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Abstract of Dissertation 

Large-scale network activity and circuit connections in the 
developing mouse hippocampus 

By 

Yulin Shi 

Doctor of Philosophy in Biomedical Sciences 
 

 University of California, Irvine, 2014 
 

Associate Professor Xiangmin Xu, Chair 

 

Developing neuronal circuits have many interesting properties; understanding the 

development process can give us insights on functioning of complex adult neural 

circuits. One of major features of immature neural circuits is the spontaneous activity, 

which has also been considered a driving force of circuit maturation. Giant Depolarizing 

Current (GDP) is the major spontaneous activity at single neuron level of developing 

hippocampus. What is missing, however, is whether hippocampus has large scale 

network level spontaneous activity that precedes the formation of mature hippocampal 

circuits, i.e. unidirectional trisynaptic flow. In chapter 1 of this study, we use Voltage 

Sensitive Dye Imaging to investigate the initiation and propagation of global network 

activity (GNA) in developing hippocampus. GNA originates in distal CA3 and 

propagates both forward to CA1 and backward to DG. Single-cell and local field 

potential recording confirmed GNA is closely related to neuronal activation. Further, 

enhancement of local circuit connections to excitatory pyramidal neurons occurs over 

the same time course as GNA. Thus Bi-directional GNA precedes the maturation of the 

mouse hippocampal circuit, and it is correlated to maturation of functional circuit 
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connections.  To further understand the underlying pathway for back-projection from 

CA3 to DG in the developing hippocampus, in the study of chapter 2, we use laser 

scanning photostimulation technique to map synaptic circuit development of mossy 

cells. We observed major regional sources of circuit excitation and inhibition to hilar 

mossy cells were changed from CA3 to DG during development. The excitatory back 

projection from CA3 to mossy cell were greatly reduced in adult hippocampus. Thus, 

hilar mossy cells can play important role in circuit signal back-propagation from CA3 to 

DG.  In chapters 3 and 4, we demonstrate an innovative technology which automatically 

detects and extracts EPSC and IPSC events in electrophysiological recording. We also 

present our GPU based computing system and our modification of the previous 

technology to utilize the power of GPU computing. GPU computation could greatly 

improve the speed of computation while retaining data precision. Taken together, my 

dissertation studies contribute new and important knowledge to the field of 

hippocampus circuit studies, using our newly developed techniques.   
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Introduction 

Hippocampal circuitry has been the center of neuroscience research to 

understand learning and memory, and temporal lobe epilepsy; considerable efforts have 

been focused on its development and organization. The hippocampus has a distinctive 

trisynaptic organization that is strongly feed-forward in the directionality of its 

information flow (i.e., dentate gyrus, DG-> CA3-> CA1), which contributes to both 

normal function and pathology.  There have been considerable efforts to understand the 

developmental processes that lead to the adult hippocampal circuit organization.  

Spontaneous network activity in many developing neural circuits, including the 

hippocampus, contribute to circuit formation in many important ways (Behrens et al., 

2005; Gonzalez-Islas and Wenner, 2006; Ben-Ari et al., 2007).  In the early developing 

hippocampus, spontaneous-recurring network events termed giant depolarizing 

potentials (GDPs) (Ben-Ari et al., 1989; Ben-Ari et al., 2007) are well known, and  GDPs 

are generally believed to be GABAergic events mediated by GABAA receptor 

transmission (Ben-Ari, 2002; Ben-Ari et al., 2007) (however, see (Bolea et al., 1999; 

Sipila et al., 2005)).  Similar to GDPs observed in vitro, spontaneous sharp waves 

(SPWs) visible in extracellular field potential recordings also have been observed in the 

hippocampus of neonatal and adult rats in vivo (Buzsaki, 1986; Leinekugel et al., 2002; 

Buhl and Buzsaki, 2005) – some of these researchers suggest that SPWs and GDPs 

are essentially the same phenomena measured under different experimental conditions.  

GDPs or SPWs recorded at the microscopic level indicate that spontaneous activity is 

important for developing hippocampus; however, studies to date have not provided a 

macroscopic network-level view of the spatial and temporal dynamics of spontaneous 
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neural activity, and the spontaneous network activity in the developing hippocampus 

immediately precedes the unidirectional trisynaptic circuit organization that 

characterizes adult hippocampus. 

Underlying the spontaneous network activity are the immature hippocampal 

circuitry, comprising dentate granule cells, hilar mossy cells, CA3 and CA1 pyramidal 

neurons. In mature circuits, these neurons form complex recurrent network that are 

innervated by hippocampal interneurons. So far the developing neural circuitry in 

hippocampus was not fully understood, especially during the period in which the 

spontaneous network activity is still active. Investigation of the connection development 

of these excitatory neurons might help understand the initiation and propagation of 

spontaneous network activity, and also provide more information for epileptogenesis.  

Within this context, we used a set of experiments with a multidisciplinary approach 

including fast voltage-sensitive dye (VSD) imaging of neuronal activity and laser 

scanning photostimulation by the uncaging of neurotransmitters to examine the 

developing circuit activity and connections in slice preparations of mouse hippocampus.  

This combined approach allows for high spatiotemporal-resolution imaging of the entire 

circuit including the dentate gyrus (DG), CA3 and CA1, and also enables effective 

mapping of local functional circuit connections.  We have identified the spontaneous 

network activity we term Global Network Activation (GNA) in the developing mouse 

hippocampal slices measured macroscopically by fast VSD imaging. Then we continued 

to record from CA3 pyramidal neurons and hilar mossy cells at different developmental 

ages to map developmental changes of circuit connections using laser scanning 

photostimulation-based techniques. To facilitate data processing and analysis for the 
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large scale circuit mapping studies, we also developed new computer algorithms and 

tools in aiding data analysis and quantification. This series of studies are described in 

my dissertation including the subsequent four chapters. 

In chapter 1 (published as a research article, 'Shi et al, 2010’ ), fast voltage-sensitive 

dye(VSD) imaging of neuronal activity will be used to identify and characterize 

spontaneous network activity in developing hippocampus slices at different ages 

(postnatal days 1-18 (P1-P18)) and the timing of spontaneous network activity will be 

examined in relation to the development of mature circuit connectivity. We further use 

Laser scanning photostimulation and whole cell recording to examine developmental 

enhancement of local synaptic connections to excitatory neurons of CA3 at different 

time points (P2-P14). 

In Chapter 2, we further test the hypothesis that the circuit connections of mossy 

cells develop as the hippocampus maturation. As the formation of unidirectional 

trisynaptic circuits, the back-projection from CA3 to mossy cell should be greatly 

reduced. The photostimulation approach will be used to examine local circuit 

connections to mossy cells in the hilus at different developmental ages (P6-P7, P13-

P14, and p21-p28). We found that mossy cell received most excitatory input from DG at 

P14, and slightly less at P21-P28.  The input from CA3 and Hilus decreases as the 

animal ages. Similarly, inhibitory input from DG, Hilus and CA3 to Mossy cell is weak at 

P7. The input strength increased significantly at P14 and goes down at P21-28. DG 

provides dominant inhibition comparing to other areas.  

In Chapter 3 (published as a research article ‘Shi et al, 2013’), we tested the 

hypothesis that the synaptic events (EPSCs and IPSCs) can be detected through 
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automatic software processing, which expedited the photostimulation data processing 

significantly. We developed a novel matched filtering technique which enables 

dependable automatic detection of synaptic events with minimal human supervision. 

The current technique has overcome the limitations of previously described threshold 

and template comparison techniques in detection of complex evoked synaptic signals 

with variable amplitudes and superimposed events. An important innovation of our 

technique is utilization of a bank of matched filters for the detection stage, which offers 

several advantages (including improved sensitivity and specificity) over previous 

techniques of template comparison. 

In Chapter 4, we further improve the software in chapter 3 with cutting edge 

GPU-computing technology. Modern neuroscience studies produce large amount of 

data and require intensive computation for post-hoc processing and analysis. In this 

chapter, we designed and implemented a cost-effective desktop computer system for 

accelerated experimental data processing with recent GPU computing technology.  In 

addition, we show how GPUs can be effectively adapted to improve the performance of 

commercial image processing software such as Adobe Photoshop.  The experimental 

results show that GPU enabled computation enhances our ability to process large-scale 

data sets derived from neural circuit mapping studies, allowing for significantly 

increased processing speeds while retaining data precision and minimizing 

programming effort.  To our best knowledge, our work is the first demonstration in this 

subfield of neuroscience. 

Finally, in Chapter 5, I provide concluding remarks regarding the circuit 

development of hippocampus and describe the future directions that should be pursued 
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to better understanding the relation between spontaneous activity and circuit 

maturations. Also, I review the techniques described in chapter 3 and 4 and discuss 

their further applications.  
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Chapter 1: 
Bi-directional global spontaneous network activity precedes the 
canonical unidirectional circuit organization in the developing 
hippocampus 

 
Spontaneous network activity is believed to sculpt developing neural circuits.  

While spontaneous giant depolarizing potentials (GDPs) were first identified with single 

cell recordings from rat CA3 pyramidal neurons, here we identify and characterize a 

large-scale spontaneous network activity we term Global Network Activation (GNA) in 

the developing mouse hippocampal slices which is measured macroscopically by fast 

voltage-sensitive dye imaging.  The initiation and propagation of GNA in the mouse is 

largely GABA-independent and dominated by glutamatergic transmission via AMPA 

receptors.  Despite the fact that signal propagation in the adult hippocampus is strongly 

unidirectional through the canonical trisynaptic circuit (dentate gyrus, DG to CA3 to 

CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and 

propagates both forward to CA1 and backward to DG.  Photostimulation-evoked GNA 

also shows prominent backward propagation in the developing hippocampus from CA3 

to DG.  Mouse GNA is strongly correlated to electrophysiological recordings of highly 

localized single cell and local field potential events.  Photostimulation mapping of neural 

circuitry demonstrates that the enhancement of local circuit connections to excitatory 

pyramidal neurons occurs over the same time course as GNA, and reveals the 

underlying pathways accounting for GNA backward propagation from CA3 to DG.  The 

disappearance of GNA coincides with a transition to the adult-like unidirectional circuit 

organization at around two weeks of age. Taken together, our findings strongly suggest 

a critical link between GNA activity and maturation of functional circuit connections in 

the developing hippocampus. 
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Introduction 

The hippocampal circuit underlies learning and memory processes, and mediates 

pathological conditions such as temporal lobe epilepsy.  The hippocampus has a 

distinctive trisynaptic organization that is strongly feed-forward in the directionality of its 

information flow (i.e., dentate gyrus, DG-> CA3-> CA1), which contributes to both 

normal function and pathology.  There have been considerable efforts to understand the 

developmental processes that lead to the adult hippocampal circuit organization.  

Spontaneous activity in many developing neural circuits, including the hippocampus, 

contributes to circuit formation.  In the early developing hippocampus, GABA actions are 

depolarizing and excitatory, coinciding with spontaneous-recurring network events 

termed giant depolarizing potentials (GDPs) (Ben-Ari et al., 1989; Ben-Ari et al., 2007).  

GDPs were initially identified with single cell recordings from CA3 pyramidal neurons in 

slices of neonatal rats; further studies have continued mostly in rat hippocampal 

preparations with single cell and local field electrophysiological recordings and Ca2+ 

imaging methods (Ben-Ari et al., 1989; Bonifazi et al., 2009; Garaschuk et al., 1998; 

Leinekugel et al., 1998; Leinekugel et al., 1997).  Propagating network events related to 

GDPs also have been examined using fast voltage-sensitive dye imaging in rat 

hippocampal slices (Bolea et al., 2006).  GDPs are believed to be GABA dependent 

events mediated by GABAA receptor transmission (Ben-Ari, 2002; Ben-Ari et al., 2007; 

Ben-Ari et al., 1997) (however, see (Bolea et al., 1999; Sipila et al., 2005; Xie et al., 

1994) ).  Similar to GDPs observed in vitro, spontaneous sharp waves (SPWs) visible in 

extracellular field potential recordings also have been observed in the hippocampus of 

neonatal and adult rats in vivo (Buhl and Buzsaki, 2005; Buzsaki, 1986; Leinekugel et 
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al., 2002) – some of these researchers suggest that SPWs and GDPs are essentially 

the same phenomena measured under different experimental conditions.  GDPs or 

SPWs recorded at the microscopic level indicate that spontaneous activity is important 

for developing hippocampus; however, studies to date have not provided a macroscopic 

network-level view of the spatial and temporal dynamics of spontaneous activity or 

addressed the relative timing compared with the development of mature circuit 

connectivity. 

To provide a macroscopic global view of these processes in developing 

hippocampus, we combined fast voltage-sensitive dye (VSD) imaging of neuronal 

activity and laser photostimulation by the uncaging of neurotransmitters to examine the 

developing circuit activity and connections in slice preparations of mouse hippocampus.  

This approach allows for high spatiotemporal-resolution imaging of the entire circuit 

including the dentate gyrus (DG), CA3 and CA1, along with functional mapping of circuit 

connections.  Herein, we describe spontaneous global network activation (GNA) 

measured by VSD imaging, which propagates from distal CA3 to DG as well as to CA1 

in the trisynaptic circuitry.  Spontaneous and evoked mouse GNA have similar 

spatiotemporal properties as assessed by VSD imaging and laser photostimulation in 

the developing circuitry.  Bi-directional GNA precedes the maturation of the mouse 

hippocampal circuit, as GNA disappears immediately before the emergence of the 

unidirectional trisynaptic circuit organization that characterizes adult hippocampus. 

Methods  

Slice preparation and experimental conditions 
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 All animals were handled and experiments were conducted in accordance with 

the procedures approved by the Institutional Animal Care and Use Committee at the 

University of California, Irvine.  Seventy-five C57/B6 background mouse pups (either 

sex) of postnatal (P) day 1 (P1) – P18 were used for the experiments.   

 Hippocampal slices of 400 µm thick were cut at the angle optimized to conserve 

the intrahippocampal axonal projections (Bischofberger et al., 2006), in well oxygenated 

(95% O2-5% CO2), ice-cold sucrose-containing cutting solution (in mM: 85 NaCl, 75 

sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4, 4 MgCl2, 0.5 CaCl2, and 24 NaHCO3) or in 

the artificial cerebrospinal fluid (ACSF) (in mM: 126 NaCl, 2.5 KCl, 26 NaHCO3, 2 

CaCl2, 2 MgCl2, 1.25 NaH2PO4, and 10 glucose) with a broad-spectrum excitatory 

amino acid antagonist kynurenic acid (0.2 mM).  On average, one or two morphological 

intact slices (as illustrated at the horizontal plates of 147-150 in (Paxinos and Franklin, 

2001)) between dorsal and ventral hippocampus from each hemisphere was used for 

experiments.  For VSD imaging experiments, slices were first incubated in the cutting 

solution for 30 minutes at 32°C, and then transferred for dye staining at room 

temperature (22°C) for 1 hour in oxygenated ACSF containing 0.12 mg/ml of the 

absorption voltage-sensitive dye, NK3630 (Kankoh-Shikiso Kenkyusho Co., Japan), 

then maintained in regular ACSF before use.  We used standard open recording 

chambers which maintained slice health and viability well, as evidenced by 

measurement of GNA activity for periods lasting more than 6 hours.  A majority of 

imaging experiments were conducted at room temperature.  Further experiments were 

conducted at 32 °C with an in-line solution heater (Warner Instruments, Hamden, CT).  
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The characteristics of spontaneous and evoked network activity did not differ at different 

temperatures.  The data obtained were pooled together for analysis. 

Voltage-sensitive dye imaging 

Our overall system of electrophysiological recordings, photostimulation and 

imaging was described previously (Xu et al., 2010).  Unless otherwise specified, optical 

recording of VSD signals was performed under the 4x objective with a sampling rate of 

4.4 ms per frame (frame resolution 88 (w) x 60 (h) pixels).  The field of view covered the 

area of 1.28 x 1.07 mm2 with a spatial resolution of 14.6 x 17.9 µm2/pixel.  To image 

spontaneous network activity, 5-10 sessions (9 trials per session) were conducted with 

3 minutes of off-illumination intervals between sessions. For each trial, the VSD imaging 

duration was 2000 frames (i.e., 8.8 seconds) with an inter-trial interval of 12 seconds 

(i.e., 8.8 seconds for data recording plus 3.2 seconds for saving data).  Each session 

lasts for 9 x 12 seconds (108 seconds total).  Due to the known concern of dye photo-

toxicity from prolonged illumination, we chose not to image stained slices continuously, 

and instead we used spaced sessions to detect GNA events for a total duration of up to 

18 minutes, which is sufficient in terms of total acquisition times.  We measured the total 

GNA events from all these sessions against the total imaging time to derive the GNA 

frequency (events per minute).  For the imaging of photostimulation-evoked activity, 

MNI-caged glutamate (Tocris Bioscience, Ellisville, MO) or CNB-caged GABA 

(Invitrogen, Carlsbad, CA) was added to the ACSF at 0.2 mM.  A UV laser unit (DPSS 

Lasers, Santa Clara, CA) was used to generate 355 nm pulses (e.g., 1 ms, 20 mW) for 

glutamate or GABA uncaging.  VSD imaging of photostimulation-evoked activity was 

triggered and synchronized with laser photostimulation.   



` 

11 

 

Figure 1.1

  

Figure. 1.1. Spontaneous global network activation (GNA) in the developing 
mouse hippocampus exhibits both strong forward and backward propagation 
from distal CA3.  A-B.  Voltage-sensitive dye (VSD) imaging and simultaneous whole 
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cell recording indicate that GNA is tightly correlated with single neuronal activity.  The 
measurements were taken from a proximal CA3 site as indicated by the small black 
square.  The VSD image frame in A was plotted beginning at the peak of excitatory 
synaptic input to the recorded neuron.  Color-coded activity is superimposed on the 
background slice image.  The color scale codes VSD signal amplitude expressed as SD 
(standard deviation) multiples above the mean baseline.  B shows the aligned optical 
signal trace (VSD signal in the percent change of pixel intensity [ΔI/I %]) and voltage-
clamp recording trace.  C.  Time series data from VSD imaging of spontaneous GNA.  
The white arrowhead indicates the initiation site in distal CA3.  D.  The time courses of 
VSD signal from the regions of interest indicated by the colored rectangles in B are 
plotted from GNA onset.  E.  Schematic distribution of spontaneous GNA initiation 
zones (8 representative slices).  Each triangle represents one slice sample.  F-G.  
Space-time analysis of GNA propagation shown in B.  F shows an analysis curve 
aligned with the hippocampal circuitry in the slice image, and G is the space-time map 
with the y-axis indicating the location along the analysis curve shown in F (e.g., the 
green, red, blue and pink arrowheads correspond to those sites indicated in F) and with 
the x-axis denoting the time progression from the activity onset.   
 

VSD signal amplitudes were originally measured by the percent change in pixel 

light intensity (ΔI/I %), and expressed as standard deviations (SD) above the mean 

baseline signal for display and quantification.  The activated pixel was empirically 

defined as the pixel with the amplitude ≥ 1 SD above the baseline (equivalent to the 

detectable signal level in the original VSD maps of ΔI/I %).  VSD images were smoothed 

by convolution with a Gaussian spatial filter (kernel size: 5 pixels; standard deviation 

(σ): 1 pixel) and a Gaussian temporal filter (kernel size: 3 frames; δ: 1 frame).  In the 

present study, single-trial VSD signals were of sufficiently high amplitudes and could be 

discerned from background noise; no averaging over multiple trials was used for data 

presentation unless specified.  Images were displayed and analyzed using custom-

made MATLAB programs.  To quantify VSD response strength of spontaneous or 

photostimulation-evoked GNA, the average number of activated pixels and average 

response amplitude within the defined window of analysis were measured for each trial.   



` 

13 

 

We follow the basic nomenclature of Lorente de Nó (1934) and Ishizuka et al. 

(1990) for hippocampal subfields.  We do not distinguish the CA2 region as it is not well 

defined in early postnatal hippocampal slices (Grove and Tole, 1999; Tole et al., 1997), 

however, the presumptive CA2 identified in some slices appears to be part of the GNA 

initiation zone.  The terms of proximal (nearer the dentate gyrus) and distal (further 

away from the dentate gyrus) are used to designate positions along the transverse axis 

of the CA3 (Ishizuka et al., 1990).  The mid-line of the fimbria divides CA3 into the distal 

and proximal portions.   

For statistical comparisons across more than two groups, we used the Kruskal-

Wallis test (nonparametric 1-way ANOVA) and the Mann-Whitney U test for group 

comparisons.  Alpha levels of p ≤ 0.05 were considered significant.  All the values were 

presented as mean ± SE. 

Electrophysiology and laser scanning photostimulation 

 For electrophysiology and photostimulation mapping experiments, the slices did 

not go through the dye staining unless specified.  To perform whole cell recordings, cells 

were visualized at high magnification (60× objective) and patched with glass electrodes 

of 4–6 MΩ resistance that were filled with an internal solution containing (in mM) 126 K-

gluconate, 4 KCl, 10 HEPES, 4 ATP-Mg, 0.3 GTP-Na, and 10 phosphocreatine (pH 7.2, 

300-305 mOsm).  The internal solution also contained 0.1% biocytin for cell labeling and 

morphological identification.  The glass electrodes with the same resistance parameters 

as noted above were also used for extracellular field potential recording.  Raw 

electrophysiological data were digitized at 10 kHz, and stored on data acquisition 

computers.  Once stable whole cell recordings were achieved with good access 

http://www.ncbi.nlm.nih.gov/pubmed/2358523
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resistance (usually <20 MΩ), the microscope objective was switched from 60× to 4× for 

laser scanning photostimulation (LSPS).   

Figure 1.2 

 

Figure. 1.2. Developmental changes of GNA.  A, B, C and D.  Average GNA event 
frequency, duration, peak amplitude and propagation speed during P2-P16, 
respectively.  The curves are polynomial-fits through data points (each measured from 
several sampled events from 4-5 slices).  The values represent mean ± SE. 

 

The LSPS method has been previously used in the neocortex and hippocampus 

(Brivanlou et al., 2004; Dantzker and Callaway, 2000; Shepherd et al., 2005; Weiler et 

al., 2008; Xu and Callaway, 2009).  Under our experimental conditions, only neurons 



` 

15 

 

located within ~100 µm of the site of photostimulation fired action potentials.  Therefore, 

laser photostimulation allowed high spatial-resolution activation of action potentials 

restricted to excitatory or inhibitory neurons close to the location of each 

photostimulation site.  It also could be inferred that under our LSPS mapping conditions 

and within our analysis window (see below), evoked synaptic currents reflect direct 

connections onto the recorded cell from the cells at or near the photostimulation sites in 

different hippocampal subfields.  During mapping experiments, photostimulation was 

usually applied to 16×16 patterned sites (with an inter-site space of 60-80 µm2) covering 

the whole hippocampus in a nonraster, nonrandom sequence to avoid revisiting the 

vicinity of recently stimulated sites; whole-cell voltage-clamp recordings were made 

from the recorded neurons to measure photostimulation-evoked excitatory postsynaptic 

current (EPSC) responses at the holding potential between -60 and -65 mV, which was 

based upon the empirically determined GABAergic reversal potentials at the 

developmental ages tested.  After EPSC measurements, whenever it was possible, the 

recorded cells were also voltage-clamped at -10 - -20 mV to detect photostimulation-

evoked inhibitory postsynaptic current (IPSC) responses.  In separate experiments, the 

recorded neurons were held at +5 mV in voltage clamp mode with cesium-containing 

internal solution to map IPSCs. 

 Photostimulation can induce two major forms of excitatory responses (Shi et al., 

2010; Xu and Callaway, 2009): (1) direct glutamate uncaging responses (direct 

activation of the recorded neuron's glutamate receptors); and (2) synaptically mediated 

responses (EPSCs) resulting from the suprathreshold activation of presynaptic 

excitatory neurons.  Responses within the 7 ms window from laser onset are considered 
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direct.  Synaptic currents with such short latencies are not possible because they occur 

before the generation of action potentials in photostimulated neurons.  To exclude direct 

responses, candidate EPSCs with their arrival times occurring within the direct response 

window (within 7 ms of the laser onset) are dismissed.  Similarly, for inhibitory 

postsynaptic responses, we only included actual presynaptic inhibitory input (resulting 

from somatic firing of inhibitory neurons at stimulated locations) to construct inhibitory 

input maps.  A new technique that combines the design of a bank of approximate 

matched filters with the detection and estimation theory was implemented for automated 

detection and extraction of photostimulation-evoked EPSCs or IPSCs (Shi et al., 2010).  

As for individual map construction, input measurements from different stimulation sites 

were assigned to their corresponding anatomical locations in the hippocampus; and 

color-coded maps of average input amplitude, the number of events, and response 

latency per site were plotted to illustrate the overall input pattern to the recorded cell.  

The input amplitude/strength of each stimulation site was measured by the sum of 

individual EPSCs or IPSCs from each photostimulation site with the baseline 

spontaneous response subtracted, and then normalized by the analysis window of 150 

ms after photostimulation.  This average integrated value was expressed in pico 

amperes (pA) for the analysis window.  To quantitatively compare input strength and 

connections across cell groups, we measured the total sum of the ESPC or IPSC input 

strength across the map sites for individual cells, and assessed the extent of synaptic 

connections by measuring the number of stimulation locations providing synaptic input 

in the mapping region.  We also compared EPSC or IPSC latencies of data maps 

across the cell groups.   
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After all physiological assays were completed, the brain slices were fixed in 4% 

paraformaldehyde in phosphate buffered saline (PBS) overnight and then transferred to 

30% sucrose solution in PBS.  All the slices were stained for 4'-6-Diamidino-2-

phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO) to identify hippocampal subfields.  

Those slices with whole cell recording experiments were stained against biocytin with 

1:1000 Cy3-conjugated streptavidin (Jackson ImmunoResearch, West Grove, PA), and 

cell morphology was examined with confocal or epi-fluorescent microscopy.  Excitatory 

pyramidal neurons in CA3, hilar mossy cells and DG granule cells were targeted for 

recordings based upon their distinguishable morphology in living slices under DIC 

microscopy and confirmed by post-hoc analysis of their intrinsic spiking patterns and 

morphological features revealed by the biocytin staining. 

Results 

Spontaneous global network activation (GNA) in the developing mouse 

hippocampus 

We examined mouse hippocampal circuit activity in slice preparations at different 

ages (postnatal days 1-18 (P1-P18)) with VSD imaging, which monitors neuronal 

activity spanning DG and hippocampus simultaneously (Xu et al., 2010).  We found that 

spontaneous GNA exhibits a specific anatomical origin at distal CA3, and it starts with 

sparse activation at the initiation site and gradually evolves into large-scale, bi-

directional propagating network activity (Fig.1.1).  GNA exhibits rather uniform patterns 

across different occurrences in the same slices.  Simultaneous voltage clamp 

recordings verified that individual cells receive excitatory synaptic input that correlates 

with optical measurement (Fig.1.1A-B).  GNA initiation is empirically determined by 
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patches of coherent activation across 5 consecutive VSD image frames with its signal 

amplitude at least one standard deviation above the preceding 50 ms baseline activity.  

As per the color scale, warmer colors indicate greater excitation.  The initiation (first 20-

30 ms) appears to arise from activation of a small number of neurons within the area of 

80 µm x 80 µm (Fig. 1.1C, E).  GNA propagation starts after 40-50 ms, and produces 

strong excitatory activity within 300-500 ms throughout the hippocampal circuitry, 

propagating to proximal CA3, then to the hilus and the fascia dentate of the dentate 

gyrus (DG), as well as to CA1 (Fig. 1.1C, D).  The propagation pattern of GNA could 

also be well illustrated in space-time analysis of the network activity (Fig. 1.1F-G); there 

is a U-shape like activity spread from the point of origin at distal CA3, indicating bi-

directional propagation.   

Mouse GNA appears robustly at P2 and event frequency peaks at P5-P6 (Fig. 

1.2A).  GNA event frequency of the first postnatal week is 0.66 ± 0.075 events per 

minute (N= 12 slices of P2-P7), which is considerably lower than an average of 5-6 

events/minute for rat GDPs identified by intracellular recordings (Ben-Ari et al., 1989; 

Bolea et al., 1999), suggesting a potential species difference and a possibility that single 

cell events may not correspond to global scale events.  GNA events occur significantly 

less often at older postnatal days (Fig. 1.2A) with the average rate of 0.36 ± 0.072 

events per minute between P8-P16 (N= 19 slices), which differs significantly from P2-P7 

(p <0.01).  GNA is  only detected in 40%, and 20% of the more developmentally mature 

slices tested at P10-P12, and P13-P16, respectively, compared to 80% of the slices for 

P2-P9.  No GNA events are detected beyond P18.  Overall, there is no discernible trend 

for clustered occurrences by trial, as we examined a scatter plot of GNA occurrences 
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versus trial numbers from selected sessions in P3-P8 slices (N = 88 sessions from 8 

slices).  The average numbers of events per session for a given slice was 0.92 ± 0.10, 

with its inter-session standard deviation of GNA occurrence ranging from 0.7-1.2.   

Figure 1.3 

 

Figure. 1.3. The initiation and propagation of spontaneous GNA does not require 
GABAA receptor- or NMDA receptor-mediated signal transmission.  A-C and D-E, 
time series data from the P2 and P7 slices, respectively.  A, B and C.  Spontaneous 
GNA in normal recording solution, in the presence of the GABAA receptor antagonist, 
gabazine (20µM) and in the presence of gabazine and the NMDA receptor antagonist, 
CPP (10µM), respectively.  The color scale corresponds to VSD signal amplitude 
expressed as SD multiples above the mean baseline.  D-E.  Spontaneous GNA in 
normal recording solution and in the presence of gabazine (20µM), respectively.   
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In addition, GNA event duration decreases with the increasing age from P2 onward (Fig. 

1.2B), with the average duration of P2-P7 and P9-P16 being 1083.7 ± 76.9 ms and 

719.8 ± 49.1 ms (p<0.005), respectively.  Each GNA occurrence appears to last longer 

than intracellularly recorded rat GDPs (400-800ms) (Ben-Ari et al., 1989; Bolea et al., 

1999) and extracellularly detected spontaneous field potential fluctuations, SPWs (50-

100ms) (Buhl and Buzsaki, 2005; Maier et al., 2003).  Moreover, the GNA amplitude 

decreases with increasing postnatal age (Fig. 1.2C); the average peak amplitudes 

across slices were 1.17% ± 0.19%, measured with the percent change in pixel light 

intensity (ΔI/I %) and 0.56 ± 0.17% for P2-P7 and P9-P16 slices (p< 0.001), respectively 

(Fig. 1.2C).  However, the velocity of activity propagation as measured by the travelling 

peak of VSD signal (Fig. 1.1E) increases with age, going from 8.8 ± 3.2 µm/ms during 

P2-P4, to 28.6 ± 10.6 µm/ms during P5-P7 and to 90.1 ± 25.6 (p< 0.01) µm/ms during 

P9-P16 (Fig. 1.2D).  Overall, mouse GNA exhibits developmental changes, which is 

likely related to circuit maturation.  As the adult-like pattern of unidirectional circuit 

propagation from DG to CA3 to CA1 appears around 2 weeks of age (see below), the 

later time points for GNA duration, peak amplitude and propagation speed may reflect 

fundamentally different underlying processes at earlier (P2) versus later (P15-16) time 

points. 

Interestingly, mouse GNA in the first postnatal week is different from GDPs 

reported in the rat based on differences between their pharmacological properties.  

GNA is not suppressed by blocking GABAergic transmission via GABAA receptor 

antagonists (gabazine, SR95531 or bicuculline).  While GNA frequency, amplitude or 
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propagation speed at P2-P5 does not change significantly in the presence of gabazine 

(Fig. 1.3A-B), GNA at P7-P10 is enhanced by gabazine (Fig. 1.3D-E) (N = 5-6 slices 

each).  The changes of GNA properties in the presence of gabazine at P2-P5 versus 

P7-P10 were quantified and summarized in Fig. 1.4.  In contrast, mouse GNA is 

completely abolished by the AMPA receptor antagonist (CNQX, 6-Cyano-7-

nitroquinoxaline-2, 3-dione) (N=10 slices).  Furthermore, the NMDA receptor antagonist, 

3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP), with or without gabazine, 

does not block the onset or propagation of this network activity (Fig. 1.3C).  Thus, the 

initiation and propagation of spontaneous GNA identified in the mouse hippocampus is 

controlled by glutamatergic transmission mediated by AMPA receptors, rather than 

GABAA or NMDA receptors.    

Correlation between single cell events, field potential recordings and GNA 

To address the cellular basis of mouse GNA, we first examined spontaneous 

activity of excitatory pyramidal neurons in CA3 of P5-P6 mouse hippocampus.  As 

shown in Fig. 1.5A-B, our data indicate that spontaneously recurring, long-duration 

membrane potential depolarization of single neuron may underlie GNA macroscopically 

detected by VSD imaging.  Most neurons recorded are spontaneously active, displaying 

large and persistent depolarization of 20-50 mV superimposed with bursts of spikes that 

are electrophysiologically similar to rat GDPs.  The average frequency of these 

persistent depolarization sampled from 6 excitatory neurons (P5-P6) was 1.48 ± 0.30 

events/minutes, and their average duration was 1.29 ± 0.09 seconds.  Gabazine does 

not abolish persistent depolarization, but reduces their over-riding spiking activity, which 

makes large membrane depolarization more prominent.  All spontaneous spiking activity 
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and depolarization are blocked by CNQX.  Overall, these properties of long-duration 

cellular depolarization (electrophysiological equivalent of GDPs in mouse hippocampus, 

mouse GDPs) are consistent with GNA properties.   

Figure 1.4 

 

Figure.1.4. Characterization of changes of GNA properties in the presence of 
gabazine in comparison to the control condition.   
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A. Temporal profiles of GNA from the CA3 region  of the P7 slice illustrated in Figure 3d 
and e for control and gabazine conditions, respectively.  B.  The power density function 
analysis of GNA for control and gabazine conditions of the P7 slice, which clearly shows 
increased power at higher oscillation frequencies.  C.  Average response amplitude 
(early and late response phases) of GNA across the entire hippocampus at P2-P5 and 
P7-P10 (N = 5-6 slices each) with different experimental conditions.  The early and late 
response phases are defined as the time durations of 66-132 ms and 198-264 ms post-
photostimulation, respectively.  The response amplitude is in the unit of SD.  * indicates 
a statistically significant difference (p<0.05) compared to control.  The bar graphs 
represent mean ± SE.  D-F.  Changes of GNA power, frequency and propagation speed 
in the presence of gabazine.  For the GNA power analysis, the VSD signal was acquired 
from averaging the pixels across the CA3 region from each image frame; the averaged 
values constituted the data points of the VSD signal trace in a temporal order.   The 
signal trace was de-trended by linear regression to remove the baseline drift and then 
subtracted by its mean.  The "pwelch" function in MATLAB was used to calculate the 
power values at different frequencies, which were summed to get the GNA power for the 
signal trace.  In D, the power ratios of P2-P5 and P7-P10 GNA events (N= 9-12 each) 
are 1.17 ± 0.19 and 25.9 ±9.0, respectively.  In E, the frequency ratios of P2-P5 and P7-
P10 slices are 1.06 ± 0.07 and 3.0 ± 0.7, respectively.  In F, the speed ratios of P2-P5 
and P7-P10 events are 1.16 ± 0.42 and 4.86 ± 0.83, respectively.  The y axis indicates 
the average ratio of the parameter measured in the presence of gabazine compared to 
the control condition.   * indicates a statistically significant difference (p<0.05) compared 
to control.   
 

As a developmental shift of GABA effects from mixed inhibition and excitation to 

exclusive inhibition between P6 and P10, we further tested the effects of blocking 

GABAA-receptor mediated activity at P10, the older age.  To examine the effects of 

gabazine on single cell events at an older age, we recorded from CA3 pyramidal cells 

(N = 5 cells) in P10 mouse hippocampus.  In control ACSF, the average frequency of 

mouse equivalent GDPs sampled from the P10 excitatory neurons was 0.33 ± 0.13 

events/minutes, and their average duration was 0.67 ± 0.11 seconds.  We found that 

gabazine led to enhanced circuit excitation with more frequent and large subthreshold 

EPSPs (Fig. 1.5C), which is consistent with GABA action at this older age.  While typical 

mouse GDPs (indicated by single arrows in Fig. 1.5C) seen in control ACSF solution 
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continued to occur in the presence of gabazine,  at P10 gabazine promoted excitation 

resembling epileptiform activity (indicated by the double arrows in Fig. 5C).  

 

Figure 1.5 
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Figure.1.5. Correlation between single cell events, field potential recordings and 
GNA 
A. Spontaneous activity of an example CA3 excitatory neuron (P6) in normal recording 
solution, in the presence of gabazine, and both gabazine and CNQX (left, middle, and 
right), respectively.  B. The long-duration depolarization indicated by “1” and "2" in A, 
expanded and shown separately.  C. Spontaneous activity of a CA3 excitatory neuron 
(P10) in normal recording solution and in the presence of gabazine (left and right), 
respectively.  Single arrows point to typical long-duration depolarization, and the double 
arrows point to "epileptiform" activity. D. Examples of the occurrence of long-duration 
cellular depolarization (but not the spontaneous-recurring narrow spikes) coinciding with 
the occurrence of local field potential (LFP) events in P5-P6 slices.  The membrane 
potential trace and the LFP signal trace are shown in blue and red, respectively.  E-F. 
GNA occurrences detected by two-site field recordings in CA3 in P5-P6 slices.  E shows 
the LFP electrode placement and photostimulation sites (1, 2, and 3) in the imaged 
slice.  F shows simultaneous VSD and LFP detection in response to the sites (1-3) in E.  
The VSD signal was measured from the small region of interest (ROI) close to the site 
1.  The occurrences and propagation of GNA in response to photostimulation at the 
sites of 1 and 2 are reflected by the detection of LFP events from the two electrodes, 
while the local response in CA1 (site 3) did not induce GNA or lead to the LFP detection 
in CA3.  The LFP signal traces were band-pass filtered at 5-300 Hz.       
 

We also examined the relationship between mouse GDPs and local network 

events as detected by field recording with the electrode placed in the pyramidal cell 

layer at 100-200 μm away from the single cells examined (N=8 P5-P6 cells) (Fig. 1.5D).  

During the experiments, photostimulation using caged glutamate (see below) was 

delivered at a few sites around the recorded cells to induce the occurrence of mouse 

GDPs.  We found that a great majority (86.6%) of the occurrences of long-duration 

cellular depolarization coincide with tight onset with the detection of local field potential 

(LFP) events (82 single cell events/71 field recording events), with the LFP duration 

being 51.8 % of that of long-duration cellular depolarization as would be expected due 

to extracellular averaging of  intracellular events.  This indicates that most mouse GDPs 

closely relate to LFP events reflecting neuronal ensemble behavior in local circuits.   



` 

26 

 

In addition, we examined the correlation between GNA and LFP events by 

comparing photostimulation evoked GNA and locally detected field events (Fig. 1.5E-F).  

Every GNA occurrence is detected by two-site LFP recording separated at 200-300 μm 

apart in CA3 (N = 61 events from 7 P5-P6 slices) and the stronger VSD signal 

correlates to the stronger field potential response.  The LFP response was faster than 

VSD signal, as its peak of downward response (excitatory field response in the 

pyramidal cell layer (Lamsa et al., 2000) ) occurs 25.7 ± 2.6 ms ahead of VSD signal 

peak, due to different kinetics of the electrical versus the dye signal.  Thus, at least in 

these particular experiments, local field events are tightly correlated to GNA, which 

indicate that LFP and GNA may measure the same underlying phenomena at different 

scales. 

Figure 1.6 

 

Figure.1.6. Photostimulation-evoked GNA mimics spontaneous GNA in 
spatiotemporal patterns.  A.  Time series data of imaging spontaneous GNA at P6.  
The arrowhead points to the initiation site in distal CA3.  B.  The time course of VSD 
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signal (in the percent change of pixel intensity [ΔI/I %]) from the region of interest 
indicated by the small rectangle in the second image frame in A.  C.  Time series data 
of imaging evoked GNA after spatially restricted laser photostimulation (via glutamate 
uncaging) in distal CA3.  The site of photostimulation can be identified by the laser 
excitation artifact (purple) in the first frame.  D.  The time course of VSD signal from the 
region of interest indicated by the small rectangle in the second image frame in C.  E.  
Time series data of imaging evoked network activity after spatially restricted laser 
photostimulation in DG.  F.  The time course of VSD signal from the region of interest 
indicated by the small rectangle in the second image frame in E.  Note that A, C and E 
are images from the same slice, but C and E were acquired by the camera with an 
angle of rotation. 
 

Photostimulation-evoked population activity in the developing mouse 

hippocampal circuitry 

To further examine the developing hippocampal circuit activity in the first 

postnatal week, we used laser photostimulation via glutamate or GABA uncaging to 

evoke population neuronal activity in defined sites of spontaneous GNA origin.  Caged 

compounds that are rendered biologically inert by the chemical addition of a light-

sensitive “caging” group were infused into the slices.  Upon illumination of UV laser, 

biologically active glutamate or GABA is liberated from the cage group and binds to its 

cellular receptors.  The laser beam forms uncaging spots, each approximating a 

Gaussian profile with a width of ~100 µm laterally at the 4x objective focal plane (Fig. 

1.6, also see (Xu et al., 2010)).   

Spatially restricted glutamate uncaging in mouse distal CA3 was found to evoke 

population neuronal activity with similar features to spontaneous GNA (Fig. 1.6A-B), 

with excitatory activity beginning at the site of photostimulation and propagating bi-

directionally, toward proximal CA3 and DG as well as toward CA1.  The evoked activity 

has an average latency of 15.5 ± 3.9 ms and an average duration of 746.3 ± 60.9 ms, 

with an average peak amplitude of 1.68 ± 0.22% (N=13 slices).  Similar to spontaneous 
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GNA, the propagation speed of evoked activity increases later in development, 

increasing significantly (p<0.005) from 6.5 ± 0.7 µm/ms in P2-P4 to 22 ± 5.5 µm/ms in 

P5-P7.  Additionally, during P2-P5, gabazine does not appear to significantly affect 

evoked network activity (Fig. 1.7 A, B), but enhances excitatory activity evoked by 

glutamate uncaging in the second postnatal week (N=7 slices), matching the behavior of 

spontaneous GNA.  In addition to distal CA3, we photostimulated other parts of the 

hippocampal circuitry.  In the first postnatal week, evoked activity in DG propagates to 

CA3 and then spreads from CA3 to CA1 along the trisynaptic circuitry in the early 

phase, but there is clear back-propagation from CA3 to DG in the late response phase 

(Fig.1.6C), which mimics the activity induced by distal CA3 photostimulation and 

spontaneous GNA.  However, photostimulation in CA1 does not lead to backward 

propagation to CA3.  Therefore, backward or reverse propagation in the developing 

circuitry indicates a strong excitatory pathway from CA3 to the hilus and the fascia 

dentate of DG, which does not appear in mature circuitry (Scharfman, 1994; 2007).   

We also examined the circuit response to GABA uncaging (N=14 slices).  

Localized excitatory responses are observed at the uncaging sites in mouse slices from 

P1-P5, whereas excitatory activity is no longer clear at P6-P7.  In the younger slices, 

sometimes GABA uncaging in CA3 induces propagating network activity (N=5 slices) 

similar to glutamate uncaging (Fig. 1.7C), although GABA uncaging has a longer 

response latency (85 ± 13 ms).  Importantly, GABA-evoked propagating activity is 

blocked by the AMPA receptor antagonist, CNQX, leaving only a localized response at 

the GABA uncaging site (Fig. 1.7D).  This indicates that GABA can excite neonatal 

neurons and contribute to the initiation of spontaneous activity, but the propagation of 
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excitatory activity in the developing mouse hippocampal circuitry is determined by 

AMPA receptor-mediated transmission.   

Figure 1.7

 
Figure. 1.7. Mouse GNA is dominated by AMPA receptor-mediated glutamatergic 
transmission.  A and B.  Photostimulation-evoked network activity by glutamate 
uncaging in a P4 slice was largely unaffected by the GABAA receptor antagonist, 
gabazine (20 µM).  The uncaging site is denoted by a purple star.  The arrows indicate 
some reduced propagation to CA1 in the presence of gabazine.  C and D.  The 
propagation of photostimulation-evoked network activity by GABA uncaging in a P3 
slice was abolished by the AMPA receptor antagonist, CNQX (10 µM).  The excitatory 
response at the uncaging site in D was blocked by the further application of gabazine 
with CNQX.  Note that photostimulation and imaging of both slices were performed 
through a 2x objective. 
 

Global network activity and circuit connections   
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To establish the temporal relationship between GNA and the maturation of 

functional circuit connections, we mapped the development of hippocampal neural 

circuitry over the time course during which GNA is active.  First, synaptic connections to 

excitatory pyramidal neurons were mapped by combining whole cell recordings with 

laser scanning photostimulation (LSPS) (Ikrar et al., 2011; Shi et al., 2010).  As 

illustrated in Fig. 1.8A-C, the LSPS approach involves first recording from a single 

neuron, then stimulating at other sites in order to generate action potentials from 

neurons in those sites; recording from the potential postsynaptic neuron allows one to 

determine if there is actual synaptic input from one particular site.  By sequentially 

stimulating many different sites across the hippocampus, it is possible to generate a 

map of locations of neurons providing input to that one cell.  Through the LSPS 

mapping experiments, we found that there is clearly observable strengthening of 

excitatory and inhibitory connections to CA3 pyramidal neurons over the developmental 

time course (Fig. 1.8D-F, Fig.1.9. A-D).  Younger neurons (e.g., P2-P4) have weaker 

synaptic connections with more localized input from around the perisomatic region, 

while older neurons (e.g., P9-P12) have stronger and more extensive synaptic 

connections from a wider area (Fig. 1.8D-F).  DG connections to CA3 neurons are 

increasingly strengthened at older ages as illustrated in the example maps.  The 

average, summed excitatory synaptic input strength measured from excitatory 

pyramidal cells are 80.8 ± 10 pA (N=10 cells), 650.4 ± 99.9 pA (12 cells) and 1362.7 ± 

292.9 pA (8 cells) for the three age groups (P2-P4, P5-P7, P9-P12), respectively (Fig. 

1.9A).  The extent of local excitatory connections also increases significantly from P2-

P4 to P5-P12 by measuring the numbers of input-mapped locations (Fig. 1.9B).  Along 
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with the enhanced input strength, synaptic responses at P5-P7 and P9-P12 have overall 

shorter latencies than P2-P4 (median latencies: 67.6 ± 7.6 ms, 40.6 ± 2.9 ms, and 42.7 

± 3.5 ms for P2-P4, P5-P7 and P9-P12, respectively) (Fig. 1.9C).  In addition, inhibitory 

synaptic connections to pyramidal cells start to be detected by measuring inhibitory 

postsynaptic currents (IPSCs) to the recorded neurons at the end of the first postnatal 

week, and are clearly enhanced during the second week.  The average, summed 

inhibitory synaptic input strength measured from excitatory pyramidal cells are 104 ± 

41.5 pA (N=6 cells), 904.1 ± 215 pA (11 cells) for the age groups of P6-P7 and P12-P16, 

respectively. 

We also correlated functional circuit connectivity with cell morphological 

development by examining the overall dendritic morphology of CA3 excitatory pyramidal 

cells that are revealed by intracellular biocytin labeling in early developing hippocampus.  

There is a rapid dendritic expansion of CA3 pyramidal cells during the first two postnatal 

week (Fig. 1.10).   Consistent with their wider input connections revealed by 

photostimulation mapping, compared to P1-P4 (Fig. 1.10A, B), CA3 excitatory pyramidal 

cells have much wider dendritic fields and more extensive branches at or beyond P7 

(Fig. 1.10 C, D).  The average apical dendritic lengths for selected P1-P4 cells and P7-

P8 cells were 79.1 ±12.2 µm, and 521 ± 15 µm, respectively (p < 0.01; N = 5 cells each). 

To examine the underlying pathways accounting for GNA back-propagation from 

CA3 to DG, we further examined the circuit connections to excitatory mossy cells in the 

hilus and DG granule cells.   In the mouse developing hippocampal slices (P4-P6), we 

found that mossy cells receive strong excitatory input from proximal CA3 (average 

strength: 228.9 ± 58.9 pA measured from N = 8 cells) (Fig. 1.11A).  Although DG 
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granule cells have much weaker local input compared to hilar mossy cells, they receive 

excitatory input from the hilus and proximal CA3 (average strength: 14.6 ± 3.8 pA and 

12.1 ± 3.5 pA, respectively, measured from N = 7 cells) (Fig. 1.11B).  Therefore, GNA 

back-propagation from CA3 to DG is likely mediated through the di-synaptic circuit of 

proximal CA3 pyramidal cells ->hilar mossy cells-> DG granule cells or the mono-

synaptic circuit of proximal CA3 pyramidal cells -> DG granule cells.    

Figure 1.8 

Figure. 1.8. Developmental strengthening of local synaptic connections to CA3 
excitatory pyramidal neurons.  A-C. Laser scanning photostimulation combined with 
whole cell recordings to map local synaptic connections to single neurons.  A. Mouse 
hippocampal P6 slice image with the superimposed photostimulation sites (16 x 16 cyan 
*, spaced at 80 µm x 80 µm).  B. Photostimulation-evoked response traces from the 
corresponding sites in A, with the recorded cell held in voltage clamp mode to detect 
inward excitatory postsynaptic currents (EPSCs).  The red circle indicates the recorded 
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cell body location.  Different forms of photostimulation responses are illustrated by the 
traces which are expanded and separately shown in C.  Trace 1 is an example of a 
large direct response (excluded for further analysis) to glutamate uncaging on the cell 
body.  Trace 2 shows an example of relatively small direct response, with over-riding 
synaptic responses (blue).  Traces 3 and 4 are typical examples of synaptic input 
responses.  D-F.  Color-coded synaptic input maps showing local excitatory connections 
to representative CA3 cells at P4, P6 and P9.  The input maps are constructed based 
upon quantification of photostimulation-evoked excitatory synaptic input at stimulation 
sites across the hippocampus (see the Methods).  The color scale codes average input 
strength at each stimulation site.  The amplitude scale in E applies to E and F. 
 

In conjunction with the circuit mapping of single cells, photostimulation and VSD 

imaging was used to measure evoked circuit excitability and the directionality of 

excitatory signal propagation over P2-P15.  By examining photostimulation-evoked VSD 

response at two different uncaging initiation sites (DG versus distal CA3) across 

developmental times, it is obvious that younger slices are more excitable than older 

slices at both sites with more extensive and stronger response propagation (Fig. 1.12 A-

D).  The VSD response strength at glutamate uncaging sites is 1.46% ± 0.09% (P2-P7, 

N = 10 slices) and 0.48% ± 0.04% (P9-P15, N = 12 slices) for younger and older slices, 

respectively.  Backward propagation from distal CA3 to DG in the first postnatal week is 

robust (Fig. 1.12B).  However, while DG signaling to CA3 is maintained, the back-

propagation to DG from distal CA3 is significantly decreased toward the end of the 

second postnatal week (Fig. 1.12D). This is supported by the finding that DG activation 

at P11-P14 was much less than P7-P10 in response to distal CA3 photostimulation.  

Therefore, the emergence of the canonical unidirectional trisynaptic circuit organization 

in the developing hippocampus concurs with the disappearance of spontaneous GNA at 

around P14-P16. 
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Figure 1.9

Figure 1.9. Quantitative comparison of synaptic input strength, the extent of 
excitatory connections and the response latencies of CA3 excitatory neurons of 
P2-P4 (N=10 cells), P5-P7 (N=12 cells), and P9-P12 (N=8 cells).  Specifically, A, B 
and C show the measurements of the average summed EPSC input strength to single 
CA3 cells, the average number of input locations and the average onset times of the 
first detected EPSC per site, respectively.  D. Quantitative comparison of inhibitory 
synaptic input strength to CA3 excitatory neurons for the age groups of P6-P7 and P12-
P16 (N = 6 and 11 cells, respectively).  ** and *** indicates statistical significance of 
p<0.01 and <0.001 between the groups. 
 

Discussion 
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 Spontaneous network activity early in development is considered an important 

factor for sculpting and refining developing circuit architecture.  Our approach to 

studying the developmental contributions of spontaneous and correlated neuronal 

activity in hippocampus is to determine which events are closely linked to establishing 

adult functional circuit organization.  In this work, we identified and characterized a 

global pattern of activity we term spontaneous GNA, and a major transition of functional 

circuit organization in the developing mouse hippocampus from large scale bi-

directional signal propagation to the adult-like form of the canonical unidirectional 

trisynaptic circuit.   

Terminology and technical considerations 

 We coined spontaneous GNA as a new term to describe spontaneous network 

events in developing mouse hippocampus, based on large-scale VSD imaging of global 

circuit events.  In the same way SPWs and GDPs were coined to specifically refer to the 

events at single cell and localized circuit levels, we use GNAs to describe large-scale 

spontaneous network events in developing mouse hippocampus measured by 

macroscopic VSD imaging.  While there are some similarities of spontaneous GNA with 

the previously examined localized activity patterns, there are differences that indicate 

that spontaneous GNA does not correspond directly to such local events as GDPs or 

SPWs recorded with other techniques in the rat (Ben-Ari et al., 1989; Ben-Ari et al., 

2007; Buhl and Buzsaki, 2005; Buzsaki, 1986; Leinekugel et al., 2002).  While rat GDPs 

depend on GABAergic transmission (Ben-Ari et al., 2007), mouse GNA is not abolished 

by GABAa receptor antagonists,.  We also observe an obligatory contribution of 

glutamatergic signaling through AMPA receptors required for mouse GNA.  Single cell 
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GDP-like events are likely components of the summed macroscopic circuit events we 

measure as mouse GNA, but they can be distinguished by differing pharmacological 

sensitivities between the species.  In addition, aside from scale, GNA captures 

emergent properties not described for GDPs, notably the bi-directionality of signal 

propagation from distal CA3 origin to both CA1 and dentate gyrus.  In the previous 

study using fast VSD imaging, Bolea et al. (2006) referred to GDP-related network 

events as neuronal coactivation in the developing rat hippocampus, in which a 

propagating excitation wave could initiate from a small site and propagate to larger 

hippocampal circuitry.  In contrast to what we observed form mouse GNA, they reported 

that GDP-related waves can originate both in the hilus and in CA3 and that the initiation 

site is not fixed and varies from event to event. 

While the question whether GNA, GDPs and SPWs are different facets of the 

spontaneous activity patterns in hippocampus remains to be further addressed, we have 

significantly built on earlier findings on spontaneous network activity in the developing 

hippocampus by using a suite of new technologies.  Fast VSD imaging allows for a 

macroscopic network-level view of the spatial and temporal dynamics of neural activity 

across the entire hippocampal circuitry.  VSD signal is closely correlated with 

subthreshold membrane potential depolarization (rather than action potentials), so that 

VSD imaging is better suited to examine long-duration membrane potential 

depolarization and can better reveal early neuronal activity (≤ P4) without fully-

developed action potentials compared to Ca2+ imaging.  We corroborated our findings 

on spontaneous GNA in a parallel set of studies using evoked population activity by 

laser scanning photostimulation (LSPS) via glutamate or GABA uncaging in the 
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developing circuitry.  The LSPS approach with whole cell recordings has further 

provided definitive data to reveal changes in local circuit connections over the GNA 

active time course.   

Figure 1.10 

 

Figure. 1.10. Morphology of CA3 excitatory pyramidal cells in the developing 
mouse hippocampus.  A-D. Gross morphology of example pyramidal cells of P1, P4, 
P8 and P12, revealed by intracellular biocytin labeling.  Compared to older ages, P1-P4 
cells have much shorter apical dendrites.  The scales in A and B are 50 µm.  The scale 
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in B applies to both C and D.  SP: stratum pyramidale; SR: stratum lucidum and 
radiatum; SLM: stratum lacunosum moleculare.   
 
Spontaneous hippocampal network activity 

 Compared to unidirectional nature of signal propagation exhibited by adult 

hippocampus, the immature hippocampal circuitry shows substantial bi-directional 

signal propagation, which we term GNA.  Mouse GNA shares some features with GDP 

related activity propagation and SPWs with multisite extracellular recordings (Csicsvari 

et al., 2000; Leinekugel et al., 1998; Maier et al., 2003).  The distal CA3 origin of GNA 

and SPWs may be significant, as this region is adjacent to CA2 and receives strong 

input from the supramammillary nucleus that has been implicated in controlling the 

frequency of the theta rhythm and the spread of epileptic activity in the hippocampus 

(Chevaleyre and Siegelbaum, 2010; Lein et al., 2005; Ochiishi et al., 1999). 

Given the intrinsically bursting properties and high excitability of CA3 excitatory neurons 

(as we have observed), it is likely that the initiation of mouse GNA is through the 

intrinsic pacemaker properties of CA3 excitatory neurons and the interactions between 

excitatory neurons, as proposed for the hippocampus and neocortex (Sanchez-Vives et 

al., 2000; Sipila et al., 2005).   

We have used single cell and field potential recordings to address the 

relationship between single cell behavior, local circuit events and GNA.  Although there 

is a strong correlation between the electrophysiological equivalent of GDPs in the 

mouse hippocampus and local field events, our results indicate that spontaneous 

occurrences of single cell events like GDPs do not have a one-to-one correspondence 

to large-scale propagating events.  This finding is consistent with the previous 
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observation that rat GDPs can occur in the absence of local network events detected by 

field recordings (Sipila et al., 2005).   

Figure 1.11 

 

Figure. 1.11. Local excitatory synaptic connections to hilar mossy cells and DG 
granule cells reflect the underlying pathways of the GNA back-propagation from 
CA3 to DG. 
A-B. Example excitatory input maps to one hilar mossy cell and a DG granule cell (P4-
P6), respectively.  As shown in A, mossy cells, the only excitatory cells in the dentate 
hilus, receive robust excitatory input from proximal CA3 area in addition to DG and the 
hilus.  As illustrated in B, the granule cells receive relatively strong excitatory input from 
the hilus and weaker input from DG and proximal CA3.   
 

Mouse GNA and rat GDPs have a similar developmental time course; the 

disappearance of GNA immediately transitions to the emergence of the adult-like 

unidirectional circuit organization at around two weeks of age in the mouse.  In contrast 
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to the typical notion of GABA-mediated rat GDPs, mouse GNA and the 

electrophysiological equivalent of GDPs in mouse hippocampus are largely GABA 

independent and mediated instead by glutamatergic transmission via AMPA receptors 

postnatally.  There is an interesting suggestion that glutamatergic signaling 

developmentally interacts with GABAergic signaling in rat GDPs (Ben-Ari et al., 1997; 

Lamsa et al., 2000).  In fact, it has been reported that in neonatal rat hippocampal 

slices, glutamate controls the induction of GABA-mediated GDPs through AMPA 

receptors, and superfusion of CNQX completely blocks GDPs (Bolea et al., 1999).  

Furthermore, evoked GDPs in immature rat slices (P2-12) are blocked in the presence 

of bicuculline, but GDPs evoked by suprathreshold stimuli are mostly resistant to 

bicuculline and inhibited with CNQX (Xie et al., 1994).  Therefore, there are 

glutamatergic contributions to both mouse GNA and rat GDPs, which show differential 

features that may be related to species differences.   

GNA and circuit maturation 

 In terms of functional significance, GNA may play an important role in patterning 

and strengthening intra-hippocampal synaptic connections during early development, 

resembling other forms of spontaneous neural activity.  While adult form of SPWs 

induced in slice preparations are reported to modulate synaptic connectivity and 

strength between neurons and regions (Behrens et al., 2005), correlated bursts of 

activity in the neonatal hippocampus in vivo (i.e., early form of SPWs) can provide 

correlated activity for immature neurons and may underlie activity-dependent maturation 

of the hippocampal network (Leinekugel et al., 2002).  The best demonstration of the 

causal relationship between spontaneous network activity and synaptic input strength of 
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specific neurons was shown experimentally by reducing spontaneous network activity in 

ovo in the intact chick embryo (Gonzalez-Islas and Wenner, 2006).  The forward and 

backward propagation of GNA could contribute to the establishment of neuronal 

population connections between hippocampal subfields, e.g., between CA3 and DG as 

well as between CA3 and CA1, through recurring local synchronous activity.  We show 

the time course of developmentally enhanced synaptic connections between DG and 

CA3 neurons by photostimulation mapping of circuit connections to single CA3 neurons.   

Figure 1.12 

 

Figure. 1.12. The emergence of the unidirectional circuit organization in the 
developing hippocampus occurs around the end of the postnatal two weeks.  A-B.  
Time series data of imaging photostimulation-evoked network activity by glutamate 
uncaging in DG and distal CA3 in a P7 slice, respectively.  The uncaging site is denoted 
by a purple star.  C-D.  Time series data of imaging photostimulation-evoked network 
activity by glutamate uncaging in DG and distal CA3 in a P14 slice, respectively.  Note 



` 

42 

 

that photostimulation and imaging of both slices were performed through a 2x objective, 
and that 3 trials of imaging data were averaged for the presentation.  Given the lower 
sensitivity of the 2x objective, the weaker activated granule cell layer of DG does not 
show as well as hilar activation in the presented frames, but it is detected with our signal 
analysis.   
 

Our data show that the weakening and disappearance of bi-directional GNA 

concurs with the maturity of the trisynaptic circuitry in which the CA3 back- propagation 

is reduced through decreased circuit excitability and enhanced inhibitory neuronal 

control that ensures unidirectional information flow.  The most important contributing 

factors include the maturing of the GABAA receptors and changing of circuit 

connectivity.  We speculate that failure of controlling the back- propagation of distal CA3 

beyond early developmental stages may contribute to pathological conditions related to 

learning and memory deficits and temporal lobe epileptogenesis (Myers and Scharfman, 

2011; Scharfman, 2007). 

In conclusion, spontaneous GNA immediately precedes the more restricted 

unidirectional propagation of excitation through the hippocampus that persists into 

adulthood.  Further studies that manipulate the spatial and temporal properties of GNA 

should reveal its functional importance for setting up the adult circuit architecture.   
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Chapter 2: 
Local circuit connections to hilar mossy cells in the mouse 

hippocampus  
 

Hilar mossy cells are the only excitatory cells in the dentate hilus, and they have 

been studied extensively due to its potential critical roles in cognitive functions such as 

pattern separation and in temporal lobe epileptogenesis.  Little is known, however, 

about the development of local circuit connections of mossy cells.  To better understand 

functional circuit operations of this unique cell type, here we combine whole cell 

recordings and laser scanning photostimulation (LSPS) to examine both local excitatory 

and inhibitory synaptic inputs to mossy cells in living slice preparations of mouse 

hippocampus at different postnatal ages (P7, P14 and P24).  The LSPS method allows 

for much wider input sources to be mapped to intracelluarly recorded neurons than 

paired or multiple intracellular recordings of synaptically connected neurons, and 

provides a quantitative assessment of spatial distribution and input strength of excitatory 

and inhibitory connectivity to the recoded neurons.   Hilar mossy cells are targeted by 

visualizing non-red fluorescent expression in the dentate hilus of the double transgenic 

Gad2-Cre:tdTomate mouse, and confirmed by post hoc morphological characterization.  

We identified developmental changes of local circuit connections to mossy cells in living 

slice preparations of mouse hippocampus at different ages ( P6-7, P13-14 and P21-28).  

Our results indicated that at P6-7, mossy cells received extensive excitatory 

inputs from proximal CA3 pyramidal cells, with total summed excitatory inputs greater 

than those from dentate granule cells and from within the hilus.  In comparison, at P14 

and P24, the largest excitatory inputs to mossy cells were from dentate granule cells 

while the inputs of proximal CA3 and the hilar region were greatly reduced or 
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diminished. In addition, the inhibitory connections to mossy cells appeared to be 

balanced with the excitatory connections at different ages, with inhibitory input sources 

generally matching excitatory input sources.  Overall, local inhibition to mossy cell 

increased with the developmental ages.  Together, these data provide important new 

information on local synaptic circuits of mossy cells, and supports the proposed 

pathway of excitatory back projection from CA3 to dentate granule cells via hilar mossy 

cells, particularly in the developing hippocampal circuitry. 
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Introduction 

Hilar mossy cells are the major glutamatergic neurons in dentate hilus (Soriano 

and Frotscher, 1994; Scharfman, 1995). Past anatomical study reveals that mossy cell 

has relatively large soma with thick proximal dendrites, covered by numerous large 

spines called thorny excrescences (Amaral, 1978) . The whole neuron seems like 

covered with moss; hence it comes the name. These thorny excrescences are 

considered the location of mossy fiber synapses (Laatsch and Cowan, 1966).  

Mossy cells are mostly involved in two circuits in hippocampus. Mossy cells 

receive strong and convergent excitatory afferent connections from dentate granule 

cells, which are their major excitation sources (Buckmaster et al., 1992). Anatomically, a 

single mossy cell projects to inner molecular layer and contacts many postsynaptic 

granule cells at ipsi-lateral hippocampus, forming ‘recurrent connections’. However, 

Mossy cells also contact the interneurons in same lamellar which in turn inhibit the 

excitation of granule cells (Scharfman, 1993). Mossy cells also send axons collaterals 

along septotemperal axis and contact the granule cells in different lamella (West et al., 

1979; Buckmaster et al., 1996). Mossy cell axons also form commissural path way 

which project to the granule cells at contralateral side(Ribak et al., 1985). There has 

been debates about the net effect of mossy cells on granule cells. Previous studies 

(Ratzliff et al., 2004; Jinde et al., 2012) showed increased excitability of granule cells 

after targeted ablation of mossy cells, indicating a general inhibitory effect of mossy 

cells to granule cells. The second circuit include the back-projection from CA3 pyramidal 

neurons (Scharfman, 1993). Such backprojection is confirmed first by histological study 

(Li et al., 1994)  and later with simultaneously recording the excitation of hilus mossy 

cell and CA3 pyramidal cells after fimbria stimulation or spontaneous CA3 burst 



` 

46 

 

(Scharfman, 1993; Scharfman, 1994). CA3 pyramidal neurons excite both mossy cells 

and hilar interneurons with similar latency. The back-projection is mediated by AMPA 

receptor. Granule cells also receive an IPSP with longer latency. However, under GABA 

antagonist, stimulation of fimbria will elicit EPSPs of granule cells, indicating a possible 

excitatory pathway from CA3- mossy cell- granule cells which is generally masked by 

GABAergic inhibitory neurons. 

There has been many speculations about the functions of mossy cells. The two 

circuitries described above are important for memory formation and retrieval. Thus 

mossy cells is considered playing an essential role in pattern separation and cognitive 

functions. A computational model (Scharfman et al., 2009) also supported this opinion 

by comparing circuit functions with or without mossy cells. Thus it is a common opinion 

that the function of mossy cell is to promote the dissimilar activation of granule cells at 

different lamellas. However, target ablation of mossy cells in vivo (Jinde et al., 2012) 

only caused short term impaired cognitive functions, thus the exact role of mossy cell in 

hippocampal circuitry still needs more investigation. 

In the present study, we use our photostimulation based functional mapping 

approach to map extensive synaptic connections of mossy cells through three 

developmental ages: P6-7, P13-14, and P21-28. Our experiments can obtain a 

comprehensive information on the afferent connections to mossy cells, which can help 

understanding the functional role of mossy cells and why mossy cells is related to 

epilepsy.  

Methods and Materials 

Hippocampal Slice Preparations 

file:///Z:/Yulin/Mossy%20Cell%20Draft/Result%20%20and%20discussion%200709.docx%23_ENREF_12
file:///Z:/Yulin/Mossy%20Cell%20Draft/Result%20%20and%20discussion%200709.docx%23_ENREF_3
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Sixty double transgenic Ai9-tdTomato X Gad-Cre mice were used for the 

experiments. We obtained one to three high quality hippocampal horizontal slices with 

clear Dentate Gyrus, Dentate Hilus and CA3 structure from each mouse.   All animals 

were handled and experiments were conducted in accordance with procedures 

approved by the Institutional Animal Care and Use Committee at the University of 

California, Irvine. To prepare living brain slices, animals (postnatal days 6–7, 13-14 and 

21-28) were deeply anesthetized with Nembutal (>100 mg/kg, i.p.), rapidly decapitated, 

and their brains removed. The occipital lobe was dissected, and 400 μm thick horizontal 

hippocampal sections were obtained with a vibratome (VT1200S; Leica Systems, 

Germany) in sucrose-containing artificial cerebrospinal fluid (ACSF) (in mM: 85 NaCl, 

75 sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4, 4 MgCl2, 0.5 CaCl2, and 24 

NaHCO3). In sucrose containing ACSF (in mM: 85 NaCl, 75 sucrose, 2.5 KCl, 25 

glucose, 1.25 NaH2, PO4, 4 MgCl2, 0.5 CaCl2, and 24 NaHCO3).  Slices were 

incubated for at least 30 minutes in sucrose containing ACSF at 32 °C before 

transferred into slice recording chambers with normal ACSF (in mM: 126 NaCl, 2.5 KCl, 

26 NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, and 10 glucose). Throughout the 

cutting, incubation, and recording, the solutions were continuously supplied with 95% 

O2–5% CO2. 

Electrophysiology and Laser Scanning Photostimulation 

Our overall system of electrophysiological recordings, imaging, and 

photostimulation was previously as described in detail (Xu et al., 2010).  Whole cell 

recordings were performed in oxygenated ACSF at room temperature under a 

DIC/fluorescent Olympus microscope (BX51WI). The solution was fed into the slice 
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recording chamber through a custom-designed flow system driven by pressurized 95% 

O2–5% CO2 (3 PSI) with a perfusion flow rate of about 2 ml/minute. Slices were first 

placed and carefully examined under a 4x objective for proper targeting of dentate hilus 

using the landmarks defined in reference (Amaral, 1978).  To perform whole cell 

recordings, neurons were visualized at high magnification (60X objective, 0.9 NA; 

LUMPlanFl/IR, Olympus). Cell bodies of recorded neurons were at least 50 μm below 

the slice cutting surface and were initially targeted based upon the multipolar-

appearance (Amaral, 1978) of the cell soma and thick apical dendrite, and later with 

fluorescent imaging confirming negative in Gad expression. Patch pipettes (4 – 6 MΩ 

resistance) made of borosilicate glass were filled with an internal solution containing (in 

mM) 126 K-gluconate, 4 KCl,10 HEPES, 4 ATP-Mg, 0.3 GTP-Na, and 10 

phosphocreatine (pH 7.2, 300 mOsm) when measuring excitatory postsynaptic currents 

(EPSCs) and action potentials (APs). In separate experiments, a cesium based internal 

solution containing (in mM): 130 CsOH, 130 D-gluconic acid, 0.2 EGTA, 2 MgCl2, 6 

CsCl, 10 HEPES, 2.5 ATP-Na, 0.5 GTP-Na, 10 phosphocreatine (pH 7.2, 300 mOsm) 

was used to voltage clamp pyramidal neurons at the excitatory reversal potential (0 mV 

to 5mV) and measure inhibitory postsynaptic currents (IPSCs).  Electrodes also 

contained 0.1% biocytin for post-hoc cell labeling and further morphological 

identification. Once stable whole-cell recordings were achieved with good access 

resistance (usually < 20 MΩ), basic electrophysiological properties were examined 

through hyperpolarizing and depolarizing current injections.  Electrophysiological data 

were acquired with a Multiclamp 700B amplifier (Molecular Devices), data acquisition 

boards (models PCI MIO 16E-4 and 6713, National Instruments), and custom modified 
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version of Ephus software 5 (Ephus, available at https://openwiki.janelia.org/). Data 

were digitized at 10 kHz and stored on a computer.   

 During photostimulation experiments, the microscope objective was switched 

from 60× to 4× for laser scanning photostimulation. The same low-power objective lens 

was used for delivering the UV flash stimuli. Stock solution of MNI-caged-l-glutamate 

(Tocris Bioscience) was added to 20 ml of circulating ACSF for a concentration of 0.2 

mM caged glutamate. The hippocampal slice image was acquired at the 4x objective by 

a high-resolution digital CCD camera, which in turn was used for guiding and registering 

photostimulation sites. A laser unit (DPSS Lasers) was used to generate 355 nm UV 

laser pulses for glutamate uncaging. Short pulses of laser flashes (1 ms, 20 mW) were 

controlled by using an electro-optical modulator and a mechanical shutter. The laser 

beam formed uncaging spots, each approximating a Gaussian profile with a width of 

100 μm laterally at the focal plane. Photostimulation using caged glutamate allows for 

high spatial-resolution activation of action potentials restricted to a small number of 

neurons close to the stimulation location. Under our experimental conditions, LSPS 

evoked action potentials were measured from stimulation locations within 104 µm of 

targeted soma and occurred within 150 ms post photostimulation (Fig 2.4). 

 The LSPS procedures were similar to those described in references (Shepherd, 

2012).  The approach involves first recording from a single neuron, then stimulating at 

other sites, generating action potentials from neurons in those sites via LSPS guided 

glutamate uncaging. Voltage clamping the postsynaptic neuron allows one to determine 

which stimulated locations contribute synaptic input to the recorded cell.  By 

systematically surveying synaptic inputs from hundreds of different sites across a large 
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cortical region, aggregate synaptic input maps were generated for individual neurons 

(Fig. 2.2). For our mapping experiments, a standard stimulus grid (16×16 stimulation 

sites, 60-80 µm2 spacing, depending on the size of the slice) was used to cover the 

hippocampal slices, including, DG, Hilus, CA3 and CA1. The LSPS site spacing was 

empirically determined to capture the smallest predicted distance in which 

photostimulation differentially activates adjacent neurons and glutamate uncaging was 

delivered sequentially in a nonraster, nonrandom sequence, following a “shifting-X” 

pattern designed to avoid revisiting the vicinity of recently stimulated sites (Shepherd et 

al., 2003). 

Figure 2.1 
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Figure 2.1. Targeted Recordings of Mossy Cells. A. A horizontal hippocampal slice 
acutely prepared from a GAD-Cre: Ai9 tdTomato double transgenic mouse under 4x 
objective with a neuron patched (in green circle). B. The same slice under 60x 
objective. The fluorescent neurons are gabaergic neurons. The neuron in the shadow is 
patched by glass pipette. C. Post reconstruction of the morphology of the patched 
neuron. It has multipolar shape and thick dendrites with thorny excrescences. D. The 
neuron presents regular adapting spiking when injecting current through patching 
pipette. 
 

Regional Circuit Input Analysis 

Photostimulation can induce two major forms of synaptic responses: (1) direct 

glutamate uncaging responses (direct activation of the recorded neuron's glutamate 

receptors); and (2) synaptically mediated responses (either EPSCs or IPSCs) resulting 

from the suprathreshold activation of presynaptic neurons. Excitatory and inhibitory 

responses within the 10 ms window from laser onset were considered direct, exhibited a 

distinct shape (longer rise time) and occurred immediately after glutamate uncaging 

(shorter latency) as demonstrated in Fig. 2.3. Synaptic currents with such short 

latencies are not possible because they would have to occur before the generation of 

action potentials in photostimulated neurons. Therefore, direct responses need to be 

excluded from local synaptic input analysis. However, at some locations, synaptic 

responses were over-riding on the relatively small direct responses and were identified 

and included in synaptic input analysis.   

 For data map analysis, we implemented a new approach for detection and 

extraction of photostimulation-evoked postsynaptic current responses (Shi et al., 2010), 

which allows detailed quantitative analyses of both EPSCs and IPSCs (amplitudes and 

the numbers of events across LSPS stimulation sites).  Laminar and regional 

distributions, average input strength, and numbers of EPSCs measured in pyramidal 
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cells in the binocular region in V1 slices were quantified.  Because of slice excitability 

and laser strength, measured LSPS evoked synaptic events were estimated to derive 

from monosynaptic sources. LSPS evoked EPSCs and IPSCs were first quantified 

across the 16x16 mapping grid for each map and 2 to 4 individual maps were averaged 

per recorded cell, reducing the likelihood of incorporating artificial synaptic events in the 

analysis window (150 ms). Averaged maps were then analyzed using the 4X DIC image 

to bin responses according to laminar cytoarchitectonic landmarks. Data was plotted as 

either average integrated  EPSC or IPSC amplitudes and evoked EPSC and IPSC 

number per location (Fig. 2.5 and 2.6). 

Morphological examination and Cell-type Identification 

 After physiological assays, brain slices were fixed in 4% paraformaldehyde 

overnight, then transferred to 30% sucrose solution in PBS. Slices were stained against 

biocytin with 1:500 Alexa Fluor 488 -conjugated streptavidin (Jackson 

ImmunoResearch) to visualize the morphology of the recorded cells. Slices were also 

stained for 4′-6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) to identify laminar 

boundaries. The cell morphology was visualized using Olympus BX 61 epifluorescent 

microscopy and MetaMorph imaging suite (Molecular Devices).  

Statistical Analysis 

 Data are presented as mean ± SEM. Paired t-tests were used to compare LSPS 

evoked synaptic events among each age group. Wilcoxon rank sum tests were used for 

statistical comparisons.  In either test, significance was defined as p < 0.1. 

Result 

Identification of Mossy Cells 
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It is hard to distinguish the mossy cell and other hilar neurons through DIC 

image. And currently there are no transgenic mice that have mossy cells marked 

fluorescently. So we used a technique that could identify mossy cells in slice 

preparation using a combination of multiple characters. Hilar mossy cells are targeted 

by visualizing non-red fluorescent expression in the dentate hilus of the double 

transgenic Gad2-Cre:tdTomate mouse. Under 60x objective, the fluorescent neurons 

are gabaergic neurons and the patched neuron is in shadow, indicating potentially 

glutamatergic neuron (Fig 2.1B). Since there are other types of non-Gabaergic neuron 

in hilus, the recorded neurons are further confirmed by current injection through the 

recording electrode. Glutamatergic neuron should present regular adapting spiking 

patterns (Fig 2.1D).  

After the recording, the morphology of the recorded neuron is recovered by 

immunocytochemical experiments using antibody against biocytin. High resolution 

images are obtained through confocal imaging to identify its post hoc morphological 

characterization. Most of recorded neurons exhibit previously reported mossy cell 

features, i.e. multi-polar soma, thick dendrites covered with thorny excrescences and 

confined in hilus (Fig 2.1C). 

Intrinsic Physiology of Mossy Cells 

Intrinsic physiology property was recorded immediately after successful break-in 

using the recording electrode. We observed obvious difference intrinsic physiology 

among the three age groups. First, we noticed reduced membrane resistance (Rm) with 

increased age (Table 1). The Rm of P6-7 mossy cell is significantly smaller from that of 

P13-14 and P21-28 neurons (p=0.0229 and p=0.0083). The averaged Rm of P6-7 
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mossy cell (N=11) is 669.4±176.17 comparing to 234.0±37.44 of P13-14 mossy cells 

(N=12) and 192.8±36.32 of P21-28 mossy cells (N=11). The decreased Rm suggests 

the formation of more effective or increased amount of ion channels. On the other hand, 

the membrane capacitance increases. Given the thickness of the membrane and 

membrane potential consistent across different ages, such membrane capacitance 

difference represent enlarged membrane surface. 

After collecting intrinsic physiology data, we inject current to examine the 

excitability for P7, P14 and P26 mossy cells. The current injection strength is 0pA, -

50pA, 50pA, 100pA and 200pA.  We notice the decrease of input resistance with 

increased ages with hyperpolarizing current injections (Fig 2.2A, Table 1). Such change 

might indicate more excitability in the later age of mossy cells.  

Table 2.1. Intrinsic Physiology of mossy cells at different ages. 

Mouse age RMP  Rs Rm Cm Rinput 

Evoked spike 
rate at 50 pA 
current 
injection 

P6-7 (N = 11) -60.3±1.68 32.6±2.38 669.4±176.17 70.4±10.30 637.7±73.99 5.6±1.10 

P13-14 (N = 12) -61.5±1.13 27.2±2.95 234.0±37.44 111.80±10.74 439.8±37.72 1.5±0.58 

P21-28(N = 11) -62.4±1.06 33.8±3.46 192.8±36.32 102.3±14.86 341.71±63.50 3.1±0.92 

Significance level n.s. n.s. 

* P6-7 vs. P13-14 
0.0229 

* P6-7 vs. P21-28 
0.0083 

* P6-7 vs. P13-14 
0.0161 

* P6-7 vs. P21-28 
0.0845 

* P6-7 vs. P13-14 
0.0229 

* P6-7 vs. P21-28 
0.0083 

* P6-7 vs. 
P13-14 
0.0055 

RMP: resting membrane potential. Rs: Access Resistance. Rm: Membrane Resistance. Cm: Membrane 
Capacity. Rinput: Input Resistant  
 

Recording of Mossy Cell and data analysis 

To assess the afferent input to the recorded mossy cell effectively on a large area, the 

brain slice is placed under microscope for LSPS. The laser stimulation points are 
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superimposed on the slice image (Fig.2.3A).  The LSPS system is set up as in the 

methodology paper Xu et al, 2010.  The LSPS method allows for much wider input 

sources to be mapped to intracellular recorded neurons than paired or multiple 

intracellular recordings of synaptically connected neurons, and provides a quantitative 

assessment of spatial distribution and input strength of excitatory and inhibitory 

connectivity to the recorded neurons. So far this technology has made considerable 

contribution in understanding local circuit organization.  

Figure 2.2 
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Figure 2.2. Developmental changes of intrinsic physiology. A. The example current 
injection responses for P7, P14 and P26 mossy cells.  B. Biocytin-labeled recorded 
neurons from recorded neurons at P6-7 (left), P13-14(Middle) and P21-28(Right). The 
labeled neurons at P6-7 has relatively smooth proximal dendrites while neurons of P13-
P14 and P21-28 have obvious thorny excrescence (pointed by arrows) on their proximal 
dendrites. However, all of the recovered neurons have large and multipolar soma and 
thick proximal dendrites. 

 

After each LSPS trial, we can obtain a map of the raw signal traces (Fig 2.3B). 

Raw signal traces are characterized by the contained responses. Direct uncaging 

responses (Fig.2.3C upper trace) has large amplitudes with short response latencies 

(<10ms). And synaptic responses have smaller amplitudes and longer latencies 

(>10ms; Fig. 2.3C lower trace). A short detection window (10-160ms after stimulation) 

helps reduce the probability of detecting polysynaptic and spontaneous events. More 

often, the synaptic responses are superimposed with the direct response. Our novel 

software(Shi et al,2011) could isolate the synaptic responses from direct responses and 

calculate the average amplitude, integrated input, event number, first event delay, rise 

time and decay constant of each synaptic response. These quantitative data will be 

turned into color-coded map for further region specific analysis (Fig. 2.3 D, E, F). 

To reduce the contamination of spontaneous event, we performed three 

photostimulation trials at the same laser stimulation duration. The three maps obtained 

from the three trials are averaged and only the sites with EPSCs or IPSCs at all three 

maps can be consider having presynaptic neurons.  

Excitation profile of Mossy Cell 

To confirm laser photostimulation resolution, we hold the neuron with I-clamp and 

record the action potentials elicited by laser stimulating the presynaptic cells of the 

recorded neurons (Fig.2.4). This experiment is normally done before obtaining 
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excitatory maps. Because Cs+ blocks K+ channel, it is not possible to obtain the 

excitation profile when using internal solution when mapping inhibitory connections. To 

map the distribution of photo-excitability sites, the slice was placed under 4x objective. 

Then the laser scans an area that contain the whole dendritic arbors. The stimulation 

pattern is normally 8X8 and centered on the recorded neurons, with the spacing ranging 

from 75mm to 100mm, depending on the age of the slice.  Only neurons located close 

to photostimulation sites fired action potentials. To map the average distances of 

photostimulation-evoked spikes from the recorded cell bodies were 115.7 ± 12.7 (N=7) 

μm, 133.3 ± 26.7(N=3) μm, and 127.5 ± 8.9 (N=12) μm, respectively, for DG granule, 

mossy and CA3c pyramid cells. This proves the EPSCs shown in Fig.2.4 are direct 

input from stimulated pre-synaptic neurons. 

Morphology development of mossy cells 

After LSPS experiment, the recorded cells are immunostained with biocytin and 

the morphology is recovered through confocal imaging (Fig.2.2B). From the image, we 

can clearly see young neurons have relatively smooth proximal dendrites while the older 

neurons show lots of thorny excrescence. This is consistent with previous histology 

study using Golgi staining(Ribak et al., 1985). And another interesting fact is the 

dendrites of young mossy cell penetrate fascia dentata and in older mossy cell, the 

dendrites are confined in Hilus.  

Excitatory Afferent input to Mossy Cell 

28 mossy cells are recorded from P6-7, P13-14, P21-28 mice (N=12, 9 and 7). 

After the recording, we performed region specific analysis to characterize the excitatory 

input from different regions of hippocampus to mossy cell.  The excitatory afferent input 

file:///Z:/Yulin/Mossy%20Cell%20Draft/Result%20%20and%20discussion%200709.docx%23_ENREF_7
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are weak from DG at P7, and significantly increases at P14 and P21-28. Such 

difference could be explained the increased amount of thorny excrescences from P7 to 

P14 and P21-28, as the thorny excrescences are considered the location of mossy fiber 

synapsis. Although the excitation from the entire DG decreases at P21-28, such 

difference is not statistically significant. We found that Mossy cell at P7 receives 

majority of its excitatory input from CA3 (Fig 2.5A), indicating strong CA3 back 

projection. As the mouse gets older, the CA3 and Hilus input diminishes and mossy cell 

receives more input from dentate gyrus. 

Figure 2.3

 

Figure 2.3. LSPS Mapping and Data Analysis. A. A horizontal hippocampal slice 
under 4x objective with a neuron patched (in red circle) and Laser stimulating sites 
overlapped (cyan dots). B. Raw signal traces of recorded from the patched neuron while 
the laser is stimulating the slices. C. Close look of two signal traces. The green trace 
contains direct response which has large amplitudes with short response latencies. The 
red traces contains only synaptic responses which have smaller amplitudes and longer 
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latencies. D.E.F. The synaptic responses are detected and extracted by automatic 
software processing (Shi et al, 2010). Quantitative data such as Input Amplitude, 
Number of Events and Number of spontaneous events are calculated and turned into 
color-coded maps.  
 

The recorded cells receive 44.8±8.38pA integrated excitatory input from DG at P7, 

189.9±58.96 at P13-14 and 120.2±11.54 at P21-28. DG input constitutes 29.1±6.07% of 

the total received excitation at P7, 62.7±6.19% at P14 and 74.9±4.40% at P21-28. The 

per stimulation site input also increases drastically from 3.6±0.5pA at P7 to 9.6±1.51 pA 

and 9.6±1.88 pA at P14 and P21-28, respectively.   

Comparing to the input from DG, CA3 provides more input at P7 and much less input at 

P14 and P21-28. The integrated input is 73.1±19.9pA at P7, 43.7±14.6pA at P14 and 

13.7±4.3pA at P21-28. The average percent of evoked excitatory inputs from CA3 to 

mossy cells was 32.0±5.39%, 43.7±14.6% and 13.7±4.3%. The per stimulation site 

input also decrease from 3.7±0.5pA and 3.9±0.7 pA at P7 and P14 to 1.8±0.3 pA at 

P21-28.   

The input from Hilus followed similar trend of CA3 input. The integrated input is 

18.8±4.6pA at P7, 10.9±6.6pA at P14 and 2.6±1.0pA at P21-28. The average percent of 

evoked excitatory inputs from hilus to mossy cells was 18.2±6.3%, 4.8±1.73% and 

2.8±1.29%. The per stimulation site input decreases from 4.1±1.0pA at P7 to 3.1±1.3 pA 

and 1.4±0.5 pA at P14 and P21-28, respectively.   

The number of LSPS evoked EPSCs were also measured independently from EPSC 

strength (Fig.2.5B). The number of evoked EPSCs per stimulation site were 3.2±0.48, 

3.9±0.45 and 3.5±0.13 from P7, P14, and P21-P28 from DG. The number of evoked 

EPSCs per stimulation site were 3.3±0.64, 1.7±0.49 and 0±00 from P7, P14, and P21-
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P21-28 from Hilus. And the number of evoked EPSCs per stimulation site were 

3.4±0.37, 2.4±0.27 and 1.7±0.15 from P7, P14, and P21-P28 from CA3.  

We examined how fast the mossy cells receive excitatory events after stimulation. This 

is important to determine the major role of mossy cell in trisynaptic circuit of 

hippocampus and CA3 backprojection since mossy cell closely relate to the excitability 

of DG granule cells (Scharfman, 1995). The onset of excitatory input has no significant 

difference among the three age groups. And in fact, they are even similar among 

different regions, i.e., DG, Hilus and CA3c (Table 2.2c).  

Inhibitory Afferent input to Mossy Cell 

27 mossy cells are recorded from P6-7, P13-14, P21-28 mice (N=10, 7 and 10). 

After the recording, we performed region specific analysis to characterize the inhibitory 

input from different regions of hippocampus to mossy cell. We found that Mossy cell at 

P7 receives inhibitory input evenly from DG, Hilus and CA3 (Fig 2.6A). As the mouse 

gets older, the inhibition from DG reached peak at P13-P14 and slightly reduce at later 

age. However, CA3 and Hilus inhibition has no significant change during aging. 

The recorded cells receive 68.5±24.0pA integrated inhibitory input from DG at P7, 

490.7±100.6 at P13-14 and 280.2±36.5 at P21-28. DG input constitutes 31.2±6.07% of 

the total received excitation at P7, 62.7±6.19% at P14 and 74.9±4.40% at P21-28. The 

inhibition per stimulation site are 3.9±0.9pA, 12.8±1.4 pA and 8.2±0.8 pA at P6-7, P13-

14 and P21-28, respectively.   

Comparing to the input from DG, CA3 provides most inhibition at P13-14 and 

much less input at P14 and P21-28. The integrated input is 77.1±20.5pA at P7, 

150.6±30.4pA at P14 and 82.2±14.7pA at P21-28. The average percent of evoked 
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inhibitory inputs from CA3 to mossy cells was 40.5±6.24%, 18.5±2.53% and 

18.4±1.27%. The inhibition per stimulation site was 4.3±0.8pA, 10.8±2.1 pA and 6.4±0.7 

pA at P6-7, P13-14 and P21-28.   

Figure 2.4 

 

Figure 2.4. Spatial resolution of LSPS by examining the excitation profile of 
recorded neurons in DG, Hilus and CA3c. A-B: The excitation profile of a recorded 
DG granule cell from P5 mouse hippocampal slice. The excitation profile is the spatial 
distribution of uncaging sites that produce action potentials. The cell is held in current 
clamp mode. The cyan dots in A are the stimulation sites and spaced by 75um. The 
evoked action potentials are restricted in a small region (Yellow Square). The raw signal 
traces in the yellow square are shown in B. C-D: The excitation profile of a recorded DG 
granule cell from P15 mouse hippocampal slice.  E-H: The excitation profile of a 
recorded hilar mossy cell from P26 and P20 mouse hippocampal slice.  The space 
between stimulation points are 92um (E-F) and 100um (G-H). I-L:  The excitation profile 
of recorded CA3c (I-J) and CA3b (K-L) pyramid cells from P18 and P21 mouse 
hippocampal slice.  The space between stimulation points are 100um. The excitation 
profiles show no spike-evoking sites far from the perisomatic area of the recorded 
neuron, proving the LSPS maps represent monosynaptic inputs. 
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Figure 2.5 

 

 

Figure 2.5 Excitatory input connections to mossy cells at different ages. A. The 
map of excitatory input amplitude at P7, P14 and P24. The outline of hippocampus is 
overlaid onto the color map. The little red circle indicates the cell soma. The warmer 
color indicates stronger response. B. the frequency of EPSC events. C. Averaged 
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excitatory regional input amplitude.  These bar graphs plot averaged regional input 
amplitudes to single mossy cells.  We mapped 10, 9 and 7 cells from P7 P14 and P21-
p28 mice, respectively. The y-axis is the input strength. D. The input from CA3 and 
Hilus decreases as the animal ages. 
 

The input from Hilus followed similar trend of CA3 input. The integrated input is 

28.1±8.8pA at P7, 132.2±35.2pA at P14 and 38.6±5.7pA at P21-28. The average 

percent of evoked inhibitory inputs from hilus to mossy cells was 18.2±3.93%, 

14.9±2.95% and 10.5±2.28%. The per stimulation site input was 4.7±1.3pA, 10.7±2.1 

pA and 5.0±0.6 pA at P6-7, P13-14 and P21-28, respectively.   

The number of LSPS evoked IPSCs were also measured independently from 

IPSC strength (Fig.2.6B). The number of evoked IPSCs per stimulation site were 

2.0±0.40, 3.7±0.41 and 3.3±0.36 at P7, P14, and P21-P28 from DG. The number of 

evoked IPSCs per stimulation site were 2.6±0.59, 3.9±0.58 and 2.8±0.29 from P7, P14, 

and P21-28 from Hilus. And the number of evoked IPSCs per stimulation site were 

2.2±0.36, 3.0±0.48 and 2.7±0.22 from P7, P14, and P21-P28 from CA3. 

Similar to excitatory input, we examined the onset of inhibitory input to the recorded 

mossy cells. The onset of IPSC decreased significantly from P6-7 to P13-14. And 

slightly went up at P21-28(Table 3c). This change is significant at DG and CA3.  

Discussion: 

The current study of mossy cell connectivity is largely influenced by anatomical 

observation (Ribak et al., 1985) and paired recordings (Ratzliff et al., 2004).  In this 

study, Laser-Scanning Photostimulation combined with whole cell patch clamping and 

advanced software processing tool allowed us to efficiently assess both excitatory and 

inhibitory afferent connectivity to mossy cells at three important developmental stage of 
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mice. Our data is the first to provide a comprehensive evaluation of the circuits 

connection distribution and input strength of mossy cells.  

 

Comparison of excitatory and inhibitory connections of mossy cell 

Although the experimental results recapitulated that mossy cells receive strong 

excitatory innervations from DG granule cells in later development and adult, it is new 

that the DG excitation is small at p6-p7. This is consistent with the finding that thorny 

excrescence only appears at rather late stage(around p9) and become common at p14 

in rodent  (Ribak et al., 1985). Young mossy cell receive dominant excitation from CA3 

back-projection, which decreased significantly in later age. The weak excitatory input 

from hilus might be a result of recurrent connections from other mossy cells. Such 

excitation disappeared in later age.  

The inhibition of mossy cells comes mostly from DG and CA3. Such inhibition is 

weak and comes evenly from DG, Hilus and CA3. As the animal aging, the DG inhibition 

increased significantly and CA3 and hilus inhibition is reduced.   

Both excitation and inhibition from DG peaked at P14 and slightly went down at P21-

P28. Although further studies are necessary to reveal the mechanism of such reduction, 

it is possible due to the decreased cell density in dentate gyrus in later development 

(Seress, 1977; Sadgrove et al., 2006). 

Mossy cells development and formation of canonical unidirectional trisynaptical 

circuits 

It has been well know that the fundamental neuronal organization of 

hippocampus is DG-CA3-CA1 trisynaptic circuits. Cortical information enters Dentate 

Gyrus through entorhinal cortex. DG granules project to mossy cells and CA3 pyramidal 
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neurons through mossy fibers. Besides forming autoassociation network, CA3 

pyramidal neurons contact CA1 pyramidal neurons through Shaffer collaterals. CA1 

then send efferent connection back to entorhinal cortex. Such information flow is 

considered mostly unidirectional in mature hippocampus.  However, it is not always the 

case, especially in immature hippocampus. In our previous study (Shi et al, 2013), we 

found the bi-directional propagation of global network activity that originate in distal CA3 

and propagate towards DG and CA1 at the same time in young hippocampus (P1-P14). 

Such bi-directional propagation is mediated by AMPA receptor and gradually 

disappeared by p14 and followed by unidirectional propagation. However, it is not clear 

how such information flow is formed. In past studies, biocytin staining and paired 

recording have shown axon collaterals of CA3 pyramidal neurons directly innervate the 

activation of mossy cells and GABAergic neurons (Scharfman, 1993; Scharfman, 1994) 

in dentate and hilus. These neurons sends axons to molecular layer and targets 

Granule Cells. However, the net effect of back-projection is generally inhibitory on 

granule cells.  In the present study, we discovered that mossy cell receives relatively 

strong back-projection from CA3 at P6-7 and such excitation diminishes at later ages. At 

meantime, although the inhibition from CA3 decreases as well, the onset of inhibition 

became faster than excitation at later age. Such change could block the excitation to 

mossy cell and prevent them from activating granule cells, hence the formation of 

unidirectional information flow.   

Mossy Cell and epilepsy 

Mossy cell loss has been observed both in human with temporal lobe epilepsy 

and animal models. There have been a few hypothesis in attempt to connecting mossy 
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cell with epileptogenesis.  However in recent study(Jinde et al., 2012) , although 

targeted ablation of mossy cell in vivo caused short-term hyperexcitability of granule 

cells, increased anxiety and impaired contextual discrimination, no spontaneous seizure 

is observed and most of the acute effects are back to normal in chronic phase. It is also 

observed that there sprouting of interneuron axons into inner molecular layer. This 

experiment indicates deleting mossy cells alone could not cause seizures in 

hippocampus since the interneuron sprouting might supplement the lost inhibition(Jinde 

et al., 2013).  

In our previous study using voltage sensitive dye imaging, the bidirectional 

propagation from CA3 is mediated by AMPA receptor. Whole-cell voltage-clamp of 

Granule cell at p5 received strong and weak excitation when stimulating hilus and CA3, 

reflecting the underlying excitatory pathway from CA3 to hilus and hilus to DG. This is 

consistent with previous findings (Scharfman 1993). The bi-directional propagation 

disappears at P14, similar time of GABA transition from excitatory to inhibitory, 

indicating the maturation of GABA inhibitory system is possibly important for. By 

removing the inhibition with GABA antagonist bicuculline, the back propagation could 

still be observed (Nick’s previous data) and stimulation of fimbria could elicit EPSP of 

the dentate granule cells. Granule cells also receive stronger excitation from more 

locations in DG, CA3 and Hilus of epileptic pilocarpine-treated rats, while such 

excitation is rare in control rats (Zhang, 2012). Further, the loss of SOM inhibitory 

neurons in Hilus after epilepsy (Peng, 2013) completely removed inhibition from Hilus to 

granule cells, and possible to mossy cells as well, which could be the key factor for the 
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formation of uncontrolled recurrent network between granule cells and CA3 pyramidal 

cells.  

Figure 2.6 
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Figure 2.6. Inhibitory input connections to mossy cells at different ages. A. The 
map of inhibitory input amplitude at P7, P14 and P24. The outline of hippocampus is 
overlaid onto the color map. The little green circle indicates the cell soma. The brighter 
color indicates stronger response.  B. The frequency of IPSC events. C. Averaged 
inhibitory regional input amplitude. We mapped 10, 9 and 10 cells from P7 P14 and 
P21-p28 mice. D. The input strength increased significantly at P14 and goes down at 
P21-28. DG provides dominant inhibition comparing to other areas. 
 

Interestingly, although GABA is an inhibitory transmitter in adult cerebra, it might 

switch back from inhibitory to excitatory when large amount of GABA is released under 

pathologic conditions. Further, GABAergic neuron axon sprouting is observed after 

mossy cell deletion (Jinde, 2012). The pilocarpine-treated rats also show massive 

reorganization of the axons of SOM interneurons onto granule cells in hippocampus, 

despite large amount of neuronal loss (Peng, 2013).  In this case, the gabaergic 

neurons might actually facilitate the formation of such recurrent excitatory network 

under pathologic conditions.   

Conclusion 

In summary, we reported both excitatory and inhibitory connectivity changes to 

mossy cells during the hippocampal development. And such findings could contribute in 

understanding formation of canonical hippocampal circuits organization and potentially 

the mechanism of epilepsy. 
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Table 2.2 Statistics of EPSC events of mossy cells at different ages 
a. Averaged Integrated Input Strength of EPSC events of mossy cells at different 
ages. 

 
EI: Evoked Input.  
 
 

b. Number of EPSC events of mossy cells at different ages. 
EPSC Freq 

  P6-7 P13-14 P21-28 Significance level 

DG 

EI 38.9±7.02 70.7±21.16 51.4±10.07 n.s. 

EI Per Site 3.2±0.48 3.9±0.45 3.5±0.13 n.s  

% EI 31.2±5.04 56.6±6.37 68.3±4.21 n.s. 

hilus 

EI 15.1±3.38 4.9±2.48 2.6±1.10 

* P6-7 vs. P13-14 
0.0503 

* P6-7 vs. P21-28 
0.0117 

EI Per Site 3.3±0.64 1.7±0.49 0  n.s. 

% EI 13.3±4.33 5.4±2.08 3.2±1.22  n.s. 

CA3 

EI 60.4±13.94 25.5±8.36 12.7±3.24 
* P6-7 vs. P21-28 

0.0193 

EI Per Site 3.4±0.37 2.4±0.27 1.7±0.15 n.s. 

% EI 33.4±5.76 26.2±4.69 14.3±3.50 n.s. 

 
 

c. Rise time, Time Constant and Onset of EPSC 
  P6-7 P13-14 P21-28 Significance level 

DG Rise time(ms) 2.4±0.12 2.6±1.31 2.49±0.14 n.s. 

EPSC Integrated Input 

  P6-7 P13-14 P21-28 Significance level 

DG 

EI 44.8±8.38 189.9±58.96 120.2±11.54 

* P6-7 vs. P13-14 
0.0507 

* P6-7 vs. P21-28 
0.00048 

EI Per Site 3.6±0.5 9.6±1.51 9.6±1.88 n.s. 

% EI 29.1±6.07 62.7±6.19 74.9±4.40 n.s. 

hilus 

EI 18.8±4.6 10.9±6.6 2.6±1.0 
* P6-7 vs. P21-28 

0.0218 

EI Per Site 4.1±1.0 3.1±1.3 1.4±0.5 n.s. 

% EI 18.2±6.3 4.8±1.73 2.8±1.29 n.s. 

CA3 

EI 73.1±19.9 43.7±14.6 13.7±4.3 

* P6-7 vs. P21-28 
0.0556 

*  P13-14 vs. P21-28 
0.0907 

EI Per Site 3.7±0.5 3.9±0.7 1.8±0.3 n.s. 

% EI 32.0±5.39 22.4±4.59 13.8±3.88 n.s. 
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Time 
Constant(ms) 4.2±0.23 4.16±0.29 5.0±0.60 n.s. 

Onset(ms) 50.5±5.60 46.2±6.73 42.1±4.78 n.s. 

hilus 

Rise time(ms) 2.3±0.17 2.9±0.57 2.2±0.23 n.s. 
Time 

Constant(ms) 6.7±0.99 5.7±0.46 6.2±1.48 n.s. 

Onset(ms) 46.9±4.88 59.1±7.33 39.2±9.05 n.s. 

CA3 

Rise time(ms) 2.45±0.12 3.14±0.13 2.73±0.25 

* P6-7 vs. P13-14 
0.0038 

* P13-14 vs. P21-28 
0.0401 

Time 
Constant(ms) 7.2±0.29 4.4±0.28 3.4±0.91 n.s. 

Onset(ms) 44.1±2.99 51.0±7.41 47.2±10.25 n.s. 

 
Table 2.3 Statistics of IPSC events of mossy cells at different ages 
a. Integrated Input of IPSC events of mossy cells at different ages. 

IPSC Integrated Input 

  P6-7 P13-14 P21-28 Significance level 

DG 

EI 68.5±24.0 490.7±100.6 280.2±36.5 

* P6-7 vs. P13-14 
0.00041 

* P6-7 vs. P21-28 
0.00079 

EI Per Site 3.9±0.9 12.8±1.4 8.2±0.8 n.s. 

% EI 31.2±5.54 62.3±5.00 64.1±2.93 n.s. 

hilus 

EI 28.1±8.8 132.2±35.2 38.6±5.7 n.s. 

EI Per Site 4.7±1.3 10.7±2.1 5.0±0.6 n.s. 

% EI 18.2±3.93 14.9±2.95 10.5±2.28 n.s. 

CA3 

EI 77.1±20.5 150.6±30.4 82.2±14.7 n.s. 

EI Per Site 4.3±0.8 10.8±2.1 6.4±0.7 n.s. 

% EI 40.5±6.24 18.5±2.53 18.4±1.27 n.s. 

 

b. Number of IPSC events of mossy cells at different ages. 
IPSC Freq 

  P6-7 P13-14 P21-28 Significance level 

DG 

EI 32.6±11.70 105.3±21.12 111.6±14.46 

* P6-7 vs. P13-14 
0.0136 

* P6-7 vs. P21-28 
0.0028 

EI Per Site 2.0±0.40 3.7±0.41 3.3±0.36 n.s. 

% EI 31.1±5.57 56.3±4.82 60.8±1.92 n.s. 

hilus 

EI 15.15±4.18 35.38±9.79 21.3±2.80 n.s. 

EI Per Site 2.6±0.59 3.9±0577 2.8±0.29 n.s. 

% EI 19.3±3.89 17.1±2.60 13.1±2.16 n.s. 

CA3 

EI 36.2±9.14 44.3±13.16 33.8±4.40 n.s. 

EI Per Site 2.2±0.36 3±0.48 2.7±0.22 n.s. 

% EI 39.3±6.43 19.9±2.69 18.6±0.93 n.s. 

 

c. Rise time, Time Constant and Onset of IPSC 
  P6-7 P13-14 P21-28 Significance level 

DG Rise time(ms) 4.1±0.25 4.0±0.23 4.4±0.18 n.s. 
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Time 
Constant(ms) 

9.3±0.06 7.7±0.78 7.4±0.33 
P6-7 vs. P21-28 

0.0167 

Onset(ms) 57.1±2.17 34.8±1.55 40.2±2.53 

* P6-7 vs. P13-14 
0.0003108 

* P6-7 vs. P21-28 
0.0000938 

* P13-14 vs. P21-28 
0.0702 

hilus 

Rise time(ms) 4.6±0.27 4.4±0.27 4.8±0.16 n.s. 

Time 
Constant(ms) 

7.3±0.00 7.7±1.04 9.4±0.83 n.s. 

Onset(ms) 39.3±6.46 28.7±4.27 33.0±2.93 n.s. 

CA3 

Rise time(ms) 4.4±0.28 3.5±0.35 4.5±0.22 

* P6-7 vs. P13-14 
0.051 

* P13-14 vs. P21-28 
0.025 

Time 
Constant(ms) 

8.8±0.11 7.0±0.78 8.6±0.64 n.s. 

Onset(ms) 61.5±6.25 34.0±4.53 35.8±2.50 

* P6-7 vs. P13-14 
0.0079 

* P6-7 vs. P21-28 
0.003 
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Chapter 3 

Novel use of matched filtering for synaptic event detection and 
extraction 
 

Efficient and dependable methods for detection and measurement of synaptic 

events are important for studies of synaptic physiology and neuronal circuit connectivity.  

As the published methods with detection algorithms based upon amplitude thresholding 

and fixed or scaled template comparisons are of limited utility for detection of signals 

with variable amplitudes and superimposed events that have complex waveforms, 

previous techniques are not applicable for detection of evoked synaptic events in 

photostimulation and other similar experimental situations.  Here we report on a novel 

technique that combines the design of a bank of approximate matched filters with the 

detection and estimation theory to automatically detect and extract photostimluation-

evoked excitatory postsynaptic currents (EPSCs) from individually recorded neurons in 

cortical circuit mapping experiments.  The sensitivity and specificity of the method were 

evaluated on both simulated and experimental data, with its performance comparable to 

that of visual event detection performed by human operators.  This new technique was 

applied to quantify and compare the EPSCs obtained from excitatory pyramidal cells 

and fast-spiking interneurons.   In addition, our technique has been further applied to 

the detection and analysis of inhibitory postsynaptic current (IPSC) responses.  Given 

the general purpose of our matched filtering and signal recognition algorithms, we 

expect that our technique can be appropriately modified and applied to detect and 

extract other types of electrophysiological and optical imaging signals. 
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Introduction    

Neurons in the brain and nervous system in general communicate with one 

another by forming connections mostly through synapses.  Typical neurophysiological 

studies involve experimental recordings from many neurons, and may require detailed 

examination and analysis of synaptic events.  For example, laser scanning 

photostimulation experiments are effective for mapping local circuit inputs to individually 

recorded neurons (Callaway and Katz, 1993; Weiler et al., 2008; Xu and Callaway, 

2009), as simultaneous whole-cell recordings from a postsynaptic neuron with 

photostimulation of clusters of presynaptic neurons (via glutamate uncaging) at many 

different locations provide quantitative measures of spatial distribution of excitatory and 

inhibitory inputs impinging onto individually recorded neurons.  Similar to most other 

synaptic physiological analyses, photostimulation data analysis involves identification 

and detection of hundreds of response traces that are recorded from each individual 

cell.  Although photostimulation maps of synaptic inputs can be constructed by simply 

averaging postsynaptic current amplitudes within a response window (Shepherd and 

Svoboda, 2005; Jin et al., 2006; Weiler et al., 2008; Xu and Callaway, 2009), a more 

comprehensive understanding of synaptic connectivity requires detection of individual 

synaptic events and measurement of parameters such as event occurrence times, 

amplitudes and frequencies (Yoshimura and Callaway, 2005; Yoshimura et al., 2005).  

While the human detection of these events is typically aided by software applications, 

the process is still laborious and time-consuming, which precludes efficient treatment of 

large datasets (Dantzker and Callaway, 2000; Yoshimura et al., 2005).   
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Table 3.1. Quantitative analysis of photostimulation-evoked EPSCs recorded from 
excitatory pyramidal cells and FS cells. 

 

*Note that the data summary is based upon automated detection and measurement of 689 and 1076 
evoked EPSCs from excitatory pyramidal cells and FS cells (N = 3 each) recorded in the deep layers of the 
prelimbic area, respectively.  

 
As automated detection of synaptic events is of practical importance to 

experimental neuroscience, several different approaches (particularly for detection of 

spontaneous synaptic events) have been developed, where detection algorithms are 

based upon amplitude thresholding, and fixed or scaled template matching (Liao et al., 

1992; Cochran, 1993; Abdul-Ghani et al., 1996; Clements and Bekkers, 1997; Hwang 

and Copenhagen, 1999; Li et al., 2007).  An unpublished method (http://huguenard-

lab.stanford.edu/public/) noted in (Jin et al., 2006) could detect photostimulation-evoked 

EPSCs based upon the estimated EPSC differentiation window sizes and event 

amplitudes, which need to be carefully adjusted and tested on recorded traces of each 

map to ensure detection of synaptic events.  However, these algorithms are found to be 

of limited utility for detection of signals with variable amplitudes and superimposed 

events that have complex waveforms (Clements and Bekkers, 1997; Hwang and 

 EPSC peak 
amplitude 
(median, pA) 

EPSC rise 
time  
(median, ms) 

mean EPSC 
frequency (Hz) 
across 
photostimulation 
sites  

The latency of 
first detected 
EPSC per site  
( median, ms) 

excitatory 
pyramidal 
cells 
 

35.66 ± 2.31 
(mean ± SE) 

4.7 ± 0.31 4.37 ± 0.59  42.4 ± 5.23 

fast-spiking 
(FS) inhibitory 
cells 
 

50.77 ± 2.84   2.93 ± 0.73 7.87 ± 1.49 37.9 ± 4.82 
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Copenhagen, 1999); thus they are not optimal for detection of evoked synaptic events in 

photostimulation and other similar experimental situations.   

Figure 3.1 

 

Figure 3.1.  Laser scanning photostimulation combined with whole cell 
recordings to map local circuit input to an excitatory pyramidal neuron.  A shows 
a mouse prefrontal cortical slice image with the superimposed photostimulation sites (16 
x 16 cyan stars, spaced at 60 µm x 100 µm) across all the cortical layers 1, 2, 3, 5 and 6 
(i.e., L1-L6).  Note that the prefrontal cortex lacks granular layer 4 found in primary 
sensory cortex.  The glass electrode was recording from an excitatory pyramidal neuron 
(shown with a scaled reconstruction with major dendrites) in upper layer 5 of the 
prelimbic area in prefrontal cortex.   M denotes medial, and V denotes ventral.  B shows 
an array of photostimulation-evoked response traces from most locations shown in A, 
with the cell held at -70 mV in voltage clamp mode to detect inward excitatory synaptic 
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currents (EPSCs).  The red circle indicates the cell body location.  Only the 200 ms of 
the recorded traces after the onset of laser photostimulation (1 ms, 25 mW) are shown.  
Different forms of photostimulation responses are illustrated by the traces of 1, 2, 3 and 
4, which are expanded and separately shown in C. Trace 1 is an example of the direct 
response (shown in red) to glutamate uncaging on the cell body.  Trace 2 is a typical 
example of synaptic input responses (blue).  Trace 3 shows synaptic responses (blue) 
over-riding on the relatively small direct response (red) evoked from the cell’s proximal 
dendrites.  Trace 4 is another form of direct response (red) evoked from apical 
dendrites.  D shows the pyramidal cell’s intrinsic firing pattern with its voltage response 
traces to current injections at amplitudes of -50, 100, 150 and 200 pA, respectively. 
 

In the present study we introduce a novel technique for detection and extraction 

of photostimulation-evoked excitatory postsynaptic currents (EPSCs) from individually 

recorded neurons in cortical circuit mapping experiments.  Our technique is motivated 

by the observation that a matched filter represents a detector that maximizes the signal-

to-noise ratio (SNR) (Kay, 1998).  In other words, if a noisy time series is match-filtered, 

the time samples that contain a signal of interest are amplified while those containing 

noise are suppressed, which then facilitates the separation of signal and noise in the 

filtered time series. To synthesize such a filter, the signal to be detected must be 

perfectly known so that the filter can be matched to the signal, which is not possible in 

most experimental situations.  To circumvent this constraint, our technique starts with a 

training stage, where several high-SNR EPSCs are identified by a human operator and 

fitted by polynomial models to build an array (bank) of approximate matched filters 

(templates).  The filter bank provides a rich class of waveforms that potentially match 

those of EPSCs found in experimental recordings, thereby increasing the likelihood of 

their detection.  In the fully automated detection stage, experimental data traces are 

filtered in the time domain with the polynomial templates obtained in the training stage.  

This amounts to convolving the data traces to be analyzed with the templates, with 



` 

77 

 

candidate EPSCs having a better match with the templates and thus yielding larger 

convolution amplitudes. To detect EPSCs, the convolution traces are then compared to 

an event detection threshold and candidate EPSCs are localized and extracted by using 

statistical parameters estimated in the training stage.  

The paper presents novel EPSC detection and extraction algorithms, as well as 

technical implementation details. The sensitivity and specificity of the method were first 

evaluated on simulated data, and subsequently validated on experimental data by 

comparing its performance to that of visual event detection performed by human 

operators.  We also extended this method to the detection and analysis of inhibitory 

postsynaptic current (IPSC) responses.  Finally, this new technique was applied to 

quantify and compare photostimulation-evoked EPSCs obtained from excitatory 

pyramidal cells and fast-spiking interneurons. 

Methods and Materials 

Experimental recordings   

Wild-type C57/B6 mice were used in the experiments.  All animals were handled 

and experiments were conducted in accordance with the protocol (#2008-2796) 

approved  by the Institutional Animal Care and Use Committee at the University of 

California, Irvine.  To prepare living brain slices, animals (postnatal day 17–23) were 

deeply anesthetized with pentobarbital sodium (>100 mg/kg, i.p.), rapidly decapitated, 

and their brains were removed.  Coronal sections of prefrontal cortex were cut 400 µm 

thick with a vibratome (VT1200S, Leica Systems) in sucrose-containing artificial 

cerebrospinal fluid (ACSF) (in mM: 85 NaCl, 75 sucrose, 2.5 KCl, 25 glucose, 1.25 

NaH2PO4, 4 MgCl2, 0.5 CaCl2, and 24 NaHCO3).  Slices were first incubated in 
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sucrose-containing ACSF for 30 min to 1 h at 32°C, and then transferred to recording 

ACSF (in mM: 126 NaCl, 2.5 KCl, 26 NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, and 

10 glucose) at room temperature.  Throughout incubation and recording, the slices were 

continuously bubbled with 95% O2-5% CO2. 

Cortical slices were visualized with an upright microscope (BW51X, Olympus) 

with infrared differential interference contrast optics.  Electrophysiological recordings, 

photostimulation, and imaging of the slice preparations were done in a slice perfusion 

chamber mounted on a motorized stage of the microscope.  An aliquot of MNI-caged-L-

glutamate (4-methoxy-7-nitroindolinyl-caged L-glutamate, Tocris Bioscience, and 

Ellisville, MO) was added to 20–25 ml of circulating ACSF for a concentration of 0.2 mM 

caged glutamate.  To perform whole cell recording, cells were visualized at high 

magnification (60x objective, 0.9 NA; LUMPlanFl/IR, Olympus).  Neurons were patched 

with borosilicate electrodes and recorded at room temperature. The patch pipettes (4–6 

MΩ resistance) were filled with an internal solution containing (in mM) 126 K-gluconate, 

4 KCl, 10 HEPES, 4 ATP-Mg, 0.3 GTP-Na, and 10 phosphocreatine (pH 7.2, 300 

mOsm).  For some recordings in which IPSCs were measured, potassium in the internal 

solution was replaced with cesium. The internal solution also contained 0.1% biocytin 

for cell labeling and morphological identification.  Once stable whole cell recordings 

were achieved with good access resistance (usually <20 MΩ), the microscope objective 

was switched from 60x to 4x for laser scanning photostimulation.  At low magnification 

(4x objective lens, 0.16 NA; UplanApo, Olympus), the slice images were acquired by a 

high-resolution digital CCD camera (Retiga 2000, Q-imaging, Austin, TX) and used for 

guiding and registering photostimulation sites in cortical slices.   
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Figure 3.2 

 

Figure 3.2 Detection of EPSCs with matched filters.  A. In the top portion, the 
original and high-pass filtered traces are aligned.  The raw trace, which is high-pass 
filtered with a Butterworth filter, contains a large direct response and synaptically 
mediated responses.  The vertical dashed line indicates the photostimulation laser 
onset.  The direct response window is defined as 10 ms within the laser onset.  The 
filtered data trace is convolved with all the filters (a total of 18 matched filters in this 
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case) from the bank, and the convolution traces (one for each filter) are compared to a 
threshold.  In the bottom portion of A are shown 6 example convolution traces (green) 
produced with 6 matched filters (red) and their original EPSC templates (black).  The 

detection threshold (dashed) is chosen as µ- 1.2σ (11 pA), where 𝜇 is the mean value 
(28.4 pA) of 𝑐max obtained in the training stage from the bank of 18 filters and 𝜎 is its 
standard deviation (14.5 pA).  All the samples of the convolution traces that cross the 
detection threshold form the suprathreshold segments (red squares); each trace may 
has its own set of suprathreshold segments.  The red crosses illustrate the centers of 
mass of the suprathreshold segments and represent potential EPSC occurrence times, 
while the black crosses are determined as identified EPSC peaks.  As the arrow heads 
point out, more than one EPSCs can be identified within one suprathreshold segment.  
As the convolution values of the direct response are large and exceed the outlier 
threshold, defined as µ + 4 σ (86 pA) within W ms (i.e., 30 ms) after the laser onset, the 
direct response is not detected as an EPSC response.  B is similarly formatted as A, 
and shows another example to detect both a direct response and synaptically mediated 
responses.  The direct response in B is relatively small, and its peak values of the 
convolution traces do not exceed the outlier threshold.  But the response is correctly 
identified as a direct response, because the leading edge of the response is located 
within the 10 ms direct response window.   

 

The design of our laser scanning photostimulation system has been described 

previously (Xu et al., 2010).  A laser unit (model 3501, DPSS Lasers, Santa Clara, CA) 

was used to generate a 355 nm UV laser for glutamate uncaging.  Various laser 

stimulation positions were achieved through galvanometer-driven X-Y scanning mirrors 

(Cambridge Technology, Cambridge, MA), as the mirrors and the back aperture of the 

objective were in conjugate planes, thereby translating mirror positions into different 

scanning locations at the objective lens focal plane.  During mapping experiments, 

photostimulation was applied to 16 x 16 patterned sites (centered at the recorded 

neuron) in a nonraster, nonrandom sequence, while whole-cell voltage-clamp 

recordings were made from the recorded postsynaptic neurons with EPSCs and IPSCs 

measured at the holding potential of -70 mV and  0 mV, respectively, across 

photostimulation sites.  Data were acquired with a Multiclamp 700B amplifier (Molecular 

Devices, Sunnyvale, CA), data acquisition boards (models PCI MIO 16E-4 and 6713, 



` 

81 

 

National Instruments, Austin, TX), and custom-modified version of Ephus software 

(Ephus, available at https://www.ephus.org/).  Data were low-pass filtered at 2 kHz 

using a Bessel filter, digitized at 10 kHz, and stored on a computer.  For more detailed 

electrophysiology and photostimulation procedures, please refer to previously published 

studies (Xu and Callaway, 2009; Xu et al., 2010).   

Figure 3.3 

 
Figure 3.3 Simulated neural data and detection examples.  A1, B1 and C1 are the 
same set of test templates (EPSC examples) acquired from experimental recordings, 
normalized to their peak amplitudes.  Within this set of templates, simulated EPSCs of 
1, 2, 6 and 7 are distributed as individual, non-overlapping events, while simulated 
EPSCs of 3, 4 and 5 overlap and take place as one complex and overlapping response.  
A2, B2 and C2 are the baseline spontaneous activity (noise) trace, with noise variances 
scaled to the test template amplitude with different SNRs.  A3, B3 and C3 are simulated 
data traces by superimposing the template events with different degrees of noise.  A4, 
B4 and C4 show EPSC detection results (color coded, with the estimated arrival time 
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marked as ‘+’) through convolving the simulated data traces in A3, B3 and C3 with 10 
matched filters, respectively.  The original EPSC template events (black, as shown in 
A1, B1, C1), are plotted for evaluating software detection.  The detection procedure 
uses a detection threshold at µ + 3σ (3 standard deviations from the mean of the 
maximal template convolution values of the filters), and uses an amplitude cutoff of 60 
pA, which is about 25% of the peak values of the individual test templates.   

 

Design of matched filters, and EPSC detection and extraction algorithms  

Figure 3.4 

 

Figure 3.4. Detection performance evaluation on simulated data by using 
Receiver Operating Characteristic (ROC) curve analysis.  The horizontal axis shows 
the probability of false alarm (Pfa), and the vertical axis shows the probability of correct 
detection (Pcd).  Each ROC curve represents the software PSC detection performance 
at a fixed SNR (3, 6 or 9) with different detection thresholds.  The detection thresholds 
ranges from – 2σ to 3σ from the mean of the maximal template convolution values.  The 
ROC curve for each combination of the detection threshold and SNR was calculated by 
averaging the performance over 200 trials. 
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Our detection method consists of two stages: (i) the design of matched filters 

(templates); and (ii) the fully automated event detection with established filters.  In the 

filter design stage, referred to as the training stage, the user presents the algorithm with 

examples of identified EPSCs, based on which templates and statistical parameters of 

their waveforms are estimated and stored.  In the detection stage, the templates and 

parameters obtained in the training stage are used to detect EPSCs.   

Training Stage: In the training stage, the user identifies raw experimental data traces 

that contain evoked EPSCs that are sufficiently strong with respect to background 

noise; and the user is prompted to manually mark evoked EPSCs.  This procedure 

typically involves sequential selection of several synaptic responses with different 

shapes, durations and amplitudes.  The onset of the EPSC should be taken as the point 

where the signal starts falling sharply from the baseline.  Similarly, the offset point 

should be the point where the signal returns to baseline.  The onset and offset points 

should be at a similar baseline level.  If this condition is violated (presumably due to a 

high noise level or direct response contamination), it is recommended that a new EPSC 

be used for training.  Superimposed EPSCs are not appropriate to be used for training.  

An 8-th order polynomial model is fitted through the segment of each identified EPSC, 

normalized by its L1 norm [The L1 norm of a vector x = [x1,x2,⋯,xn] is defined as:‖x‖1 =

∑ |xi|
n
i=1 .], and saved as a template (approximate matched filter) for the detection stage.  

The normalization is necessary to minimize the dependence of EPSC detectability on 

the filter amplitude.  While EPSCs from a single synaptic event are typically modeled 

using exponential functions (Nenadic et al., 2000; Nenadic et al., 2002; Nenadic et al., 

2003; Li et al., 2007), most of photostimulation-evoked EPSCs appear to represent 
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compound responses of multiple synapses, and the exponential models proved 

inadequate.  The 8-th order polynomial model, however, provided an excellent fit, given 

the sampling rate of 10 kHz and the mean duration of EPSCs of ~14 ms.  While our 

method and its software implementation allow the user to change the order of the 

model, choosing polynomials of higher order may result in overfitting.  Several 

parameters are then calculated and stored for further analysis, including the duration of 

the EPSCs, defined by manual mouse clicks, and the duration of the leading and trailing 

parts of EPSCs, defined as the absolute value of the difference between the time of the 

(negative) peak of the selected EPSC and its onset and offset, respectively.  In addition, 

the amplitude of the selected EPSC, defined as the difference of the amplitude value at 

the onset and peak time of the EPSC, is calculated. Finally, the selected raw EPSC is 

convolved with the yielded template and the maximum value of the convolution signal, 

𝑐max , is logged. The purpose of this step is to obtain the statistics of convolution 

amplitudes for the detection stage.  Due to the presence of noise and the fact that 

EPSCs are asymmetric, there is typically a time shift between the peaks of convolution 

and EPSC traces, and the shift value is also recorded and stored.  The role of these 

parameters will be precisely defined in the detection stage.  The whole procedure is 

then repeated with a different trace or a different EPSC within the same trace, which 

amounts to building a bank of approximate matched filters for the detection stage.  A 

minimum recommended number of filters in the bank is 10, although 18 filters were 

used in the present study.  In addition to increasing the likelihood of detecting EPSCs 

with various shapes and durations, multiple templates allow the statistics of the above 

parameters to be estimated more accurately.  Subsequently, based on these 
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parameters, detection thresholds and safeguards against false detection can be set in a 

statistically meaningful manner.  It should be noted that the user’s involvement only 

includes selecting EPSCs with mouse clicks, and that all subsequent calculations are 

automated.  Typical time necessary to obtain the filter bank and the associated 

parameter statistics is less than 10 min.  It should also be noted that templates and 

parameters trained on a data set from one experiment can often be used for detection 

of EPSCs in other similar experiments.  

Figure 3.5 

 

Figure 3.5.  Analysis of experimental data through matched filtering.  A-F: Typical 
examples of detection and extraction of photostimulation-evoked EPSCs, in comparison 
with human visual detection.   The raw data traces were shown in solid back, with the 
overlaying segments of EPSCs (blue) identified by an experienced human operator.  
The black crosses indicate the center of the human selected EPSCs.  The color-coded 
segments shown below the raw data traces are detected and individually extracted 
EPSCs through matched filtering, with the respective crosses indicating the detected 
EPSC centers.  The arrows and arrow heads point to the extra events correctly detected 
by the software, but missed by the human.  The weak EPSCs (with the amplitudes of < 
20 pA, about the spontaneous EPSC level) (green) identified by the human are missed 
by the automated detection, because of the pre-set amplitude cutoff (20 pA).  G: the bar 
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graph summarizing the percentage of correct detection and percentage of false alarm of 
the automated detection of EPSCs across different data sets (N = 3), using the same 
filter bank at multiple detection thresholds (µ-1σ, µ-1.25σ and µ-1.5σ).  The values are 
presented as mean ± SE.  Each data set contained more than 200 photostimulation-
evoked EPSCs, and the detection results were inspected and verified by a human 
operator. 
 

Detection Stage: In the detection stage, the arrival (occurrence) times of 

candidate EPSCs are found and processed, and short segments of data around the 

estimated occurrence times are extracted for further analysis.  Specifically, the data 

trace under investigation is first high-pass filtered (>10 Hz) with a 5th order, infinite 

impulse response Butterworth filter.  The role of this filter is to minimize the effect of the 

direct uncaging response (see Results), whose duration is much longer than that of 

synaptically mediated indirect responses (EPSCs).  To minimize the phase distortions, 

this filter is implemented as a zero-phase forward and reverse digital filter (Oppenheim 

and Schafer, 2009).  The high-pass filtered signal is then convolved with all the filters 

from the bank, and the convolution traces (one for each filter) are time-shifted to 

minimize the difference between the time of the convolution peak and a potential EPSC 

peak, and thus facilitate a more precise estimation of EPSCs’ occurrence times.  The 

applied time shifts are those recorded in the training stage (see above).  Time-shifted 

convolution traces are then compared to a detection threshold.  For experimental data, 

this threshold is typically chosen between µ − 1.5𝜎  and µ − 𝜎 , where 𝜇 is the mean 

value of 𝑐max obtained in the training stage, and 𝜎 is its standard deviation.  The 

program allows the user to change the detection threshold, should it be necessary.  The 

points of threshold crossing represent potential arrival times of EPSCs with two 

exceptions.  First, Wd ms within the onset of the laser stimulus, no synaptic responses 

are expected to be found (see below), and our method dismisses any potential events 
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within this window.  The default value for Wd is 10 ms.  Second, Wo ms (Wo= 30 ms by 

default) within the laser stimulus, convolution traces may still be affected by the direct 

response, yielding extremely large values.  Therefore, the convolution traces within this 

window are compared to an additional (outlier) threshold, e.g. chosen as 𝜇 + 4𝜎, where 

𝜇 and 𝜎 are defined as above, and potential EPSCs whose convolution traces exceed 

this threshold are dismissed. For each convolution trace, the samples that exceed the 

detection threshold form the so-called suprathreshold time segments.  Within each 

eligible suprathreshold segment outside of Wd time window, the center of mass of each 

convolution trace is found and declared as an occurrence time candidate, tcm, of an 

EPSC.   

To localize EPSCs, the occurrence time candidates are processed from earlier to 

later along the original data trace in the following manner.  First, for each potential 

EPSC, its negative peak is found in the vicinity of the occurrence time candidate, tcm, 

defined a [𝑡𝑐𝑚 − 𝐿, 𝑡𝑐𝑚 + 𝑇],  where L (e.g., 4.4 ms) and T (10.2 ms) are the mean 

leading and trailing parts of EPSCs estimated from the training stage.  If multiple 

negative peaks are found around an occurrence time, they are scored according to 

several criteria, and the peak with the highest score is selected.  The location of the 

peak, 𝑡𝑝, is then taken as the estimated EPSC occurrence time.  Its onset and offset 

times are further identified within the segment[𝑡𝑝 − 𝐿𝑜𝑛, 𝑡𝑝 + 𝐿𝑜𝑓𝑓].  Here 𝐿𝑜𝑛 = 𝜇 + 𝜎 

where 𝜇  and  𝜎  are the mean and standard deviation of the leading part of EPSC 

estimated in the training stage, and 𝐿𝑜𝑓𝑓 = 𝜇 + 𝜎 where 𝜇  and 𝜎  are the mean and 

standard deviation of the trailing part of EPSC estimated in the training stage. 

Specifically, the onset point of this potential EPSC is found as the largest positive peak 
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on the segment [𝑡𝑝 − 𝐿𝑜𝑛, 𝑡𝑝]; and the offset point is located as the largest local peak 

within the trailing part of the EPSC waveform between 𝑡𝑝 and 𝑡𝑝 +  𝐿𝑜𝑓𝑓 , or between 

𝑡𝑝 and the onset of the next potential EPSC within [𝑡𝑝, 𝑡𝑝 + 𝐿𝑜𝑓𝑓].  An additional measure 

is employed to detect potential overlapping EPSC events within [𝑡𝑝 − 𝐿𝑜𝑛, 𝑡𝑝 + 𝐿𝑜𝑓𝑓] .  

The potential EPSCs are required to exceed an amplitude threshold based upon the 

mean amplitude of spontaneous EPSCs assessed in the training stage.  All the above 

procedures are repeated to process all occurrence time candidates to detect and 

localize potential EPSCs.  Short segments of detected events centered at 𝑡𝑝 are then 

extracted and saved for further analysis. EPSC parameters, such as the peak amplitude 

(defined as the difference between the amplitudes at 𝑡𝑝 and the onset), the summed 

input (2 ∑ f(x)
𝑡𝑝

onset ), and the number of detected events, are subsequently calculated 

and analyzed.  

Modeling Neural Data 

Simulated neural data were used to evaluate the performance of our method.  To 

mimic experimental conditions, 10 EPSCs from actual whole-cell recording experiments 

were detected by a human operator, normalized to the amplitude of the largest EPSC ( 

||𝑆𝑖||∞ = 105.2 pA;  𝑖 = 1,2, ⋯ ,10 ) [The L∞ norm of a vector of a vector x = [x1,x2,⋯,xn] is 

defined as: ‖x‖∞ = max
1≤i≤n

|xi |.] and stored in a test template library.  The rationale for this 

normalization will be explained below.  For each trial, a Poisson process with the mean 

rate of 20 events per second and a refractory period of 27 ms was used to generate a 

sequence of EPSC arrival times.  To account for overlapping events, in 20% of cases 

the refractory period was ignored.  With a maximum duration of these test templates 

being ~20 ms, this Poisson event generator produced overlapping events with 
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reasonable intervals, as seen in real experimental recordings.  The duration of each trial 

was set to 215 ms, with an average of 4.28 EPSCs to be generated.  For each trial, the 

test templates were drawn at random from the library (with a uniform distribution) and 

centered at the arrival times generated by the Poisson process above to form a train of 

test templates.   

Figure 3.6 

 

Figure 3.6. EPSC analysis and photostimulation data map construction.  A shows 
the two extracted EPSCs (1, 2), one showing an example of over-riding EPSCs on the 
direct response, and the other showing an EPSC without being affected by the direct 
response.   As illustrated in the two examples, individual EPSC peak amplitudes and 
summed input amplitudes, the EPSC rise time (from the onset to the peak time), EPSC 
latency/arrival time, and the number of EPSCs per site are measured.  As the trailing 
portion of the over-riding EPSC can be skewed by the direct response, the individual 
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EPSC summed input is defined as 2x [the integral area between the leading edge and 
the EPSC center] (the green shaded area)  

 

To model the noise, some 160 whole-cell recordings that did not yield any 

evoked response (as established by the visual inspection by a human operator) were 

identified, normalized (mean: 0, standard deviation: 1) and saved in a noise template 

library. The duration of these traces was 400 ms.  Note that these traces contain 

spontaneous activity, which presents realistic challenges to our detection method by 

creating potential false alarms.  Other advantages of this noise model over traditionally 

used autoregressive models that rely on spectrum fitting are discussed at length in 

previous studies (Nenadic and Burdick, 2005, 2006; Benitez and Nenadic, 2008).  For 

each trial with a given SNR, defined here as SNR = ||𝑆𝑖||∞/𝜎𝑛, where  𝜎𝑛 is the desired 

noise standard deviation, a 215-ms-long noise segment was selected randomly from the 

noise library, scaled to the desired SNR (i.e. multiplied by ||𝑆𝑖||∞/SNR) and added to the 

train of test templates.  The normalization of test templates admits description of each 

trial with a single SNR, for otherwise SNRs need to be averaged over multiple events.  

Note that the average SNR is not a perfect measure of noisiness of the data as two 

trials with the same SNR may pose vastly different challenges to the detection algorithm 

(Nenadic and Burdick, 2005).  Note that despite the normalization of the test templates, 

the detection of EPSCs with variable amplitudes can be effectively simulated by varying 

SNRs.  

For analysis of the model data, 200 Monte Carlo trials were generated for each 

SNR, the threshold was varied, and the detection technique with established matched 

filters was applied.  The results are shown as receiver operating characteristic (ROC) 
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curves, illustrating the probability of correct detection (Pcd) and the probability of false 

alarm (Pfa).  The detection of EPSC test template was declared correct if the absolute 

value of the difference between estimated and true arrival times was ≤ 1.5 ms.  Note 

that this tolerance is significantly smaller than the average duration of test template 

EPSCs (~11 ms).  If no EPSC was detected within 1.5 ms of the true arrival time, an 

omission was declared.  Similarly, if no true arrival time is found within 1.5 ms of the 

estimated arrival time, a false alarm was declared.  To calculate Pcd and Pfa, instances 

of correct detections and false alarms are counted on a trial-by-trial basis, and averaged 

over trials.  Please see (Nenadic and Burdick, 2005) for the details of our averaging 

methodology. 

Figure 3.7 

 

Figure 3.7. The color-coded maps (16 x16 sites) of average input amplitude, the 
EPSC numbers, and the first detected EPSC latency per site, respectively, for the 
data set shown in Figure 3.1.  The average input amplitude from each stimulation site is 
the mean amplitude of EPSCs in the response analysis window, with the baseline 
spontaneous response subtracted from the photostimulation response of the same site.  
The calculation is based upon the measurement of the total sum of individual EPSCs 
from each photostimulation site for the specified analysis window, and the value is 
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expressed as pico amperes (pA).  The number of EPSCs and the arrival time or latency 
of the first detected EPSC per site are also measured and plotted.  M: medial; V: 
ventral.   
 

Software programming 

All programming and data processing was done in MATLAB 2008 running on a 

Windows 7 PC laptop computer, with a 2.4 GHz Core 2 Duo processor and 4 GB of 

RAM.  Once the matched filters are established, the automated detection and 

measurements of EPSCs in one typical data set containing 256 data traces (1 second 

length, sampled at 10 kHz) only requires a minute or so.  A basic tutorial and software 

implementation of our technique will be publicly available at the authors’ webpage.     

Results 

Detection of photostimulation-evoked synaptic events through matched filtering 

Overall, photostimulation-evoked EPSCs represent a range of complex synaptic 

events that may be encountered in other studies of synaptic connections using focal 

electrical stimulation and dual or multiple intracellular recordings in highly localized 

circuits formed by neurons of high connection probabilities (Liao et al., 1992; Gibson et 

al., 1999; Silberberg and Markram, 2007).  As illustrated in Figure 3.1, photostimulation 

can induce two major forms of excitatory responses: (1) direct glutamate uncaging 

responses (direct activation of the recorded neuron's glutamate receptors); and (2) 

synaptically mediated responses (EPSCs) resulting from the suprathreshold activation 

of presynaptic excitatory neurons.  Responses within the 10 ms window from laser 

onset were considered direct, as they had a distinct shape (longer rise time) and 

occurred immediately after glutamate uncaging (shorter latency) (Figure 3.1C).  

Synaptic currents with such short latencies are not possible because they would have to 
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occur before the generation of action potentials in photostimulated neurons (Dantzker 

and Callaway, 2000; Yoshimura et al., 2005; Xu and Callaway, 2009; Xu et al., 2010).   

Therefore, direct responses need to be excluded from local synaptic input analysis.  

However, at some locations, synaptic responses were over-riding on the relatively small 

direct responses and they needed to be identified and included in synaptic input 

analysis (Figure 3.1C).  Detection and extraction of this type of synaptic events actually 

presents a major challenge for automatic signal detection and extraction using 

algorithms in previously published techniques.  In addition, synaptically-mediated 

responses have varying amplitudes and frequencies with overlapping EPSC events.   

Our new technique of matched filtering can be effectively applied to detection of 

photostimulation-evoked EPSCs, as exemplified in Figure 3.2.  The raw data trace was 

first high-pass filtered with a Butterworth filter, which reduces the effect of the direct 

response and low frequency drifts (see the Methods).  The filtered data trace is then 

convolved with all the matched filters from the bank, with potential EPSCs having better 

fitting of the templates and exhibiting larger convolution amplitudes.  The examples of 

matched filters and their convolution traces are shown in Figure 3.2A and B.  Note that 

the filters have different shapes or waveforms, based upon a range of EPSC templates 

selected from experimental datasets.  For each candidate EPSC, given that multiple 

samples of a convolution trace from one matched filter are likely to exceed the 

threshold, and considering that multiple convolution traces can exceed the threshold, 

the centers of mass of all the suprathreshold segments in all convolution traces are 

calculated.  The arrival time of candidate EPSCs can be found in the vicinity of the 

center-of- mass points (see the Methods for details).  
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Figure 3.8 

 

Figure 3.8.  Excitatory input of local circuits to a fast-spiking (FS) inhibitory cell.  
A-D are similarly formatted as in Figure 3.1.  A shows a mouse prefrontal cortical slice 
image with the superimposed photostimulation sites (cyan stars) across all the cortical 
layers 1, 2, 3, 5 and 6, with a glass electrode recording from a fast spiking inhibitory 
interneuron in the border of layers 5 and 6 of the prelimbic area in prefrontal  cortex.   
The red circle indicates the cell body location.  M denotes medial, and V denotes 
ventral.  B shows an array of photostimulation-evoked response traces from the 
locations shown in A, with the cell held at -70 mV in voltage clamp mode to detect 
inward excitatory synaptic input.  Examples of photostimulation-evoked responses are 
illustrated by the traces of 1, 2 and 3, which are expanded and separately shown in C. 
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Trace 1 is an example of direct response with over-riding synaptic responses.  Traces 2 
and 3 are typical examples of synaptic input responses of FS cells.   D shows the FS 
cell’s intrinsic firing pattern with its voltage response traces to current injections at 
different amplitudes of -50, 150 and 250 pA, respectively.  E, F and G present the color-
coded maps of average input amplitude, the EPSC numbers, and the first detected 
EPSC latency per site, respectively, for the data set shown in B.   

 

The EPSCs detected above need to be subjected to additional tests.  To exclude 

direct responses, candidate EPSCs with their arrival times occurring within the direct 

response window (within 10 ms of the laser onset) are dismissed.  While high-pass 

filtering reduces the direct response amplitude and duration, its convolution trace may 

still exhibit extremely large values (as much as 10 times greater than those of indirect 

synaptic responses) with long durations.   With this consideration, within 30 ms of the 

laser onset, candidate EPSCs are declared eligible only if the convolution traces remain 

below the outlier threshold, but exceed the detection threshold.  Detected events that 

fail this test are excluded from the list of candidates (Figure 3.2A).  On the other hand, 

certain direct responses (e.g., those from the proximal or apical dendrites, see Figure 1) 

are relatively small, and their convolution traces may not exceed the outlier threshold.  

However, these direct responses can be correctly identified (Figure 3.2B), because their 

leading edge is traced back to the 10 ms direct response window.   

The over-riding synaptic events are typically superimposed on the trailing part of 

the direct response (defined as the points between the (negative) peak of the direct 

response and the return to the baseline).  While the aforementioned detection algorithm 

detects small, over-riding synaptic events, it also detects such responses that exhibit 

inflection points or “EPSC-like” notches that are related to baseline fluctuations.  To 

eliminate these events from candidate EPSCs, an amplitude check is performed by 
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comparing amplitudes of candidate EPSCs to a pre-set threshold based upon the mean 

amplitude of spontaneous EPSCs (assessed in the training stage).  Normally, the cut-off 

threshold is based on statistical parameters estimated during the template training 

procedure.  However, for detection of weak EPSCs, the cutoff threshold can be 

empirically set based upon the spontaneous EPSC level.  Candidate events that do not 

get excluded by the above additional criteria represent detected EPSCs.  

Detection performance evaluation with simulated neural data 

Since in actual recording experiments, the number of synaptic events and their 

exact arrival times (“ground truth”) are not perfectly known, the performance of our 

method was first assessed on simulated data (Figure 3.3).  This allowed us to 

systematically vary the parameters critical for detection, such as SNR and detection 

thresholds, and evaluate the performance in terms of the probability of correct detection 

(Pcd) and probability of false alarm (Pfa).  

Our technique was tested under different SNR and detection threshold scenarios.  

To ensure statistically meaningful results, for each SNR value, 200 independent Monte 

Carlo trials were performed, and the technique was applied by varying the detection 

threshold values between 𝜇 − 2𝜎 and 𝜇 + 3𝜎 (in increments of 1𝜎), where 𝜇  and 𝜎 are 

the mean and standard deviation of the maximum convolution value 𝑐max obtained in the 

training stage.  Based on the detection results, Pfa and Pcd were calculated by 

averaging over trials, and plotted as receiver operating characteristic (ROC) curves in 

Fig. 3.4.  In all ROC curves, false alarms and correct detection are traded off at varying 

threshold values.  Depending on the cost associated with omission and false alarm 

errors, the optimal detection threshold can be set.  At low SNRs, the ROC curves are 
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more spread for the detection thresholds chosen around the mean, 𝜇, indicating higher 

sensitivity to the choice of threshold.  Conversely, at SNR ≥ 9, a situation likely to be 

found in actual recordings, the choice of threshold is less critical, as performances tend 

to cluster around the optimal point  (Pfa = 0, Pcd = 1).   

By analyzing the estimated arrival times of the correctly detected EPSCs, we 

found that on average the estimated and the true arrival time differed by 0.15 ± 0.49 

(mean ± SD), 0.02 ± 0.32, and 0.0 ± 0.24 ms, for SNR=3, 6, and 9, respectively, which 

is insignificant compared to the typical duration of the template EPSCs.  Based on these 

results, as well as the results from the ROC curves, especially at high SNR values, we 

conclude that our method is expected to perform well in experimental conditions.     

Analysis of experimental data, in comparison with human detection performance  

Our new technique was further validated on experimental data, while compared 

to that of manual (human) detection.  Typical examples of software detection and 

extraction of photostimulation-evoked EPSCs, along with human visual detection of 

these events, are illustrated in Fig. 3.5 A-F.  These data traces include direct responses 

and synaptically mediated EPSCs, and contain complex overlapping events.  In most 

occasions, EPSCs detected by the software and the human operator matched quite 

well, with software detection performing better than the human in identification of 

overlapping synaptic events (see the arrow heads in Figure 3.5).  It should be noted that 

some of the weak EPSCs (with the amplitudes of about the spontaneous EPSC level) 

identified by the human, however, were missed by the automated detection, because of 

the pre-set cutoff threshold for evoked EPSC amplitudes.  The inclusion of the 

amplitude cut-off setting is necessary for rejecting noise-related artifacts, due to an 
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inherent trade-off between the sensitivity and specificity of our and any other statistical 

detection method (Kay, 1998).  Those missed weak EPSCs were proportionally 

insignificant, as they accounted for less than 4 % of all the candidate events across 

individual datasets.  In addition, considering that the software detects both the 

spontaneous baseline synaptic activity and photostimulation responses, and as the 

baseline spontaneous response is subtracted from the photostimulation response, the 

missed measurement of weak EPSCs at the spontaneous level does not have a major 

impact on our final measurement and analysis of EPSCs across many photostimulation 

sites (data not shown).  Figure 3.5G summarizes quantitative evaluations of the 

automated detection of EPSCs, using the same filter bank at multiple detection 

thresholds.   In general, the method performance was excellent and stable across 

different data sets.  With the detection results inspected and verified by experienced 

human operators, the average probability of correct detection (Pcd) is 87.7%, with the 

average false alarm (Pfa) rate of 2.6% for the three detection thresholds chosen as 𝜇 −

𝜎, 𝜇 − 1.25𝜎 and 𝜇 − 1.5𝜎.  Specifically, the probability of correct detection is 76.7% ± 

2.4% (mean ± SE), 91.45% ± 3.1%, and 94.9% ± 2.43% respectively; the corresponding 

probability of false alarm is 0.67 % ± 0.37%, 2.72% ± 0.44%, and 4.43% ± 1.75%, 

respectively.  In practical settings, our software implementation includes quick tests of 

selected data traces to determine appropriate detection thresholds.   

In addition, the accuracy of this technique did not seem to depend much on the 

training stage and the choice of EPSCs for the design of the filter bank.  To test the 

robustness of the method with the template design variability, a human operator 

repeated the filter design process by selecting a different set of EPSCs and 
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consequently obtaining a different set of templates. When this template set was used for 

automated detection of EPSCs across the same data used for Figure 3.5G, the overall 

rates of correct detection and false alarm were 91.7% and 7.3%, respectively, similar to 

the rates reported with the first template set.  Stable results were also obtained from a 

template set from a different operator, as the overall rates of correct detection and false 

alarm for the same dataset were 88.6% and 5.2%, respectively. 

After correct detection and extraction of the events, EPSCs are subsequently 

analyzed and the parameters such as EPSC peak amplitudes and summed input 

amplitudes, EPSC rise times, EPSC latency/arrival times, and the number of EPSCs 

from each photostimulation site are measured (Figure 3.6 A).  As the trailing portion of 

the over-riding EPSC is often skewed by the direct response, the individual EPSC 

summed input is defined as 2 x [the integral over the segment between the leading 

edge and the EPSC center].  For the purpose of visual display, a color-coded map is 

constructed to illustrate the pattern of excitatory input to the recorded neuron (Figure 

3.7B).  The number of EPSCs and the arrival time or latency of the first detected EPSC 

per site are also measured and plotted (Figure 3.7C and D). 

Our automated procedure was much faster and more efficient than human 

detection.  It is estimated that detection and analysis of photostimulation-evoked EPSCs 

with the software implementing our novel detection method are at least an order of 

magnitude faster than the human manual detection and analysis.  Thus, this new 

technical advancement can greatly facilitate data analysis for photostimulation and other 

similar experiments. 

Characterization of photostimulation-evoked EPSCs  
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Figure 3.9 
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Figure 3.9. Extension of the method to the detection of IPSCs with matched 
filters.  A and B are the original and sign-inverted IPSC response traces, respectively, 
which were from a layer 5 pyramidal neuron in the prelimbic area of mouse prefrontal 
cortex.  The small red circles in A and B indicate the location of the recorded cell body.  
C and D are the illustration of matched-filtering detection of inverted IPSCs, reminiscent 
of EPSC detection (See Figure 2).  The data traces for C and D are from the map sites 
indicated by the red and blue stars in B, respectively.  The black traces are raw signals 
and the blue one shown in C is a high-pass filtered signal trace.  In C and D, five 
exemplary convolution traces (green) produced with five matched filters (purple) are 
shown. The original EPSC templates (blue) used to synthesize the matched filters are 
also shown next to the convolution traces.  The data trace in C has one large direct 
response, superimposed with two IPSCs that are color coded and individually extracted 
(shown below the original trace with the crosses indicating the event peaks), while the 
data trace in D contains three IPSC events (color coded and individually extracted, 
shown below the original trace).  See Figure 2 for other conventions. E, F and G are the 
color-coded maps of average input amplitude, the IPSC numbers, and the first detected 
IPSC latency per site, respectively, for the raw data map shown in A.  The small white 
circles indicate the location of the recorded cell body.  L: lateral; V: ventral.  The 
average input amplitude in each stimulation site is the mean amplitude of IPSCs in the 
response analysis window, with the baseline spontaneous response subtracted from the 
photostimulation response of the same site.  The number of IPSCs and the arrival time 
or latency of the first detected IPSC per site are also measured and plotted. 

 

Given that EPSCs recorded from different cell types may differ in their strength 

and kinetics in mouse sensory cortex (Xu and Callaway, 2009), in this study we further 

quantified and compared the EPSCs obtained from excitatory pyramidal cells and fast-

spiking (FS) interneurons in mouse prefrontal cortex with our new technique.   As 

illustrated in Figure 3.8, when compared to excitatory pyramidal cells (see Fig. 3.1), FS 

cells tend to receive stronger and more frequent evoked EPSCs from local laminar 

circuits.  In addition, FS cells’ EPSCs may have faster kinetics, as they exhibit sharper 

rising phases.  This qualitative impression was confirmed by our quantitative analysis of 

EPSCs recorded from these two cell types (Table 1).  The data analysis was based 

upon automated detection and measurement of 689 photostimulation-evoked EPSCs 

recorded from excitatory pyramidal cells (N = 3), and 1076 evoked EPSCs recorded 
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from FS cells (N = 3).  As seen from Table 1, excitatory pyramidal cells had weaker 

EPSCs than FS cells, as established by comparing their median EPSC peak amplitudes 

which were 35.66 ± 2.31 pA (mean ± SE) and 50.77 ± 2.84 pA, respectively.  Compared 

to excitatory pyramidal cells, the EPSCs of FS cells had on average shorter rise times, 

as their respective values were 2.93 ± 0.73 ms (FS cells) and 4.7 ± 0.31 ms.   Excitatory 

and FS cells also differed in their average EPSC frequencies per stimulation site, as 

their respective values are 4.37 ± 0.59 Hz and 7.87 ± 1.49 Hz.  Finally, the latencies of 

the first detected EPSC per site for excitatory pyramidal and FS cells were relatively 

similar (42.4 ± 5.23 ms vs 37.9 ± 4.82 ms).   Therefore, our novel technique allows 

detailed quantitative data analysis and enables efficient treatment of large datasets 

through dependable, automated detection and characterization of synaptic events. 

Application of the method to IPSC detection 

Given the general applicability of our matched filter detection and extraction 

algorithms, our method can be appropriately modified and further applied to detection 

and extraction of other types of electrophysiological signals.  For example, the 

technique has been easily modified to accommodate detection and analysis of inhibitory 

postsynaptic current (IPSC) responses.  As illustrated in Figure 3.9A and B, for the 

IPSC detection, we first inverted the sign of IPSC responses, so the outward IPSC 

responses turned into EPSC-like inward responses.  Note that compared to EPSCs, 

inverted IPSCs tend to have different waveforms with longer response durations (see 

Fig. 3.1 and 3.9).  As done in EPSC detection, the bank of matched filters was then 

generated based upon the inverted IPSCs and automated detection was applied for 
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IPSC map data analysis and plotting (Figure 3.9C-G).  Similar to EPSC detection, our 

method achieved excellent performance in IPSC detection across datasets. 

Discussion 

In this study, we have developed a novel matched filtering technique for 

automated detection and extraction of synaptic events by combining the design of a 

bank of matched filters with the detection and estimation theory.  The current technique 

has overcome the limitations of previously described threshold and template 

comparison techniques in detection of complex evoked synaptic signals with variable 

amplitudes and superimposed events.   

An important novel feature of our technique is utilization of a bank of matched 

filters for the detection stage, which offers several advantages over previous techniques 

of template comparison.  When human supervision is allowed, the optimal detector is a 

matched filter (template).  Since humans have good understanding of the underlying 

signals, synaptic events can be reliably selected and their waveform appropriately 

modeled with high order polynomials (templates).  EPSCs that match the templates are 

detected with high sensitivity by convolving with templates; artifacts and noise transients 

are rejected (filtered out) because they do not match the template waveform and time 

course.  However, previous techniques using a template with fixed or variable 

amplitudes resulted in low sensitivity if the actual event waveform deviated from the 

template waveform; these techniques were not as effective for detecting overlapping 

events and compounds of events with different kinetics (Clements and Bekkers, 1997; 

Hwang and Copenhagen, 1999).  Compared to fixed or scaled templates, even a few 

templates clearly increase the sensitivity of EPSC detection (Li et al., 2007).  This major 
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issue of single template comparison has been avoided in our new technique, as an 

array of filters based upon identified EPSCs from experimental data in the training stage 

provides a range of templates with variable shapes and durations that potentially match 

a variety of EPSCs found in experimental recordings.   

  For the design of filters, the training stage requires prior knowledge about 

evoked EPSCs and requires human supervision in selecting typical events for matched 

filter synthesis.  However, the training stage is rather quick (~10 min), and templates 

and parameters acquired from a typical data set can be used for detection of EPSCs in 

other similar experiments.  In addition, the bank of multiple templates allow the statistics 

of the expected event waveform characteristics and time courses to be derived, and 

detection thresholds and safeguards against false detection to be subsequently set in a 

statistically meaningful manner.  This constitutes one important novel of our method, as 

in previous studies the criteria used for both detection and extraction were mostly set 

empirically through error and trial (Cochran, 1993; Abdul-Ghani et al., 1996; Clements 

and Bekkers, 1997; Hwang and Copenhagen, 1999; Jin et al., 2006; Li et al., 2007).     

Although the present study was focused on EPSC detection and extraction, 

considering the general-purpose nature of our matched filtering and signal recognition 

algorithms, we expect the technique to be applicable to detection and extraction of other 

electrophysiological events such as extracellular action potentials, and event-related 

local field and electroencephalogram potentials as well as optical imaging signals (e.g., 

calcium indicator signals and voltage sensitive dye signals) in general. This 

generalizability follows from the theoretical properties of the matched filter which is 

known to be the SNR-optimal signal detector (Kay, 1998).  Clearly, the application of 
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our technique to other domains will require modifications, including the design of an 

appropriate filter bank and adjustment of sensitivity/specificity thresholds.  These 

modifications, however, are rather easy to implement using our user-friendly software.  

For example, our technique has been further applied to the detection and analysis of 

IPSC responses.  To facilitate IPSC detection, as EPSCs and IPSCs have different 

signs, our method simply inverted the polarity of the original raw data traces, and the 

filter design and automated detection steps were applied in the same way as done in 

the EPSC detection.   As for the detection of extracellular action potentials, the use of 

single or limited waveform templates has been used in prior studies (Bankman et al., 

1993), but the efficiency and sensitivity of detection can be greatly improved with the 

design of a bank of matched filters, as done in the present study.   Moreover, similar to 

EPSCs or IPSCs, optical imaging signals such as calcium transient signals and fast 

voltage sensitive dye signals are mostly unipolar (Ohki et al., 2005; Xu et al., 2010) and 

have varying amplitudes and overlapping events.  Therefore, as illustrated in the IPSC 

detection, the adoption of our new method to detection of optical signal events should 

be relatively simple.  Finally, we hypothesize that our technique can be modified to 

accommodate detection of event-related local field and electroencephalogram 

potentials.  Similar to extracellular action potentials, these usually have biphasic 

(bipolar) waveforms, and while modification procedures are likely to be different from 

those used in IPSC detection, the general algorithms can still be applied.   

Another innovation of our technique is that convolution traces of the matched 

filters are compared to an event detection threshold to construct suprathreshold 

segments of the data trace, and the center of mass of each of the convolution trace is 
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found and declared as an occurrence time candidate of an EPSC.  Single or multiple 

overlapping EPSCs within each suprathreshold segment can be correctly identified (see 

Fig. 3.5).  Our algorithm manages to detect multiple or pairs of events that are 

separated in time by less than the length of the templates, which previous template 

comparison techniques would not be able to (e.g., see Clements and Bekk, 1997).  

Moreover, with additional constraints of the direct response and outlier windows, our 

technique is able to exclude direct photostimulation responses and detect synaptically 

mediated EPSCs over-riding on the direct response.  Detection and extraction of this 

type of over-riding events illustrates the power and effectiveness of our new technique, 

as previously published techniques would fail in such complex situations (Liao et al., 

1992; Abdul-Ghani et al., 1996; Clements and Bekkers, 1997; Hwang and Copenhagen, 

1999; Li et al., 2007).   

Our results show that the new method can identify events with high sensitivity 

and a low false alarm rate, with tests on both simulated data and experimental data.  In 

most occasions, the automated detection was at least as good as human visual event 

detection when applied to photostimulation experimental data.  Our algorithm, in 

essence, only requires the user to select a set of typical synaptic responses from 

experimental data during the filter design/training stage in order to detect events, and 

obtain accurate estimates of the amplitude, timing and kinetic information of the 

detected events during the automated detection stage.   In addition, if the default 

template library and threshold settings are used, the method can be implemented in a 

fully automated fashion.  Should the default parameters prove inadequate, the efficient 
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software implementation and fast execution of our method allow the parameter 

adjustment under training-derived statistical guidance. 

With the established filter bank, the sensitivity and specificity of our technique is 

dependent on two parameters, the event detection threshold, and the event amplitude 

cut-off threshold.  The statistics of the filter bank (e.g., the mean and standard 

deviations of convolution peak values) may help guide the setting of appropriate 

detection thresholds.  In addition, the software implementation allows practical tests of 

selected data traces to determine optimal detection thresholds.   As shown in our ROC 

analysis, the lower detection thresholds may present higher sensitivity in detection but 

with a higher false alarm rate.  Sometimes when it is necessary to set a lower detection 

threshold for detecting low-amplitude events, the event amplitude cut-off threshold is 

important to reject noise-related artifacts, and ensures a low rate of false alarm.    

In summary, our algorithms and software implementation enable dependable 

automatic detection of synaptic events with minimal human supervision.  The use of a 

bank of matched filters and template-derived statistical guidance are important novel 

features of our technique.  This work represents a substantial contribution to the 

recognition and detection of complex signals encountered in the studies of synaptic 

physiology. 
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Chapter 4 

Large scale neural circuit mapping data analysis accelerated with the 

graphical processing unit (GPU) 

Modern neuroscience research demands computing power.  Neural circuit 

mapping studies such as those using laser scanning photostimulation (LSPS) produce 

large amounts of data and require intensive computation for post-hoc processing and 

analysis.  Here we report on the design and implementation of a cost-effective desktop 

computer system for accelerated experimental data processing with recent GPU 

computing technology.  A new version of Matlab software with GPU enabled functions is 

used to develop programs that run on NVidia GPUs to harness their parallel computing 

power.  We evaluated both the central processing unit (CPU) and GPU-enabled 

computational performance of our system in benchmark testing and practical 

applications.  The experimental results show that the GPU-CPU co-processing of 

simulated data and actual LSPS experimental data clearly outperformed the multi-core 

CPU with up to a 22x speedup, depending on computational tasks.  Further, we present 

a comparison of numerical accuracy between GPU and CPU computation to verify the 

precision of GPU computation.  In addition, we show how GPUs can be effectively 

adapted to improve the performance of a commercial image processing software such 

as Adobe Photoshop.  Together, GPU enabled computation enhances our ability to 

process large-scale data sets derived from neural circuit mapping studies, allowing for 

increased processing speeds while retaining data precision.   

 

 

http://academic.research.microsoft.com/Keyword/9051/data-processing
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Introduction 

 Computer-based resources can greatly facilitate neuroscience research. As 

neuroscientists demand more computing power for circuit mapping studies, researchers 

may resort to expensive solutions such as clusters and supercomputers for large-scale 

computational tasks.  Due to recent advances in the graphics processing unit (GPU) 

computing technology, today's GPU does much more than rendering graphics as 

originally intended, and GPUs can provide an inexpensive and computationally powerful 

alternative to CPU based solutions (Nageswaran et al., 2009; Baladron et al., 2012). 

 Traditionally, a central processing unit (CPU) has been the computation core of 

computers.  The CPU is specialized in optimizing serial operations while containing 

various sub-circuits for multiple types of tasks, such as coordinating concurrent software 

processes, predicting branches, handling high priority interrupts and managing cache-

memory traffic.  However, its serial processing nature limits its ability to perform 

intensive parallel computation.  In comparison, the newest generations of GPUs have 

stream multiprocessors and act as powerful massively parallel coprocessors.  Yet, the 

price paid for such power at a relatively modest cost is that GPUs are unconventional in 

their organization, and in particular are highly constrained in their communication 

bandwidth with the main CPU and in the type of operations that can efficiently be 

executed in parallel.  It is often extremely difficult to map a given application for effective 

(fast) execution on GPUs.  Regardless, because of their promise, scientists and 

engineers have returned to exploring the power of GPUs for various applications 

ranging from astrophysics and finance to biomedical research, enabled by the recent 

advances in hardware and integrated programming interfaces such as Nvidia's 
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Compute Unified Device Architecture (CUDA) platform.  In a custom-designed system, 

GPU-accelerated applications can split their computationally intense tasks into a 

number of threads which could be further processed by thousands of cores of GPUs.  In 

addition, the recent addition of double-precision floating point units provides GPUs the 

capability to produce accurate results that can satisfy the strictest computational 

requirements.   

Table 4.1. Structural components and general computation capabilities of the 

CPU and GPU used in our desk computer system.   

Components Model Price, each ($) Note 

Hard Drive Samsung 840 Pro  
218 Two units In 

RAID 0 mode 

Motherboard ASUS Rampage IV extreme 439  

CPU Intel i7-3930k 
499 Running at 

4.5 GHz 

CPU Cooler 
Corsair H100i closed loop liquid 
cooler 

105.99  

System Memory 
G.SKILL 32 GB Quad Channel 
DDR3 

300 Running at 
2.133 GHz 

Graphic Card Asus GTX 680   A455-0686  520  

CUDA card Nvidia Tesla K20c  3,500  

Case 
Cooler Master HAF X  RC-942-
KKN1 

200  

Power Corsair AX1200i  320  

Keyboard/Mouse Logitech MK520 Combo 41.99  

Monitor Asus PB278Q 27”  649  

Speaker Creative T10 40  

Operating System  Windows 8 Pro x64 149  

 
All the data shown in the table are provided by the published documents from the manufactures 
(http://www.techpowerup.com/cpudb/858/core-i7-3930k.html; 
http://www.techpowerup.com/gpudb/564/tesla-k20c.html). The price info is as of June 30th, 2013. 

 

 In the field of neuroscience, GPU computing has been successfully used for 

computer-intensive tasks, including large-scale modeling and simulation of neural 

http://www.techpowerup.com/cpudb/858/core-i7-3930k.html
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network, high-speed imaging and real-time reconstructions (Nageswaran et al., 2009; 

Wilson, 2011a; Wilson, 2011b; Yang et al., 2011a, b; Baladron et al., 2012; Tomer et al., 

2012; Fang and Lee, 2013).  However, to our best knowledge, no or few studies have 

tapped into the GPU computation for neural circuit mapping data analysis while large 

scale neural circuit mapping experiments in vitro (Shepherd et al., 2005; Xu et al., 2010; 

Franke et al., 2012; Kuhlman et al., 2013a) and in vivo (Ohki et al., 2005; Nauhaus et 

al., 2008; Nauhaus et al., 2009) produce large amounts of data in short times that 

require tremendous computation power for post-hoc processing and analysis.  The 

ability to take advantage of GPU-enabled computation in a desktop computer system 

presents a sufficient and cost-effective solution to individual neuroscience research 

laboratories that have no access to or cannot afford the access to high-performance 

computing centers.  To promote a wider application of GPUs in neuroscience research, 

in this paper, we first introduce how to assemble a GPU-enabled desktop computer 

system with detailed hardware and software information.  We then compare CPU and 

GPU-enabled computational performance of our system in benchmark testing and 

practical applications.  We specifically present an approach of using GPUs in Matlab to 

achieve accelerated processing of large amounts of neural circuit mapping data.  

Finally, we present an analysis of numerical accuracy between GPU and CPU 

computation to verify the precision of GPU computation. 

Materials and Methods 

 In this section, we describe the configuration and assembly of a GPU-enabled 

desktop computer system.  We also describe our data acquisition and relevant analysis, 



` 

112 

 

and detail on the algorithms used to optimize the data organization, exploit the memory 

hierarchy and integrate GPU computation.   

System Components 

 Our system consists of an Intel i7-3930K CPU and an NVidia Tesla K20c GPU 

(Fig 4.1).  The CPU has 6 physical cores which share a 12MB L3 cache. It 

communicates with 32 GB system memory at a bandwidth of 49.64 GB/sec.   Note that 

the CPU memory bandwidth varies at different memory clocks.  The GPU has 2496 

physical cores that are clustered in 13 Stream Multiprocessors (SMX), which share a 

1.5MB L2 cache and communicate with a 5 GB graphic memory with 208 GB/sec 

bandwidth.  The system memory and GPU are connected through a PCI-E 2.0 x16 bus 

with a transfer speed of 8 GB/s each way.  Please see Table 4.2A for detailed 

comparison of specifications. 

 For such a custom built desktop computer system, we have selected 

components (see Table 4.1) to maximize the performance while keeping the cost within 

a reasonable range.  The CPU is from Intel’s high performance product line.  We have 

carefully over-clocked it and the CPU performance increased by 25-29% as tested 

using GPUBench (see below).  The RAM used is also a high-clocked version from a 

reputable manufacturer to match the over-clocked CPU. The whole system is cooled by 

7 fans with the CPU cooled by a closed-loop liquid cooler. Such intense cooling is 

necessary since overheating can trigger the protection mechanism in the CPU, resulting 

in reduced performance, less accurate computation and even chip degradation.  The 

motherboard should support two graphic cards running concurrently at PCIE x16 2.0.  A 

full size tower case is required to fit all the components including the heavy-duty cooling 
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and ventilation system.  The whole computer system needs to prove stable by running 

intensive computation tasks for 48 hours and the maximum recorded CPU core 

temperature needs to be below 75 oC, recommended by the Intel documentation.  The 

final cost of the entire system (as per Table 4.1) was around $7500, and the Tesla K20c 

GPU, although donated by NVidia, had a market value of $3500 by the time the system 

was assembled.   

Figure 4.1 

 

Figure 4.1. Architectural structures of the central processing unit (CPU) and the 
graphic processing unit (GPU) in our custom-made desktop computer system.  
We use the CPU of Intel i7-3930K (6 cores) and the GPU of NVidia Tesla K20c (2496 
cores).  The double arrows indicate memory transfer for computation.  The transfer 
speeds between the cache and the system memory (i.e., RAM), between GPU cores 
and the video RAM (VRAM), and between the VRAM and the system memory are 49.64 
GB/sec, 208GB/sec and 8 GB/sec, respectively.  
 

System Assembly  
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 The general computer assembly has been described in many existing guides 

(e.g., http://www.gskill.us/forum/showthread.php?t=10512).  It is a good practice to 

assemble basic components on the bench and have them individually tested outside of 

the tower case.   After the initial test, we can now fit every component into the case.  

Although the layout of the components is fixed with the specified tower case and 

motherboard, it is important to route connection cables between components in a 

tangle-free manner.  It is equally important to determine the location of the CPU liquid 

cooler radiator and air flow directions.  Ambient cool air needs to be drawn by the fan 

from the case bottom, and should be heated up as it travels through the hard drives, 

GPUs, the CPU radiator and RAMs. The cooling fans placed at the top and rear of the 

tower case draws the heated air out of the case.  Dust filters at the front of the incoming 

fan helps to reduce dust accumulation on internal components.  After the system 

assembly is completed, we recommend to overclock the system to achieve performance 

gains.  Finally, it is important to test the stability for a custom assembled system.  Many 

tools are available for free on the internet, and the common choices include Intel Burn 

Test, Linx, prime95 and Memtest. 

 The necessary software includes the operating system software, driver software, 

Matlab (Mathworks, Natick, MA) and CUDA Software Development Kit (SDK) for 

support of GPU computing.  We use Windows 8 x64 due to its large user volume and 

better support for Solid-State hard drives.  After Window 8 is installed, it is 

recommended to run the embedded system assessment test to ensure that the 

operating system (OS) can fully evaluate the hardware performance.  Without such a 

test, the OS may use a default performance profile, limiting the hardware capability.  

http://www.gskill.us/forum/showthread.php?t=10512
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The drivers for the motherboard, graphic card and Tesla Card are available for 

download at the manufacturer’s websites, and they should be specific to your 

component choices.  We use a system monitoring software, Aida64 

(http://www.aida64.com/) to keep track of the system status.  It provides monitoring data 

of the CPU and GPU temperatures, voltages, cooling performance, and other 

parameters. This software has a safe-operating mechanism which alerts and puts the 

computer to a standby mode when any overheating is detected.  

Figure 4.2 

 

Figure 4.2. Illustration of laser scanning photostimulation (LSPS) combined with 
whole cell recordings to map local circuit input to a hippocampal CA1 
interneuron. A shows a mouse hippocampal slice image with the superimposed 
photostimulation sites (16×16 cyan *, spaced at 100 µm×100 µm). The glass electrode 
was recording from an interneuron in the oriens lacunosum-moleculare (OLM) layer of 
CA1.  The red circle indicates the cell body location.  B shows an array of 
photostimulation-evoked response traces from the photostimulation locations shown in 
A, with the cell held at −70 mV in voltage clamp mode to detect inward excitatory 
synaptic currents (EPSCs). Only the 250 ms of the recorded traces after the onset of 
laser photostimulation (1 ms, 20 mW) are shown. C shows the enlarged and expanded 
traces from the highlighted traces in B.  This type of experimentation generates large 
amounts of data, and requires intensive computation for post-hoc data analysis. 
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We use Matlab software (version r2013b) as a GPU computing platform as the 

software is commonly used in neuroscience research and the new version contains the 

latest Parallel Computing Toolbox with many GPU enabled functions.  In order for 

Matlab to have access to the Tesla card, CUDA driver from NVidia website 

(https://developer.nvidia.com/cuda-downloads) has been downloaded and installed.  A 

simple benchmark using GPUBench (provided by the Parallel Computing Team of 

Matlab) is performed to ensure every hardware component is running without any 

unexpected throttling.   

GPU computation for accelerated processing of experimental data 

 Different from most previous neuroscience applications in neuronal network 

modeling and simulation, this custom system is intended for using GPU-parallel 

computation in actual experimental data analysis that requires intensive computation.  

We have developed and applied photostimulation-based mapping techniques for local 

cortical circuit connectivity analysis.  Particularly, laser scanning photostimulation 

(LSPS) combined with whole cell recording in living brain slice preparations allows high 

resolution mapping of regional distributions of presynaptic input sources to single 

neurons (Fig 4.2).  Because the simultaneous recording from a postsynaptic neuron 

with photostimulation of clusters of presynaptic neurons at many different locations, the 

LSPS methodology provides quantitative measures of spatial distribution of excitatory or 

inhibitory inputs.   

 The experimental procedure and the design of our laser scanning 

photostimulation system has been described previously (Shi et al., 2010; Xu et al., 

2010; Kuhlman et al., 2013b).  A laser unit (model 3501, DPSS Lasers, Santa Clara, 
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CA) was used to generate a 355 nm UV laser for glutamate uncaging.  Once stable 

whole cell recordings were achieved with good access resistance (usually <20 MΩ), the 

microscope objective was switched from 60× to 4× for laser scanning photostimulation.  

At low magnification (4× objective lens, 0.16 NA; UplanApo, Olympus), the slice images 

were acquired by a high-resolution digital CCD camera (Retiga 2000, Q-imaging, 

Austin, TX) and used for guiding and registering photostimulation sites in cortical slices.  

For each recorded neuron, we usually map photostimulation-evoked inputs from a grid 

of 1 mm x 1mm with 16 x 16 stimulation sites (Fig.4. 2).  Various laser stimulation 

positions were achieved through galvanometer-driven X-Y scanning mirrors (Cambridge 

Technology, Cambridge, MA), as the mirrors and the back aperture of the objective 

were in conjugate planes, thereby translating mirror positions into different scanning 

locations at the objective lens focal plane. During mapping experiments, 

photostimulation was applied to the 16×16 patterned sites (centered at the recorded 

neuron) in a nonraster, nonrandom sequence, while whole-cell voltage-clamp 

recordings were made from the recorded postsynaptic neurons with EPSCs and IPSCs 

measured at the holding potential of −70 mV and 0 mV, respectively, across 

photostimulation sites.  Data were acquired with a Multiclamp 700B amplifier (Molecular 

Devices, Sunnyvale, CA), data acquisition boards (models PCI MIO 16E-4 and 6713, 

National Instruments, Austin, TX), and custom-modified version of Ephus software 

(Ephus, available at https://www.ephus.org/).  Data were digitized at 10 kHz, and stored 

on a computer.  Electrophysiological signals were recorded for 1000 ms in length for 

each stimulation.  Each map dataset of 256 traces is about 20.48 MB in size.  Although 

the example data size is not large, it served a demonstration purpose.   

https://www.ephus.org/
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 As for the analysis of photostimulation map data, a new technique that combines 

the design of a bank of approximate matched filters with the detection and estimation 

theory was implemented for automated detection and extraction of photostimulation-

evoked EPSCs or IPSCs (Shi et al., 2010).   Specifically, the Matlab program, 

"synaptic_event_detection", uses a bank of existing matched templates to detect 

synaptic event in the signal traces.  During the detection stage with the CPU 

computation, the data trace under investigation is first high-pass filtered (>10 Hz) with a 

5th order, infinite impulse response Butterworth filter. The role of this filter is to minimize 

the effect of the direct uncaging response, whose duration is much longer than that of 

synaptically mediated indirect responses. To minimize the phase distortions, this filter is 

implemented as a zero-phase forward and reverse digital filter.  The high-pass filtered 

signal is then convolved with all the filters from the bank, with potential EPSCs or IPSCs 

providing a better fit to the templates and thus exhibiting larger convolution amplitudes.  

The convolution traces (one for each filter) are time-shifted to minimize the difference 

between the time of the convolution peak and a potential EPSC/IPS peak, and thus 

facilitate a more precise estimation of event occurrence times.  Time-shifted convolution 

traces are then compared to detection thresholds. For each convolution trace, the 

samples that exceed the detection threshold form the so-called suprathreshold time 

segments.  Within each eligible suprathreshold segment, a synaptic event was 

extracted and the center of mass of each convolution trace is found and declared as an 

occurrence time candidate of an EPSC/IPSC.  For more technical information, please 

refer to Shi et al. (2010).  Of the above processing steps, the convolution of matched 
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filters with high-passed signal traces requires the most intensive computation, which we 

have targeted for GPU implementation.  

Figure 4.3 

 

Figure 4.3. Example data processing flowchart for CPU and GPU computation.  
The data used here are from a typical LSPS map data set (shown in Figure 4.2B) with 
256 signal traces (each containing 10000 sample points). The two versions share the 
steps of ‘Read Raw electrophysiology trace’, ‘System Memory’ and ‘Save results’. They 
differ in major computation processes, with the left branch for CPU processing and the 
right branch for GPU processing. The computation that takes place in the GPU is coded 
by the green color.  The processing time of each step is noted in yellow. For CPU 
computation in a FOR loop, the processing time for each iteration is summed up to get 
the combined time.  The total processing times of CPU and GPU branches are marked 
outside of the brackets. 
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GPU-oriented Programming Considerations    

 The CPU and GPU architectures are illustrated in Fig.4.1.  The stream 

processors of a GPU can only access the data that are stored in its video memory, 

cache or shared memory.  The video memory (VRAM) is large enough (5 GB on the 

K20c GPU) to store the data and results relevant to the computation.  To use a GPU for 

computation, the data needs to be explicitly transferred to VRAM from the system 

memory (RAM) through the PCIE 2.0 bus. The transfer rate of PCIE 2.0 is 8.0GB/s for 

each direction, which is much lower compared with the GPU-VRAM or CPU-RAM speed 

(Fig.4.1).  There is also an initiation latency of data transfer, with the average measured 

latency being 0.3 ms.  To maximize the GPU performance, it is critical to reduce the 

number of data transfers between RAM and VRAM. 

  We modified the "synaptic_event_detection" program in light of the above 

consideration of effective GPU computation (Fig 4.3).  All the high-passed signal traces 

from each map data set are concatenated as one large vector and transferred to VRAM 

altogether.  The same operation is done for the matched filters, which are originally 

stored in a Matlab cell array.  An auxiliary vector is created to store the lengths of 

matched filters, and help index individual matched filters in the filter vector.  In GPU-

enabled computation, the large vector of signal traces is convolved with each matched 

filter and the resultant trace is then transferred back to RAM for event detection and 

extraction.  The code for such GPU-tailored modifications is shown in Appendix 2.  A 

complete CPU code of the "synaptic_event_detection" program is described in our 

previous publication (Shi et al., 2010) and available at our website: 

http://xulab.anat.uci.edu/synapticeventdetection/index.htm).   
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Figure 4.4 

 

Figure 4.4. Basic comparisons of CPU versus GPU performance. A. Benchmark 
testing comparison of the CPU and GPU processing capabilities, assessed by their 
performance (GFlops) in three widely used computation, MTimes, Backslach and FFT, 
in the software platform of Matlab. B. GPU versus CPU speed up of 1-D convolution. 
Vectors of different lengths were generated by using the Matlab function, rand().  The 
vector length =   2X * 10000 (X ∈  [ 1, 2, … 8] ). The x-axis represents the value of X.  
The filter vector with its length of 20000 points was generated by the rand() function as 
well. The y-axis is the speed up of GPU convolution versus CPU convolution on the 
same vector and filter pair. The time of GPU convolution included the time of 
transferring data to and back from the GPU memory.   
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Figure 4.5 

 

 

Figure 4.5. Data convolution accuracy via GPU computing.  A. Example data trace 
convolution.  The top portion shows the actual signal trace with 6 EPSC events (color-
coded) identified and extracted shown below.  Note the first, large peak is determined to 
be a direct uncaging response.  The bottom portion shows three convolved traces of the 
signal trace to the 3 example matched filters shown by the right side, with potential 
EPSCs having better fitting of the templates and exhibiting larger convolution 
amplitudes.  For the subsequent event detection, the convolution traces are compared 
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to a detection threshold and an outlier threshold (see the Method).  B-C. The difference 
of CPU versus GPU convolution of the same data trace. The convolution trace is based 
on concatenated convolved traces (i.e., the results of 256 individual traces with 29 
matched filters). Each signal trace contains 10000 sample points. The lengths of 
matched filters range from 651 to 3194 data points. The x-axis represents data points 
while the y-axis shows the difference in convolution amplitude in the unit of pA. In B the 
y-axis scale is set to [-8, 10] *10-13, while the scale in C is set to [-1, 1].  
 

Results 

CPU versus GPU Performance Benchmarking in Matlab 

 To compare the potential speedup of using GPUs, we first examined the 

performance of CPU versus GPU-enabled computation using ‘GPUBench’ in Matlab.  

Basic scientific computations were performed through different GPUBench tests 

including MTimes, Backslash and fast Fourier transform (FFT).  MTimes involves the 

multiplication of two matrices, A and B, whereas Backslash involves the matrix 

“division”, A/B.  The Backslash operation essentially finds the solution of a system 

A*X=B by Gaussian elimination.  FFT computes the discrete Fourier transform (DFT) of 

a vector X.  A, B and X were generated using Matlab's random number function, rand().   

GPUBench uses the Matlab integrated timer command (tic, toc) to measure the 

processing time of GPU and CPU kernels.  The performance of both kernels in GFlops 

is then calculated by dividing the number of floating point operations by the actual 

processing time. The processing time does not include the allocation/deallocation of 

RAM or VRAM, since the memory spaces are allocated at the beginning and are not 

reallocated during benchmarking.  Also, the GPU benchmark does not include the time 

to transfer the data to VRAM and the computational results back to RAM.   

The performance of both single and double precision floating point computation 

was evaluated in different tests (Fig 4.4A; Table 4.2B).  Compared to CPU performance 
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in terms of GFlops, GPU-enabled computation achieved a speed up of 705%, 315% 

and 2207%, respectively, in single precision computation of MTimes, backslash and 

FFT, while their respective speed up was 577%, 388% and 1326% in double precision 

computation.  These dramatically increased speeds are due to powerful massively 

parallel coprocessors in the GPU. 

Table 4.2. System and performance comparison of CPU and GPU-enabled 
computing 
A. The manufacturer specifications 

 CORES Memory Processing 
Power(peak)(GFl

ops) 

Power 
Consump

tion 
(Peak)(W

) 

 # of 
Cores 

Frequ
ency 

# of 
Transist

ors 

Bandwidth Size Single 
Precisi

on 

Double 
Precisi

on 

 

CPU (Intel 
I7-3930k) 

6 3.2GH
z 

2.27 
Billion 

Up to 
51.2GB/s 

Up to 
64GB 

  130 

GPU 
(NVidia 
Tesla 
K20c) 

2496 706M
Hz 

7.1 
Billion 

208 GB/s 5GB 3520 1170 225 

 

B. CPU and GPU benchmark testing results with GPUBench 

 Results for data-type 'double' 
(In GFLOPS) 

Results for data-type 'single' 
(In GFLOPS) 

 MTimes Backslash FFT MTimes Backslash FFT 

CPU 174.38 126.78 7.92 375.05 245.17 11.53 

Tesla 
K20c 

1004.98 486.86 105.08 2657.88 772.11 254.95 

  
C. 1D-convolution benchmark results 

x 1 2 3 4 5 6 7 8 

CPU 0.006 0.024 0.0624 0.0644 0.187 0.2834 0.6574 3.5734 

Tesla 
K20c 0.014 0.018 0.026 0.042 0.073 0.134 0.257 0.503 

Note that the speedup is also shown in Figure 4B.  The benchmark data length = 2x * 10000.  The results 
are the running times of the convolution in seconds. 
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Convolution Speed Comparison 

 For LSPS map data analysis, we use the custom-made Matlab program, 

"synaptic_event_detection", which uses a bank of existing matched templates to detect 

synaptic events in signal traces.  Since convolution using the Matlab function, conv(), is 

a computational core of the program for synaptic event detection, we are interested in 

examining the performance of CPU and GPU-enabled computation in convolving data 

vectors of different lengths with an 1-dimensional (1-D) template of a fixed length.  As 

the convolution computation is not included in the GPUBench software, we 

implemented a simple benchmark code (see Appendix 1) that performs 1-D convolution 

in Matlab.   Vectors of different lengths were generated by using the Matlab rand() 

function.  The lengths of data vectors are    2X * 10000 (X ∈  [1, 2, … 8]  ).  A second 

vector was generated by the Matlab rand() function to be used as a convolution filter 

with its length being 20000.   The data vectors of different lengths were convoluted with 

this fixed filter.  Again, the time of memory allocation/deallocation is not included in 

actual computation time; the GPU computation time includes the necessary data 

transfer between RAM and VRAM.  As shown in Fig 4.4B and Table 4.2C, GPU 

constantly outperformed CPU in convolving data with a vector length of 40000 and 

higher. The speed up of GPU computation tends to increase with the larger vector 

length.   When the data vector length is   28 * 10000 (the total length of 256 traces 

contained in one typical LSPS map data set), the speed up is about 700%. 

Acceleration of Electrophysiological Data Processing 

 To examine the performance gains in actual experimental data analysis, we 

compared the processing speed of the CPU version of the "Synaptic Event Detection" 
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program versus its GPU-enabled version (see Appendix 2 for code comparison).  As 

described in Methods, the GPU version of this function was modified to minimize the 

number of data transfer over PCIE x16 2.0 bus. All individual traces (256 traces from 

one map data set) were first concatenated to a large trace.  The data of both the signal 

trace and matched filters are of double precision floating point types.  During the 

automated event detection stage of the "Synaptic Event Detection" program, the key 

step that requires intensive computation is to convolve signal traces with a bank of 

matched filters (Fig 4.5A).  Typically, as illustrated in Fig 4.3, the CPU completed the 

convolution of 256 signal traces with each of the 29 matched filters in a total of 2.55 

seconds.  In comparison, the GPU completed the convolution in 0.51 seconds, which 

corresponds to a speed increase of 500% for this operation.  Note that the data transfer 

overhead was 0.03 seconds each way and the cost for reformatting data for the GPU 

computation was 0.15 seconds.  Since both event detection cores are on the CPU, the 

processing time is comparable at 1.90 seconds and 1.94 seconds in the CPU and GPU 

versions, respectively.  The GPU version takes much less time (59% of the CPU 

version) for processing all 256 electrophysiological traces that are contained in one data 

map.  This data processing acceleration would make a huge difference in computational 

times in consideration of our batch analysis of hundreds of different data maps. 

Although both CPUs and GPUs are compatible with IEEE 754-2008 Floating-

Point Standard,  it is important to compare the accuracy of GPU computation results to 

those of CPU as the CPU and GPU use different architectures for double floating point 

computation.  We used CPU results as a standard and examined how much the GPU 

results deviated from them. The convolution of the same signal trace using 29 different 
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matched filters was acquired from both CPU and GPU versions of the detection 

program.  The difference was calculated by comparing the convolution traces of using 

the GPU versus the CPU program.   As shown in Fig 4.5B, the maximum difference 

between CPU and GPU convolved traces is 81.5± 3.72 * 10-13 pA.  These tiny 

differences may result from different floating point rounding modes used by the CPU 

and GPU (Yablonski, 2011).  In practice, these numerical differences have no impact on 

our data analysis.  When we used the synaptic events that were detected and extracted 

in both programs for quantification and visualization, there is no difference across the 

data maps and they are identical (Fig 4.6).  Thus, GPU enabled computation enhances 

our ability of processing large data sets derived from photostimulation circuit mapping 

experiments.  It also allows us to increase data processing speeds while retaining data 

precision.   

Image Processing Application 

 GPUs have been used for enhancing image visualization through custom-written 

programs (Eilemann et al., 2012).  In this paper, we also show GPUs can be effectively 

adapted to improve the performance of image processing in Adobe Photoshop. This is 

major commercially available software that is widely used in academic research for 

routine image edits and analysis.  The Photoshop software has adopted GPU 

computation since the release of the CS4 version.  However, the latest version of 

Photoshop CC cannot utilize the Tesla K20c card.  We used its sibling GTX680 card (a 

high-end consumer-grade GPU installed in our desktop system) to complete this test.  

GTX680 shares the same microarchitecture of Tesla K20c but it has a lower 

configuration with 1536 physical cores running at 1006MHz with 2GB VRAM and costs 
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a fraction of the price of the Tesla K20c.  We examined how much the GPU could speed 

up general Photoshop operations on two testing images of different sizes.  The images 

are in .tif formats with 24 bit depth for the RGB mode; image 1 has 8176 pixels x 6132 

pixels with a size of 150MB, and image 2 has 16352 x 12264 with a size of 573MB.  To 

ensure consistent benchmark results, we used a fixed series of Photoshop actions 

(http://cdn.pugetsystems.com/articles/PugetBench.zip) to apply blurry effects to the 

tested images.  These actions included Field blur, Iris blur and Tilt-Shift effect.  We 

found that GPU-enabled computation achieved 165% speedup (16 sec versus 26 sec) 

in completion of the three actions on the smaller image, and 196% speedup on the 

larger image (52 sec versus 102 sec), respectively.   

Discussion 

Although GPUs have been used in several neuroscience fields including neural 

network simulations and high speed imaging (Nageswaran et al., 2009; Baladron et al., 

2012), our work addresses the GPU application in neural circuit mapping and 

electrophysiology-based data processing.  To our best knowledge, this is the first 

demonstration in this subfield of neuroscience.  In addition, we extend previous studies 

by presenting a comparison of numerical accuracy between GPU and CPU computation 

to verify the precision of GPU computation.  This is an important aspect of GPU 

application, but has not been rigorously tested before. 

We utilize GPU and CPU co-processing to speed up large-scale neural circuit 

mapping data analysis, taking LSPS mapping data analysis as an example.  A GPU-

enabled desktop computer system was designed and assembled toward this purpose.  

We described GPU-oriented program considerations, and presented the algorithms for 

http://cdn.pugetsystems.com/articles/PugetBench.zip
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integrating GPU processing with detailed flow-chart diagrams of the implementation for 

an accelerated version of the synaptic event detection program.  Our results indicate 

that cost-effective GPU computation facilitates large-scale data with increased speeds 

and with unaltered accuracy.  In addition, we showed that even a high-end consumer-

grade GPU is capable of speeding up Adobe Photoshop’s performance by 50-90%, 

depending on the operations and the image sizes.   

Compared with CPUs, the newest GPUs have an order of magnitude higher 

computation power and memory bandwidth. However, GPUs are designed as special-

purpose co-processors and their programming interfaces are harder to use than those 

on the CPUs.  Although GPU manufacturers and other organizations have developed 

various development kits that allows users with programming knowledge of high-level 

languages to take control of many stream processors of a GPU, it still requires steep 

learning to understand the GPU programming paradigm, data structure and complex 

optimization rules.   As Matlab is a commonly used mathematical programming suite 

and its new parallel computing toolbox contains many functions that support GPU-

enabled computing, we chose to use Matlab as a computing platform.  We modified the 

existing Matlab programs to utilize GPU computation with merely three basic steps: 1) 

transfer data to the GPU, 2) compute and 3) gather results.  As the GPU on-board 

memory limits the capabilities of processing large volumes of data, preprocessing data 

with CPUs is necessary.  However, the efficiency may be significantly hampered by the 

relative high-latency of the data exchange between CPUs and GPUs.  Therefore we 

optimize the Matlab GPU program and follow the rule of “Communicate less, compute 

more”.  For our synaptic event detection program, the GPU takes over the intensive 
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computation load from the CPU and returns the results in a quick and accurate manner 

to the system memory (with a 5x speed increase) for further CPU processing.  In 

addition, as Matlab-derived CUDA code is suboptimal and can be further improved, we 

plan to re-write the Matlab GPU kernel in CUDA code and then have it run in the Matlab 

environment.  Such an approach could achieve a balance between execution efficiency 

and code re-writing effort.  

Figure 4.6 
 

 
Figure 4.6. Visualization of the final detected events by using CPU and GPU-
enable computation via the "Synaptic Event Detection" program. A-B, Color-coded 
maps of average input strength to the recorded cell, based on the detected EPSC 
events using CPU and GPU-enable computation, respectively. Warm colors indicate 
stronger excitatory synaptic input from the photostimulation sites.  The averaged map 
was constructed with 8 raw data maps as shown in Figure 2B. C-D, The standard 
deviation maps of input strength across the 8 raw maps. These map results are 
identical.   
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Although we focus on data analysis of synaptic event data sets derived from 

LSPS experiments, the performance gain enabled by GPU computation should be likely 

extended to data analysis of multiple electrode array (MEA) recordings and large-scale 

single cell resolution calcium imaging experiments (Ohki et al., 2005; Nauhaus et al., 

2008; Franke et al., 2012).  MEA and bulk loading calcium imaging techniques offer the 

possibility to simultaneously record from large numbers of neurons (e.g., up to several 

thousand neurons) with relative ease, but at the expenses of increased efforts to detect 

and extract single neuronal activities from the recorded ensembles.  Their data 

processing that requires intensive computation for spike sorting and calcium transient 

event detection can be similarly accelerated with GPUs using the algorithms outlined in 

this paper. Furthermore, while the speed-up and accuracy demonstrated in the present 

study using the particular LSPS data analysis leads the GPU to be considerable for 

electrophysiology-based neural circuit mapping, GPU-enabled desktop computer 

systems will be potentially essential for real-time closed-loop experiments, with the 

potential for running data analysis in real time while collecting data from technically 

challenging, large scale recordings.   Furthermore, GPU-enabled desktop computer 

systems will facilitate real-time closed-loop experiments, with the potential for running 

data analysis in real time while collecting data from technically challenging recordings.  

In addition, we record from rare types of neurons and we would like to maximize the 

number of different protocols carried out for each recording.  One limitation is that we 

only estimate when we have data sufficient for achieving required statistical power for 

any given protocol.  Ideally if we could confirm such statistical thresholds by concurrent 
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real time analysis enabled by the GPU system, we could maximize the amount of data 

extracted from a given recording.   

In conclusion, we believe that when appropriately applied, affordable GPU-

enabled computation is efficient and powerful.  Thus we advocate for its wider 

applications in neuroscience research. 

  



` 

133 

 

Chapter 5:  

Conclusion and future directions 

My dissertation studies investigated the global spontaneous activity and their 

underlying developing circuits in hippocampus.  In Chapter 1, we reported a global 

spontaneous network activity, which we termed GNA based on its global network 

activation and propagation observed through VSD imaging. GNA normally initiates from 

distal CA3 and propagates bi-directionally to DG and CA1. The events appear robustly 

from P2 and the frequency reaches peak at around P5-6 and disappeared beyond P18. 

Both duration and peak amplitude of each occurrence decrease as mouse aging. 

However, the propagation speed increases with aging. The adult-like pattern of 

unidirectional circuit propagation from DG to CA3 to CA1 appears at about 2 weeks. 

Local field potential recording indicated that GNA is closely correlated with neuronal 

ensemble behavior in local circuits. However, single-cell recording indicates GDPs are 

not coupled with GNA events. Unlike the GDPs or SPWs recorded with other 

techniques, mouse GNA cannot be blocked by GABA receptor antagonists. Instead we 

observed a major contribution of AMPA receptor to both of initiation and propagation of 

GNA. Mapping the development of local afferent input of CA3 pyramidal neurons and 

DG granule cells over the time during which GNA is active reveals that weakening and 

disappearance of bi-directional GNA concurs with the maturity of the trisynaptic circuitry, 

i.e. formation of unidirectional information flow. The data support the hypothesis that 

GNA in the developing hippocampus immediately precedes the unidirectional trisynaptic 

circuit organization.  

To further understand the underlying pathway for back-projection from CA3 to 

DG in the developing hippocampus, we further investigated circuit connections of hilar 
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mossy cells, the only glutamatergic neuron type in the dentate hilus, during 

hippocampal development. We identified significant developmental changes in local 

excitatory and inhibitory inputs to mossy cells. Young mossy cells (P7) receive dominant 

excitatory input from CA3 while mature mossy cells (p13-p14, p21-p28) receive 

dominant excitatory input from DG. The inhibitory afferents to mossy cell reaches peak 

at around p13-p14 and mature neurons receive more inhibiton than young mossy cells. 

Similarly, DG provides the dominant inhibitory input. The developmental change of 

mossy cell conforms to the disappearance of bi-directional propagation of GNA and 

suggest that mossy cell is underlying pathway of CA3-Mossy Cell-DG backprojection 

which might be masked by inhibition.  

Although we investigated the spontaneous activity in developing hippocampus 

and the development of underlying circuit, it is still not clear the function of spontaneous 

activity to the formation of mature spontaneous circuits. Further manipulation technique 

would be necessary to alter the spontaneous pattern so that we could gain some 

insights on this matter. Moreover, the function of mossy cell is hippocampal system still 

remains unclear. Further experiments using rabies tracing and optogenetics would be 

helpful in mapping the cell type specific afferents input to and efferent from mossy cells. 

If we could record from various hippocampal interneurons while stimulating mossy cells 

selectively, we could better understand the ‘recurrent network’ formed between mossy 

cells, granule cells and various hippocampal interneurons, thus helping understand the 

role mossy cells in epileptogenesis. 

To facilitate data processing and analysis for the large scale circuit mapping 

studies (e.g., LSPS studies), we have developed a novel matched filtering technique 
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(Synaptic_Event_Detection software) that enables dependable automatic detection of 

synaptic events with minimal human supervision. The current technique has overcome 

the limitations of previously described threshold and template comparison techniques in 

detection of complex evoked synaptic signals with variable amplitudes and 

superimposed events. Our approach greatly improved the accuracy and efficiency in 

processing neural circuit mapping and electrophysiology-based data. The sensitivity and 

specificity of the method were evaluated on both simulated and experimental data, with 

its performance comparable to that of visual event detection performed by human 

operators. In addition, our technique has been further applied to the detection and 

analysis of inhibitory postsynaptic current (IPSC) responses. Further, we demonstrate 

how to use GPU to improve computation speed of the Matlab based 

Synaptic_Event_Detection software. We also present evidence of numerical accuracy, 

which again is not a given knowledge, due to changes in the code & very different 

hardware.  Since Matlab is perhaps the most widely used programming platform for 

basic neuroscientists, we introduced a relatively simple yet effective Matlab-based 

approach to utilize GPU computation. We also take efforts to introduce how to assemble 

a GPU-enabled desktop computer system with detailed hardware and software 

information.  

Our software can be modified to further apply to detection of other 

electrophysiological events such as extracellular action potentials, and event-related 

local field and electroencephalogram potentials as well as optical imaging signals. 

Clearly, the application of our technique to other domains will require modifications, 

including the design of an appropriate filter bank and adjustment of sensitivity/specificity 
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thresholds. These modifications, however, are rather easy to implement using our user-

friendly software. To obtain better speed up of our GPU program, we can also re-write 

the Matlab GPU kernel in CUDA code and then have it run in the Matlab 

environment.  Such an approach could avoid running inefficient Matlab code and 

achieve a balance between execution efficiency and code re-writing effort. 
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