n 0k×l 0k

 , Q̄ =


Q 0n×l 0n×k

0l×n 0l 0l×k

0k×n 0k×l 0k

 . (2.5.5)

Remark 1. The introduction of V into the cost function (2.4.8) to yield (2.5.4) is to insert a tuning

parameter into the estimation to adjust the rate of observer error convergence. Note ν̃ is in practice

zero, and does not change the fact that z is perfect partial measurement.

Since the system makes perfect partial measurement, xt must be estimated at time t. An observer

is derived through the optimization of the accumulation function. First, assume the form of the

augmented state estimate ξ̂ dynamic to be:

˙̂
ξ = F (ξ̂, u) + PQ̄ξ̂ +K(z − H̄ξ̂), (2.5.6)
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where F (ξ̂, u) is de�ned as:

F (ξ̂, u) =


f(ξ̂, u)

0l×1

0k×1

 , (2.5.7)

where

f(ξ̂, u) = A(α̂)x̂+B(β̂)u. (2.5.8)

P is a time-varying weighting function whose dynamic equation will be determined through the

optimization of the accumulation function. K is an undetermined time-varying observer gain and

may be a function of P . We will revisit the form of K after P is determined. The bias term PQ̄ξ̂

in the structure of the observer (2.5.6), is based on the results in [39], where there was also a bias

term in the estimator. It will later be apparent that the bias term PQ̄ξ̂ is required to cancel out the

cross term 2e′Q̄ξ̂ in the cost function (2.5.17). In the following, the completion of squares method

is used to optimize the accumulation function.

De�ne the estimation error to be:

e = ξ − ξ̂ =

 ex
eξr

 , (2.5.9)

where ξ′r =

[
α′ β′

]
. Since F (ξ, u) can be transformed into a modi�able nonlinear function by

changing into a di�erent coordinate system if neccessary, z is a function of ξ, then:

F (ξ, u)− F (ξ̂, u) = A(ξ̂, u, z)e (2.5.10)

z − H̄ξ̂ = H̄ξ + ν̃ − H̄ξ̂ = H̄e+ ν̃. (2.5.11)

Using the de�nition of e (2.5.9), (2.1.8), (2.5.6), (2.5.10) and (2.5.11), the error dynamics can be
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written as:

ė = ξ̇ − ˙̂
ξ

= F (ξ, u) + Γω − F (ξ̂, u)− PQ̄ξ̂ −K(z − H̄ξ̂)

= (A(ξ̂, u, z)−KH̄)e− PQ̄ξ̂ + Γω −Kν̃.

(2.5.12)

A(ξ̂, u, z) and P has the following form:

A(ξ̂, u, z) =

 A(α̂) g(z, u)

0l+k×n 0l+k×l+k

 , P =

Px Pc

P ′c Pξr

 , (2.5.13)

where g(z, u) is a function of the known measurement z and input u at current time t, and g(z, u)

is dependent on given Ai (2.1.5) and Bi (2.1.6). Then, using ν̃ = 0 and K = PH̄ ′V −1, the error

dynamics for state and parameter can be written as:

ėx = (A(α̂)− PxH ′V −1H)ex − PxQx̂+ g(z, u)eξr +Gω (2.5.14)

ėξr = −P ′c(Qx̂−H ′V −1Hex). (2.5.15)

Remark 2. The steady state property of the parameter estimation error can be deduced by examining

the dynamic equation (2.5.15) of eξr . By observeration, if Pc = 0 or if Qx̂ −H ′V −1Hex is in the

null space of Pc, then ėξr = 0 and eξr reaches steady state. Since x̂ and ex are both time-varying

matrices and subject to their respective dynamic equations (2.5.6) and (2.5.14), if x̂ 6= 0 or ex 6= 0,

there is no guarantee Qx̂−H ′V −1Hex would be in the null space of Pc, which is also a time-varying

matrix and is subject to a dynamic equation (2.5.23) that will be derived later in this section. It is

possible Pc → 0, this case is discussed in lemma 4.0.3, which is derived in a later section.

Consider the case Pc 6= 0 and Qx̂ − H ′V −1Hex is in the null space of Pc. If x̂ = ex = 0, then

Qx̂ − H ′V −1Hex = 0, and eξr reaches steady state value. Since ξr is constant by the de�nition

(2.1.3 and 2.1.4), then a steady state eξr implies ξ̂r is constant. Furthermore, if Q = H ′V −1H, then

Qx̂ −H ′V −1Hex = H ′V −1H(x̂ − (x − x̂) = −H ′V −1Hx, and if Hx = 0, then ėξr = 0. Hence in
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the case where Q = H ′V −1H and Hx = 0, then parameter estimation error eξr can reach nonzero

steady state value. It is acceptable to have a steady state eξr 6= 0, as eξr does not imply an unstable

x. H ′V −1Hx̂ = H ′V −1Hex = 0 implies H ′V −1Hx = Qx = 0 in steady state, where x′Qx is

the integral part of the cost function (2.2.5) and x′Qx → 0 is the main goal of the control design.

Minimization of the steady state parameter error is a secondary control design goal, as a smaller eξr

leads to a better control design for the plant.

Next, the completion of squares method is used to optimize the cost function with respect to ωt0(·)

by adding the zero term −‖e‖2S |t0 +
∫ t

0
d‖e‖2S
dτ dτ to the Jf . Using ξ = e + ξ̂, we rewrite the cost

function with optimized return function in terms of e and ξ̂:

J∗c (t, T ) + Jf (0, t)

=
1

2

(
‖xt‖2Πt(α,β) − ‖e0‖2P−1

0
− ‖e‖2S |t0 +

∫ t

0

‖ξ‖2Q̄ + ‖u‖2R − ‖ω‖2W−1 − ‖ν̃‖2V −1 +
d‖e‖2S
dτ

dτ

)
=

1

2

(
‖xt‖2Πt(α,β) + ‖e0‖2S0−P−1

0
− ‖et‖2St +

∫ t

0

‖e‖2Q̄ + ‖ξ̂‖2Q̄ + 2e′Q̄ξ̂ + ‖u‖2R − ‖ω‖2W−1

− ‖ν̃‖2V −1 + 2e′Sė+ ‖e‖2
Ṡ
dτ

)
(2.5.16)

By selecting S0 = P−1
0 , then S0−P−1

0 = 0, which eliminates the initial error term ‖e0‖2S0−P−1
0

from

the cost function. Now substitute the error dynamics (2.5.12) back into the cost function, and add

the zero term ‖e‖2SΓWΓ′S − ‖e‖2SΓWΓ′S + ‖e‖2SKVK′S − ‖e‖2SKVK′S to the cost function. Further
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simpli�cation and apply the completion of squares yields:

J∗c (t, T ) + Jf (0, t)

=
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖e‖2Q̄ + ‖ξ̂‖2Q̄ + 2e′Q̄ξ̂ + ‖u‖2R − ‖ω‖2W−1 − ‖ν̃‖2V −1

+ 2e′S((A(ξ̂, u, z)−KH̄)e− PQ̄ξ̂ + Γω −Kν̃) + ‖e‖2
Ṡ

+ ‖e‖SΓWΓ′S

− ‖e‖SΓWΓ′S + ‖e‖2SKVK′S − ‖e‖2SKVK′Sdτ
)

=
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖e‖2
Q̄+S(A(ξ̂,u,z)−KH̄)+(A(ξ̂,u,z)−KH̄)′S+SΓWΓ′S+Ṡ

+ ‖ξ̂‖2Q̄ + 2e′(Q̄− SPQ̄)ξ̂ − ‖ω −WΓ′Se‖2W−1 + ‖u‖2R

− ‖ν̃‖2V −1 − 2e′SKν̃ + ‖e‖2SKVK′S − ‖e‖2SKVK′Sdτ
)

=
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St

+

∫ t

0

‖e‖2
Q̄+S(A(ξ̂,u,z)−KH̄)+(A(ξ̂,u,z)−KH̄)′S+SΓWΓ′S+SKVK′S+Ṡ

+ ‖ξ̂‖2Q̄ + 2e′(Q̄− SPQ̄)ξ̂ − ‖ω −WΓ′Se‖2W−1 + ‖u‖2R

− ‖ν̃ + V K ′Se‖2V −1dτ
)

(2.5.17)

By setting Ṡ, P , ω, and ν̃ to the following values:

0 = Q̄− SPQ̄→ P = S−1 (2.5.18)

−Ṡ = Q̄+ S(A(ξ̂, u, z)−KH̄) + (A(ξ̂, u, z)−KH̄)′S + SΓWΓ′S + SKVK ′S (2.5.19)

Ṗ = PQ̄P + (A(ξ̂, u, z)−KH̄)′P + P (A(ξ̂, u, z)−KH̄) + ΓWΓ′ +KVK ′ (2.5.20)

ωt∗0 = WΓ′Se (2.5.21)

ν̃t∗0 = −V K ′Se, (2.5.22)

the error norm term and the cross term are eliminated, and the ω and ν̃ term in (2.5.17) are also

maximized. If P = S−1, then the cross term e′(Q̄ − SPQ̄)ξ̂ would be zero and be eliminated from

(2.5.17). Using Ṡ in (2.5.19), we can eliminate the error norm term. The ω∗ derived in (2.5.21) is

the optimal strategy for ωt0(·) and can maximizes (2.5.17).
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We can choose K = PH̄ ′V −1, where V ∈ Rr×r is a weighting parameter that can be used to tune

observer convergence rate. By choosing Q̄ = H̄ ′H̄, the Riccati di�erential equation for P can be

rewritten as:

Ṗ = A(ξ̂, u, z)′P + PA(ξ̂, u, z) + ΓWΓ′ − P (H̄ ′V −1H̄ − Q̄)P

= A(ξ̂, u, z)′P + PA(ξ̂, u, z) + ΓWΓ′ − PH̄ ′(V −1 − Ir)H̄P
(2.5.23)

If the pair (A(ξ̂, u, z), H̄) is observable, a V can be chosen such that a solution to (2.5.23) exists.

By decreasing the value of V , Ir − V −1 decreases, which increases the steady-state value of S. In

stochastic �lters such as the Kalman �lter, V corresponds to the measurement noise variance, while

P corresponds to the estimation error variance. In the Kalman �lter, a decrease in measurement

noise variance results in a smaller error variance P . Since P = S−1, a smaller P leads to a bigger

S. Therefore, in the Kalman �lter and the current nonlinear observer, the results are consistent: a

decrease in V leads to an increase in the steady state value of S.

The observer can now be rewritten as:

˙̂
ξ = F (ξ̂, u) + S−1Q̄ξ̂ + S−1H̄ ′V −1(z − H̄ξ̂), ξ̂(0) = ξ̂0 (2.5.24)

?? Using (2.5.18), (2.5.19) and (2.5.21), the optimal cost function (2.5.4) can now be written as:

J∗ =
1

2
max
ξ

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖ξ̂‖2Q̄ + ‖u‖2Rdτ
)

(2.5.25)

Now the only remaining player to be determined is ξ, which is used to derive the connection condition.

Remark 3. Earlier in this section, a pseudo measurement noise ν̃ was added to the accumula-

tion function. Without the addition of ν̃ to the measurement function and the cost function, the

di�erential algebraic Riccati equation for P is:

Ṗ = PQ̄P + (A(ξ̂, u, z)−KH̄)′P + P (A(ξ̂, u, z)−KH̄) + ΓWΓ′,
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where K can be chosen as PH̄ ′V −1. The corresponding error dynamics does not change. With

perfect partial measurement, some elements of P associated with the perfectly measured xt element

will tend to zero rapidly, while the part of P associated with the unknown parameters may lag behind

and tend to a constant. Since P−1 = S, numerical propagation issues such as the inversion of P to

obtain S may arise. Hence, ν̃ and V are added to the measurement noise and the cost function to

keep the steady state P > cI > 0, where c is a positive scalar.

2.6 The Connection Condition

The maximization of (2.5.25) with respect to ξt is carried out in this section. Recall ξt contains

both the initial state xt as well as the unknown parameters. The integral term in (2.5.25) does not

contain ξt and will not be part of the maximization. Therefore, only the boundary terms at time t

in (2.5.25) are part of the maximization of ξ that yield the connection condition. De�ne the value

function at current time t:

Vt =
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St

)
. (2.6.1)

Let ξr =

[
α′ β′

]′
. De�ne St = S(t) at the current time t as:

St =

Sx(t) Sc(t)

S′c(t) Sξr (t)

 . (2.6.2)

Sx(t) ∈ Rn×n is the weighting for the error of x at time t. Sc(t) ∈ Rn×l+k is the weighting between

the error of x and the error of ξr at time t. Sξr (t) ∈ Rl+k×l+k is the weighting for the error of ξr at

time t. For the value function Vt to be maximizing, the �rst derivative of Vt with respect to ξ is

zero, while the second derivative of Vt with respect to ξ is negative. The maximization of Vt with
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respect to ξ yields the �rst order optimality condition:

∂Vt

∂ξ

∣∣∣∣
ξ=ξ∗(t)

=


 Πt(α, β)xt

1
2x
′
t
∂Πt(α,β)
∂ξr

xt

− Stet

∣∣∣∣∣∣∣
ξ=ξ∗(t)

= 0

→

 Πt(α, β)xt

1
2x
′
t
∂Πt(α,β)
∂ξr

xt


∣∣∣∣∣∣∣
ξ=ξ∗(t)

=

Sx(t)(xt − x̂t) + Sc(t)(ξr(t)− ξ̂r(t))

S′c(t)(xt − x̂t) + Sξr (t)(ξr(t)− ξ̂r(t))


. (2.6.3)

Note ∂Πt(α,β)
∂ξr

is a three dimensional tensor of size n× n× l + k. Hence, x′t
∂Πt(α,β)
∂ξr

xt is a l + k × 1

vector. The second derivative of Vt with respect to ξ yields the second order su�cient condition for

optimality:

∂2Vt

∂ξ∂ξ′

∣∣∣∣
ξ=ξ∗(t)

=

 ∂2Vt

∂x∂x′
∂2Vt

∂x∂ξ′r

( ∂
2Vt

∂x∂ξ′r
)′ ∂2Vt

∂ξr∂ξ′r


∣∣∣∣∣∣∣
ξ=ξ∗(t)

=

 Πt(α, β) ∂Πt(α,β)
∂ξr

xt

(∂Πt(α,β)
∂ξr

xt)
′ 1

2x
′
t
∂2Πt(α,β)
∂ξr∂ξ′r

xt

− St
∣∣∣∣∣∣∣
ξ=ξ∗(t)

=

 Πt(α, β)− Sx(t) ∂Πt(α,β)
∂ξr

xt − Sc(t)

(∂Πt(α,β)
∂ξr

xt)
′ − S′c(t) 1

2x
′
t
∂2Πt(α,β)
∂ξr∂ξ′r

xt − Sξr (t)


∣∣∣∣∣∣∣
ξ=ξ∗(t)

< 0

. (2.6.4)

For (2.6.4) to be satis�ed, the upper left term ∂2Vt

∂x∂x′ must be negative de�nite. After evaluation, the

upper left term is:

∂2Vt

∂x∂x′
= Πt(α, β)− Sx < 0. (2.6.5)

This is also the spectral radius condition that exists in many previous literatures, such as [50], [29],

[5] and [32].

The partial derivative of Πt(α, β) with respect to ξr in the �rst order optimality condition is an
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n× n× l + k tensor. Therefore 1
2x
′
t
∂Πt(α,β)
∂ξr

xt is a l + k × 1 vector:

1

2
x′t
∂Πt(α, β)

∂ξr
xt =

1

2



x′t
∂Πt(α,β)
∂α1

xt
...

x′t
∂Πt(α,β)
∂αl

xt

x′t
∂Πt(α,β)
∂β1

xt
...

x′t
∂Πt(α,β)
∂βk

xt



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξr=ξ∗r (t)

. (2.6.6)

The second partial of Πt(α, β) with respect to ξr in the second order optimality condition is an

n× n× l + k × l + k tensor. Therefore, the resulting derivative is an l + k × l + k matrix:

x′t
∂2Πt(α, β)

∂ξr∂ξ′r
xt

=



x′t
∂2Πt(α,β)

∂α2
1

xt · · · x′t
∂2Πt(α,β)
∂α1αl

xt x′t
∂2Πt(α,β)
∂α1β1

xt · · · x′t
∂2Πt(α,β)
∂α1βk

xt
... · · ·

...

x′t
∂2Πt(α,β)
∂αlα1

xt · · · x′t
∂2Πt(α,β)

∂α2
l

xt x′t
∂2Πt(α,β)
∂αlβ1

xt · · · x′t
∂2Πt(α,β)
∂αlβk

xt

x′t
∂2Πt(α,β)
∂β1α1

xt · · · x′t
∂2Πt(α,β)
∂β1αl

xt x′t
∂2Πt(α,β)
∂β1β1

xt · · · x′t
∂2Πt(α,β)
∂β1βk

xt
... · · ·

...

x′t
∂2Πt(α,β)
∂βkα1

xt · · · x′t
∂2Πt(α,β)
∂βkαl

xt x′t
∂2Πt(α,β)
∂βkβ1

xt · · · x′t
∂2Πt(α,β)

∂β2
k

xt


,

where each element of the matrix, such as x′t
∂2Πt(α,β)

∂β2
k

xt, is a scalar number.

Remark 4. An optimal strategy (2.4.5) for ωTt was derived in the optimization of the return func-

tion. Similarly, an optimal strategy (2.5.22) for ωt0 was derived in the optimization of the accumu-

lation function. The optimal strategies ωT∗t (2.4.5) and ωt∗0 (2.5.22) are equal at current time t due

to the �rst order necessary condition (2.6.3). De�ne ωt∗0 evaluated at current time t as ωt∗0 (t), and

de�ne ωT∗t evaluated at current time t as ωT∗t (t). Then, by rewriting ωt∗0 (t) using the �rst order
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necessary condition (2.6.3) at current time t yields:

ωt∗0 (t) = W

[
G′ 0

]
Se

∣∣∣∣
ξ=ξ∗

= WG′
(
Sx(t)(xt − x̂t) + Sc(t)(ξr(t)− ξ̂r(t)

)∣∣∣
ξ=ξ∗

= WG′Πt(α
∗, β∗)x∗t

= ωT∗t (t).

(2.6.7)

This implies at the current time t, the worst case past process disturbance ωt∗0 (t) to the observer is

the same as the worst case process disturbance ωT∗t (t) for the controller.
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Chapter 3

Existence of Saddle-Point

The optimization of the cost function (2.2.5) in the previous sections assumes the existence of saddle

point in J . Now, the worst case solution derived in the previous section can be used to verify it

is indeed a saddle point of the cost function J , which means it satis�es the saddle-point condition:

J(u∗, ξ, ω) ≤ J(u∗, ξ∗, ω∗) ≤ J(u, ξ∗, ω∗).

Theorem 3.0.1. If a saddle point of the cost function (2.2.5) exists, then the optimized cost function

J(u∗, ξ∗, ω∗) derived using the worst case strategies u∗(2.4.4), ξ∗(2.6.3, 2.6.4), and ω∗(2.4.5) is a

saddle point of the cost function J (2.2.5).

Proof. As it was done before, we add two zero terms 1
2{−x

′Πx|Tt +
∫ T
t

d
dτ x
′Πxdτ} and 1

2{
∫ t

0
d
dτ e
′Sedτ−

e′Se|t0} to the �nite-time cost function (2.2.5). After performing similar algebraic manipulations as

in sections V and VI and setting the current time t = 0, S0 = P−1
0 , and QT = ΠT (α, β), the cost
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function (2.2.5) can be written as:

J =
1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0

+

∫ T

0

‖u+R−1B(β)′Πx‖2R − ‖ω −WG′Πx)′‖2W−1

+ ‖x‖2
(Q+A(α)′Π+ΠA(α)+Π(GWG′−B(β)R−1B(β)′)Π+Π̇)

dτ}.

(3.0.1)

If all players play their optimal strategies, then the optimal cost function is:

J(u∗, ξ∗0 , ω
∗) =

1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0
}
∣∣∣
ξ0=ξ∗0

. (3.0.2)

Now consider J(u∗, ξ, ω), where the control is the worst case control u∗, Π(α∗, β∗) is propagated

using worst case system parameters, and its derivative is de�ned as:

−Π̇(α∗, β∗) = Q+A(α∗)′Π(α∗, β∗) + Π(α∗, β∗)A(α∗)

+ Π(α∗, β∗)(GWG′ −B(β∗)R−1B(β∗)′)Π(α∗, β∗)

ΠT (α∗, β∗) = QT .

(3.0.3)

Then, the cost function using optimal input and suboptimal disturbances is:

J(u∗, ξ, ω) =
1

2
{‖x0‖2Π0(α∗,β∗) − ‖e0‖2P−1

0

−
∫ T

0

‖ω −WG′Π(α∗, β∗)x‖2W−1dτ}.
(3.0.4)

The integral in (3.0.4) is negative de�nite. Furthermore, e0, which is not maximized with respect to

α and β, is a function of suboptimal α and β. Thus, J(u∗, ξ, ω) ≤ J(u∗, ξ∗, ω∗). Next, consider the

cost function:

J(u, ξ∗, ω∗) =
1

2
{‖x∗0‖2Π0(α,β) − ‖e

∗
0‖2P−1

0

+

∫ T

0

‖u+R−1B(β∗)′Π(α∗, β∗)x‖2Rdτ}.
(3.0.5)

The integral in (3.0.5) is positive and−‖e∗0‖2P−1
0

is the worst-case strategy played by ξ, so J(u∗, ξ∗, ω∗) ≤
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J(u, ξ∗, ω∗) and saddle-point exists. Hence, the order of the min and max operators can be exchanged

without changing the optimality of cost function.

The following lemma is presented to assist in the derivation of Lemma 4.0.1.

Lemma 3.0.2. The optimal value (3.0.2) of the cost function (2.2.5) is equal to the optimized cost

function (2.5.25) at the current time t for all t as stated below:

J(u∗, ξ∗, ω∗) =
1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0
}
∣∣∣
ξ0=ξ∗0

=
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖ξ̂‖2Q̄ + ‖u‖2Rdτ
) ∣∣∣∣

ξt=ξ∗t

.

Proof. The cost function (2.2.5) can be separated into the accumulation function (2.3.1) and the

return function (2.3.2) at the current time t. The cost function, accumulation function and return

function are repeated here for reference.

J =
1

2
{‖xT ‖2QT − ‖e0‖2P−1

0
+

∫ T

0

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ}

= Jf (0, t) + Jc(t, T )

Jf (0, t) =
1

2

{
−‖e0‖2P−1

0
+

∫ t

0

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ

}
Jc(t, T ) =

1

2

{
‖xT ‖2QT +

∫ T

t

‖x‖2Q + ‖u‖2R − ‖ω‖2W−1dτ

}
.

The optimization of the cost function (2.2.5) was shown in the previous section to be:

J∗ =
1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0
}
∣∣∣
ξ0=ξ∗0

.

The optimization of Jf (0, t) + Jc(t, T ) was also shown in the previous section to be:

min
u∈U

max
ξ,ω∈Ω

(Jf (0, t) + Jc(t, T )) =
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖ξ̂‖2Q̄ + ‖u‖2Rdτ
) ∣∣∣∣

ξt=ξ∗t

.
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Since J = Jf (0, t) + Jc(t, T ), then the optimal values must be equal, therefore:

J∗ =
1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0
}
∣∣∣
ξ0=ξ∗0

=
1

2

(
‖xt‖2Πt(α,β) − ‖et‖

2
St +

∫ t

0

‖ξ̂‖2Q̄ + ‖u‖2Rdτ
) ∣∣∣∣

ξt=ξ∗t

.
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Chapter 4

In�nite-Time Problem: Stability of

Close-Loop System

In this section, we consider the stability of the close-loop system for the in�nite-time problem. The

dynamics of the worst-case state x∗ can be written as:

ẋ∗ = f(ξ∗, u∗) +Gω∗ = A(α∗)x∗ +B(β∗)u∗ +Gω∗

=
(
A(α∗)− (B(β∗)R−1B(β∗)′ −GWG′)Π(α∗, β∗)

)︸ ︷︷ ︸
Ã(α∗,β∗)

x∗

= Ã(α∗, β∗)x∗,

(4.0.1)

where Ã(α∗, β∗) is the worst-case close-loop system matrix at time t. Note the parameter estimates

ξ̂r, subject to the dynamic equation (2.5.24), are time-varying functions. Therefore, the worst-case

parameters α∗ and β∗, which satis�es the optimality conditions (2.6.3) and (2.6.4) at current time t,

are also time-varying functions, i.e., α∗ = α∗(t) and β∗ = β∗(t). Hence, Ã(α∗, β∗) = Ã(α∗(t), β∗(t)).

Due to the time-varying nature of Ã(α∗(t), β∗(t)), the stability of the close loop system cannot be

deduced from its eigenvalues. Further analysis must be performed to determine the stability of the
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worst case controller.

To prove stability of the close-loop system for the in�nite-time problem, we present �ve necessary

assumptions for the existence of minimax solution to the uncertain system. Theorem 4.0.4 proves

the disturbance attenuation property of the modi�ed gain observer and the stability of the worst

case controller using a Lyapunov function. Three lemmas are presented in order to assist in the

derivation of theorem 4.0.4.

Remark 5. One can also prove the stability of the close loop sytem by verifying the value function

(2.6.1) satis�es the Hamilton-Jacobi-Issac's equation as was done in [26].

Lemma 4.0.1 proves the worst case error is stable and converges to zero. Lemma 4.0.2 proves the

worst case input generated using Π(α∗, β∗) stabilizes the worst case close loop system Ã(α∗, β∗).

Lemma 4.0.3 proves that the steady state value of Sc is zero. Using lemmas 4.0.1- 4.0.3 in theorem

4.0.4, it is proved that the state estimation error ex → 0, parameter estimation error eξr is bounded,

and the resulting close loop state x is stable and tends to zero.

In the in�nite-time system, the terminal time T →∞, and we arbitrarily set QT = 0 for simplicity.

QT may be any �nite positive semi-de�nite matrix. Note that the di�erent user de�ned values of QT

does not change the steady-state solution of the control algebraic Riccati equation [51]. We make

the following �ve assumptions:

Assumption 1. For all α and β, (A(α), B(β)) is a stabilizable pair, and (A(α), H) is a detectable

pair.

Remark 6. Assumption 1 is required for the design of any feasible controller and observer.

Assumption 2. For all α, (A(α), G) is a controllable pair, and (A(α), C) is a observable pair,

where Q = C ′C.

Assumption 3. There exists a minimal bounded positive de�nite solution Πt(α, β) > 0 of the

di�erential Riccati equation (2.4.6) with terminal boundary condition Π∞(α, β) = QT = 0 for all α

and β.
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Remark 7. Given Assumption 2, if the solution Π(α, β) to the Riccati equation (2.4.6) in Assump-

tion 3 exists, then Π(α, β) > 0 [2] [52]. In the standard H∞ problem as presented by Doyle, Glover,

Khargonekar, and Francis [5], Doyle et al. assume a weaker assumption of (A(α), G) is a stabilizable

pair, and (A(α), C) is a detectable pair. With a weaker assumption, if the resulting solution to the

Riccati equation exists, the solution is guaranteed to be nonnegative, i.e, Πt(α, β) ≥ 0.

Assumption 4. There exists a minimal positive-de�nite bounded solution S > 0 of the di�erential

Riccati equation (2.5.19) with terminal boundary condition S(0) = Q0 > 0.

Remark 8. Since Vt (2.6.1) is a function of Πt(α, β) and S, Assumption 3 and Assumption 4 are

required for the existence of the value function Vt.

Assumption 5. The value function Vt (2.6.1) is �nite for all possible α and β.

Remark 9. Assumption 5 is required for the existence of a maximizing solution that satis�es the

connection condition. If the value function is in�nite, then no maximum exists, and hence no saddle

point solution exists.

Given the above assumptions, in order to facilitate the stability analysis of the H∞ controller with

a modi�ed-gain observer, we introduce the following lemmas.

Lemma 4.0.1. Given Assumptions (1-5) are satis�ed and suppose the minimax solution exists for

all time, then as t→∞ the worst case error e∗ → 0 and ‖x̂‖Q → 0.

Proof. The optimal cost function J∗ (3.0.2) is dependent on the initial worst case ξ∗0 , ξ̂0 and the

initial weighting S0. The initial estimate ξ̂0 and initial boundary condition S0 can be chosen such

that the optimal cost is bounded, i.e, J∗ < ∞. This implies that ξ∗ is �nite and can be obtained

from ξ̂0 and S0. At current time t, the optimal cost can be written as (2.5.25). Since there is only
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one optimal cost as shown in lemma 3.0.2, setting (3.0.2) equal to (2.5.25) and taking t→∞ yields:

1

2
max
ξ∞

(
‖x∞‖2Π∞(α,β) − ‖e∞‖

2
S∞

)
+

∫ t→∞

0

‖x̂‖2Q + ‖u‖2Rdτ

=
1

2
{‖x0‖2Π0(α,β) − ‖e0‖2P−1

0
}
∣∣∣
ξ0=ξ∗0

<∞.
(4.0.2)

Since Assumption 3 is satis�ed for all time, the boundary condition of Π∞(α, β) = 0 must also

satisfy the connection condition at the terminal time. The value function at terminal time can be

written as:

V∗∞ = max
ξ
‖x∞‖2Π∞(α,β) − ‖ξ∞ − ξ̂∞‖

2
S∞

= max
ξ
−‖ξ∗∞ − ξ̂∞‖2S∞ = max

ξ
−‖e∗∞‖2S∞ .

Since S∞ > 0, the maximization of the value function at terminal time yields the worst case error

e∗∞ = 0 and ξ∗∞ = ξ̂∞. Since the optimal cost function J∗ (3.0.2) is bounded, the integral term∫∞
0
‖x̂‖2Q + ‖u‖2Rdτ , which is positive semi-de�nite, must also be bounded. Since R is invertible, u

must tend to zero as t→∞. Since Q is a positive semi-de�nite matrix, ‖x̂‖2Q → 0 as t→∞. Since

e∗ → 0 and ‖x̂‖2Q → 0 as t→∞, ‖x∗‖2Q → 0 as t→∞.

Lemma 4.0.2. Given Assumption 3 is satis�ed and suppose the worst-case ξ∗r is time-invariant for

t < τ <∞, then the worst-case close loop system is stable.

Proof. The worst-case state x∗ is subject to:

ẋ∗ = A(α∗)x∗ +B(β∗)u∗ +Gω∗ = Ã(ξ∗r )x∗, (4.0.3)

where the worst-case close loop dynamic is Ã(ξ∗r ) = A(α∗)− (B(β∗)R−1B(β∗)′−GWG′)Π(ξ∗r ). Add

the zero term ±ΠB(β)R−1B(β)′Π±ΠGWG′Π to (2.4.6) so that it can be rewritten in terms of the

close loop dynamic Ã(ξ∗r ) to yield:

0 = Π̇ +Q+ Ã(ξ∗r )′Π + ΠÃ(ξ∗r ) + Π(B(β∗)R−1B(β∗)′ −GWG′)Π. (4.0.4)
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Since (2.4.6) exists and is bounded per Assumption 3 for all t, then Ã(ξ∗r ) is Hurwitz at every time

instance t. This has been proved in section 5 of [29] using Lemma 4.1 and Lemma 4.2 from [53].

Classical stability results in [54] states that if Ã(ξ∗r , t) tends to a constant Hurwitz matrix Ā as

t→∞, then the system is exponentially stable. By the assumption that ξ∗r is time-invariant for the

time period t < τ <∞, then Ã(ξ∗r ) = Ā for t < τ <∞. Since Ã(ξ∗r ) is Hurwitz at all times, Ā must

also be Hurwitz, and x∗ → 0 as t→∞.

Lemma 4.0.3. Let the steady state solution to the observer Riccati equation (2.5.19) be de�ned as

Sss, where Sss is de�ned as:

Sss =

Sss,x Sss,c

S′ss,c Sss,ξr

 (4.0.5)

Suppose z = 0 and u = 0, then Sss,c = 0

Proof. Suppose both the measurement z and input u are zero, then A(ξ̂, u, z) has the form:

A(ξ̂,0,0) =

A(α̂) 0

0 0

 . (4.0.6)

Note S−1
ss = Pss, where Pss is the steady state value of P . Then, the steady state Riccati equation
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for the observer (2.5.19) can be written as:

0 =

Q 0

0 0

+ SssA(ξ̂,0,0)− SssPH̄ ′V −1H̄ +A′(ξ̂,0,0)Sss − H̄ ′V −1H̄PSss

+ Sss

GWG′ 0

0 0

Sss + SssPH̄
′V −1H̄PSss

=

Q 0

0 0

+ SssA(ξ̂,0,0) +A′(ξ̂,0,0)Sss −

H ′V −1H 0

0 0

+ Sss

GWG′ 0

0 0

Sss
=

Q 0

0 0

+

Sss,xA(α̂) 0

S′ss,cA(α̂) 0

+

A′(α̂)Sss,x A′(α̂)Sss,c

0 0

−
H ′V −1H 0

0 0


+

Sss,xGWG′Sss,x Sss,xGWG′Sss,c

S′ss,cGWG′Sss,x S′ss,cGWG′Sss,c


=

Q+ Sss,xA(α̂) +A′(α̂)Sss,x −H ′V −1H + Sss,xGWG′Sss,x A′(α̂)Sss,c + Sss,xGWG′Sss,c

S′ss,cA(α̂) + S′ss,cGWG′Sss,x S′ss,cGWG′Sss,c

 .
(4.0.7)

Upon examination, equation (4.0.7) yields the following result:

−Ṡss,x = 0 = Q+ Sss,xA(α̂) +A′(α̂)Sss,x −H ′V −1H + Sss,xGWG′Sss,x (4.0.8)

−Ṡss,c = 0 = A′(α̂)Sss,c + Sss,xGWG′Sss,c (4.0.9)

−Ṡss,ξr = 0 = S′ss,cGWG′Sss,c. (4.0.10)

Since −Ṡss,ξr = 0 in steady state and W is full rank, G′Sss,c = 0. Since G is given and cannot

be zero, either Sss,c = 0 or Sss,c 6= 0 is in the null space of G. Consider the case Sss,c = 0, then

S′ss,cGWG′Sss,c = 0, which satis�es both (4.0.9) and (4.0.10). Consider the second case where

Sss,c 6= 0 but Sss,c is in the null space of G. As such, (4.0.10) is satis�ed, but (4.0.9) might not

be. Therefore, to ensure both (4.0.9) and (4.0.10) are satis�ed, Sss,c must be zero. Since Sss,x > 0,

Sss,ξr > 0, and Sss,c = 0, then Sss > 0.
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The following theorem proves disturbance attenuation as well as the stability of the close loop system

using a Lyapunov function.

Theorem 4.0.4. Given Assumptions (1-5), suppose a minimax solution to the in�nite-time problem

for the uncertain system exists for all time, then the close loop system is stable, and the estimation

error is bounded as t→∞. Furthermore, x̂→ 0 and ex → 0 as t→∞.

Remark 10. The proof for theorem 4.0.4) is summarized. A Lyapunov function W is de�ned in

(4.0.11). Its derivative (4.0.12) is simpli�ed to �ve quadratic terms as shown in (4.0.16). Using

Assumptions (1-5) and lemma 4.0.1, as t → ∞, then e∗ → 0, ω∗ → 0 and ‖x̂‖2Q → 0. Assumption

1 is used to deduce ‖Hex‖2V −1 → 0 and ex → 0. Assumption 2, lemma 4.0.2, and ex → 0 implies

the stability of the close loop system and ‖Hex‖2V −1 → 0. Lastly, lemma 4.0.3 and ex → 0 implies

‖WΓ′Se‖2W−1 → 0 and eξr is a bounded vector. Since all terms in (4.0.12) tends to zero as t→∞,

then W is bounded.

Proof. Let W be a Lyapunov function for the error de�ned as:

W =
1

2
e′Se ≥ 0, S > 0. (4.0.11)

The time derivative of W is shown below:

Ẇ = e′Sė+
1

2
e′Ṡe. (4.0.12)
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Substituting ė (2.5.12) and Ṡ (2.5.19) back into Ẇ (4.0.12) yields:

Ẇ = e′S
(

(A(ξ̂, u, z)−KH̄)e− PQ̄ξ̂ + Γω −Kν̃
)

− 1

2
‖e‖2

Q̄+S(A(ξ̂,u,z)−KH̄)+(A(ξ̂,u,z)−KH̄)′S+SΓWΓ′S+SKVK′S

=
1

2
‖e‖2

S(A(ξ̂,u,z)−KH̄)+(A(ξ̂,u,z)−KH̄)
′
S−(Q̄+S(A(ξ̂,u,z)−KH̄)+(A(ξ̂,u,z)−KH̄)′S+SΓWΓ′S+SKVK′S)

− e′Q̄ξ̂ + e′SΓω − e′SKν̃

=
1

2
‖e‖2−(Q̄+SΓWΓ′S+SKVK′S) − e

′Q̄ξ̂ + e′SΓω − e′SKν̃

(4.0.13)

Next, the zero term ± 1
2ω
′W−1ω± 1

2 ν̃
′V −1ν̃± 1

2 ξ̂
′Q̄ξ̂ is added to Ẇ. Then, the completion of squares

method can be used to check if Ẇ is negative de�nite as shown below:

Ẇ =
1

2
‖e‖2−(Q̄+SΓWΓ′S+SKVK′S) − e

′Q̄ξ̂ + e′SΓω − e′SKν̃

+
1

2
ω′W−1ω − 1

2
ω′W−1ω +

1

2
ν̃′V −1ν̃ − 1

2
ν̃′V −1ν̃ +

1

2
ξ̂′Q̄ξ̂ − 1

2
ξ̂′Q̄ξ̂

=
1

2
ω′W−1ω − 1

2
‖ω −WΓ′Se‖2W−1 +

1

2
ν̃′V −1ν̃ − 1

2
‖ν̃ − V K ′Se‖2V −1

+
1

2
ξ̂′Q̄ξ̂ − 1

2
‖e+ ξ̂‖2Q̄

(4.0.14)

To examine the stability of the error e, assume the disturbance players play their worst case strategy

of ω = ω∗ = WGΠ∗(α, β)x∗ = WΓ′Se∗, where e∗ = ξ∗ − ξ̂. Note ν̃ is a pseudo measurement noise

that is nominally zero as the system have perfect partial measurement. By choosing K = PH̄ ′V −1

and using S = P−1, V K ′Se = V V −1H̄PSe = H̄e. Therefore, the time derivative of the Lyapunov

function becomes:

Ẇ =
1

2
‖WΓ′Se∗‖2W−1 −

1

2
‖WΓ′S(e∗ − e)‖2W−1 −

1

2
‖H̄e‖2V −1 +

1

2
‖ξ̂‖Q̄ −

1

2
‖e+ ξ̂‖2Q̄ (4.0.15)

Using the de�nition of Q̄ (2.5.5), two quadratic terms can be simpli�ed: ξ̂′Q̄ξ̂ = ‖x̂‖2Q and ‖e+ξ̂‖2
Q̄

=
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‖x‖2Q, where Q = C ′C. The time derivative of the Lyapunov function can be reduced to:

Ẇ =
1

2
‖WΓ′Se∗‖2W−1 −

1

2
‖WΓ′S(e∗ − e)‖2W−1

− 1

2
‖Hex‖2V −1 +

1

2
‖x̂‖Q −

1

2
‖x‖2Q.

(4.0.16)

Given Assumptions (1-5), as t→∞, Lemma 4.0.1 yields the following results:

e∗ → 0, ‖x̂‖2Q → 0

ξ∗r → ξ̂r, Π(α∗, β∗)→ Π(α̂, β̂).

(4.0.17)

Furthermore, since e∗ → 0 as t→∞ and ω∗ = WΓ′Se∗,

ω∗ → 0, as t→∞. (4.0.18)

Since the positive terms ‖WΓ′Se∗‖2W−1 = ‖ω∗‖2W−1 → 0 and ‖x̂‖2Q → 0 in (4.0.16) as shown in

(4.0.17) and (4.0.18), the negative terms −‖Hex‖2V −1−‖x‖2Q−‖WΓ′Se‖2W−1 dominate Ẇ and leads

to a decrease in W and e. As t→∞, Ẇ cannot tend to ∞, because the negative terms dominate,

whereas the positive terms goes to zero. On the other hand, Ẇ cannot tend to −∞ as t → ∞,

because it violates the property that W ≥ 0 (4.0.11) for all time. In the worst case, since W ≥ 0,

Ẇ→ 0 implies the negative terms must also tend to zero. The dynamics of the negative terms are

assessed separately below to con�rm that each negative term does indeed tend to zero. If any of

these negative terms does not tend to zero as t → ∞, then W would continue to decrease, which

violates the de�nition of W (4.0.11) and the property that W ≥ 0.

Let us consider the negative term −‖Hex‖2V −1 . Given Assumption 1, suppose −‖Hex‖2V −1 < 0 for

0 ≤ τ <∞ and

‖WΓ′Se∗‖2W−1 → 0, ‖x̂‖2Q → 0, −‖x‖2Q → 0, −‖WΓ′Se‖2W−1 → 0. (4.0.19)

Then, −‖Hex‖2V −1 would eventually dominate Ẇ, reducing W and thereby decreasing ‖e‖. As
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‖e‖ → 0, ‖ex‖ → 0, which contradicts the assumption that −‖Hex‖2V −1 < 0 for 0 ≤ τ <∞. Hence,

as t→∞, −‖Hex‖2V −1 must tend to zero.

Furthermore, Assumption 1 states that (A(α), H) is a detectable pair for all possible α. Since α̂

is a subset of the possible α, then Assumption 1 implies (A(α̂), H) is a detectable pair. Recall the

system matrix of ėx (2.5.14) is A(α̂) − PxH ′V −1H, where Px > 0. Since (A(α̂), H) is a detectable

pair, (A(α̂) − PxH ′V −1H,H) is also a detectable pair [53] [55]. By the de�nition of detectability,

‖Hex‖2V −1 → 0 implies ex → 0. Hence, as t→∞,

−‖Hex‖2V −1 → 0, ex → 0. (4.0.20)

Let us consider the negative term −‖x‖2Q. Given Assumption 2, suppose the close loop system is

initially unstable. Then, −‖x‖2Q < 0 eventually dominates the positive terms ‖WΓ′Se∗‖2W−1 and

‖x̂‖2Q in Ẇ(4.0.16), leading to Ẇ < 0 and W → 0. Given S > 0 de�ned in (4.0.11), as W → 0,

e → 0, which implies both the state estimation error ex → 0 and the parameter estimation error

eξr → 0. As eξr → 0 and e∗ → 0 (4.0.17), ξ∗r → ξr, where ξr is the constant true system parameter.

Thus, Πt(α
∗, β∗) → Πt(α, β), where Πt(α, β) is the stable control gain generated using the true

system parameters as shown in lemma 4.0.2. As Πt(α
∗, β∗) → Πt(α, β), leading to a stable close

loop system, x → 0, which implies −‖x‖2Q → 0. Since e∗ → 0 (4.0.17) and ex → 0 (4.0.20),

x∗ → x̂→ x→ 0. Moreover, since u∗ is a linear function of x∗, u∗ → 0. Hence, as t→∞,

−‖x‖2Q → 0, x→ 0, x∗ → 0, u∗ → 0, (4.0.21)

and the close loop system is stable.

We consider the last negative term ‖WΓ′Se‖2W−1 . Using the de�nitions of Γ (2.1.8), S (2.6.2), and

e (2.5.9), WΓ′Se can be rewritten in terms of ex and eξr as:

WΓ′Se = WG′Sxex +WG′Sceξr . (4.0.22)
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Suppose −‖WΓ′Se‖2W−1 < 0 for 0 ≤ τ < ∞, whereas all other terms in (4.0.16) tends to zero,

then −‖WΓ′Se‖2W−1 would eventually dominate Ẇ (4.0.16), leading to a smaller W and thereby a

smaller e. Since ex → 0 (4.0.20), the term WG′Sxex → 0. In addition, since x → 0 and u∗ → 0

(4.0.21), lemma 4.0.3 implies Sc → 0. So, WG′Sceξr → 0. Hence, as t→∞,

WΓ′Se→ 0. (4.0.23)

It must be noted that Ẇ → 0 only implies W is a bounded value and eξr is a bounded vector.

This is because even for nonzero eξr , the term WG′Sceξr → 0 due to Sc → 0. Similar to results in

remark 2, if Cx̂→ 0 and Hex → 0 or if Qx̂−H ′V −1Hex → 0, then ėξr → 0, and eξr approaches a

constant bounded vector.

Lemma 4.0.5. Consider a class of linear time-invariant system with unknown parameters in both

the system and the control matrix, where the pair
(∑l

i=1Aiαi,
∑k
i=1Biβi

)
is stabilizable. Given

Assumptions (1-5), suppose a minimax solution to the in�nite-time problem for the uncertain system

exists for all time, if ‖ξ‖ → ∞, then the value function Vt → −∞.

Proof. The value function Vt at current time can be written as:

2Vt = max
ξ

[
x′Πt(α, β)x− (ξ − ξ̂)′S(ξ − ξ̂)

]
(4.0.24)

where ξ̂ is not a function of ξ. S is independent of ξ and is always positive de�nite by construction.

Since there are two variables, x and ξr, then there are three cases to consider. The �rst case is when

‖x‖ → ∞, while ‖ξr‖ < ∞. The second case is when ‖x‖ < ∞, while ‖ξr‖ → ∞, and the last case

is when ‖ξ‖ → ∞. In the �rst case, suppose ‖x‖ → ∞ while ‖ξr‖ remain �nite. Since the minimax

solution exists, then it must satisfy the �rst order necessary condition and second order su�cient
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condition. The �rst order neccessary condition (2.6.3) requires:

Πt(α, β)x = Sx(x− x̂) + Sc(ξr − ξ̂r)

By moving Sxx to the left hand side of the equation, and taking the norm of the �rst order necessary

connection condition 2.6.3 yields:

‖(Πt(α, β)− Sx)x‖ = ‖ − Sxx̂+ Scξr − Scξ̂r‖ (4.0.25)

Since Πt(α, β) − Sx < 0 is required by the second order su�cient condition, it is clear that in the

case ‖x‖ → ∞ and ‖ξr‖ < ∞ violates the �rst order necessary condition. Since Πt(α, β) − Sx < 0

and ‖x‖ → ∞, then the left hand side of (4.0.25) tends to∞, while the right hand side of (4.0.25) is

�nite as propagated by the di�erential Algebraic Riccati equation for S and the dynamic equation

of ξ̂r. Therefore a worst case solution, where ‖x‖ tend to in�nity while the parameters remain �nite

cannot exist.

We consider the second case where ‖x‖ < ∞ and ‖ξr‖ → ∞. Πt(α, β) is bounded as required by

Assumption 3 and it is upperbounded by Sx as required by the second order su�cient condition.

Furthermore, since β → ∞ and the pair
(∑l

i=1Aiαi,
∑k
i=1Biβi

)
is stabilizable, then the worst

case B(β) have in�nite control authority. Hence Πt(α, β)→ 0 as ξr →∞. Then the value function is

dominated by the negative quadratic error term −(ξ− ξ̂)′S(ξ− ξ̂)→ −∞. Hence the value function

tends to −∞ as ‖ξr‖ → ∞ while ‖x‖ remain �nite.

We consider the last case where both ‖x‖ and ‖ξr‖ tends to in�nity. Using the same analysis as

the previous case, as ‖β‖ → ∞, the worst case system has in�nite control authority, leading to

Πt(α, β)→ 0 and yielding −(ξ− ξ̂)′S(ξ− ξ̂)→ −∞ to dominate the value function. Hence the value

function tends to −∞ as ‖ξ‖ → ∞. Hence, for all three cases, as ‖ξ‖ → ∞, the value function tends

to −∞.
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Chapter 5

A Case Study: A Modi�able

Nonlinear SISO Example

Consider the following single-input single-output (SISO) dynamic system with unknown parameters

ρ:

ẋ = A(ρ)x+B(ρ)u+Gω

z = Hx, H ∈ R1×n

ρ̇ = 0,

(5.0.1)

where A(ρ) ∈ Rn×n, B(ρ) ∈ Rn×1, and G ∈ Rn×1. The state vector x has n elements. The

input u and the process disturbance ω are both scalar. z measures a single element of the state x.

Furthermore, assume the unknown parameters multiply elements of x that are not part of the state

measurement. For example, consider the following two state system:

˙x1

x2

 =

ρ1 ρ2

0 1


x1

x2

 , (5.0.2)
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where ρ1 and ρ2 are the unknown parameters. To apply the modi�ed gain H∞ �lter directly, one

needs to form the corresponding universal linearization matrix A(ξ̂, u, z) (2.5.13), which can be

written as:

A(ξ̂, 0, z) =



ρ̂1 ρ̂2 x1 x2

0 1 0 0

0 0 0 0

0 0 0 0


, (5.0.3)

where x1 and x2 must both be measured, such as z = I2x. If the system is single output, and

only measures either x1 or x2, then a direct application of the nonlinear modi�ed gain observer

is impossible, as it requires a perfect measurement of both x1 and x2. Hence, for single output

system with multiple unknown parameters that times multiple elements of the state, the original

SISO system must be transformed into the observable canonical form, so that the nonlinear modi�ed

gain observer only uses the single output in A(ξ̂, u, z).

For SISO system, such as (5.0.1), can be transformed into the observable canonical form using the

corresponding observability matrix and the coe�cients of the characteristic polynomial of the system

matrix. Let O be de�ned as the observability matrix and ci be de�ned as the coe�cients of the

characteristic polynomial of the system matrix:

det(sI−A(ξr)) = sn + c1s
n−1 + · · ·+ cn−1s+ cn. (5.0.4)

Note that depending on the location of the unknown parameters in the system matrix, certain ci

is a function of the unknown parameters ρ, i.e. ci = ci(ρ). For the purpose of this analysis, let

us assume all ci are functions of ρ, therefore in the transformed state, there are n unknowns in

the system matrix. Since the system is assumed to be observable, then the observability matrix is

invertible, and the transformation from the original state to the transformed observable canonical
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state can be written as:

To =



cn−1 cn−2 cn−3 · · · c1 1

cn−2 cn−3 · · · · · · 1 0

cn−3 · · · · · · · · · 0 0

...
...

...
...

...
...

c1 1 · · · · · · 0 0

1 0 · · · · · · 0 0





H

HA(ρ)

HA(ρ)2

...

HA(ρ)(n−1)


︸ ︷︷ ︸

O

. (5.0.5)

Since To is a function of ci, then To is also a function of the unknown parameters. The transformed

state is de�ned as xo = Tox. The transformed state space representation can be written as:

ẋo = (ToA(ρ)T−1
o )︸ ︷︷ ︸

Ao(ρ)

xo + ToB(ρ)︸ ︷︷ ︸
Bo(ρ)

u+ ToG︸︷︷︸
Go(ρ)

ω = Ao(ρ)xo +Bo(ρ)u+Go(ρ)ω

z = HT−1
o︸ ︷︷ ︸

Ho

xo = Hoxo.

(5.0.6)

Let α =

[
αn αn−1 · · · α1

]′
and αn−1:1 =

[
αn−1 · · · α1

]′
, then α =

[
αn α′n−1:1

]′
, where

αi are the elements in Ao(ρ) that are functions of the unknown parameter ρ, i.e. αi = αi(ρ). Let

β ∈ Rk =

[
β1 · · · βk

]′
, where βi are the elements in Bo(ρ) that are functions of the unknown

parameter ρ, i.e. βi = βi(ρ). Note In−1 is an identity matrix of size n − 1. Then the transformed

system matrix Ao(α), the control matrix Bo(β), and the measurement matrix has the following form:

Ao(α) =

01×n−1 −αn

In−1 −αn−1:1

 , Bo(β) = B0 +

k∑
i=1

βiBi

Ho =

[
01×n−1 1

]
.

(5.0.7)

De�ne the augmented state ξ =

[
x′o α′ β′

]′
and H̄ =

[
Ho 01×n+k

]
. In the transformed SISO

system, z is the last element of the xo. The dynamics of the augmented state ξ written as a function

48



of ξ, z and u is shown below:

ξ̇ =

f(ξ, z) +
∑k
i=1 βiBiu

0n+k×1


︸ ︷︷ ︸

F (ξ,z,u)

+

 B0

0n+k×1


︸ ︷︷ ︸

B̄0

u+

 Go

0n+k×1


︸ ︷︷ ︸

Γ

ω

= F (ξ, z, u) + B̄0u+ Γω

(5.0.8)

f(ξ, z) =

[
−αnz xo,1 − αn−1z · · · xo,n−1 − α1z

]′
. (5.0.9)

The error of the augmented state is de�ned to be:

e = ξ − ξ̂. (5.0.10)

De�ne the estimate of the augmented state to be a function of ξ̂ and u:

˙̂
ξ =

f(ξ̂) +
∑k
i=1 β̂iBiu

0n+k×1


︸ ︷︷ ︸

F (ξ̂,u)

+B̄0u+ PQξ̂ +K(z − H̄ξ̂)

= F (ξ̂, u) + B̄0u+ PQξ̂ +K(z − H̄ξ̂)

(5.0.11)

f(ξ̂) =

[
−α̂nx̂o,n x̂o,1 − α̂n−1x̂o,n · · · x̂o,n−1 − α̂1x̂o,n

]′
. (5.0.12)

Combining 5.0.10, 5.0.8 and 5.0.11, results in the dynamics of the error:

ė = ξ̇ − ˙̂
ξ = F (ξ, z, u)− F (ξ̂, u) + Γω − PQξ̂ −KH̄e. (5.0.13)
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Let us �rst note:

f(ξ, z)− f(ξ̂) =



−αnz − (−α̂nx̂o,n)

xo,1 − αn−1z − (x̂o,1 − α̂n−1x̂o,n)

...

xo,n−1 − α1z − (x̂o,n−1 − α̂1x̂o,n)


+



−α̂nz + α̂nz

−α̂n−1z + α̂n−1z

...

−α̂1z + α̂1z


︸ ︷︷ ︸

0n×1

=



−(αn − α̂n)z − α̂n(z − x̂o,n)

(xo,1 − x̂o,1)− (αn−1 − α̂n−1)z − α̂n−1(z − x̂o,n)

...

(xo,n−1 − x̂o,n−1)− (α1 − α̂1)z − α̂1(z − x̂o,n)



=



0 · · · 0 −α̂n −z 0 · · · 0

1 · · · 0 −α̂n−1 0 −z
. . .

...
. . .

...
...

... 0
. . . 0

0 · · · 1 −α̂1 0 · · · 0 −z


︸ ︷︷ ︸

F(α̂,z)



xo,1 − x̂o,1
...

xo,n − x̂o,n

αn − α̂n
...

α1 − α̂1


.

(5.0.14)

Using the de�nition of F (ξ, z, u) and F (ξ̂, u) in (5.0.8) and (5.0.11) respectively, as well as (5.0.14),

we can write:

F (ξ, z, u)− F (ξ̂, u) = A(ξ̂, z, u)(ξ − ξ̂) = A(ξ̂, z, u)e (5.0.15)

where A(ξ̂, z, u) is de�ned as:

A(ξ̂, z, u) =

 F(α̂, z) B1u · · · Bku

0n+k×2n 0n+k×1 · · · 0n+k×1

 (5.0.16)
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Using (5.0.15), the error dynamic of e can now be written as:

ė =
(
A(ξ̂, z, u)−KH̄

)
e+ Γω − PQξ̂. (5.0.17)

In the following example, we examine the performance of the worst case controller applied to a SISO

dynamical system with unknown parameters in the system matrix only. No unknown parameters

were introduced in the control matrix, because such examples can be found in previous literatures

such as [39] and one can utilize the known input u to estimation the unknown control parameters. By

comparison, the estimation of the unknown parameters in the system matrix is more complicated, as

the unknown system parameters A(ρ) multiply the unknown state x in the state dynamics, such as

A(ρ)x in (5.0.1). Hence, it is more di�cult to determine the respective uncertainties in the system

matrix A(ρ) and the state x than the uncertainties in the control matrix B(ρ). As such, it is more

di�cult to design a controller to stabilize unstable systems with uncertain parameters in the system

matrix.

Example 5.0.1. In this example, we apply an adaptive worst case controller to a SISO dynamic

system, where the unknown parameters are only located in the system matrix. The control matrix as

well as the process coe�cient are known:

ẋ = A(a)x+Bu+Gω

z = Hx,

(5.0.18)
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where the system coe�cients are:

A =



0 1 0 0

0 0 1 0

0 0 0 1

a1 a2 a3 a4


, B =



0

0

0

1


G =

[
0 0 0 1

]′
, H =

[
1 0 0 0

]
a =

[
a1 a2 a3 a4

]
.

(5.0.19)

Let a1, a2, a3, and a4 be the unknown parameters in the system matrix. Since unknown parameters

are multiplied by all elements of the state in the dynamics of x4, all elements of the state must

be then be available to directly use the modi�ed gain observer. Unfortunately, this is not the case

here. Although this SISO system is observable and controllable, only the �rst element x1 is measured

perfectly.

5.0.1 Application of the Modi�ed Gain Observer

To apply the modi�ed gain observer (MGO), the SISO system (5.0.18) needs to be transformed into

an observerable canonical form as shown below:

ẋo = Aoxo +Bou+Goω

z = Hoxo,

(5.0.20)

where the transformed system coe�cients are:

Ao =



0 0 0 a1

1 0 0 a2

0 1 0 a3

0 0 1 a4


, Bo =



1

0

0

0


G′o =

[
1 0 0 0

]
, Ho =

[
0 0 0 1

]
.

(5.0.21)
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The tranformation matrix To used to tranform (5.0.18) to (5.0.20) is:

To(a) =



−a2 −a3 −a4 1

−a3 −a4 1 0

−a4 1 0 0

1 0 0 0


. (5.0.22)

Let us augment the unknown parameters a to xo, then the augmented nonlinear state ξ can be written

as:

ξ′ =

[
xo,1 xo,2 xo,3 xo,4 a1 a2 a3 a4

]
=

[
ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

]
.

(5.0.23)

De�ne ξr =

[
ξ5 ξ6 ξ7 ξ8

]′
, then the nonlinear dynamic of the augmented state is:

ξ̇ =



ξ5ξ1

ξ1 + ξ6ξ4

ξ2 + ξ7ξ4

ξ3 + ξ8ξ4

04,1


+



1

0

0

0

04,1


u+



1

0

0

0

04,1


ω

= f(ξ) + B̄0u+ Γω

z =

[
0 0 0 1 0 0 0 0

]
ξ = H̄ξ = ξ4.

(5.0.24)
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The nonlinear estimator can be written as:

˙̂
ξ =



ξ̂5ξ̂1

ξ̂1 + ξ̂6ξ̂4

ξ̂2 + ξ̂7ξ̂4

ξ̂3 + ξ̂8ξ̂4

04,1


+



1

0

0

0

04,1


u+K(z − H̄ξ̂) + PQ̄ξ̂

= f(ξ̂) + B̄0u+KH̄e+ PQ̄ξ̂.

(5.0.25)

Using the estimator dynamics, the resulting linear error dynamics become:

ė =
(
A(ξ̂, z)−KH̄

)
e+ Γω − PQ̄ξ̂, (5.0.26)

where

A(ξ̂, z) =

Ao(â) zI4

04 04

 . (5.0.27)

Since we assume perfect measurement of ξ4, z = ξ4 in A(ξ̂, z).

5.0.2 Application of Worst Case Control

The controller is generated using the four-state observable canonical dynamical system (5.0.20). The

corresponding steady-state control ARE and control input of this in�nite-time problem is:

0 = Q+Ao(a
∗)′Π + ΠAo(a

∗) + Π(GoWG′o − B̄0R
−1B̄′0)Π (5.0.28)

u∗ = −R−1B̄′0Π(a∗)x∗. (5.0.29)

54



The �rst derivative of Π with respect to the unknown parameters, which are four Lyapunov equations,

are de�ned as:

0 = A′iΠ + ΠAi + [Ao(a)′ + Π(GoWG′o − B̄0R
−1B̄′0)]

∂Π

∂ai

+
∂Π

∂ai
[Ao(a) + (GoWG′o − B̄0R

−1B̄′0)Π]

∣∣∣∣
a=a∗

,

(5.0.30)

where

A1 =



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


, A2 =



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


(5.0.31)

A3 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


, A4 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


. (5.0.32)

The worst-case parameters, the �rst-order condition (2.6.3), the control algebraic Riccati equation

(5.0.28), and the partial derivatives of Π with respect to the unknown parameters (5.0.30) all must

be solved simultaneously together using a numerical solver. The su�cient condition must also be

satis�ed to ensure the newly found critical point is indeed a minimum value of the connection condi-

tion. It is possible the close form solution of the worst-case solution might exist for a speci�c simple

case. However, the close form solution of the worst case parameters is generally di�cult to obtain

and must be solved using numerical methods.

5.0.3 Simulation Setup

The control input u∗ is generated at 100 Hz and is held constant for 0.01 second. The close-loop

dynamical system is propagated using the ODE45 function in Matlab. The following weightings are
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used for this simulation:

Q = 0.1H̄ ′H̄, W = 5× 10−2

R = 0.011, V = 1× 10−5.

(5.0.33)

The true parameter values for this simulation is:

a =

[
1.4 1.4 1.4 1.4

]′
. (5.0.34)

The initial parameter estimate for this simulation is:

â(0) =

[
1 1 1 1

]′
. (5.0.35)

The largest eigenvalue of the true system matrix λ1(Ao(a)) is 2.3544, whereas the largest eigenvalue

of the initial estimated system matrix λ1(Ao(â(0)) is 1.9276. The true system is more unstable than

the initial estimated system, hence the controllers generated using the initial parameter estimates

might not be able to stabilize the true plant.

The initial state starts at x(0) =

[
1 0 0 0

]′
. In the observable canonical form, the initial state

xo(0) is de�ned as:

xo(0) = To(a)x(0) =

[
−1.4 −1.4 −1.4 1

]′
. (5.0.36)

We set the initial state estimate x̂o(0) = xo(0). This example demonstrates a step response of the

state to the worst case input u∗. Furthermore, this example illustrates a step response of the system

parameter estimate to the modi�ed gain observer. Althought the state estimation error is initially

zero, the initial system parameter error is nonzero, which drives the state estimate away from the

true state in the transient period. Even though this example does not exemplify a step response of

the state estimation error ex, ex is still being introduced to the system through parameter estimation

error eξr . The convergence property of the modi�ed gain observer is demonstrated in this example.

One can choose x̂o(0) to be a di�erent value, such as To(â(0))x(0), to examine the step response of
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the state estimation error. However, a nonzero initial state estimation error might lead to a faster

convergence of the parameter estimation error.

The initial error weighting for x(0) is set to:

Px(0) =



1 0 0 0

0 1.01 0 0

0 0 1.02 0

0 0 0 1.16


(5.0.37)

The initial state error weighting for xo(0) is chosen to be:

Po,x(0) = To(â(0))Px(0)To(â(0))′, (5.0.38)

where To(â(0)) is the initial observable cannonical form transformation matrix as a function of the

initial parameter estimate â(0). One may choose a di�erent value for Po,x(0), which could increase

or decrease the convergence rate of the state estimation. The initial parameter error weighting Pa(0)

is chosen to be:

Pa(0) =



0.1 0 0 0

0 0.1 0 0

0 0 0.105 0

0 0 0 0.1


(5.0.39)

The initial error weighting P (0) is de�ned as:

P (0) =

Po,x(0) 04

04 Pa(0)

 . (5.0.40)

In this simulation, the performance of the disturbance attenuation controller coupled with MGO as

derived in this chapter is compared to the linear quadratic regulator (LQR) coupled with modi�ed
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Figure 5.1: xo, x̂o and x∗o plots using disturbance attenuating controller (solid lines). xo and x̂o plots
using LQR controller (dash lines). The disturbance attenuation controller yields better performance
than the LQR controller. 58



0 5 10 15 20
-2

-1

0

1

2

3

0 5 10 15 20
-2

-1

0

1

2

3

0 5 10 15 20
-4

-3

-2

-1

0

1

0 5 10 15 20

time, second

-0.4

-0.2

0

0.2

0.4
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gain extended Kalman observer (MGEKO)[47]. MGEKO is chosen as a comparison scheme because

it was shown to have better performance than the extended Kalman �lter [47]. In the following,

these two sets of algorithms will be referred to as worst case controller (or H∞ in the �gures) and

the LQR/MGEKO (or LQR in the �gures). The simulation ran for 20 seconds. Both algorithms

use the same set of weightings and initial conditions whenever possible. ω∗, generated at 100 Hz

and held constant for 0.01 second, is applied to both controllers to ensure a fair evaluation of the

controller performance.

5.0.4 Result

In the following �gures, the disturbance attenuation control simulation results are displayed using

solid lines, whereas the LQR/MGEKO simulation results are displayed using dashed lines. Figure 5.1

presents the state history and observer estimates for both algorithms. The disturbance attenuation

controller yields three plots: true state xo,H∞ , state estimate x̂o,H∞ and worst case state x∗o,H∞ . The

LQR algorithm yields two plots: the true state xo,LQR and the estimated state x̂o,LQR. Clearly, both

observers are able to track their respective true states. Both sets of control algorithms were eventually

able to stabilize the system due to the parameter adaptation performed by their respective observers.

However, the disturbance attenuation controller exhibits a better performance overall than the LQR

algorithm as shown in Figure 5.1, where ‖xH∞‖ with peak value of 7.5 is much lower than ‖xLQR‖

with peak value of 56. ‖xo,H∞‖ is predominantly smaller than ‖xo,LQR‖, except brie�y during the �rst

second of the simulation where performance is traded for better parameter estimate. Although both

controllers started o� with the same initial state, the LQR algorithm yields much larger instability

in all states than the disturbance attenuation controller.

Figure 5.2 plots various types of state estimation error for both controllers all tends to zero rapidly

after initial transient period. The estimated state error xo,H∞ − x̂o,H∞ is smaller and converges

to zero faster than xo,LQR − x̂o,LQR overall. It could be that the LQR algorithm generated much

larger instability than the disturbance attenuation controller, i.e xo,LQR is larger than xo,H∞ overall,

hence the estimated state error may also be larger. Since the system makes perfect measurement of

xo,4 and V −1 is very large, any type of initial error estimate of xo,4, such as x∗o,4,H∞ − x̂o,4,H∞ , or
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xo,4,H∞ − x̂o,4,H∞ , will converge to zero within a few time steps.

Lemma 4.0.1 proved e∗ → 0 as t → 0, where the worst case estimation error in this example is

de�ned as:

e∗ =

x∗o,H∞ − x̂o,H∞
a∗H∞ − âH∞

 . (5.0.41)

This property is demonstrated in �gure 5.2 and �gure 5.4. Figure 5.2 plots the worst case state

estimate error x∗o,H∞ − x̂o,H∞ (blue solid line). Figure 5.4 plots the worst case parameter estimation

error a∗H∞ − âH∞ (blue solid line). All elements of e∗ tend to zero rapidly after the initial transient

period.

Theorem 4.0.4 proved the stability of ex = xo,H∞ − x̂o,H∞ , i.e., as t→∞, ex → 0. Figure 5.2 plots

the state estimation error xo,H∞− x̂o,H∞ for MGO (solid red line) and demonstrates the convergence

property of ex. All elements of ex converges to zero by t = 15 second.

Figure 5.3 shows the parameter estimation results from both observers. Remark 2 states that given

any two combinations of x̂o = 0, ex = 0 or xo = 0 , then the system parameter observability disap-
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pears, and the parameter estimation error remains constant. Furthermore, A(ξ̂, z), which multiplies

the parameter error, is a function of z. Then, as z → 0, the observability of a also decreases. Hence,

the faster xo tends to zero, the faster the system loses parameter observability. Initially, the worst

case MGO performed better than MGEKO, i.e., âH∞ converges faster towards the true parameter

than the MGEKO estimate, hence leading to a stabilizing controller faster, decreasing the magnitude

of xo. However, after the �rst two seconds, due to smaller state xo, convergence rate of the worst

case estimator slows down and reaches steady state at around t = 9 seconds. The worst case param-

eters converged towards the true state faster in the �rst two seconds, yielding a stabilizing controller

even faster than the estimated parameters from the modi�ed gain observer. Hence, in comparison

to LQR/MGEKO, the worst case input leads to faster convergence of state, causing a to be unob-

servable faster, and preventing âH∞ from converging to the true a. Initially, MGEKO converged to

the true parameters slower than MGO, hence the LQR was unable to control the system in the �rst

four seconds of the simulation, leading to a larger state. In turn, the observability in a increased.

Therefore, MGEKO converged closer to the true a than the worst case MGO. Although the a∗H∞ did

not reach true parameter a in steady state, the worst case controller had already stabilized the system

and x→ 0, which is the main design goal. To decrease steady state parameter estimation error, the

user can decide on the trade-o� between the observability of a and the convergence of x by adding a

dither signal to u∗ to perturb the state and thereby increasing the observability of a. This leads to a

better estimate of a.

Figure 5.5 shows four possible inputs, where two of the four inputs (u∗ and uLQR) are used in

this simulation. u∗ (blue solid line) is the worst case controller, and uLQR (purple dash line) is

the LQR/MGEKO controller. During the �rst 0.8 seconds, the disturbance attenuation controller

generated a larger input than the LQR input and stabilized the true plant faster than LQR. By

stabilizing the system faster than LQR, the total disturbance attenuation input cost for this 20 second

simulation is smaller than the LQR input cost, i.e.,
∫ 20

0
‖u∗‖2Rdt <

∫ 20

0
‖uLQR‖2Rdt. Furthermore,

u∗ has a smaller peak magnitude than uLQR.

The three solid lines of the input plot (�gure 5.5) represent the worst case control gain KH∞ mul-

tiplied by x∗H∞ , x̂H∞ , and xH∞ , respectively. The blue line is the worst case control input u∗ used
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in this simulation. At �rst glance, it might seem that the di�erences between xo,H∞ , x̂o,H∞ , and

x∗o,H∞ (�gure 5.1) are negligible, as they might generate similar inputs and o�er similar controller

performance. However, this is not the case as shown in �gure 5.5. x∗H∞ , x̂H∞ , and xH∞ yields

di�erent inputs (solid lines) as shown in �gure 5.5. As shown in �gure 5.5, the input −KH∞ x̂o,H∞

has a smaller peak input than u∗, whereas −KH∞xo,H∞ generates a much larger peak input that is

comparable to uLQR.

Lemma 4.0.3 shows that given xo → 0 and u∗ → 0, the steady state value of Sc → 0. To demonstrate,

the simulation is run for 100 seconds and at the end, xo(100) and u∗(100) are e�ectively zero:

xo(100) =



−7.456× 10−15

3.185× 10−14

−8.3514× 10−15

−1.5061× 10−15


(5.0.42)

u∗(100) = −2.0546× 10−14. (5.0.43)

The corresponding S100 is de�ned as:

S100 =

Sx(100) Sc(100)

S′c(100) Sξr (100)

 ,
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and the respective Sx(100), Sc(100) and Sξr (100) are:

Sx(100) =



134.77 −454.07 877.56 −758.9

−454.07 2182.2 −5154.5 5299.4

877.56 −5154.5 14624 −19253

−758.9 5299.4 −19253 43676



Sc(100) = 10−12



0.01 −0.004 −0.01 5

−0.09 1 1 −22

−0.7 −1 −0.4 44

0.7 0.6 −0.5 −36



Sξr (100) =



337.18 −14.692 −103.03 −13.96

−14.692 97.731 −3.3814 −101.83

−103.03 −3.3814 105.12 −2.4346

−13.96 −101.83 −2.4346 183.08


.

Both Sx(100) and Sξr (100) are positive de�nite matrices, so S100 is a positive de�nite matrix.
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Chapter 6

Application to Autonomous

Hypersonic Flight Cruise Control

The autonomous cruise control of hypersonic �ight is known to be notoriously challenging. At hy-

personic speeds, which are above Mach 5, several challenges present itself, First, the aerodynamic

data of hypersonic �ight vehicles (HFV) are typically di�cult to obtain. Nominal aerodynamic data

are often derived from wind tunnel data using scaled down aircraft models, which can deviate signi�-

cantly from the actual real-time aerodynamic. Secondly, the aerodynamic nonlinearities increase the

complexities involved in the autonomous hypersonic �ight control. Moreover, the boundary layers

around the vehicle become extremely turbulent. Additionally, the shock waves that are generated

by the body causes a huge temperature increase across the boundary layers, heating up the vehicle

surface, which can possibly cause ablation of the airfoil surfaces and change the vehicle aerodynamics

[56]. For example, on October 2, 1967, in the �ight test for X-15, the vehicle reached Mach 6.7,

but the high temperature around the vehicle had melted the pylon that attached the engine to the

fuselage [57] [58]. Over the years, technological advances in various sciences enabled the engineers

to develop better heat resistent airframes, enabling the plane to �y at higher Mach numbers and

for longer duration. However, heat ablation of the airframe as well as panel deformation leading
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to unknown time-varying changes in the vehicle aerodynamics remain serious obstacles in hyper-

sonic �ight [58]. HFV can be separated into two categories; the glider, such as the DARPA Falcon

HTV-2, and the air breathing vehicle, such as the Boeing X-51 Waverider. The DARPA Falcon

program �ew two glider hypersonic technology vehicles (HTV) in 2010 and 2011. The �rst HTV

glider travelled 139 seconds at Mach number ranging from 17 to 22, but terminated nine minutes

into the mission as the vehicle started to roll uncontrollably. Similarly, the second HTV glider also

terminated nine minutes out of the thirty minute test due to loss of contact [59], demonstrating the

di�culties involved in controlling HFV.

6.1 Background

In [60], a linear quadratic regulator (LQR) designed from a linear perturbation model, which is

derived from the nonlinear truth model at a certain trim condition. The LQR is applied to the

truth model to track angle of attack (AoA), velocity and altitude. Without parameter uncertainty,

the LQR can be used to control hypersonic aircrafts [60]. Unfortunately, the true inertial and

aerodynamic coe�cients are rarely known a priori, hence in practice, LQR alone is insu�cient to

stabilize HFV. Therefore, researchers looked to other types of control designs, such as robust control

[61] [62], adaptive control [63] [64] [65] [66], nonlinear control methods [67][45] [68], and machine

learning [18] [19], for close loop system stability and better tracking performance. The primary

goal of hypersonic �ight control is stability of the close-loop system, hence robust control is often

the preferred choice of controller design for hypersonic �ight control, as aircraft stability can be

guaranteed for uncertain parameters within a given known bound [69]. On the other hand, for a

less conservative controller and without requiring known parameter bounds, adaptive robust control

with parameter estimation is considered.

In [64], an adaptive controller is used to stabilize a HFV cruising at Mach 8 and subject to �ve

parameter uncertainties; mass, center of gravity, actuator saturation, pitch moment, lift and time-

delay. In [65], the longitudinal dynamics of HFV is linearized through dynamics inversion. An

adaptive controller, derived from the Lyapunov method with full state information coupled with a

sliding observer, is applied to a HFV with partial state measurement. This observer based adaptive
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controller yields satisfactory tracking performance in the presence of actuator faults. In [66] a low-

complexity controller is applied to an air breathing HFV, subject to 20% variation in aerodynamic

coe�cients with asymmetric AoA constraints, where larger range of positive AoA is allowed than

the negative values of AoA. The control law contains a non-adaptive altitude tracking control loop

and an adaptive velocity tracking control loop. The tracking performance of the low-complexity

controller is shown to be satisfactory for 20% change in aerodynamic coe�cients. To improve

robustness to aerodynamic coe�ients, the sliding mode controller is a popular choice in HFV control

due to its robustness properties; however, the resulting controller can chatter due to uncertainties

and disturbances. Therefore, adaptive sliding mode controllers are proposed that eliminate this

chattering behavior, such as [70] [71].

The following literatures examine an air breathing HFV cruiser at a height of 110,000 feet with a

speed of Mach 15 subject to varying degrees of parameter uncertainties. In [72] and [70], smaller

aerodynamic uncertainties were considered than those in [45] and [68]. In [72], a nonlinear dynamic

inversion (NDI) is applied to an air breathing HFV with full state feedback and subject to 28

parameter uncertainties, which consist of both inertial and aerodynamic uncertainties. The 28

parameter uncertainties are assumed to be normally distributed. Monte Carlos simulation shows

the NDI outperforms a linear quadratic control design. In [70], the air breathing vehicle with

velocity and altitude measurements experiences small variations in seven uncertainties consisting

of both inertial and aerodynamic uncertainties. The seven uncertainties are combined to yield two

parameters, which vary by 10.4% and 25.4%. By estimating these two parameters, an adaptive

sliding mode controller is used to stabilize the aircraft and track the reference signal and is shown to

have superior performance over a sliding mode controller, which yields a chattering input. In [45], the

HFV experiences a much larger aerodynamic uncertainty of a 50% loss in thrust, 50% loss in lift, and

25% increase in drag. Despite experiencing a large drop in altitude during the transient period, the

Sum-of-Squares (SOS) method coupled with a NDI controller stabilizes the aircraft while tracking

the reference height and velocity. A NDI only controller is shown to be an unstable controller for

HFV with large parameter uncertainties [45]. Continuing their work, [68] expanded the number of

uncertainties to six aerodynamic coe�cients and demonstrates the SOS/NDI method can stabilize
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the aircraft with up to a 60% parameter variation through Monte Carlos simulations. Below, we

discuss how our controller achieves superior performance.

6.2 Autonomous Hypersonic Flight Cruise Control

In this case study, we consider the same �ight condition and aerodynamic uncertainties as those

in [45]. The worst case control scheme coupled with MGO is applied to an air breathing HFV

cruising at Mach 15, with perfect full state measurement. The aircraft is subject to 50% loss in

thrust and in lift, and a 25% increase in drag. The worst case scheme is able to stabilize the HFV

and appears to have superior performance than those in [45]. The nominal longitudinal dynamics

model is linearized to yield a nominal linearized model at a certain trim condition. However, due

to the large aerodynamic uncertainties, the derived nominal equilibrium point and the nominal

linearized model deviates signi�cantly from the true equilibrium point and the true linearized model

of the true nonlinear longitudinal dynamics. Hence, certain parameters in the nominal linearized

model need to be estimated to accommodate for the error contributed by the large aerodynamic

uncertainties. This problem can be viewed as a linear system with unknown parameters in both the

system matrix and the input matrix. An observer is used to estimate the unknown parameters in

the system and input matrices to yield an estimated linearized model for the controller. Without

additional parameter adaptations, controllers based on the nominal linearized model might not be

able to stabilize the true plant or yield satisfactory tracking performance. Therefore the worst case

controller is coupled with the nonlinear MGO, derived based on an estimated linear model and is

applied to the true longitudinal dynamics with large aerodynamic uncertainties. The simulation

demonstrates the stability of the close loop system and the tracking performance of the worst case

control scheme.

The small perturbations theory was applied to the nonlinear longitudinal dynamics to derive a

linearized perturbation model, because the proposed the disturbance attenuation controller assumes

a linear system dynamics for the state. Typically, small perturbation theory is used for small

perturbation system and not used in systems with large uncertainties, as the error in the equilibrium

point becomes too big such that the linear perturbation approximation does not hold. In this case,
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a set of parameters were chosen to be estimated to account for some of error contributed by the

equilibrium point such that the adaptive worst case controller still leads to a stable closed loop

system as shown in the result. Although the perturbations are large and the large equilibrium

change in�uences the linearization terms, which masks the actual values of the unknown parameters

being estimated, the adaptive worst case controller still was able to stabilize the uncertain system.

Consequently, the proposed worst case scheme is quite robust, even though the linearization is

violated.

During the transient period, in comparison to the SOS/NDI method, which have longer transient

period and a large drop in altitude, the worst case scheme reacts to the aerodynamic uncertainties

faster with a small drop in velocity of about 40 ft/s in response to 50% in thrust and in lift as well

as 25% in drag. The worst case scheme also converges to steady state faster with a smooth input,

that does not chatter after the transient period. The SOS/NDI methods yields a highly varying or

chattery input for its 1500 seconds of simulation, which is suboptimal, as this leads to an increase

of the input cost. Practically, long periods of varying or chattery inputs in hypersonic vehicles can

leads to faster actuator deterioration. Hence the worst case control scheme yields overall superior

performance over the SOS/NDI method.

6.2.1 Aerodynamics of Hypersonic Flight

The hypersonic �ight model used in this simulation as well as the truth model in [45] is a conical

aircraft developed by the National Aero-Space Plane Program (NASP) at NASA [73]. A set of

simulated aerodynamic tables for a conical hypersonic aircraft were created in [73], then simulated

aerodynamic data in [73] were �tted at a height of 110, 000 ft and a velocity of 15, 060 ft/s to a set

of functions presented here. Table 6.1 presents the relevant constant parameters and variables for

this simulation.

The nonlinear longitudinal dynamics equations for the �ve rigid-body states of the aircraft, which
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Constant Parameter and Variable De�nition
Constant
Parame-
ter

Description Variable Description

a speed of sound, ft/sec α angle of attack (AoA), rad
c̄ mean aerodynamic chord length, 80 ft Cd drag coe�cient
Iyy moment of inertia, 7× 106 slug-ft2 Cl lift coe�cient
m mass, 9, 375 slugs CM(α) pitching moment coe�cient due to α
RE radius of Earth, 20, 903, 500 ft CM(δe) pitching moment coe�cient due to δe
S reference area, 3, 603 ft2 CM(q) pitching moment coe�cient due to q
µ gravitational constant, 1.39×1016 ft3/sec2 CT thrust coe�cient
α0 angle of attack at trim condition, 3.1225×

10−2 rad
δe elevation de�ection, rad, −20◦ ≤

δe ≤ 20◦

M0 Mach number at trim condition, 15 θ throttle setting, 0 ≤ θ ≤ 1
h0 height at trim condition, 110, 000 ft v velocity, ft/sec
v0 air speed at trim condition, 15, 060 ft/sec γ �ight-path angle, rad
θ0 throttle setting at trim condition, 0.1762 h altitude, ft
δe0 de�ection angle at trim condition,

−0.00694 rad
q pitch rate, rad/sec

T Thrust
L Lift
D Drag

Table 6.1: Constant and variable de�nition for hypersonic �ight simulation.

includes velocity v, �ight path angle γ, height h, AoA α, and pitch rate q, are given as follows:

Ẋ = f(X,U) =



v̇

γ̇

ḣ

α̇

q̇


=



T cos(α)−D
m − µ sin(γ)

(h+RE)2

L+T sin(α)
mv − (µ−v2(h+RE)) cos(γ)

v(h+RE)2

v sin(γ)

q − γ̇
q̄Sc̄(CM(α)+CM(δel)

+CM(q))
Iyy


, (6.2.1)

where the �ve rigid-body state X and the control input U are de�ned as follows:

X =

[
v γ h α q

]′
(6.2.2)

U =

[
θ δe

]′
. (6.2.3)

There are three forces, thrust T , drag D, and lift L, that are a�ected by aerodynamic uncertainties

72



in this truth model. The three a�ected forces are de�ned as follows:

T = κ1q̄SCT , D = κ2q̄SCD, L = κ3q̄SCL, q̄ =
ρv2

2
, (6.2.4)

where κ1, κ2 and κ3 are the unknown aerodynamic coe�cients that a�ect thrust, drag and lift,

respectively. The aerodynamic coe�cients functions derived in [74] at the trim condition ve and he

based on the simulated data in [73] are de�ned below:

CL = (0.493 + 1.91/M)α

CD = 0.0082(171α2 + 1.15α+ 1)(0.0012M2 − 0.054M + 1)

CT = 0.0105(1− 164(α− αe)2)(1 + 17/M)1.15θ

CM(α) = 1× 10−4 (0.06− exp(−M/3)) (−6565α2 + 6875α+ 1)

CM(q) =
c̄q

2v
(1.37− 0.025M)(−6.83α2 + 0.303α− 0.23)

CM(δel) = 0.0292(δel − α).

(6.2.5)

Air density ρ and Mach number M are de�ned as:

ρ = 0.00238 exp

(
− h

24000

)
M =

v

8.99× 10−9h2 − 9.16× 10−4h+ 996
.

(6.2.6)

The nominal value of the unknown aerodynamic coe�cients ko is assumed to be:

κo =

[
κo1 κo2 κo3

]′
=

[
1 1 1

]′
. (6.2.7)

Since the control design engineer only have access to the nominal plant (6.2.1-6.2.6, 6.2.7), then

κo is used in deriving the nominal linearized perturbation model. However, the actual value of κ

implemented in the nonlinear truth model is:

κ =

[
κ1 κ2 κ3

]′
=

[
0.5 1.25 0.5

]′
. (6.2.8)
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This set of uncertainty (6.2.8) is the same aerodynamic uncertainty implemented in [45]. This set of κ

re�ects 50% drop in thrust, 25% increase in drag and 50% loss in lift. The truth model (6.2.1-6.2.6,

6.2.8) presented here is the same truth model implemented in [45], where the SOS/NDI method

yields a transient response of 15,000 feet drop in altitude. In practice, the di�erence between the

nominal and actual aircraft con�gurations, such as the increase in drag and the loss of thrust and

lift, may be due to heat ablation of the airframe during the high speed aircraft re-entry phase. These

ablation e�ects are not known a priori, hence there exists error between the nominal plant and true

plant, speci�cally κo 6= κ. Since the nominal aircraft con�guration (6.2.1-6.2.6, 6.2.7) is di�erent

than the actual aircraft con�guration (6.2.1-6.2.6, 6.2.8), their respective equilibrium point, or trim

condition, may be di�erent as well.

The actuator dynamics for engine thrust θ and elevation de�ections δel are assumed to have very

high bandwidth and thus is not included in the system dynamic.

6.2.2 Simulation Setup

The main goal of the controller is to stabilize the aircraft, with a secondary goal of tracking the

aircraft height at he = 110, 000 ft and velocity at ve = 15, 060 ft/s. Hence, the reference rigid-body

state Xref and reference input Uref is de�ned as:

Xref =

[
ve 0 he αe 0

]′
(6.2.9)

Uref =

[
θe δele

]′
, (6.2.10)

where the values of αe, θe and δele are de�ned in the nomenclature. The aircraft is initialized at a

height of 108,000 ft and a velocity of 14,960 ft/s, which corresponds to a positive altitude command

of 2, 000 ft and a positive velocity command of 100 ft/s. Similar step function commands in velocity

and altitude are also tested separately in [45]. The initial �ight path angle and initial pitch rate are

both zero. The initial AoA is set at αe. The control inputs, consists of the throttle setting θ and

the elevation de�ection angle δel, is generated at 100 Hz and is held constant for each 0.01 second
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interval. Since the system cannot have in�nite input, the following bounds are imposed on the input:

0 ≤ θ ≤ 1, −20◦ ≤ δel ≤ 20◦. (6.2.11)

The close-loop dynamic system is propagated using ODE45 function in Matlab. Since the system

has perfect full state measurement, the initial estimate of the state can be set using the initial

measurement. Hence the initial state and initial state estimates are both written as:

X(0) = X̂(0) =

[
14, 960 0 108, 000 αe 0

]′
. (6.2.12)

6.3 Linearization of the Nonlinear Longitudinal Dynamics

The main goal of this problem is to �nd a set of command inputs to stabilize the aircraft around

the reference point (6.2.9) from a perturbed initial velocity and height. Since the worst case control

scheme assumes a linear plant (2.1.1), small perturbation theory is applied to the nonlinear longitu-

dinal dynamics (6.2.1) around a set of nominal trim condition (Xo
e , U

o
e ) (6.3.1) to derive a linearized

perturbation model for the worst case control scheme. The worst case control scheme then uses the

linearized model to generate worst case command inputs. The nominal equilibrium rigid-body state

Xo
e and the nominal equilibrium input Uoe , which also happen to be the reference point (Xo

ref , U
o
ref ),

are de�ned as follows:

Xo
e = Xe(κ

o) =

[
ve 0 he αe 0

]′
Uoe = Ue(κ

o) =

[
θe δele

]′
,

(6.3.1)

where the equilibrium values αe, he, ve, θe and δele de�ned in the nomenclature are derived using

nominal coe�cient κo. Using the de�nition of X (6.2.2) and Xo
e (6.3.1), the perturbed state xp and
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the perturbed input u for the linearized perturbation model is de�ned as follows:

xp = X −Xo
e =

[
∆v ∆γ ∆h ∆α ∆q

]
u = U − Uoe =

[
∆θ ∆δel

]
.

(6.3.2)

Note the unit of ∆v is km/s, not ft/s. The unit of ∆h is kilometers, not feet. The units of ∆γ,

∆α and ∆el are degrees, while the unit for ∆q is deg/s. The change of unit in the state is to

ensure the magnitude of each element is of similar order. For example, the expected variation in

α is a few degrees, which is very small in radians, while an expected change in altitude can be a

few kilometers, which is thousands of feet. Although this unit conversion is not neccessary, but by

keeping the elements in similar magnitudes, the respective error weighting S of the observer is less

ill-conditioned. Note for the linearized perturbation model and the rest of the simulation, the units

for xp would remain to be in kilometers, km/s, degrees and deg/s.

Linearizing the nonlinear dynamics (6.2.1) around the nominal trim condition (6.3.1) and rewrite

(6.2.1) in terms of the linearized model yields:

Ẋ = f(Xo
e , U

o
e ) +Aop(X −Xo

e ) +Bop(U − Uoe ) + ε = f(Xo
e , U

o
e ) +Aopxp +Bopu+ ε, (6.3.3)

where f(Xo
e , U

o
e ) is nominally 05×1 for aircraft dynamic with no aerodynamic uncertainty. ε is

assumed to be a small linearization error. Furthermore, the nominal linearized system matrix Aop

and input matrix Bop are de�ned as follows:

Aop =
∂f(X,U)

∂X

∣∣∣∣
X=Xoe ,U=Uoe

Bop =
∂f(X,U)

∂U

∣∣∣∣
X=Xoe ,U=Uoe

.

(6.3.4)

Unfortunately, the actual longitudinal dynamics (6.2.1-6.2.6, 6.2.8) contains aerodynamic uncer-

tainty κ (6.2.8). Hence the true equilibrium point (Xe(κ), Ue(κ)) is di�erent than the nominal
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equilibrium point (6.3.1). The true equilibrium point is written as:

Xe(κ) =

[
ve 0 he αe(κ) 0

]′
Ue(κ) =

[
θe(κ) δele(κ)

]′
,

(6.3.5)

where the actual equilibrium values of AoA, thrust setting and de�ection angle di�er from their

respective nominal values as shown below:

αe(κ) = 3.513◦, θe(κ) = 0.7378, δele(κ) = −0.6448◦. (6.3.6)

The di�erence between the actual equilibrium point (6.3.5) and nominal equilibrium point (6.3.1)

introduces error in the linearized perturbation model (6.3.4) and f(Xo
e , U

o
e ), which is no longer

05×1. This is because the linearization of the actual nonlinear dynamics (6.2.1) in terms of the true

equilibrium point (6.3.5) is:

Ẋ = f(Xe(κ), Ue(κ)) +Ap(X −Xe(κ)) +Bp(U − Ue(κ)) + ε, (6.3.7)

where f(Xe(κ), Ue(κ)) is 05×1 for the actual aircraft dynamic (6.2.1-6.2.6, 6.2.8). Furthermore, the

true linearized system matrix Ap and input matrix Bp are de�ned as follows:

Ap =
∂f(X,U)

∂X

∣∣∣∣
X=Xe(κ),U=Ue(κ)

Bp =
∂f(X,U)

∂U

∣∣∣∣
X=Xe(κ),U=Ue(κ)

.

(6.3.8)

Due to the large di�erence between κo and κ, controllers generated using the nominal linearized

system (6.3.4) may not yield stabilizing input. Moreover, the nominal aircraft con�guration has

di�erent equilibrium point than the true aircraft con�guration, i.e., Xe(κ
o) 6= Xe(κ) and Ue(κo) 6=

Ue(κ). This di�erence can introduce errors into the linearized perturbation model. Hence, certain

elements of the nominal linearized perturbation model need to be estimated to account for the error

in κo and the error in (Xo
e , U

o
e ), so a set of estimated linear system that can be derived to yield

a stabilizing controller. The question is which element of the nominal linearize system should be
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estimated? To address this question, we examine the di�erence between (6.3.4) and (6.3.8). First,

note the di�erence between (6.3.5) and (6.3.1) lies only in the AoA and the two inputs. Hence, we

can evaluate the �rst order derivatives at the states with common equilibrium point, i.e.:

Ap(κ, α, θ, δel) =
∂f(X,U)

∂X

∣∣∣∣
v=ve,γ=0,h=he,q=0

Bp(κ, α, θ, δel) =
∂f(X,U)

∂U

∣∣∣∣
v=ve,γ=0,h=he,q=0

.

(6.3.9)

Since the elements of (6.3.9) are functions of κ, α, and inputs, then one can examine each individual

elements to see the e�ects of the error in the equilibrium point. For example, we de�ne the following

terms:

η1 = −0.25366 cos(0.01745α)(1.72(0.01745α− 0.0312)2 − 0.0105) (6.3.10)

η2 = −0.04575(4.27× 10−4α2 + 1.646× 10−4α+ 0.0082), (6.3.11)

then the top left element of Ap(κ, α, θ, δel) can be written as:

Ap(κ, α, θ, δel)(1, 1) = η1κ1θ + η2κ2. (6.3.12)

This implies the thrust uncertainty κ1 and the drag uncertainty κ2 a�ect Ap(κ, α, θ, δel)(1, 1) linearly.

By considering di�erent possible ranges of κ, one can conclude the variation in η1 and η2 induced by

the di�erence in the equilibrium point of α is relatively small in comparison to κ1θ and κ2, which

contains larger variations. De�ne κ1θ and κ2 as a function of the nominal κo and θe:

κ1θ = κo1θe + ζ1 (6.3.13)

κ2 = κo2 + ζ2, (6.3.14)

where ζ1 and ζ2 are elements of the unknown parameters to be estimated by the observer. Using

78



(6.3.12), (6.3.13) and (6.3.14), then Ap(κ, α, θ, δel)(1, 1) can be approximate as:

Ap(κ, α, θ, δel)(1, 1) ≈ η1|αe(κo1θe + ζ1) + η2|αe(κo2 + ζ2)

= η1|αeκo1θe + η2|αeκo2︸ ︷︷ ︸
A0(1,1)

+ η1|αe︸ ︷︷ ︸
A1(1,1)

ζ1 + η2|αe︸ ︷︷ ︸
A2(1,1)

ζ2

= A0(1, 1) +A1(1, 1)ζ1 +A2(1, 1)ζ2,

(6.3.15)

where A0 is the nominal system matrix, A1 and A2 are the known coe�cients in (2.1.5) of the

unknown parameters to be estimated by the observer. Note η1 (6.3.10 ) and η2 (6.3.11 ) are evaluated

at αe for the purpose of approximating Ap(κ, α, θ, δel)(1, 1), because it is the nominal equilibrium

point for α and is known to the control design engineer. Furthermore, as mentioned before, η1 and

η2 have relatively small variations due to changes in the equilibrium point of α in comparison to κ1θ

and κ2.

Remark 11. Small perturbation theory is normally used for systems with small uncertainties so

that the error contributed by f(Xo
e , U

o
e )− f(Xe(κ), Ue(κ)) is su�ciently small so that the �rst order

approximation still holds. However, for large perturbations, f(Xo
e , U

o
e )−f(Xe(κ), Ue(κ)) is no longer

insigni�cant. The �rst order perturbation system based on nominal parameters and the perturbation

system based on actual parameters are no longer similar to each other, i.e. (6.3.4) is no longer

similar to (6.3.8). This di�erence masks the actual value of the unknown parameters, which are

being estimated. Hence for the estimation of the unknown parameters does not converge to the

actual parameter value. For example, since η1|αe 6= η1|αe(κ) and η2|αe 6= η2|αe(κ), then the estimate

of ζ1 and ζ2 does not converge to the actual value of ζ1 and ζ2. However, the estimation of ζ1 and

ζ2 does reach steady state value. However, parameter estimates does converge rapidly to steady state

for which the close loop system remains stable.

We de�ne the rest of the unknown parameters:

κ3 = κo3 + ζ3 (6.3.16)

κ1 = κo1 + ζ4. (6.3.17)
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κi and A�ected Partial Derivatives
∂v ∂γ ∂h ∂α ∂q ∂θ ∂δel

v̇ κ1, κ2 κ1, κ2 κ1, κ2 κ1

γ̇ κ1, κ3 κ1, κ3 κ1, κ3 κ1

ḣ
α̇ κ1, κ3 κ1, κ3 κ1, κ3 κ1

q̇

Table 6.2: The e�ect of κ on the perturbation model

Take the analysis that was done for Ap(κ, α, θ, δel)(1, 1), and repeat the process for all elements

of (6.3.9). One can see that κ1θ, the drag uncertainty κ2 and lift uncertainty κ3 enters elements

of Ap(κ, α, θ, δel) linearly, while κ1 enters Bp(κ, α, θ, δel) linearly. The e�ect of κ on the linear

perturbation model can be seen in table 6.2. Hence we choose to estimate the following set of four

unknown parameters ζ:

ζ =

[
κ1θe(κ)− κo1θe κ2 − κo2 κ3 − κo3 κ1 − κo1

]′
. (6.3.18)

Upon examining Table 6.2 and (6.3.8), one might immediately suggest to estimate the di�erence

between κo and κ (6.2.8), rather than the four parameters (6.3.18). However, the error from the

equilibrium point can degrade the worst case controller performance. Hence, we choose to estimate

the four parameters as shown in (6.3.18) to account for some of the errors contributed by both the κ

and the equilibrium point. Obviously, one can also choose to estimate more parameters in the hopes

of leading to a better controller performance, but the trade o� would be an increase in computational

time required to �nd the worst case control input.

Using (6.3.2) and (6.3.8), we de�ne the following linear perturbation system with perfect measure-

ment:

ẋp = Apxp +Bpu+Gpω

z = xp,

(6.3.19)
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where ε is approximated by Gpω. In this case, we choose Gp as

Gp =

1 1 0 −1 0

0 0 0 0 1


′

. (6.3.20)

This choice of Gp is selected to ensure the existence of the solution to the control Riccati equation

(2.4.6).

The error in the nominal equilibrium point (6.3.1) can lead to steady-state error in height and

velocity. To ensure that the controller can track both height and velocity, xp is augmented with

integral action on velocity and height to yield the state x as de�ned below:

x =

[
x′p

∫ t
0

∆vdτ
∫ t

0
∆hdτ

]′
. (6.3.21)

Recalling A(ζ) (2.1.5) and B(ζ) (2.1.6), we present the nominal system and control matrix for the

nominal perturbation model. Evaluating Aop and B
o
p (6.3.4) leads to:

Aop =



1.7789× 10−5 −1.6746× 10−4 −2.8333× 10−7 −2.5244× 10−4 0

4.862× 10−2 0 −1.067× 10−2 4.3989× 10−2 0

0 8.0116× 10−2 0 0 0

−4.862× 10−2 0 1.067× 10−2 −4.3989× 10−2 1

9.9967× 10−1 0 −1.5921× 10−2 5.9448× 10−1 −6.8203× 10−2


(6.3.22)

Bop =



8.3201× 10−3 0

3.2438× 10−3 0

0 0

−3.2438× 10−3 0

0 3.3168


. (6.3.23)

The nominal A0 and B0 generated using the nominal κo as a function of Aop and B
o
p are de�ned as
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follows:

A0 =


Aop 05×2

1 01×2 01×2 01×2

01×2 1 01×2 01×2


B0 =

 Bop

02×2

 .
(6.3.24)

The respective nominal Ai for ζ are de�ned as follows:

A1 =



2.6622× 10−3 0 −1.122× 10−3 −4.5357× 10−6 01×3

3.3124× 10−4 0 −4.3745× 10−4 1.8125× 10−3 01×3

0 0 0 0 01,3

−3.3124× 10−4 0 4.3745× 10−4 −1.8125× 10−3 01×3

03,1 03,1 03,1 03,1 03×3



A2 =

−4.5124× 10−4 0 1.974× 10−4 −2.5164× 10−4 01×3

06×1 06×1 06×1 06×1 06×3



A3 =



0 0 0 0 01×3

1.3526× 10−2 0 −1.0624× 10−2 4.3669× 10−2 01×3

0 0 0 0 01×3

−1.3526× 10−2 0 1.0624× 10−2 −4.3669× 10−2 01×3

03×1 03×1 03×1 03×1 03×3


A4 = 07.

(6.3.25)

The derived respective nominal Bi are as follows:

B1 = B2 = B3 = 07×2

B4 = B0.

(6.3.26)
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6.4 De�ning the Augmented System andWeightings for Worst

Case Controller

Using the derived nominal Ai and Bi, we proceed to form the augmented system. Recall that the

augmented state ξ de�ned in (2.1.7) with the respective nonlinear dynamics of the augmented state

(2.1.8) and the measurement (2.5.3) are de�ned as follows:

ξ̇ =

A(ζ)x+B(ζ)u

04×1

+

 G

04×1

ω = f(ξ, u) + Γω, where G =

 Gp

02×2

 . (6.4.1)

z =

[
I7 07×4

]x
ζ

 = H̄ξ, (6.4.2)

where Gp is de�ned previously in (6.3.20). Note the last two states of x in (6.3.21) are integral

actions on velocity and height, which are measured perfectly. Hence, both integrals can be assumed

to have perfect measurements.

The augmented system matrix in (2.5.13) for the MGO is de�ned as follows:

A(ξ̂, z, u) =

A(ζ̂) A1z +B1u · · · A4z +B4u

04×7 04×1 · · · 04×1

 . (6.4.3)

The following worst case controller constant weightings (2.2.3), which are de�ned in the performance

index (2.2.5), selected for this case study are:

Q̄ =

 Q 07×4

04×7 04

 (6.4.4)

Q = diag(50, 1× 10−4, 1, 1× 10−3, 0.1, 0.01, 1× 10−5) (6.4.5)

W = diag(0.01, 0.01) (6.4.6)

V = diag(1× 10−8, 1× 10−3, 1× 10−8, 1× 10−3, 1× 10−3, 1× 10−8, 1× 10−8) (6.4.7)

R = diag(0.001, 0.001). (6.4.8)
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Note the ∆v and ∆h units are km/s and kilometer, while attitude states are in degrees or deg/s, then

the variation in velocity and height is smallers in comparison to the attitude states. For example,

the one km/s drop in ∆v translates to 3,280 ft/s, this is a very big and unacceptable drop in ∆v.

Hence, the large weighting on ∆v is placed in Q(1, 1) in (6.4.5). A drop of one kilometer in height

is a relatively acceptable magnitude in comparison to velocity, as the initial ∆h starts o� with a

drop of 2,000 feet. Hence, the smaller weighting used in Q(3, 3). The attitude states can vary a few

degrees or deg/s, hence the much smaller weighting in Q(2, 2), Q(4, 4) and Q(5, 5) for the attitude

states. The integral state weightings are relatively small, as we want a gradual convergence of the

tracking error. Too fast of a convergence in ∆h and ∆v can yield higher triansient pitch rate and

overly large transient AoA. For stability and to prevent engine stall, AoA should remain between

±11◦ [64].

Recall V is a constant weighting on the measurement in the accumulation function (2.5.4). V is used

as a tuning parameter to adjust the rate of convergence for the augmented state estimates. Since ∆v

and ∆h measurements can be very precise, we choose small weightings in the corresponding elements

of V in (6.4.7). However, it must be noted from stochastic point of view, a variance of 1× 10−8 km2

corresponds to 0.328 feet in standard deviation. This is might seem small, but we had assumed that

we have perfect measurement of the state, so this is acceptable. Note the small weightings in V for

∆v and ∆h, indicating the level of con�dence in the velocity and height measurement, would lead

to very negligible di�erences between their true states, their state estimates and their worst case

state estimates. The attitude states are in degrees, hence the relatively larger weighting in V on the

order of 0.001 is set for the attitude states.

The initial augmented state and estimate of augmented state is set at:

ξ(0) =

[
−0.03048 0 −0.6096 01×2 ζ ′

]′
(6.4.9)

ξ̂(0) =

[
−0.03048 0 −0.6096 01×2 01×4

]′
, (6.4.10)

which corresponds to the initial ∆v at −100 ft/s and the initial ∆h of −2, 000 feet. Again, note

the velocity and height units are km/s and kilometers respectively. The initial estimate of ζ is
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initialized at zero, as we expect the nominal system to be the correct model. The respective initial

error weighting P (0) is set as

P (0) = diag(0.03, 0.1, 0.03, 0.5, 0.1, 0.1, 0.1, 0.001, 0.001, 0.001, 0.001). (6.4.11)

The error weighting in P (0) for height is 0.03 km2 might seem small at �rst glance. However,

from stochastic point of view, the variance of 0.03 km2 corresponds to a variance of 322917 ft2 or

a standard deviation of 568 feet. So the initial error weighting for velocity and height are fairly

large. The respective angle error weightings are 0.1. The aerodynamic coe�cents are thought to

be fairly accurate, hence the error weightings on those elements are small at 0.001. If the iniital

estimated uncertainties di�er signi�cantly from the actual uncertainties, then the smaller the error

weighting on the uncertain parameters, the slower the convergence rate of the uncertainty estimates.

However, in this case, even though the error weighitngs are small, the convergence rate of the worst

case parameters still yield a stable input.

6.5 Simulation Result

The simulation ran for 1,000 seconds to demonstrate the performance of the worst case controller

in stabilizing a hypersonic aircraft with uncertain aerodynamic coe�cients. Figure 6.1 presents the

state history x in blue lines, state estimate x̂ in red lines and worst case state x∗ in green lines. Since

V (6.4.7) is small, the three lines are on very close to each other. As shown, the initial velocity is

100 ft/sec slower than the target velocity ve, and the initial height is 2,000 ft lower than the target

height he. Controller using only the nominal A0 and B0 as plant model might yield conservative

inputs, have suboptimal performance, and might be unable to stabilize the aircraft, due to the error

in the A0 and B0. The worst case controller scheme was able to quickly generate a set of control

inputs that not only stabilize the aircraft, but also track both height and velocity to zero due to the

integral actions on these two states. If the integral actions were not included as part of the state,

there would exist a steady state error in height and possibly velocity, but the aircraft would still be

stable.
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As shown in �gure 6.1, the velocity dropped initially by approximately 40 ft/sec due to the e�ect of

the uncertain parameters. The MGO was able to quickly adjust the parameter estimates to yield a

stabilizing controller. Hence, the controller was able to quickly converge in height and velocity. The

integral weighting on height is very small at 1×10−5 to prevent large transient AoA and engine stall

as mentioned before, hence the convergence of height to zero is slow, but the aircraft still reaches

target height by the end of the simulation.

The parameter error in dynamics of pitch rate is not estimated as no parameter uncertainties enter

into the pitch rate dynamics, however a small error contributing from error in the nominal equilibrium

point remains in the nominal pitch rate dynamics used by the observer. This leads to a bias of 0.0635◦

in the steady state pitch rate. However, 300 seconds into the simulation, the true pitch rate reaches

6.79× 10−5 ◦/s and remain in steady state despite the bias in pitch rate estimate. Practically, the

pitch rate is in steady state.

The true AoA trim condition for the aircraft is 3.513◦. The true trim condition of the thrust setting

is 0.738, and the true trim condition of the de�ection angle is −0.645◦. Although error exists in

the nominal equilibrium value αe and Ue, the worst case controller stills converge towards the true

equilibrium point of the aircraft and stabilize the system. The aircraft reaches su�ciently close to

the true equilibrium point at around 700 seconds and remains in steady state for the rest of the

simulation. By the end of the simulation, the steady state AoA is 3.518◦ which is very close to the

true AoA trim condition.

Figure 6.2 shows the initial �rst 0.1 seconds of the simulation. The initial worst case state di�ers

from the initial state and initial estimate. The di�erences are signi�cant in velocity and height,

where the di�erence in velocity is abount 65 ft/s and the di�erence in height is about 950 feet.

However, due to the small weighting V in the velocity and height position, the worst case velocity

and height converges quickly to the estimates values. This is shown in �gure 6.2. If one wishes to

slow down the convergence rate of ξ∗ to ξ̂, one can increase V .

Figure 6.3 presents the estimation of the unknown parameters. The observer was able to react quickly

to the error introduced by the di�erent aircraft con�gurations (κ 6= κo) and yield a stabilizing worst
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case controller. The parameter estimates are similar to the worst case parameters, as the error

weighting elements in P (0) corresponding to the unknown parameters are very small and is on the

order of 0.001. One can increase the parameter error weightings in P (0) to increase the di�erence

between the worst case parameter and the estimates. As mentioned in remark 11, the error in the

linearization due to the large parameter perturbation masks the true parameters being estimated,

hence ζ̂ does not tend to the actual value of ζ. However, the parameter estimates does reach steady

state value and worst case scheme yields a stable controller.

Figure 6.4 presents the input signal for the thrust setting θ and the de�ector angle δel. The controller

saturates the thrust setting at the beginning to increase velocity towards its target velocity. After

approximately 47 seconds, the thrust setting converges towards the equilibrium point. Figure 6.5

presents a closer view of the transient behavior of the input.

A similar hypersonic aircraft truth model was also considered in [45], with 50% decreases in thrust

coe�cient, 50% decrease in lift coe�cient and 25% increase in drag. In [45], the nonlinear dynamic

system is split into two parts, a slow dynamics containing all states except pitch rate, and a fast

dynamics that only contains pitch rate. A SOS based controller is used to derive the thrust setting

θ and a command pitch rate. A NDI based controller then takes the commanded pitch rate to

derive a de�ection angle. The SOS/NDI algorithm was shown to stabilize the hypersonic aircraft

around the reference signal while subject to the large aerodynamic uncertainties. As comparison,

the SOS/NDI method is compared to the NDI/NDI method, where the NDI method was also used

to control the slow dynamics. The NDI/NDI method was unable to stabilize the hypersonic aircraft

subject to such large parameter uncertainties. Though the SOS/NDI algorithm was able to stabilize

the aircraft with uncertainties , the transient response of the aircraft was sluggish.

When subject to a 100 ft/sec airspeed command, the aircraft dropped about 15,200 feet during the

transient period before recovering back to the reference height. Furthermore, it takes about 700

seconds to recover the loss in height during the transient period. When subject to a 2,000 feet

altitude command, altitude drop of roughly 14,500 feet was also observed. By comparison, when

simultaneously subject to a 100 ft/sec airspeed command and a 2,000 feet altitude command, the
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worst case controller was able to stabilize the aircraft at the reference velocity and height without

such signi�cant loss in altitude during the transient period. The respective de�ection angle in [45]

also �uctuates around the equilibrium point and does not remain in steady state for the 1,500 seconds

of their simulation. This implies wasted actuator energy over a long period of time and suggests an

increase in input cost. Practically, frequent actuation of the de�ector is stressful on the actuator

itself. In contrast, the worst case de�ection angle reaches steady state value quickly after stabilizing

the aircraft around ve and he. Hence, in terms of performance and input e�ciency, the worst case

control scheme has outperformed the SOS/NDI algorithm as presented in [45].

6.5.1 Future Work

In this case study, the system has perfect full state measurement. In practice, the altitude and

velocity can be measured with reasonable accuracy using data from global positioning system (GPS).

The �ight path angle can also be calculated from the change in altitude and velocity. However,

AoA measurements can be noisy [70]. For HFV with perfect partial measurements, the original

controllable and observable linearized system must �rst transformed into an observable canonical

form. The disturbance attenuation controller coupled with the nonlinear MGO can then be applied

to the transformed system.
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Figure 6.1: True state x, state estimate x̂ and worst-case state x∗ are displayed in blue, red and
green, respectively. Since V (6.4.7) is small, the three lines are very close to each other. The error in
the nominal equilibrium point leads to the small steady state bias between the pitch rate estimate
and the true pitch rate.
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Figure 6.2: This is a close up look of the state history for the �rst 0.1 seconds. The initial worst case
state is di�erent than the initial state estimate as well as initial state. Since the system is assumed
to have perfect measurement and V is very small, then the state estimate is very close to the true
state. The initial di�erences between the worst case velocity and the inital velocity is about 65 ft/s.
The initial di�erences between the worst case height and the inital height is about 950 feet.
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Figure 6.3: ζ̂ and ζ∗ are displayed in blue and green lines, respectively. Since initial error weighting
in ζ is very small, ζ̂ and ζ∗ is very close to each other, hence the blue and green lines are on
top of each other. The large equilibrium change in�uences the linearization terms Ai and Bi, and
mask the actual values of the unknown parameters, which are being estimated. Hence ζ̂ does not
tend to actual ζ. However, the observer does yield a stable worst case controller, even though the
linearization is violated.
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Figure 6.4: The input history of 1000 seconds are displayed here. The thrust setting θ was saturated
initially to increase velocity towards ve. After velocity reaches past ve, the thrust setting converges
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Figure 6.6: Worst case control input gain history for 1000 seconds. The blue lines represent the top
row of the input gain, which is associated with the thrust. The red lines represent the bottom row
of the input gain, which is associated with the de�ection angle.
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Chapter 7

Conclusion and Future Work

In the current work, we examined a linear system subject to process disturbance and unknown plant

variations in both system and control matrices. The plant makes perfect partial measurement and is

subject to a di�erential games cost function based on disturbance attenuation function, which pits

the input against process disturbances and plant uncertainties. The optimization yields a worst-

case controller coupled with a nonlinear modi�ed gain observer to stabilize the plant. The observer

yields an estimate of the state and the system parameters as well as the respective weightings

associated with the error of those estimates. Base on both the estimates and the weighting on

the estimation error, a set of worst-case parameters is derived with respect to the cost function.

Using the worst-case parameters, the worst-case control gain is generated for the system. The

current work also presented the saddle point condition as well as the stability conditions for the

disturbance attenuation controller. It was shown given a certain conditions, such as observability

and controllability as well as existence of solutions to the Riccati equation, the close loop system is

stable.

The worst case control scheme is applied to an unstable linear system with unknown system parame-

ter subject to perfect partial measurement. The example illustrates the superior performance of the

worst case controller coupled with the MGO over the LQR coupled with MGEKO. Furthermore, this
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work also applies the worst case control scheme to an air-breathing HFV with full state measurement

and subject to large aerodynamic uncertainties, such as 50% loss in thrust, 50% drop in lift and

25% increase in drag. The worst case control scheme demonstrates faster tracking performance and

better transient performance than the SOS/NDI algorithm presented in [45].

As discussed in the current work, the optimality conditions are di�cult to solve in close form solution

to �nd the worst-case parameters. Numerical methods must be utilized to solve the optimality con-

ditions. Hence, �nding e�cient numerical methods to solve the optimality conditions is important.

Secondly, the stability condition requires �ve assumptions, which includes the existence of solution

to the controller and observer Riccati equations. However, the existence of solution is di�cult to

ascertain at the initial time. One area of possible future work is to determine the range of initial

error weightings that can guarantee the existence of solution to both Riccati equations given initial

parameter and state estimates, and thereby ensure stability of the unknown linear system at initial

time. Lastly, the stability properties of the worst case controller was proved using a Lyapunov func-

tion. One can also prove the close loop stability by using the value function proposed in this work

and ensure that it satis�es the Hamilton-Jacobi-Isaacs equation.
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