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ABSTRACT OF THE DISSERTATION 

Integration of Locational Decisions with the Household Activity Pattern Problem 

And Its Applications in Transportation Sustainability  

By 

Jee Eun Kang 

Doctor of Philosophy in Civil Engineering 

University of California, Irvine, 2013 

Professor Will W. Recker, Chair 

 

This dissertation focuses on the integration of the Household Activity Pattern Problem 

(HAPP) with various locational decisions considering both supply and demand sides. We present 

several methods to merge these two distinct areas—transportation infrastructure and travel 

demand procedures—into an integrated framework that has been previously exogenously linked 

by feedback or equilibrium processes. From the demand side, travel demand for non-primary 

activities is derived from the destination choices that a traveler makes that minimizes travel 

disutility within the context of considerations of daily scheduling and routing. From the supply 

side, the network decisions are determined as an integral function of travel demand rather than a 

given fixed OD matrix.  

First, the Location Selection Problem for the Household Activity Pattern Problem (LSP-

HAPP) is developed. LSP-HAPP extends the HAPP by adding the capability to make destination 

choices simultaneously with other travel decisions of household activity allocation, activity 

sequence, and departure time. Instead of giving a set of pre-fixed activity locations to visit, LSP-
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HAPP chooses the location for certain activity types given a set of candidate locations. A 

dynamic programming algorithm is adopted and further developed for LSP-HAPP in order to 

deal with the choices among a sizable number of candidate locations within the HAPP modeling 

structure. Potential applications of synthetic pattern generation based on LSP-HAPP formulation 

are also presented.  

Second, the Location – Household Activity Pattern Problem (Location-HAPP), a facility 

location problem with full-day scheduling and routing considerations is developed. This is in the 

category of Location-Routing Problems (LRPs), where the decisions of facility location models 

are influenced by possible vehicle routings. Location-HAPP takes the set covering model as a 

location strategy, and HAPP as the scheduling and routing tool. The proposed formulation 

isolates each vehicle’s routing problem from those of other vehicles and from the master set 

covering problem. A modified column generation that uses a search method to find a column 

with a negative reduced price is proposed.  

Third, the Network Design Problem is integrated with the Household Activity Pattern 

Problem (NDP-HAPP) as a bilevel optimization problem. The bilevel structure includes an upper 

level network design while the lower level includes a set of disaggregate household itinerary 

optimization problems, posed as HAPP or LSP-HAPP. The output of upper level NDP (level-of-

service of the transportation network) becomes input data for the lower level HAPP that 

generates travel demand which becomes the input for the NDP. This is advantageous over the 

conventional NDP that outputs the best set of links to invest in, given an assumed OD matrix. 

Because the proposed NDP-HAPP can output the same best set of links, a new OD matrix and a 

detailed temporal distribution of activity participation and travel are created. A decomposed 
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heuristic solution algorithm that represents each decision makers’ rationale shows optimality 

gaps of as much as 5% compared to exact solutions when tested with small examples.  

Utilizing the aforementioned models, two transportation sustainability studies are then 

conducted for the adoption of Alternative Fuel Vehicles (AFVs). The challenges in adopting 

AFVs are directly related to the transportation infrastructure problems since the initial AFV 

refueling locations will need to provide comparable convenient travel experience for the early 

adopters when compared to the already matured gasoline fuel based transportation infrastructure. 

This work demonstrates the significance of the integration between travel demand model and 

infrastructure problems, but also draws insightful policy measurements regarding AFV adoption.  

The first application study attempts to measure the household inconvenience level of 

operating AFVs. Two different scenarios are examined from two behavioral assumptions – 

keeping currently reported pattern and minimizing the inconvenience cost through HAPPR or 

HAPPC. From these patterns, the personal or household inconvenience level is derived as 

compared to the original pattern, providing quantified data on how the public sector would 

compensate for the increases in travel disutility to ultimately encourage the attractiveness of 

AFVs.  

From the supply side of the AFV infrastructure, Location-HAPP is applied to the 

incubation of the minimum refueling infrastructure required to support early adoption of 

Hydrogen Fuel Cell Vehicles (HFCVs). One of the early adoption communities targeted by auto 

manufacturers is chosen as the study area, and then three different values of accessibility are 

tested and measured in terms of tolerances to added travel time. Under optimal conditions, 

refueling trips are found to be toured with other activities. More importantly, there is evidence 



xx 
 

that excluding such vehicle-infrastructure interactions as well as routing and scheduling 

interactions can result in over-estimation of minimum facility requirement.    
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CHAPTER 1 INTRODUCTION 

 

Activity-based travel demand models were developed to incorporate more fundamental 

travel decision making processes for transportation planning. Compared to the conventional trip-

based models, activity-based models offer greater detail regarding activities, trips, and linkages 

between the two as well as a better resolution of time and space. In addition, activity-based 

models are more policy-sensitive due to their derivation from fundamental travel decision 

making processes and are better able to capture the detailed interactions that occur between 

elements of the transportation system. Activity-based travel demand models have matured over 

last several decades, and still continue to mature. In fact, some models have been developed to 

the stage that they are implemented for regional travel forecasting.  

In this dissertation, we focus on the household activity pattern problem (HAPP) proposed 

by Recker (1995), in particular. HAPP formulates the time-space geography (Hagerstrand, 1970) 

under which an individual’s activity participation and travel takes place, where time and space 

are treated as a single continuous path through temporal and spatial dimensions rather than as 

discrete trips.  HAPP is an interpretation of personal- or household-level daily activity 

scheduling based on an extension of the pickup and delivery problem with time windows 

(PDPTW).  In this dissertation, HAPP is further developed to include locational decisions, for 

both the demand and supply sides. On the demand side, HAPP is extended to include destination 

choice, making this model a tool by which to link travel demand models with the transportation 

network. On the supply side, HAPP is integrated with two well-known network problems – the 

set covering problem and the network design problem. Previously, for many network problems, 
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origin-destination (OD) decision, referred to here simply as demand, is given statically, 

exogenous from the model although individual’s travel demand, and therefore, OD are also 

influenced by the network’s level-of-service. By incorporating the travel demand procedure 

within the network problem, interactions between the network and travel demand is better 

captured.  

These extended models are then applied to tackle transportation sustainability issues. The 

transportation sector is responsible for about one third of greenhouse gas emissions and the 

majority of foreign oil consumption.  Adoption of Alternative Fuel Vehicles (AFVs) is expected 

to solve both issues; however, there are large hurdles to overcome in order for AFVs to become 

the norm. Due to inconvenience factors related to limited infrastructure supply for 

refueling/recharging and the requirement for drivers’ to invest in new vehicle technology, AVF 

adoption success requires heavy analysis into how these factors should be addressed.  

Accordingly, the models developed in this dissertation are targeted tools for evaluating these 

issues.  For example, drivers’ inconvenience can be better analyzed using an activity-based travel 

demand model, and limited infrastructure supply can be viewed as a network problem.  Since 

HAPP combines individual driver’s travel decisions with the spatial and temporal physical 

constraints, it is possible to predict feasible travel patterns which are not previously observed, 

such as travel patterns of drivers using hypothetical AFVs. 

  

1.1 THE HOUSEHOLD ACTIVITY PATTERN PROBLEM 

Distinct from the majority of activity-based travel demand models are based on either 

econometric or simulation approaches, HAPP is a network-based mathematical programming 
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approach that can offer explanations to a variety of transportation behaviors not directly 

amenable to either econometric or simulation approaches (Gan and Recker, 2012, Chow and 

Recker, 2011; Recker et al., 2008; Gan and Recker, 2008; Recker, 2001; Recker, et al, 2001; 

Recker and Parimi, 1999; Recker, 1995).  

The structure of the formulation is as follows.  

,
,

min Travel Disutility of Household ( , )
s.t.

;

, , , , , , ,

h h h

h

h hh

h

h v h h h h h

u w h h u h u h

h f

X u w v T u Y u

 

 
 

 
 
 

                

Z X T

X
A bT

Y

X N V T P Y P

   

 

where hZ  is the travel disutility associated with the travel pattern adopted by household h , hN  is 

the set of all nodes associated with household h , 
,
,

v h

u wX is a binary decision variable equal to unity 

if vehicle v  of household h   travels from activity u  to activity  w, and zero otherwise, h

uT  is the 

time at which participation in activity u of household   begins, h

uY  is the total accumulation of 

either sojourns1 or time spent away from home on any tour, of household   on a particular tour 

immediately following completion of activity u, hV is the set of vehicles available to the 

household, and hA is a matrix of spatial, temporal constants as well as the tour length limit. For 

more details regarding HAPP, readers are referred to Recker (1995) or Appendix 5-A.  

                                                 
1 We have used the total accumulation of sojourns, and a maximum capacity of 4 (D = 4). 
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 Throughout the dissertation, minor notations may differ across chapters. Depending on 

the type of integration or expansion from the base HAPP formulation, different notations are 

required.  The chapter specific notations are included in the appendices. Data also differ across 

chapters. Although all data are drawn from Caltrans Travel Survey (Caltrans, 2001), selection of 

households and regional scope (Orange County and Los Angeles County) vary. Each chapter 

includes descriptions of its data set.  

 

1.2 ADOPTION OF ALTERNATIVE FUEL VEHICLES 

Since the adoption in 1990 of the California Air Resources Board’s legislation of Low 

Emission Vehicle (LEV) and Zero Emission Vehicle (ZEV) mandates, there have been positive 

expectations of Alternative Fuel Vehicle (AFV) adaptation. Recently, concerns about rising 

gasoline cost, technical feasibility of the ‘green’ AFVs, the success of the Hybrid Electric 

Vehicles (HEVs) in the automobile market, and the government’s effort in reduction of 

Greenhouse Gas (GHG) Emissions such as California’s SB 32, achieving sustainable 

transportation system has never seemed more promising. Many recent assessments on energy 

and emission of AFVs have suggested positive outcomes. Two major advantages of the AFVs 

are their significant reductions in energy use and harmful emissions, considered to be two of the 

more significant automobile externalities (Parry et al., 2007). Obviously, the degree of these 

positive outcomes is dependent on the extent of AFV adoption.  

However, even with these positive expectations of further adoption of AFVs, the survival 

of AFVs in the automobile market is not guaranteed. It has been postulated that there is a 

“sustainable” AFV market penetration threshold below which AFVs will not survive in the 

market. This is the so-called “chicken-and-egg” problem that explains the vehicle demand 
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(purchase)–fuel infrastructure interaction. Such interactions are tested in Stephan and Sullivan 

(2004a, 2004b) and Schwoon (2007), and the condition of fuel infrastructure provision that 

would determine the survival of AFVs explored. The concept of “infrastructure” can be 

expanded more broadly to include such “social” factors as: word of mouth, social exposure, 

marketing, scale and scope economics, learning from experience, R&D, and innovation spillover 

(Struben and Sterman, 2008). In addition to the demand-infrastructure relationship, there are 

various factors that would determine the survival and the extent of AFV adoption. There are 

various stakeholders such as government, auto manufacturers, collaborators, competition, and 

activist groups, and impediments including regulatory barriers, resources, infrastructure and 

vehicle characteristics, as stated by Byrne and Polonsky (2001). With respect to all of the factors 

mentioned above, how effectively and economically we can overcome this “chicken-and-egg” 

status and get to the threshold point and maximize social benefits is the key. 

In this dissertation, we take a different approach to incorporating driver’s behavior by 

proposing an activity-based travel demand model to produce feasible travel patterns within the 

physical constraints of AFVs operations. On the demand side, inconvenience bounds of 

operating AFVs are assessed and on the supply side, vehicle-infrastructure interactions such as 

refueling location decisions are evaluated. 

 

1.3 RESEARCH SUMMARY 

The objective of this research is to expand the HAPP to include various locational 

decisions. As stated earlier, HAPP is a mathematical programming model, and it provides a 

convenient integration since many locational problems are formulated in mathematical 

programming. Through these integrations, it is possible to capture the interaction between 



6 
 

individual driver’s travel decisions and transportation infrastructure. A secondary objective is to 

apply the developed models to study transportation sustainability, specifically the adoption of 

AFVs.    

  In Chapter 2, the Location Selection Problem for the Household Activity Pattern 

Problem (LSP-HAPP) is developed.  Destination choice is incorporated in the model where the 

destination choice decision is made from the interactions of other types of travel decisions made 

from HAPP. With this addition, five types of travel decisions are made simultaneously: activity 

allocation between household members, sequence of activities, departure times, some level of 

mode choice, and destination choice. A dynamic programming algorithm, developed for the 

Pick-up and Delivery Problem with Time Window Constraints (PDPTW) is adapted to handle a 

potentially sizable number of candidate locations.  It is shown to be efficient for HAPP and LSP-

HAPP applications.  The algorithm is extended to retain arrival times as functions for 

mathematical programming formulations of activity-based travel models that often have time 

variables in the objective. 

 In Chapter 3, household-level inconvenience cost of operating an AFV is measured. 

Assuming that people do not change their participation in activities as done with their current 

conventional ICEVs, two scenarios are tested. For the upper bound of minimizing the travel 

inconvenience, LSP-HAPP is used for refueling application to observe the inconvenience of 

limited refueling infrastructure for HFCVs, and HAPP is extended to include battery engine 

inventory for BEVs. Regarding the lower bound, analysis of refueling trip insertion and analysis 

of delay – which keep the currently reported travel patterns, are used for HFCVs and BEVs 

respectively. 
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 In Chapters 4 and 5, we focus on the supply side integration. In Chapter 4, Location-

HAPP is developed, a Location Routing Problem which uses a set covering model as a facility 

location strategy, and HAPP as individual’s travel demand procedure – vehicle routing strategy. 

It is shown that ignoring the interaction between service facilities and driver’s travel demand 

procedure, leads to the minimum facility requirement given a guaranteed level of accessibility.  

This problem is specifically developed for a hydrogen refueling station siting application 

although such application can be applied to other types of services. Finally, the Location-HAPP 

model is applied to an early-adoption hydrogen community.  

 Chapter 5, we propose a general framework of demand-network integration, Network 

Design Problem integrated with the HAPP (NDP-HAPP). This is assumed by that OD is not a 

priori but a subject of responses of individual travelers to network level-of-service. A 

decomposed solution method is developed and found to have reasonable error rates (0 – 5%) and 

computation times.  Suggested formulation is then applied to Southern California freeway 

network, and it captures temporal shifts of travel demand.  

 Chapter 6 summarizes all the chapters and presents the contributions and future work.  

 

1.4 RESEARCH CONTRIBUTIONS 

 

The primary contributions of this research include: 

 The destination choice is integrated with HAPP and five types of travel decisions are 

made simultaneously: allocation of activities between household members, sequence of 

activities, departure time, some level of mode choice, and destination choice.  
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 The exact solution method is extended from the PDPTW to handle the computational 

burden of HAPP and LSP-HAPP. 

 Inconvenience of operating AFVs is quantified as monetary cost, using full-day activity 

and travel data. A simulation of two behavioral assumptions create lower and upper 

bounds of inconvenience.  

 Using the inconvenience measurement, a few policy guidelines are suggested.  

 Location-HAPP is developed as a Location Routing Problem which takes a set covering 

model as a facility location strategy and HAPP as individual’s travel demand procedure  

 A search method that does not require the full matrix information is developed and tested 

for Location-HAPP. 

 Location-HAPP shows that ignoring the interaction between service facilities and driver’s 

travel demand procedure, leads to the minimum facility requirement given a guaranteed 

level of accessibility.   

 Location-HAPP is applied to one of early-adoption hydrogen communities. 

 NPD-HAPP proposes a general framework of demand-network integration with NDP-

HAPP problem where OD is not a priori  

 A decomposed solution method for NDP-HAPP is developed and found to have 

reasonable error rates (0 – 5%) and computation times.   
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CHAPTER 2 THE LOCATION SELECTION PROBLEM FOR THE HOUSEHOLD 

ACTIVITY PATTERN PROBLEM 

 

Individual- or household-level destination choice is not an output of optimizing a single 

objective but rather is a complex decision-making process involving a multitude of issues related 

to such aspects as type of activity, personal preference, accessibility, time-of-day, trip chaining, 

mode choice and etc.  For this reason, destination choice modeling has been studied within the 

context of associations with those influencing factors.  Although there are other approaches to 

model destination choice (Gärling and Axhausen, 2003; Louviere and Timmermans, 1990), most 

of the work in this area has modeled destination choice using discrete choice analysis based on 

random utility theory.   

 Many trip-based single destination choice studies have focused on the influences of type 

of activity.  A few of the papers in this category are Bhat et al. (1998) – work and shopping, 

Fotheringham (1988), Recker and Kostyniuk (1978) – grocery shopping, and Pozsgay and Bhat 

(2001) – recreational trip destination.  In more fundamental approaches relative to how travel 

decisions are made, discrete choice models of destination choice have been integrated into tour-

based approaches, involving such considerations as proximity to other activity locations, travel 

time and duration, etc.  Such considerations are particularly important in analyzing destination 

choice associated with non-primary activities that people tend to include in tours with other 

activities.  Kitamura (1984) included a zone attraction component within trip chaining behavior 

that included considerations of locations of home and other activities within trip chains, but his 

approach was limited in that trip chaining sequence, time-of-day, and selection of activities in a 
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tour are static.  Bowman and Ben-Akiva (2000) proposed integrated activity-based demand 

modeling including destination choice as well as types of pattern, travel mode, time-of-day, etc.   

Here, we propose an integrated approach similar to Bowman and Ben-Akiva (2000), 

based on a scheduling and routing framework, HAPP, for daily activities that includes a 

capability of modeling the selection of activity locations, time-of-day, pattern types, and choice 

of personal travel modes (e.g., automobile, bicycle, walk).   In the formulation, destination 

choices for certain activities (i.e., those without fixed locations) are viewed not as a primary 

choice that travelers make, but rather as an auxiliary choice made within their daily schedule and 

routing.   

There are a number of potential practical advantages that the properties mathematical 

programming models, compared to discrete choice analysis, offer in application to activity-based 

travel demand.  Principal among these is that such temporal constraints as the open hours of a 

particular shopping destination, or such spatial-temporal constraints as the space-time prism 

associated with an activity at particular location is insufficient to permit performance of a 

subsequent activity, that may be placed on travel/activity decisions can be incorporated 

explicitly, rather than be implied in the predefined specification of the set of discrete alternatives. 

For example, in the nested logit model example from Bowman and Ben-Akiva (2000), each 

decision nest needs pre-defined alternative choice sets, leading to 54 possible outcomes (discrete 

alternatives). Although infeasible decisions need to be addressed via constraints (which 

implicitly may nonetheless be enumerated as part of the solution algorithm), it is not required to 

pre-define all sets of actions—such as types of activity patterns, time-of-day, destination choice, 

composition of activities in each tour, and etc.—that are possible. Another (obvious) advantage 

of mathematical programming models is their ability to handle decisions involving both 
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continuous (time) as well as discrete (location) variables. Additionally, because discrete choice 

model estimation allows for only a relatively small number of alternatives, with the alternative 

destination set universal for all individuals (although specific individuals typically may not 

include all alternatives in their respective choice sets), specification must be defined either to 

meet pre-specified requirements, or be randomly sampled. This aspect makes discrete choice 

analysis in application to destination choice particularly limiting in its ability to represent 

individual choices.  For more discussion and literature review on choice-set generation sub-

problem of destination choice modeling based on discrete choice analysis, refer to Thill (1992). 

Of course, there are also significant disadvantages associated with the current state of 

mathematical programming approaches to activity-based travel/activity modeling, many of 

which are enumerated by Recker (2001) who showed that conventional discrete transportation 

choice models (e.g., destination, route, mode) can be represented as a special case of the HAPP 

family of mathematical programming models. In essence, both approaches are based on utility 

maximization principles applied at the individual (or disaggregate level), the principal 

differences being that the discrete choice case involves an unconstrained optimization of discrete 

choices based on specification of utility in terms of continuous and/or discrete variables with a 

specified error structure, while the mathematical programming case involves a constrained 

optimization of both continuous and discrete variables based on specification of utility in terms 

of continuous and/or discrete variables with no assumed error structure.  The specification of the 

error structure in discrete choice models is conducive to estimation by standard maximum 

likelihood techniques, while the lack of such has presented a challenge to moving mathematical 

programming approaches toward being descriptive (and, ultimately, predictive) from being 

merely proscriptive; recent advances based on inverse optimization techniques (Chow and 
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Recker, 2011) and genetic algorithms (Recker et al., 2008) have made progress toward 

estimation. And, as a constrained generalization of the discrete choice case, the mathematical 

programming modeling approach actually generally greatly increases the dimension of the 

choice set alternatives over that of discrete modeling approaches, but shifts the burden of the 

increased dimensionality to the solution algorithm rather than to the specification of the model 

choice alternatives; this can present a serious obstacle since mathematical programming models 

such as HAPP are known to be np-hard. Despite these disadvantages, the advantages that 

mathematical programming models offer in guaranteeing the internal consistency of the linkages 

dictated by time-space constraint considerations are deemed an avenue of research of potential 

benefit in modeling complex travel choices.  

 

In this chapter, we extend the basic HAPP formulation to the case involving a choice of 

selecting a location from many candidate locations for performance of a desired activity.  As 

described above, a structural advantage that HAPP provides is a flexible form for incorporating 

new behavioral aspects while maintaining the consistency of inviolable rules governing 

construction of activity patterns that are ensured by the mathematical formulation of the basic 

HAPP model—extensions can be easily built from the basic formulation.  Although the basic 

formulation for the Location Selection Problem (LSP) is easily obtained from the HAPP 

formulation by expanding the constraints that specify that only one location of each activity type 

is to be visited, the size and the complexity of the problem become an issue due to the various 

possible locations within the range of one’s spatial and temporal accessibility—computational 

limitations have been an obstacle that makes it difficult for even the basic HAPP model to reflect 

realistic travel behaviors in the model.  Fortunately, the PDPTW on which the model is based has 
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been studied extensively, and numerous algorithms to handle large-scale problems have been 

offered.  Here, we adopt methodology incorporating dynamic programming algorithms with path 

eliminations developed by Desrosiers et al. (1986) and Dumas et al. (1991), with suitable 

modifications to meet the requirements of the Location Selection Problem. The Location 

Selection Problem for the Household Activity Pattern Problem presented here can handle a larger 

number of alternative locations, without the additional step of generation of specific alternative 

destination sets.   

 

2.1  LSP-HAPP FORMULATION 

 In the most general formulation of the Location Selection Problem for the Household 

Activity Pattern Problem (LSP-HAPP), we presume that there are activities with specified 

locations, as well as activities with no specific location—there exist a number of candidate sites 

for each such activity type (total of   activities), that are scheduled to be completed by the 

household.  Specifically, we assume that among the activities scheduled for completion by the 

household are those for which the locations are predetermined (e.g., work, school) and some for 

which the location can be selected from a number of candidate locations (e.g., grocery shopping).  

In the HAPP analogy to the PDPTW, activities are viewed as being "picked up" by a particular 

household member (who, in this basic case, is uniquely associated with a particular vehicle) at 

the location where performed and, once completed (requiring a service time is ) are "logged in" 

or "delivered" on the return trip home.  Multiple "pickups" are synonymous with multiple 

sojourns on any given tour.  The scheduling and routing protocol relative to some household 

objective produces the "time-space diagram" commonly referred to in travel/activity analysis. 
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Decision variables, directly analogous to those of the PDPTW, are defined as (see 

Appendix 2-A for notation used): 

 

   
                binary decision variable equal to unity if vehicle  travels 

from activity u to activity w, and zero otherwise. 

        the time at which participation in activity u begins. 

  
       

      the times at which vehicle  first departs from home and last returns to 

home, respectively. 

        the total accumulation of either sojourns or time (depending on the 

selection of  D  and  ud )  on a particular tour immediately following 

completion of activity u. 

 

 With these definitions, the LSP-HAPP (the Location Selection Problem for the 

Household Activity Pattern Problem) for a household’s completion of a set  

   {            }  of    out-of-home activities with pre-selected (one-to-one) locations 

  
  {            } and a set   {            }  of out-of-home activities of specific 

types (e.g., grocery shopping)   , each of which with    
 possible corresponding locations   
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  {            
}  , using mode of travel  , can be represented by the following 

formulation.2   

 

                                 (2-1)  

subject to: 

∑ ∑    
 

                
     (2-2) 

∑ ∑ ∑    
 

        
                   (2-3)  

∑    
 

    ∑    
 

                  (2-4) 

∑    
 

                   (2-5) 

∑        
 

     ∑    
 

                  (2-6) 

∑    
 

    ∑       
 

   
                (2-7) 

                        
    (2-8-1) 

   
                            

             (2-8-2) 

∑ ∑    
 

                         
  (2-8-3) 

                                                 
2 LSP-HAPP is different from selective pickup and delivery problem in that there is no utility 

associated with visiting a location, and that only one of the same types of location can (and must) 

be visited.  



16 
 

   
                                 (2-9) 

   
      

                        (2-10) 

       
                       

                   (2-11)  

                   
     (2-12-1) 

   
                       

            (2-12-2) 

   
         

                     (2-13-1) 

∑    
 

         
               (2-13-2) 

       
               

                     (2-14-1) 

∑        
 

          
               (2-14-2) 

   
                             (2-15) 

   
                             (2-16) 

   
                        (2-17) 

                         (2-18) 

∑ ∑ ∑    
    

 
              (2-19) 

∑ ∑    
    

 
         

   (2-20) 

   
  {

 
 

            (2-21) 
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           (2-22) 

  
       

         (2-23) 

 

 The constraints that specify that each activity location needs to be visited (performed) are 

split into two sets of constraints.  Equations (2-2) impose the condition that there is one and only 

one path leading from each activity with pre-selected location.  Equations (2-3) impose the 

condition that there is one and only one path leading from one and only one type    out-of-home 

activity location. This can be viewed as a Generalized Vehicle Routing Problem suggested by 

(Ghiani and Improta, 2000). The rest of the formulation follows the classical PDPTW, and the 

base case HAPP, except for a few conditional constraints to relax constraints on unselected 

candidate nodes.  Equations (2-4) ensure that that there is a connected path among the activities 

(and their return trips to home) and that no activity is revisited.  Equations (2-5) allow for the 

possibility that some of the vehicles in the household’s stable of vehicles may not be used. 

Equations (2-6) enforce a restriction similar to that in Equations (2-2), but with reference to the 

paths leading from the origin and to the final termination (i.e., the depot).  Equations (2-7) 

stipulate that the return-home trip be on the same path as it’s associated out-of-home activity. 

The original equation (2-8),                          , is a restriction that the activity 

start times for elements of  
P precede those of corresponding elements in 

P  (the end point, 

home location, of the connected graph defining the path from the location of performance of an 

activity to the ultimate trip to the home location). However, for LSP-HAPP, this constraint needs 

to be satisfied only if the solution includes visiting that specific node among many candidates as 

in (2-8-2). Similarly, when the objective function involves time variables, the time variables for 
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the unvisited activity nodes need to be constrained in order not to affect the objective function as 

in (2-8-3). Equation (2-9) is the restriction that the commencement time of the activity associated 

with any trip end w, i.e., wT , requiring travel from another trip end u can occur no sooner than the 

termination time of the corresponding activity at u plus the travel time from the site of activity u 

to the site of activity w.  Equations (2-10) and (2-11) state that restrictions similar to those 

imposed by Equation (2-9) hold for travel from the origin node, 0, to any activity, as well as for 

travel from any activity to its “return home” activity.  Equations (2-12) state that each activity 

and the selected node needs to start within its given time windows. This equation is modified 

from the original constraint,              , to be satisfied only when the node is visited 

for the selective locations. Equations (2-13), and (2-14) add restrictions regarding the time 

windows available for activity completion. For the case in which the vehicle does not operate for 

the given day, its time windows need to be set to zero, so as not to affect the objective function. 

Equations (2-15) through (2-18) impose conditions on the maximum number of sojourns allowed 

in any single tour. Equations (2-19) and (2-20) enforce budget constraints. Equations (2-21) (2-

22) (2-23) add non-negativity and integer constraints. 

 

2.2  SOLUTION METHODOLOGY  

 As noted, HAPP is an NP-hard problem; for a total number of all activities— with pre-

selected locations plus the number of candidate locations for activities with alternative candidate 

locations—of n, the number of flow decision variables is        . As such, its application 

faces significant challenges imposed by computational limitations.  All HAPP cases examined 

previously in the literature have had only a few activities.  Application of LSP-HAPP to cases 

involving multiple vehicles with numbers of activities having a large number of candidate 
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locations within one’s spatial and temporal accessibility seriously stretches this computational 

limitation.  

  Numerous algorithms have been developed to solve large-size PDPTW (see, e.g., 

Cordeau and Laporte, 2003), and problems with locations up to 2,500+ have been successfully 

solved.  Here, we follow the solution method proposed by Dumas et al. (1991), which was used 

to solve large scale PDPTW, and modify it to meet the specifications of LSP-HAPP problem.  In 

their approach, an exact dynamic forward programming routine in a sub-problem is used to 

generate possible and feasible paths, and then combinations of these paths are decided in the 

master problem to assign each path to each vehicle.   

 It has been shown that the arc-path notation’s sub-problem to generate admissible paths 

in the multi-commodity problem is the shortest path problem (Ford and Fulkerson, 1958).  Since 

LSP-HAPP equations (2-1)-(2-7) form a multi-commodity problem, we can rewrite in arc-path 

formulation as the following:  

  

         ∑   

   

              

∑    

   

         
               

∑ ∑    

   

    

     
 

                  

∑   

   

 V                   
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where 

 :  the set of admissible paths 

   {
                      
                          

,       

    {
                                        
                                                         

,                   

  :  the cost of route  ,      

 

 Here,   is an admissible path for a given vehicle/household member,  , that satisfies all 

of the properties of the problem as specified in the remaining Equations (2-8) - (2-22).  

Equations (2-b1) and (2-b2) are substituted for the original constraint of PDPTW arc-path 

formulation for the Location Selection Problem: 

 

∑    

   

                     

 

Equations (2-b1) constrain that all activities with pre-selected location need to be visited once.  

And Equations (2-b2) constrain that one and only one of the candidate locations for each activity 

type with multiple candidate locations needs to be visited once and only once. 
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 Variable     shows whether each activity node   is on path  . Then the column vector 

               
  shows all the activity nodes that the path   covers.  Therefore, by finding an 

admissible path  , we are performing the column generation, which is widely used for large-scale 

combinatorial optimization problems.  For arc-path formulation of PDPTW, the sub-problem 

(the dual problem) to find admissible path   is the shortest path problem with time windows. For 

LSP-HAPP, the sub-problem becomes LSP-adaptation of the shortest path problem with time 

windows 

   This sub-problem of finding   of LSP-adaptation from the shortest path problem with 

time windows can be solved by the following dynamic programming algorithm (Algorithm 2-1, 

shown below), which is adapted from Dumas et al. (1991) and Desrosiers et al. (1986), and 

follows notations used in Desrosiers et al. (1986), i.e., 

 

           : a feasible route to node  , the terminal node, that visits all the nodes in    , and 

   .   is a non-ordered set of cardinality  , where   is the iteration number.  

      :  a given route   to             

       : the arrival time at node  , following route    

       : the current cost at node  , following route    

       : the cumulative number of sojourns in a tour at node  , following route   
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                   { }     } 

                     { }    } 

Initialization (   ) 

A set of states of routes visiting one activity node from home location are generated. 

   { { }        } 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

           {                              

                

              

   

Recursion (   ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

{   { }        {    }} where       is the state from previous iteration 

 Then the states are tested for elimination criteria, and if the state    { }    

is not eliminated, its label set will be created. Its corresponding arrival time, 

cumulative cost, and cumulative number of sojourns in a tour are updated as: 

       { }              {                        { }         

       { }                   

       { }                

 Stop when there is no label generated at this iteration.  

 

Selection of Arrival Times 

For all completed paths,  , solve the following optimization problem, and update 

the final cost.  

  Minimize                      such that             

 

Algorithm 2-1 LSP-HAPP path generation algorithm for objective function involving time 

variables 

 

Here we have extended the algorithm so that only one of the candidate locations is visited 

for activity types without pre-selected locations as constrained in LSP-HAPP Equation (2-3), and 

introduce new elimination criteria to support such patterns—a method that works well for large-



23 
 

scale problems.  Although similar to the shortest path problem addressed by the algorithm 

presented by Dumas et al. (1991) and Desrosiers et al. (1986), the problem considered by LSP-

HAPP (as well as by other HAPP-based formulations) differs in an important aspect that requires 

attention before the algorithm can be applied. It is often the case that the actual time selected for 

performance of an activity (within an acceptable time window) influences the net utility (utility 

of the activity less the travel disutility) one experiences.  In the algorithm proposed by Desrosiers 

et al. (1986) and Dumas et al. (1991), the earliest possible arrival time is selected for   .  To the 

contrary, arriving at an activity at its earliest possible arrival time may result in out-of-home wait 

time delays (waiting for the next activity window to become available) in completing other 

scheduled activities that may lead to reduced utility.  This aspect is more critical for LSP-HAPP 

than for PDPTW since activity start (return home) time windows are not homogeneous compared 

to pick up (delivery) time windows of PDPTW.  Indeed, such factors as time being outside of 

home, or delay time in starting an activity have been found to play a role in personal activity 

patterns (Chow and Recker; 2012, Recker et al; 2008).   

 To address these issues, first the objective function is separated into two parts—one as a 

function of flow decisions (e.g. ∑ ∑ ∑                 or ∑ ∑ ∑                ), and the other as 

a function of arrival times (e.g., ∑       
    

     ); e.g.,   

 

           ∑ ∑ ∑                 ∑     
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The first part of the objective which is affected by path sequence is updated according to the 

original algorithm.  The other part, which is dependent on activity start (arrival) times cannot be 

updated at each iteration because the optimal arrival time may not be determined during the 

process of creating paths, and also because variables may not have been defined yet; this part is 

left to be assessed by a final procedure.  Instead, we define a new set to represent arrival times as 

a function, 

 

        : set of arrival times windows of all activities in   { }, following path    

 

and during Recursion (   ), a label is created with possible time windows of arrival time 

determined as                        { }       .  Conditions respecting the path 

sequence are as                       { }    }.  The feasibility of arrival time windows 

needs to be delivered as well as previous time windows of arrival times.  Then,           the 

objective measure affected by path sequence at node   following route  , is updated in the same 

manner as in the a original algorithm, i.e.,     { }                 .  For the elimination 

criteria involving possible time window violations,    is assumed to be the earliest possible time. 

 Once all feasible paths are created, arrival times are decided by minimizing the objective 

function while respecting time windows created along the paths generated.  This is a problem of 

finding the optimal value with arrival time decisions given a path sequence, in the form of a 

linear programming problem of   variables, and solved very easily.  By leaving time variables as 

a function, the algorithm loses some of the simplicity since several linear programs need to be 



25 
 

solved during the final step of the procedure, but it allows specification of objectives in terms of 

time variables.  (If objectives are in terms of load variables, the same approach can be used).  

Then, the path with the smallest objective function is selected, and the same limit of problem size 

is guaranteed as those of the original algorithms.  

 State elimination criteria are employed to efficiently reduce the size of path combinations 

needed to explore. At the beginning of each recursion iteration  , all combinations of {   { }    

   } are tested relative to whether to be stored or eliminated. Some elimination criteria are 

based solely on the feasibility of    { }   , and some elimination criteria also consider the 

terminal node   of the previous path       from previous iteration    : 

 

Elimination criteria 

#1: node   must not have been previously visited: 

     ̅ 

 #2: if node   is one of the candidate locations for activity type   , then any candidate location of 

activity    must not have been previously visited. This elimination is tested for all selective 

activity types,     :  

  For all     , if      

 , then     ̅, for all      

  and     

 #3: if node   is one of the return home locations for activity type   , then any return home 

location for activity type   , must not have been previously visited. This elimination is tested for 

all selective activity types,     :  
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  For all     , if      

 , then     ̅, for all      

  and      

 #4: if node   is a return home node, then the activity node,     must have been previously 

visited (precedence constraint): 

  if     , then       

 #5: if node   is an activity node, total number of sojourns (cumulative time away from home) 

must not exceed the maximum number of sojourns (time away from home) allowed in a tour: 

  if     , then              

 #6: time constraints must be respected: 

               

 #7: for     ,     , one of paths,              or            , must be 

feasible with time      , which is the earliest time at which node   can be visited. 

 #8: for     ,     , one of paths,              or             , must be 

feasible with time      , and      , which is the earliest time at which node     can be 

visited. 

 #9: for     ,     , path             must be feasible with time          , 

which is the earliest time at which node     can be visited.  

 #10: for     ,     , path             must be feasible with time          , 

which is the earliest time at which node     can be visited 

#11: if node   is the final home node, then cannot expand a path from this path: 
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#12: if node   is the final home node, then the final visited node   must be one of the return home 

nodes: 

 if       , then      

 #13: if node   is the final home node, then for all the activity location nodes that are visited,  , all 

of the corresponding return home nodes must have been visited: 

 if       , then       for all      and     

 

 Criteria #2 and #3 are introduced to meet the specifications of LSP- HAPP. The rest of 

the label generating criteria are from Dumas et al. (1991) and Derosiers et al. (1986). Criteria #7 

- #10 tighten criteria #6 with possible time window violations to reduce the number of label 

generations.  The efficiency of dynamic programming is dependent on how efficient these 

elimination criteria are.   

 

Additionally, since the physical location of all return nodes is home for the LSP-HAPP 

application, it is not meaningful to identify the order of visiting those nodes during Recursion. 

This drastically reduces the number of labels to be created.  

 

 # 14: if all pre-selected locations (all     
  ) and one of the selective locations (any   

   

 ̅̅ ̅̅ ̅     ) have been visited previously, and the arrival node   is home (if     and     ), 
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create the new label and terminate Recursion from this label, add the rest of return home trips of 

all the visited nodes if missing, and pass the label to Final Iteration. 

       for all     
 , and     for any      

  for all     , and      

  

 Patterns generated by the algorithm are now introduced to the master problem, (a) – (c), 

and solved.  It is noted that the information on path cost, arrival time, and load are not carried 

onto the master problem.  Those data need to be stored separately.  

 

2.3 EXAMPLES 

2.3.1 Case1: Grocery Shopping Location Selection Involving a Single Vehicle 

 As an example of the application of this basic LSP-HAPP formulation, we consider the 

case of a household with one vehicle that is available for travel to any activity beginning at 6:00 

and ending at 20:00, but must return to home from any activity no later than 21:00.  The 

household has one work activity with a fixed location, i.e.,   {1}, ; 1{1}P Pn M PP ,   with 

duration of 1 9s 
 hours and start time availability windows between 8:00 and 9:00 and no 

additional constraint on returning home from the work activity. Assume further that the 

household also has a grocery shopping trip to be scheduled; i.e.,   {  }    , and that 

there are two potential locations for this activity    
 {   }     

  ; the operation hours for 
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both stores is assumed to be from 6:00 to 22:00 and the duration of the shopping activity at either 

location is 1 hour3.  In this example: 

 

       {     }            

  
  { } 

  
  {   } 

  
  { } 

  
  {   } 

     
    

  {     } 

     
    

  {     } 

     
    

  {   } 

     
    

  {       } 

 

with time availability windows, and corresponding return-home windows: 

                                                 
3 Although assumed identical in this particular example, durations and/or time widows at the various locations need 
not be. 
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 
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   
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 

0 0

2 1 2 1 13 13

[ , ] [6, 20]

[ , ] , [6, 21]   .n n

a b

a b a b 



 

 

 

 In this example, the household’s objective function is assumed to be that of minimizing 

the total monetary cost—that is, total travel time multiplied by fuel cost (first term)—plus the 

value of the extent of the travel day (second term).   

 

  ∑ ∑    
    

 

      

              

 

where      respectively are the monetary value of the temporal extent of the travel day, fuel cost 

per hour (derived from assumed average speed and miles per gallon). For purposes of 

illustration, in our example, we arbitrarily set         ,           . 

 During recursion iterations, cost is simply updated as,     { }                   , 

where        is the state from previous iteration.  
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We additionally assume the following travel time matrix associated with the three locations: 

 

Travel Time Matrix uwt  

  

  

0 1 2 3 

0 0 0.22 0.05 0.25 

1 0.22 0 0.22 0.01 

2 0.05 0.22 0 0.2 

3 0.25 0.01 0.2 0 

 

 For this case involving a single vehicle, some simplifications of the general solution 

procedure outlined in the previous section can be made—it is not necessary to assign admissible 

paths to each vehicle since there is only one vehicle.  Rather, efficiently finding the best 

admissible path that tours all of the nodes that need to be traversed in one path is the key.  In this 

case, the algorithm suggested for the sub-problem of the shortest path problem with time 

windows can be used; however, a few adjustments can be made in order to render the solution 

method more efficient.  These adjustments exclude paths that do not visit all activity nodes that 

are required to be completed since there is only one path for single vehicle households.  First, the 
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recursion step occurs for iterations            , and the new node to be added is only 

from  —thereby excluding labels to add the final depot nodes during this step—adding the final 

node at the final iteration,            .  These changes ensure that all required nodes are 

visited in this tour before the final return home.  The algorithm for this case is as follows: 
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                   { }     } 

                     { }    } 

Initialization (   ) 

A set of states of routes visiting one activity node from home location are generated. 

   { { }        } 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

           {                              

                

              

   

Recursion (           ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

   {   { }       } where       is the state from previous iteration 

Then the states are tested for elimination criteria, and if the state    { }    is not 

eliminated, its label set will be created. Its corresponding arrival time, cumulative 

cost, and cumulative number of sojourns in a tour are updated as: 

       { }             {                        { }         

       { }                   

       { }                

 

Final Iteration (           ) 

There is only one state to be generated. All activity nodes and corresponding return 

home nodes have been visited, and the terminal node is the final depot node: 

   { {             }      } 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as previous. 

 

Selection of Arrival Times 

For all completed paths,  , from Final Iteration (           ), solve the 

following optimization problem, and update the final cost.  

Minimize                      such that            

 

Algorithm 2-2 Single vehicle LSP-HAPP path generation algorithm for objective function 

involving time variables 
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 For this, criteria #11- #13 are not necessarily useful since the final return home node is 

not added to the labels until all of the other nodes are added. In order to increase the efficiency of 

the algorithm, the following criteria can be included in the elimination test:  

 

 #15: given the arrival time at node  ,   , it must be possible to visit each subsequent unvisited 

preselected node     { }̅̅ ̅̅ ̅̅ ̅̅ ̅ while respecting the time constraint: 

               , for all     , and     { }̅̅ ̅̅ ̅̅ ̅̅ ̅ 

  

The full results of label generation for this example of LSP-HAPP is presented in Table A-1 in 

Appendix 2-B.  A summary for label of index 46 is presented in Table 2-1. 

  

Table 2-1 Label generation procedure of grocery shopping location selection: Single vehicle 

Iteration Index Visited 
nodes,   

Terminal 
node,   

Current 
cost, 

        

Time window 
constraints,        4 

Previous 
Path 
index 

    

 
1 {1} 1 1.38 

        

       

           

0 

    8 {1 4} 4 2.75 
            

             
1 

                                                 
4 This column only shows arrival time windows that are newly added during the iteration.  Constraints from previous 
paths carry on, but due to space limit, they are not shown in this table.  The full set of constraints can be constructed 
by tracking down previous indexes. 
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    14 {1 3 4} 3 4.31 
           

           
8 

    34 {1 3 4 6} 6 5.88 
            

             
14 

    46 {1 3 4 6 7} 7 5.88             
      34 

 

  For all 12 completed labels, time variables are determined according to delivering the 

optimal value of the objective function,                  .  For example, for label of index 

46, which traveled as: 7 (Label index 46)   6 (Label index 34)  3 (Label index 14)   4 (Label 

index 8)   1 (Label index 1)   , the following problem is solved to determine arrival times.  

 

                     

subject to: 
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Once the time variables for all 12 final labels are chosen to achieve the optimum, the cost 

is updated to represent the full objective function value.  Then, the label with the lowest value is 

the optimal solution. In the current example, it is label 35. The optimal path is: home (       ) 

→ grocery store 2 (       ) → work (       ) → home (              ), with total 

cost of $160.2.  The activity and routing of the optimal path is visualized in Figure 2-1.   
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Figure 2-1 Optimal activity pattern of grocery shopping location selecting involving a single 

vehicle 

 

2.3.1 Case 2: Grocery Shopping Location Selection for a Household with Two Vehicles 

 Similar to the previous example of grocery shopping location selection, assume a 

household with two vehicles and two household members, each with its vehicle exclusively 

available.  The travel disutility is simply expanded to multiple vehicles as:  

 

  ∑ ∑ ∑    
    

 

         

   ∑      
    

  

   

 

HomeWork Grocery 
store 1

Grocery 
store 2

6.99 6.74

Home

Work
(9hr)

Grocery 
shopping

(1hr)

17.22

8.00
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The household needs to complete two activities with pre-selected locations,   {1,2}; 2P Pn N , 

which are work (node 1), with duration of 1 9.0s  ,  and a drop-off activity (node 2), with 

duration of 2 0.1s  . As in the previous example, the household also has a grocery shopping trip 

to be scheduled; i.e.,   {  }    , and that there are two potential locations for this activity 

   
 {   }     

  ; the operation hours for both stores is assumed to be from 6:00 to 22:00 

and the duration of the shopping activity at either location is 1hour. In this example: 

 

        {       }            

        {           }  {         } 

  
  {   } 

  
  {   } 

  
  {   } 

  
  {   } 

     
    

  {       } 

     
    

  {       } 

     
    

  {       } 

     
    

  {       } 
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with time availability windows, and corresponding return-home windows: 
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 
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40 
 

The travel time matrix is given as:  

 

  

  

0 1 2 3 4 

0 0 0.22 0.12 0.05 0.25 

1 0.22 0 0.13 0.22 0.01 

2 0.12 0.13 0 0.11 0.1 

3 0.05 0.22 0.11 0 0.2 

4 0.25 0.01 0.1 0.2 0 

 

 The dynamic programming procedure with respect to time variables, Algorithm 2-1, 

generated 4      , 12      , 20      , 16      , 16      , label sets of feasible 

paths, and there are total of 20 completed paths (terminal node at final home depot). Each of 

these completed paths is a candidate route column. However, if there exists a label with same 

visited set that dominates in travel disutility (objective function), loads and arrival times, that 

label can be dropped.  Of these, 14 paths (paths numbered 5, 6, 8, 9, 10, 12, 13, 15 – 19) are not 

used for the master problem of finding the optimal combination because there exists a different 

path(s) that traverses the same set of nodes (albeit with a different order) and end at the same 

node with either lower or same travel disutility, and with either earlier or same arrival time at the 

final node. The remaining paths (shown in Table 2-3) form the basis of the master problem.   
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Table 2-2 Admissible paths of grocery shopping location selection for the master problem 

Path 
No.,   

Visited 
nodes,   Path Sequence and Arrival Times 

Travel 
Disutility, 

   

0 {3 7 9} home (    ) → grocery store 1         ) → home 
            17.13 

1 {1 5 9} home (       ) → work      ) → home        
       144.35 

2 {2 6 9} home (        ) → drop off       ) → home     
          6.60 

3 {4 8 9} home (    ) → grocery store 2         ) → home 
            25.63 

4 {2 3 6 7 9} home (        ) → drop off       ) → grocery store 1 
         ) → home                  22.45 

7 {2 4 6 8 9} home (        ) → grocery store 2         ) → drop 
off       ) → home                  26.49 

11 {1 4 5 8 9} home (       ) → grocery store 2         ) → work 
     ) → home                  160.20 

14 {1 3 5 7 9} home (       ) → grocery store 1         ) → work 
     ) → home                  160.41 

 

Then, the matrix presentation of master problem (a) - (c) is 

                          

   

   
   
   

[

 
 

 
 

  
  

 
 

 
 

 

]   [

  

  

 
   

]  [

 
 

}    
] 
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 The master program, which is an integer programming problem, concludes (       ) 

that paths 1 and 4 bring the minimum cost of $166.8 for this household. The grocery store 1 

located at node 3 is selected over the grocery store at node 4. By tracking the previous indices, 

we find that person 1 travels path 1: home (       ) → work      ) → home        

      , and person 2 travel as path 7: home (        ) → drop off       ) → grocery store 

1          ) → home                 .  These results are depicted in Figure 2-2. 

 

 

Figure 2-2 Optimal activity pattern of grocery shopping location selecting for a household 

with two vehicles 
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2.3.2 Case 3: Grocery Shopping Location Selection for a Household with Two Vehicles 

with Restricted Activity Participation 

 The above example places no restrictions on which members of the household perform 

the scheduled activities. For more realistic assignment of household activities, we can add 

restrictions: 

 

∑ ∑     
 

       

       

 

where    
  is the subset of activities that cannot be performed by vehicle/person  . Assume, for 

example, that person 1 is the person who needs to perform both the work as well as the grocery 

activities.5 

  
  { } 

  
  {     } 

Here, we can eliminate terminated paths which include only one of work and grocery 

shopping activities.  In the example,         and these paths do not enter the master 

problem as a candidate path column, or are constrained to be zero.  The optimal assignment 

combination is decided among paths   2, 3, 4, 7, 11, 14, and found to be          :  

person/vehicle 1 travels path 11, home (       ) → grocery store 2          ) → work 

     ) → home                 , and person/vehicle 2 travels path 2, home (   

                                                 
5 Note that the notation starts from index 0.  
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     ) → drop off       ) → home              , with the total cost of $166.8 (Figure 

2-3). 

 

  

Figure 2-3 Optimal activity pattern of grocery shopping location selection for a household 

with two vehicles with activity assignment restrictions 

 

The process of path removal that violates personal restrictions can be imbedded at the end 

of recursion from Algorithm 2-1, as shown in Algorithm 2-3. 
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 Initialization ( = 1) 

A set of states of routes visiting one activity node from home location are generated. 

   { { },   ,    +} 

Corresponding arrival time, cumulative cost, and cumulative number of sojourns in 

a tour are updated as: 

    (S ,  ) = { max   ,  0 +  0,     S ,      ,  

   S , 0 +  0,     S { } , j  } 

     S ,   =  0,  

     S ,   =    

   

Recursion (2   ) 

New states are constructed by adding one node,  , to the total visited at the 

preceding iteration: 

{   { },   ,     {2 + 1}} where ( ,  ) is the state from previous iteration 

 Then the states are tested for elimination criteria, and if the state    { },    

is not eliminated, its label set will be created. Its corresponding arrival time, 

cumulative cost, and cumulative number of sojourns in a tour are updated as: 

     S { } ,   =   S ,     { max   ,   +   +   ,     S { } , j    , 

  S , i +   +   ,     S { } , j } 

     S { } , j =   S ,   +   ,   

     S { } , j =   S ,   +    

 Stop when there is no label generated at this iteration.  

 

Removal of Paths based on Restrictive Activity Participation 

 For all generated paths, if any activity node     + in its visited node set,   S, is an 

activity that can only be performed by one specific vehicle/household member  ,    , 

then any of the other visited nodes cannot be the activity that is restricted for  : 

   if     𝒓
 

   ,   ,  for any   S then,     
 , for all   𝐒, for     

 And all activities (all pre-selected activities and one of the selective locations) that need 

to be performed by  , needs to be in the visited set.  

  if     𝒓
 

   ,   ,  for any   S then,   S for all     𝒓
 

   ,   , ,    ,   

𝑃𝑃
+, or one of   𝑃𝐴 

+  for      𝒓
 

   ,   , ,    ,   𝑃𝑃
+ for all     

 

Selection of Arrival Times 

For all completed paths,  , solve the following optimization problem, and update 

the final cost.  

  Minimize  ( 0 ,  1 ,  ,  2 ,  2 +1) such that  (S , 2 + 1)  
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Algorithm 2-3 LSP-HAPP path generation algorithm with restrictive activity participation 

for objective function involving time variables 

 

 The first part of the condition can be imposed as an additional elimination rule, #16, 

during the recursion process to increase the efficiency, but the second condition needs to be 

performed for completed paths.  

  

 #16: For all generated paths, if any activity node       in its visited node set,    , for is an 

activity that can only be performed by one specific vehicle/household member  ,    , then 

any of the other visited nodes cannot be the activity that is restricted for  : 

if     𝒓
 

         then,     
   for all   𝐒, for     

 

For HAPP Case 4 and HAPP Case 5, the same changes as in Equations (2)-(3) can be made; 

however, the solution process overcoming the computational difficulties is not developed in this 

dissertation. Because these cases require generation of person-based and vehicle-based patterns 

and matching of these two, it is highly related to mode choice problem which has not yet been 

fully integrated in HAPP.   

 

2.4 CASE STUDY  
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 LSP-HAPP is applied to 13 households of single vehicle and single member households 

residing in Orange County, California, that have conducted one incidental shopping activity 

(includes shopping activities for grocery, medicine or house ware, but excludes such major 

shopping activities as furniture or automobile shopping) during the survey day. The data are 

drawn from the California Travel Survey (2001). For this example, individual household’s travel 

disutility is specified by the linear combination of the total extent of the day, the travel times, and 

the delay of return home caused by trip chaining for each of out-of-home activities by the 

individual weights of such measurements,         : 

       ∑      
    

  

   

   ∑          

    

   ∑ ∑ ∑    

         

 

The weights of these households are empirically estimated using the inverse optimization 

calibration process in Chow and Recker (2012). Time windows of activities are separately 

generated using the methodology described in Chapter 4, which adopted the method from Recker 

and Parimi (1999) with relaxation of return home activity’s time windows. 

 Candidate shopping locations are derived from the reported shopping locations in the 

study area, which numbered a total of 19. For practical implementation of the model, there would 

need to be a zoning procedure for aggregating candidate locations within a geographical area, but 

with the limited number of survey data used in this example, exact locations are spatially sparse 

enough to be individually located for the purpose of testing LSP-HAPP.  These locations along 

with household home locations and their other activity locations are shown in Figure 2-4. 

 



48 
 

 

Figure 2-4 Case study area 

 

 Of the test sample of 13 households, application of the LSP-HAPP model resulted in the 

destination choice of 8 households being the exact same location as the reported shopping 

location. For the remaining five households, the distance/travel time differences between the 

outcome of the model and the reported locations are 2.4 miles (0.15 hours), 1.5 miles (0.12 

hours), 2.5 miles (0.13 hours), 4.2 miles (0.22 hours), and 1.65 miles (0.09 hours). The average 

absolute difference between the model output and real data of start times of these shopping 

activities is 1.67 hours, with a maximum deviation of 4.16 hours, and a minimum of 0. It is noted 

that the activity start times determined by the model are highly dependent on how accurately the 

estimates of time windows are generated. In this application, the method we have adopted as 

explained in Chapter 4, which is based on Recker and Parimi (1999) provides fairly accurate 

arrival time selection but in a number of cases leads to infeasible cases for the reported pattern 

due to discrepancies in reported travel times and the actual shortest-path based travel time 
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matrix, especially when it includes a tour that traverses many activities. While refining and 

improving this time window generation is an important issue for the practicality of the HAPP 

models in general, it is not the scope of this dissertation.    

 The performance of the suggested algorithm is also found to be competitive. Solving 

LSP-HAPP directly by calling the CPLEX library took on average of 2,910 seconds, maximum 

case at 12,730 seconds, and minimum case at 180 seconds. Alternatively, Algorithm 1 took on 

average of 614 seconds (maximum at 3625 seconds, minimum at 25 seconds) which includes the 

generation of 577 (maximum of 2778, minimum of 28) labels, and average 148 runs (maximum 

of 718 runs, minimum of 2 runs) of “easy linear programming” of selecting the activity start 

(arrival) times via CPLEX library. 

 

2.5 APPLICATION IN TRAVEL PATTERN GENERATION 

 For activity-based transportation planning, synthetic pattern generation and assignment of 

those patterns over space are fundamental steps for travel forecasting.  HAPP has been shown to 

be a useful tool for synthesizing daily activity patterns on a household basis.  With the capability 

of choosing locations, LSP-HAPP can work as a pattern synthesizer as well as a tool for linking 

spatial information with such patterns, given activities and their durations for a household.   In 

these two aspects, such application is similar to the approach proposed by McNally (1997), 

although the specifications of models are different.  McNally (1997) selected a representative 

pattern that includes a set of activities and durations, given household characteristics, and 

matched the pattern with spatial information, whereas the LSP-HAPP model creates a pattern 

simultaneously linking to spatial information, given a modeler’s desired goal and a set of 
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activities to be performed along with their durations, possibly generated from household 

characteristics.  

  As an illustration, assume that the modeler’s goal is to select activity locations and 

generate travel patterns for a one-vehicle household that, either from direct survey data or from 

regional models, is assigned two activities—work (  ) and grocery shopping (  )—and a travel 

of  ̅ minutes for the day.  Then the objective function within the planning model context is to 

minimize the error between desired and generated travel times, i.e.,  

        | ̅  ∑ ∑ ∑    
 

         

   
 | 

 

During recursion (           ), we can store cost as the cumulative travel times updated 

as: 

 

     { }     {
       

               
 

and in the final iteration (           ), we can select the optimal path as path   with the 

smallest difference between the desired and observed total travel time, |      {   

 }       |6. 

  

                                                 
6 Because the objective function is not related to arrival time variables, Algorithm 2 without the final step 
of selecting arrival times, is used to solve this problem.  Arrival times are selected as possible earliest 
time during the initialization and recursion as in Desrosiers et al. (1986)  
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 Because the goal is matching locations with the modeling objective while generating the 

travel patterns, there is no activity location that has been pre-defined; i.e.,   {}; 0P PN n  .  

Suppose activity durations of work and grocery shopping are    
  ,    

  , and time 

availability windows for each activity type are: 

[
   

    

   
    

]  [
   
    

] 

with corresponding return-home windows: 

[
           

           
]  [

    
    

] 

and with initial departure and end-of-travel day windows: 

0 0

2 1 2 1

[ , ] [6, 20]
[ , ] [6, 21]   .n n

a b

a b 




 

 Assume also that there are two central business district locations for work (  ), and also 

two possible locations for grocery shopping (  ) in the area.     
 {   }     

       
 

{   }     
  ,      and          . 

 

In this example: 

              
    

 {       }            

        {           }  {       } 

  
  {},   

  {} 
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  {   },    

  {   } 

   
    

     

  {       } 

   

  {   },    

  {   } 

   
    

     

  {       } 

  
  {       } 

  
  {       } 

     
    

  {       } 

     
    

  {       } 

     
    

  {} 

     
    

  {             } 

 

with time availability windows, and corresponding return-home windows: 

[

     

     

     

     

]  [

   
   
    
    

],       [

     

     

     

     

]  [

    
    
    
    

] 

We additionally assume that the total travel time desired to be matched is      , and the 

following travel time matrix associated with the four locations is as: 
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Travel Time Matrix uwt  

 

  

  

0 1 2 3 4 

0 0 0.22 0.17 0.05 0.17 

1 0.22 0 0.18 0.22 0.13 

2 0.17 0.18 0 0.12 0.17 

3 0.05 0.22 0.12 0 0.10 

4 0.17 0.13 0.17 0.10 0 

 

 For this scenario, the algorithm generated as the optimal solution path home   grocery 

shopping at location 3 (6.05)   work at location 1 (8)   home (17.22) as depicted in the Figure 

4, and the total travel time for this pattern is 0.49 hours, yielding an error between desired and 

generated travel times of 0.01 (Figure 2-5). 
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Figure 2-5 Synthetic travel pattern generation results 

 

2.6 COMMENTS ON THE GENERAL COLUMN GENERATION PROCEDURE 

 Not only is finding the admissible path set,  , a combinatorial problem, but finding path 

combinations for each vehicle/household member is also an exponential combinatorial problem. 

Compared to the general pick-up and delivery problem with time windows, the total number of 

household members and the total number of vehicles are rather limited for the case of HAPP.  

Yet, it is still helpful to examine how the iterative procedure of column generation can be applied 

to LSP-HAPP.    There exist other algorithms and methodologies, but the structural property that 

each routing path forms a column, has resulted in column generation as a technique widely used 

in vehicle routing problems (Desrosiers et al., 1984) as well as PDPTW. 

 In the previous example, all possible paths are introduced to the master problem; however 

if there are a large number of paths created, computational issues can become critical even for 

the master problem.  Dumas et al. (1991) developed and tested iterative column generation 
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procedures for multiple vehicle PDPTW.  The same master and the sub-problem framework can 

be applied to LSP-HAPP with small adjustments.  

 The sub-problem finds one path column with the most negative reduced cost to add to the 

master problem, and then the master problem is solved to find the best combinations of paths.   

The sub-problem that finds this one column path with the smallest marginal cost can be written 

as: 

 

         ∑∑  ̅ 

   

   

   

 ∑∑              

      

             

subject to: (2-4) - (2-22) 

where,  

  ̅ : the marginal cost of trip from node   to node   

  : the dual variables associated with (b-1),     
  

   
: the dual variables associated with (b-2),       

 

 Then, we can associate dual variables,   , with each pre-selected activity node,    

       .  Similarly, dual variable of candidate locations of activity type   , can be associated 

as,       
      

 .  Lastly, dual variable values associated with departure home node, final 

home node, and return home nodes are all zeroes.             , and          .  To 

find dual values from the master problem, the master problem is relaxed to be non-integer. Set 
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partitioning problems, which the arc-path formulation of maximum multi-commodity problem 

forms, often achieve optimum at binary values even when relaxed.   

 For PDPTW (and therefore also for HAPP), there exists an efficient dynamic 

programming procedure that generates shortest paths with time windows, which means that this 

sub-problem does not have to be solved as a network formulation of a linear programming 

problem.  Also, for LSP-HAPP, the dynamic programming algorithms developed can be the 

solution method for the sub-problem.  At each iteration, the path cost of new reduced cost is 

simply updated to all paths generated from the dynamic programming algorithm.  Then, the 

master program is rerun with a new path column with the most negative reduced cost until there 

is no path that can deliver better objective function value. The iterative procedure is shown as the 

following diagram (Figure 2-6).  

 

 

Figure 2-6 Iterative procedure of column generation of LSP-HAPP 
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2.7 CONCLUSION AND DISCUSSION 

 In this chapter, the Location Selection Problem extending the Household Activity Pattern 

Problem (LSP-HAPP) is presented.  This is accomplished by relaxing the constraints that specify 

the condition that all nodes need to be visited.  In the LSP-HAPP formulation, only one of 

possible locations for each activity with no pre-selected location is traversed.  This formulation 

demonstrates how location choice for certain activities is made within the tours and scheduling 

of pre-selected activities and other activities with many candidate locations.   

 A dynamic programming algorithm, developed for PDPTW, is adapted for LSP-HAPP in 

order to deal with choice from among a sizable number of candidate locations within the HAPP 

modeling structure.  The algorithm generates labels of all possible paths and selects the best path 

in the final step.  The efficiency of the algorithm is determined by path elimination criteria that 

rule out illogical paths, and is shown to be efficient both in the literature on PDPs as well as in 

this application.  Additionally, by the properties of label generation that updates time and sojourn 

variables and the objective function values, we are able to accommodate some level of 

nonlinearities in time, sojourn and cost.  Lastly, an improvement is made to the algorithm in that 

arrival times are kept as functions, not parameters.  This is because HAPP cases often have travel 

disutility measures involving time variables but the previous algorithms assume that travel 

disutility (costs) and arrival times are independent. From the case study, we can conclude that the 

formulation provides reasonable results in location selection as well as activity start times, and 

the solution method is superior in terms of computation time.  
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 In developing the model, it is assumed that destination choice associated with non-

primary activities is an auxiliary choice made within the scheduling of other, primary activities, 

and other activities that can be completed by visiting one of many candidate sites.  It is arguable 

that LSP-HAPP ignores socio-economic influences, personal preference or habitual travel 

behaviors, but if such are measurable and quantifiable in the objective function, they can be 

easily reflected in the model.  Estimation results from choice models (Bhat et al., 1998; 

Fotheringham, 1988; Pozsgay and Bhat, 2001; Recker and Kostyniuk, 1978) might be helpful in 

determining those influences.  Once candidate factors are selected and measured, we can 

estimate the HAPP (Chow and Recker, 2011; Recker et al., 2008), determine their effects, and 

use them for LSP-HAPP models.  However, in order to fit real data for destination choices within 

the structure of LSP-HAPP, new estimation schemes need to be developed and evaluated. 

  Finally, an application of LSP-HAPP that generates synthetic patterns and links with 

spatial information in a single model for activity-based forecasting models is presented.  In 

transportation forecasting, microscopic travel patterns need to be aggregated and at an 

aggregated level, destination choice can be viewed as a category in spatial interaction models 

(Roy and Thill, 2004).  For this example to be integrated into regional transportation forecasting 

models, further investigation on how to aggregate it to meet certain data, such as traffic counts or 

OD tables, is needed.  
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CHAPTER 3 MEASURING THE INCONVENIENCE OF OPERATING AN 

ALTERNATIVE FUEL VEHICLE 

 

The objective of this research is to measure household-level inconvenience of operating 

an Alternative Fuel Vehicle (AFV). It is expected that households with one or more AFVs would 

experience some level of inconvenience, or increased travel disutility, caused by limited 

refueling opportunities— e.g., in the case of Hydrogen Fuel Cell Vehicles (HFCVs)—as well as 

by shorter ranges and longer charging times—e.g., in the case of Battery Electric Vehicles 

(BEVs). The results are derived from simulations replicating/changing actual vehicle usage 

patterns reported in the California Statewide Household Travel Survey. A key assumption is that 

people do not change their participation in activities as accomplished with their current 

conventional Internal Combustion Engine Vehicles (ICEVs), but may change travel decisions of 

how to perform those activities. More specifically, different sets of scenarios involving 

completion of respondents’ stated activities based on behavioral assumptions associated with 

refueling and recharging are tested. Results indicate that with limited fuel infrastructure, 

operating a HFCV costs about $19 - $39 worth of inconvenience for the day refueling is needed. 

For travelers with more than 60 miles, operating a BEV additionally imposes average of $47 - 

$50 with level 1 charging infrastructure, and $6 - $10 with level 2 charging infrastructure.   

 

3.1 BACKGROUND AND MOTIVATION 

Since the adoption in 1990 of the California Air Resources Board’s legislation of Low 

Emission Vehicle (LEV) and Zero Emission Vehicle (ZEV) mandates, there have been positive 

expectations of Alternative Fuel Vehicle (AFV) adoption. Recently, owing to concerns about 
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rising gasoline cost, increased technical feasibility of the ‘green’ AFVs, the success of the 

Hybrid Electric Vehicles (HEVs) in the automobile market, and the government’s efforts in 

reduction of Greenhouse Gas (GHG) emissions (such as California’s SB 32), achieving 

sustainable transportation system has never seemed more promising. Many recent assessments of 

energy use and emissions of AFVs have suggested positive outcomes. Major advantages of 

AFVs are their significant reductions in energy use and harmful emissions, considered to be two 

of the more significant automobile externalities (Parry et al., 2007). Obviously, the degree of 

these positive outcomes is dependent on the extent of AFV adoption. 

However, even with these positive expectations of further adoption of AFVs, the survival 

of AFVs in the automobile market is not guaranteed. It has been postulated that there is a 

“sustainable” AFV market penetration threshold below which AFVs will not survive in the 

market. This is the so-called “chicken-and-egg” problem that explains the vehicle demand 

(purchase)–fuel infrastructure interaction. Such interactions are tested in Stephan and Sullivan 

(2004a, 2004b) and Schwoon (2007), and the condition of fuel infrastructure provision that 

would determine the survival of AFVs explored. The concept of “infrastructure” can be 

expanded more broadly to include such “social” factors as: word of mouth, social exposure, 

marketing, scale and scope economics, learning from experience, R&D, and innovation spillover 

(Struben and Sterman, 2008). In addition to the demand-infrastructure relationship, there are 

various factors that would determine the survival and the extent of AFV adoption. There are 

various stakeholders such as government, auto manufacturers, collaborators, competition, and 

activist groups, as well as impediments including regulatory barriers, resources, infrastructure 

and vehicle characteristics, as stated by Byrne and Polonsky (2001). With respect to all of the 
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factors mentioned above, how effectively and economically we can overcome this “chicken-and-

egg” status and get to the threshold point and maximize social benefits is the key. 

From the consumer (driver) demand side, one of the more widely studied topics in the 

area of AFV demand is in the formulation of vehicle purchase choice models. Many studies have 

used stated preference survey data to identify factors influencing purchase of different vehicle 

fuel types via discrete choice models (Calfee, 1985; Bunch et al., 1993; Brownstone et al., 1996; 

Ewing and Sarigollu, 2000; Dagsvil et al., 2002). Factors found to influence the decision of AFV 

purchase include: vehicle price, operating cost, range, fuel availability, environmental benefit, 

and etc. There are well-known data unreliability issues associated with stated preference surveys, 

but with recent Hybrid Electric Vehicle (HEV) phenomenon, it can be expected that revealed 

preference data sets will become available for such models in the near future.  

In this chapter, we take a completely different approach to analyzing potential barriers of 

AFV adoption and operation. Instead of identifying the factors that influence vehicle purchase 

decisions, we examine the additional inconvenience caused by operating AFVs as opposed to 

ICEVs. This inconvenience (or negligibility or even non-existence of such inconvenience) may 

not be directly used for predicting future vehicle adoption rates since the vehicle purchase 

decision is influenced by perception of possible inconvenience rather than by real inconvenience. 

However, it is possible to evaluate future policy directions or the extent of subsidies for AFV 

operations by understanding the inconvenience of AFV operations. In this paper, we examine the 

full-day travel patterns associated with current ICE vehicle use and simulate the same activity 

participation using an AFV. We test two behavioral scenarios in this simulation: 1) keeping the 

currently reported travel pattern intact (but subject to identified limitations of the particular AFV 

being simulated), and 2) possibly rearranging the reported tours (again subject to the AFV 
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limitations) in order to minimize the total travel disutility. Using these two behavioral 

assumptions as the lower and the upper bounds, it is possible to get some quantified 

understanding of the magnitudes of inconvenience of owning and operating AFVs. 

The importance of using a full-day activity and travel data for AFV studies has been 

stressed in previous works, mainly regarding the uses of BEVs or PHEVs (Jing Dong, 2012; 

Axsen et al., 2011; Zhang et al. 2011; Kang and Recker, 2009; Gondor et al., 2007)—the 

principal reason being that they give temporal estimates of power limitations and electricity 

demand increases. Such an activity-based approach provides greater detail, including distribution 

along the time dimension, and therefore more accurate spatial and temporal energy profiles are 

derived. In this paper, we expand the use of full-day activity and travel data to also include 

connectivity of activities and trips; using this information, we demonstrate that it is possible to 

analyze potential changes in travel decisions imposed by different characteristics of vehicles.  

 

3.2 METHODOLOGY 

Our analysis is based on a very simple assumption: the revealed activity/travel pattern 

(i.e., that reported in the travel survey) executed with conventional ICEVs represents the 

“optimal” pattern for the household, subject only to constraints imposed by activity location, 

travel time, and activity availability, and is in no way constrained by such vehicle characteristics 

as either range or availability of refueling/recharging opportunities. In the simulations, we 

replace one of the ICEVs owned by the household with an AFV, with the stipulation that 

individuals do not change their participation in their reported daily activities with an ICEV—in 
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cases involving BEVs, certain range limitations and recharging rates are examined; in cases 

involving HFCVs, we insert a refueling trip, subject to certain densities of refueling stations7. 

Two sets of scenarios of AFV drivers’ behaviors are analyzed. The first scenario 

considered is based on the behavioral assumption that each individual’s (vehicle’s) daily 

activities and travel scheduling/sequencing maintains the reported sequence. In this scenario, for 

a given fixed sequence of activities and trips reported from the California Statewide Household 

Travel Survey, we perform the following simulations: 1) for HFCVs, one refueling trip is 

inserted, and 2) for BEVs, charging between trips (both while performing an activity and also 

waiting for the vehicle to have sufficient charge to extend the range to make it to the next 

destination) is performed. Then, for each simulation, the best travel pattern is selected for that 

vehicle. For HFCVs, the goal is to simply assess the inconvenience of one added refueling trip 

with limited refueling infrastructure since the range (up to 400 miles), and refueling times (10 

minutes) are similar to those of Internal Combustion Engine Vehicles (ICEVs).  However, for 

Battery Electric Vehicles (BEVs), the battery status is monitored, and multiple charging events 

are allowed in order to maintain the driving range consistent with the daily driving distances. 

Results of this scenario provide an upper bound of inconvenience of operating an AFV, 

representing the worst case.  

 Under a second behavioral assumption, each driver’s travel decisions are presumed to be 

made according to the behavior that would be optimal relative to minimizing their travel 

inconvenience, subject to completing their reported activities. The assumption is that drivers 

adapt to AFVs’ physical characteristics and refueling/recharging, and change their travel 

                                                 
7 We understand that a more justified sample here would be to restrict the analysis to the substitution of a hydrogen 
refueling activity only for those households that exhibited an ICEV refueling in their pattern. Our reasoning for 
using the entire sample is twofold: one practical—such restriction greatly reduces the sample size on which to 
perform the analysis; the other, more contextual—because of the ubiquitous nature of gasoline stations, refueling an 
ICEV likely causes only nominal (or no) adjustment to planned activities. 
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decisions to lower the inconvenience level since the refueling/recharging of AFVs generally 

increase the travel inconvenience. We assume that each individual tries to minimize the total 

inconvenience; this second scenario provides a lower bound of inconvenience—representing the 

best case.  

These optimal behavior results are obtained running the Household Activity Pattern 

Problem (HAPP) which was first proposed in Recker (1995). Among a number of applications, 

HAPP has been applied to assess the impacts of “environmentally-optimal” behavior of 

carpooling and trip chaining (Parimi and Recker, 1999). The HAPP problem is a set of full-day 

activity-based travel demand models with a formulation that captures the spatial-temporal 

constraints first proposed by Hagerstrand (1970). Since HAPP formalizes this fundamental travel 

decision-making scheme under spatial and temporal physical constraints, it is possible to 

synthesize “feasible” travel patterns not previously observed, or even possible, under current 

conditions that exist. This is a particular advantage for this study, or for any study focusing on a 

new type of vehicle with different characteristics (e.g., BEVs, HFCVs) for which neither travel 

nor vehicle usage data are not generally available. Although it is presumed that some changes in 

travel behavior would occur, there are no data supporting this assumption.  We note, however, 

that there has been some effort to examine refueling behaviors associated with limited refueling 

opportunities (Kelly and Kuly, 2012; Kitamura and Sperling, 1987). The basic structure of the 

HAPP model is given as:  
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  (3-1) 

 

where, using the same notation as (Recker, 1995): hZ  is the travel disutility associated with the 

travel/activity pattern adopted by household h ; hN  is the set of all abstract nodes associated with 

household h  (including those associated with refueling); 
,
,

v h

u wX is a binary decision variable equal 

to unity if vehicle v  of household h  travels from activity u  to activity  w, and zero otherwise; 

h
uT  is the time at which participation in activity u of household   begins; h

uY   is the total 

accumulation of either sojourns8 or time spent away from home on any tour, of household   on a 

particular tour immediately following completion of activity u; 
hV is the set of vehicles available 

to the household; and hA is a matrix of spatial, temporal constants as well as the tour length limit. 

For the details of Equation (1), readers are referred to Recker (1995). We modify the original 

HAPP for refueling (HAPPR) and for charging (HAPPC) for HFCVs and BEVs, respectively.  

(Details of the modifications can be found in the Appendices).  

For this study, we ignore direct costs and define the travel disutility as a linear 

combination of three measurements: 1) the total extent of the travel day, 2) the delay of return to 

home by trip chaining multiple out-of-home activities, and 3) the travel times, using respective 

weights , ,E T D

h h h   , as estimated in Chow and Recker (2012) on the same sample used in this 

study: 

                                                 
8 We have used the total accumulation of sojourns, and a maximum capacity of 4 (D = 4). 
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Although these weights are estimated individually in Chow and Recker (2012) and used to 

account for the heterogeneity of individual travelers, average weights from that study are used in 

this paper to quantify the travel disutility in an objective manner: 0.84, 0.74, 3.45E D T

h h h     . 

Also, in order to represent this travel disutility as monetary cost, we use a “value of time” of $30 

per hour for time spent on traveling (Brownstone and Small, 2005). Keeping the same ratio, this 

translates into the monetary rates of $7.3 /E

h hr  , $6.4 /D

h hr  , and $30 /T

h hr  . We define 

the “inconvenience” as the increased monetary value of travel disutility from the reported travel 

patterns caused by operating an AFV.  

 Travel pattern data are drawn from the California Statewide Travel Survey for 

households that reside in Orange County and Los Angeles County. Of five “early adoption” 

clusters identified (CaFCP, 2012), three are in these southern California counties. A total of 392 

travel patterns are selected as the sample that show exclusive use of each vehicle for each 

member. On average, these travel patterns had a total of 3.75 (minimum of 2 and maximum of 

12) trips and traveled for 1.07 hours (minimum of 0 and maximum of 6.31 hours) and 29.69 

miles (minimum of 0.03 and maximum of 278.38 miles). Travel disutility in monetary terms 

(based on the value of time assumed above) for the existing patterns was $163.84 (minimum of 

$3.33 and maximum of $514.00).9  

 

                                                 
9 We, of course, recognize that these values are fictitious, based on the premise that all measures of time expended 
are costs, and not benefits. Certainly, the ‘extent of the travel day’ includes time spent on activities, which would be 
beneficial. Our argument here is that, since we assume that the time spent on activities is constant among all 
scenarios, the differences in time costs between activity patterns for all scenarios represents only differences in 
travel inconvenience, i.e., the time benefits of activity participation cancel in comparisons.  
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3.3 HFCVs: INSERTION ANALYSIS HAPPR 

For HFCVs, we assume that (at least initially) refueling infrastructure is minimally 

provided. In fact, providing the initial refueling opportunities has been the biggest challenge for 

the adoption of HFCVs. The cost of building one hydrogen refueling station is estimated to be 

between $1and $5 million (CaFCP, 2009) in the early-adoption stage, and to support these 

vehicles’ mobility, multiple stations need to be in service.  Many studies have focused on the 

strategic provision of minimum refueling infrastructure (Kang and Recker, 2013b; Stephens-

Romero et al., 2010, 2011; Kuby et al., 2009; Nocholas and Ogden, 2006; Melaina, 2003). In 

practice, the California Fuel Cell Partnership (2012) adopted the strategy from Stephens-

Romero, et al. (2010, 2011), and proposed 68 hydrogen stations—36 in southern California 

(Figure 3-1) — for the “pre-commercial” period. In this paper, we focus on southern California 

and assume that the 36 of these 68 stations that are located in southern California are the only 

refueling opportunities of the pre-commercial period.   

In this analysis we insert one refueling trip per vehicle, under the assumption that the 

daily travel diaries reported in the survey represent a “typical” travel/activity day for the 

respondent. This is because the range of HFCVs is between 190 miles – 430 miles10, and daily 

travel distance is found to be less than 60 miles (Kang and Recker, 2009). Therefore, analysis 

based on fuel inventory is not appropriate for one-day data. The focus here is on the 

determination of inconvenience of limited refueling opportunities within empirical daily 

routines. However, we note that fuel inventory can be included, as shown in Kang and Recker 

(2013a), and also in Appendix 3-C.   

 

                                                 
10 Chevy Equinox FC (190 miles), Honda FCX Clarity (240 miles), Toyota FCHV-adv (Fuel Cell Hybrid, 431 miles) 
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Figure 3-1 Sample data and proposed 36 hydrogen refueling stations in Southern 

California 

 

The first analysis, based on inserting a refueling trip while keeping the reported travel 

pattern is as follows: for every possible insertion between trips, k , insert a trip to each refueling 

stations, r , and add the following trip: 1) select r with the least detour cost; 2) then add the 

remaining trips to complete the travel patterns;  and 3) for the 
rk  full-day travel patterns, for 

which a refueling trip is inserted, select the pattern among 
rk  with least delayed completion of 

travel day. This process is equivalent to selecting a station r  and an insertion k  with the smallest 

detour time of , , 1 , 1
h h h

k r r k k kt t t   . This process is presented in Kang et al. (2013) and also in 

Appendix 3-A. Here, we are only minimizing the time of detouring between activities but this 

search process can be categorized as a very simple case of dynamic programming for the Pickup 
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and Delivery Problem with Time Windows (PDPTW), or Vehicle Routing Problem (VRP), used 

in Desrosiers et al. (1986), Kang and Recker (2013a), where the path is predetermined. The 

search process of checking all of the possible routes and selecting the best is the core of the 

process.  

The second analysis is allowing the households to revise their travel decisions involving 

travel sequence, tour construction and departure time if it results in lowering their inconvenience. 

This is accomplished using HAPP-Refueling (HAPPR) which extends the Location Selection 

Problem for the Household Activity Pattern Problem (Kang and Recker, 2013a). A set of 

potential refueling activities (each with specific location common to all households), is given to 

the model, R

h

P , only one of which is to be completed. The model decides which refueling 

location to visit while simultaneously making decisions of travel sequences and departure times 

to perform a set of compulsory activities with predetermined locations, A

h

P . This model has 

been used for an individual refueling application in Kang and Recker (2013b). The model 

minimizes the total travel disutility as defined earlier and the full model is in Appendix 3-B. 

Time windows are generated in the same manner as Kang and Recker (2013b) which extends the 

method from Recker and Parimi (1999).  

An illustrative example of these procedures is shown in Figure 3-2. Household #2150230 

drawn from the sample has three out-of-home activities, trip-chained in a single tour. The 

travel/activity pattern has the monetary travel disutility value of $50.79 and travel of a total of 

0.69 hours (22.89 miles). The best refueling insertion for this household is from activity 1 to 

activity 2, and the detour time is 2150230 2150230 2150230
1, 23 23,2 1,2 0.13h h h

r rt t t  

    , where ,
h

u wt  refers to travel 

time from activity location u  to activity location w  of household h , resulting in a 0.3-hour delay 

in return-to-home (including the refueling time of 0.17 hours). Its monetary travel disutility is 
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$71.86, with travel of 0.83 hours (29.06 miles). When travel decision revisions are allowed, this 

household “optimally” performs activity 3 before participating in activity 2, resulting in travel 

time savings from utilizing the freeway connection between the activity 1 location and activity 3 

activity location. By changing the sequence of activities, the travel time saving is 0.03 hours. Its 

total monetary travel disutility of this revised pattern is $ 63.59, with travel time of 0.80 hours 

and distance of 26.6 miles. Adding flexibility in travel decisions shows how this driver can 

potentially adjust to reduce the inconvenience of $21.07 to $12.80; we note that a portion of this 

reduction (i.e., the travel time savings) could also be achieved with the ICEV under similar 

sequencing, but under our primary assumption, this would presumably also result in sub-optimal 

activity participation—whether or not the individual would be willing to accept a lower value of 

activity participation in order  to accommodate use of an AFV remain an open question, not 

addressed here. The lower and upper bound inconvenience caused by operating a HFCV is thus 

calculated as $12.08 and $21.07, respectively, for this driver. 
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(a) Reported travel pattern 

 
(b) Best Insertion of a refueling trip 

 
(c) Rescheduled with a refueling trip using HAPPR 

Figure 3-2 Travel patterns with a refueling trip 
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HAPP is a variation of the Vehicle Routing Problem (VRP) which is NP-hard and its 

computation is not always easily implemented. For HAPPR, more activity locations are put into 

the model, consequently placing additional computational burden. For solution, we follow the 

label generation method from Kang and Recker (2013a) which extends the work from 

Desrosiers, et al (1986) for HAPP with destination choice. The method generates all feasible 

sequences of activities (called “label”) with elimination rules to remove infeasible labels during 

the process. Due to the objective function of HAPP, that includes temporal variables, hT , as well 

as flow variables, hX , arrival and departure times are not decided during the process of label 

generation as in Desrosiers, et al. (1986). Instead, earliest and latest time windows are imposed 

during the process of label generation and each completed path label is put to a simple linear 

program (LP) to minimize cost associated with temporal variables, hT , as in Kang and Recker 

(2013a).  

There are 36 planned hydrogen refueling stations within the scope of this study, and even 

with the method from Kang and Recker (2013a), the computation is a challenge. To ease the 

computational burden, a set of non-inferior stations is selected for each travel pattern to be added 

to HAPPR. For each station, if there exists any other station with smaller travel times to/from all 

locations including out-of-home compulsory activities and home, that station is removed from 

the non-inferior set. The average size of non-inferior set is 3.08, with a minimum of 1 and 

maximum of 16. These numbers also represent the number of stations that are assumed to be 

considered by the driver for refueling throughout the day since all activity locations and potential 

paths throughout the day are considered when creating the non-inferior set.  

A total of 7 of 392 HAPPR problems reached “out-of-memory” error while generating 

labels. These HAPPR problems have an average of 6.1 out-of-home compulsory activities, while 
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those HAPPR problems that did not reach “out-of-memory” error have an average of 2.4 

activities. A total of 83 of 392 HAPPR problems were found to be infeasible with respect to the 

estimated time windows imposed—these are the additional, unobserved, constraints that are not 

part of the insertion analysis. For these travel patterns, patterns from the insertion analysis are 

used for both upper and lower bounds11. For 302 travel patterns, an average of 155 (minimum of 

3 and maximum of 3225) complete labels are put as LP with computation time of 153 seconds 

(minimum of 2 seconds and maximum of 2907). Most of the computation time is used to solve 

simple LPs, taking about 1 second per LP. 

For the sample, on average, when a refueling trip in inserted to minimize the deviation 

time while keeping the sequence of reported travel patterns, the travel disutility cost is $219.25 

(minimum of $17.99 and maximum of $600.13); this represents an additionally-imposed 

inconvenience of $39.04 (minimum of $8.85 and maximum of $208.48). This is an average of 

0.43% increase in the inconvenience, and increases of 0.15 hours in travel time (and, an increase 

of 8.12 miles in travel distance). 

When travel decisions are revised to minimize the total travel disutility cost through 

HAPPR, a total of 293 travel patterns out of 316 were rescheduled. On average, the travel 

disutility cost is $188.69 (minimum of $12.89 and maximum of $600.13). Additionally imposed 

inconvenience is $19.38 (minimum of -$75.66 and maximum of $208.48). The reason for 

negative inconvenience cost is that the rescheduling allowed a lower travel disutility cost than 

that of the originally-reported travel pattern. This is caused by using the average weights in the 
                                                 
11 It is noted that insertion analysis finds the temporal shift of reported patterns, but does not consider whether new 

patterns respect time windows. And therefore no insertion pattern is infeasible. While it does not account for 

temporal constraints, it provides estimates of potential inconvenience via delayed return home time, instead of 

reaching infeasibility.  
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disutility functions of the individual drivers—we assume that drivers have their own 

individually-perceived costs which they try to minimize and which resulted in the reported 

pattern. These “more” optimal results are caused by using average values; however they give 

insights of “average” or “norm” costs, showing an average of 0.11% increases in the travel 

disutility, and an average increase in travel times of 0.22 hours (and, an increase of 8.70 miles).  

The histogram of lower and upper bounds of inconvenience cost is in Figure 3-(a). In 

Figure 3-(b), the inconvenience costs are plotted between lower and upper bounds. The straight 

line represents 90 households with same lower and upper bounds.  
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(b) Lower vs Upper Bounds of Inconvenience 

Figure 3-3 Lower and upper bounds of inconvenience cost of operating a HFCV 

 

3.4 BEVs: DELAY ANALYSIS AND HAPPC 

The challenges of BEV adoption are rather different from the infrastructure provision 

problem of HFCVs. Although there has been some effort looking into the optimal provision of 

public charging stations as in the efforts associated with hydrogen refueling station provision, 

Level 1 and level 2 charging can be done at any electricity outlet. Here, the challenges are due to 

the vehicle’s limited range and relatively long charging times compared to ICEV or HFCV 

refueling, which can impose significant inconvenience for drivers if the daily driving range (or 

even any particular tour) is greater than the range of the battery. While most of daily driving is 

less than the fully charged BEV range of 60 – 250 miles, for a subset of days/vehicles for which 

travel is more than the given range, battery and charging status needs to be monitored.  
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To assess delays in the travel pattern and the minimum inconvenience caused by the 

delay of individuals’ charging we assume that charging can occur during all activities regardless 

of activity types, locations, or durations; i.e., we impose charging behavior of “charge 

everywhere whenever,” even for travelers driving less than the full range. We note, however, that 

charging behaviors are expected to be different for drivers, and charging behavior determines the 

charging profiles and therefore increased electricity demand (Zhang et al., 2011; Kang and 

Recker, 2009; Gondor et al, 2007).  

For the delay analysis in which travelers replicate their respective reported travel patterns 

(but now with a BEV), we define kE  as the electric battery inventory upon the arrival at the 

location of activity k, for every activity location. Then the battery status is updated as 

1 , 1max{ ( ), }k k k k k kE E r b a R e       where 
ka , 

kb are the arrival/departure time at kth
 activity, R  

is the battery capacity, r  is the charging rate, ks  is the reported duration of activity k, and , 1k ke   

is the battery consumption for traveling from k to k+1 (here, this is equivalent to travel distance, 

, 1k kd  ). The maximum possible charging amount responds to ( )k kb a , and the charged amount at 

the time of departure is the maximum of ( )k k kE r b a    and the capacity.  

Delay occurs when the battery status at the end of an activity is less than that needed to 

complete the length of a trip that follows. If this is the case, the driver waits for the vehicle to be 

charged to make that specific trip as:  
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The detailed algorithm for this computation is presented in Appendix 3-D. Compared to 

the HFCV insertion algorithm (Kang et al., 2013), the algorithm includes the additional feature 

of battery status minus a refueling trip insertion. For the analysis, we assume a vehicle capacity 

of 20 kWh, 60 miles12. As stated earlier, two charging options are tested since they require 

relatively little economic infrastructure investment compared to level 3 public fast charging, and 

are considered to be relatively easily accessible. Level 1 charging assumes 15-hour charging time 

for the full battery, equivalent charging rate of 4 miles per hour. For Level 2 charging, the 

corresponding time to full charge is 5.6 hours, which translates to a charging rate of 10.7 miles 

per hour (Schroeder and Traber, 2012). (In the analysis, battery capacity is kept in the unit of 

miles.) For presentation purposes, we assume Level 1/ Level 2 charging only and that Level 2 

charging is available everywhere.  

In the second analysis, changes in travel decisions regarding travel sequences, including 

departure times are allowed to change from the reported patterns. HAPP-Charging (HAPPC) is 

extended from the original HAPP (Recker, 1995) with battery status tracking as shown in 

Appendix 3-E. An additional decision variable set, hE , is introduced to keep track of the electric 

battery status. Charging behavior for HAPPC is assumed to follow the protocol that the battery 

status can be charged up to the capacity, or by the charging time (which may or may not include 

intentional waiting for charging following the completion of an activity).  

Figure 3-5 presents an illustrative example of the results of the procedures for household 

# 20113556 of the sample. This driver engaged in two activities, grouped together in a single 

tour; the current travel disutility cost of the pattern is $163.12, and total travel distance is 87.72 

miles, which is greater than the vehicle range of 60 miles. If this traveler keeps his/her current 
                                                 
12 This is a conservative measure of many EPA estimated driving ranges: Nissan Leaf (24Kw, 73 miles), Mitsubishi 

i MiEV (16kWh, 62 miles), Ford Focus (23kWh, 72 miles) 
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travel pattern with a BEV, return home is delayed by 2.79 hours, waiting for the vehicle to be 

charged to make the last trip home, assuming Level 1 charging during participating in activities 

and waiting time. For the BEV case, the travel disutility cost is $201.06 which is an increase of 

$37.94 over the reported travel pattern. Under the assumption that this driver would attempt to 

further lower his/her travel inconvenience cost within spatial and temporal constraints, the 

optimal travel pattern for this traveler is shown in Figure 3-5-(c). Instead of trip-chaining two 

activities, the vehicle is charged at home, lowering the cost associated with return home delay 

caused by trip chaining, ( )
h

h

T h h

h w n w

w

T T






 
P

 , which may also be a crude surrogate for waiting 

time or time outside home in this particular example. The extra waiting time for vehicle charging 

following participation in activity 2 is 0.12 hours. This pattern produces a travel disutility cost of 

$166.48, which is increased by only $3.36 over the original pattern completed with the ICEV.  
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(b) Delay analysis 

 

Home

Activity 1
7.23

Activity 2

9.50

8.59

12.05

12.86

Home

7.73

Home

Activity 1

7.23
(E=51.64)

Activity 2

9.50 (E=60)

8.59
(E=11.35)

12.05
(E=25.19)

15.83
(E=0)

Home

7.73
(E=53.64)

15.02
(E=37.08)

Activity 
Ends

Waiting 2.97 hrs
due to charging

Home

Activity 1

7.23
(E=51.64)

Activity 2

9.50 (E=60)

11.58
(E=59.83)

12.40
(E=22.75)

16.79
(E=0)

Home

7.73
(E=53.64)

15.86
(E=36.59)

7.95
(E=45.28)

15.98
(E=37.08)Waiting 0.12 hrs

due to charging



80 
 

(c) Rescheduled using HAPPC 

Figure 3-4 Travel patterns with level 1 charging between trips 

 

A total of 81 of the 392 travel patterns exhibited travel in excess of 60 miles, as shown in 

Figure 6. The average travel disutility cost for these patterns are $250.05 (minimum of $90.73 

and maximum of $514.00). Although drivers with travel distances of consistently more than 60 

miles may not be the most likely customers for BEVs at an early-adoption stage, they 

nonetheless present perhaps the most interesting case for evaluation in that in many cases it can 

be presumed that such drivers may have numerous days, other than the day of the survey, in 

which their travel does not exceed this threshold. (Travel patterns in which vehicles traveled 

fewer than 60 miles are not of interest in this analysis since they can operate without any 

inconvenience.)  

Using Level 1 charging, only 38 vehicles experience waiting time caused by charging; 43 

vehicles are able to keep their reported patterns just by charging during activities. By allowing 

schedule changes, 2 vehicles among these 43 vehicles are able to lower their inconvenience from 

$66 to $28 and from $38 to $3, respectively. On average, the lower and upper inconvenience 

costs are $47 and $50, respectively, for vehicles that traveled more than 60 miles (average total 

travel disutility costs of $297.33 and $300.42 for lower and upper bounds). If we account for 

travel patterns that traveled less than 60 miles (no delay occurred for these patterns and therefore 

inconvenience cost of $0), the average inconvenience cost is $10 for both the lower and upper 

bounds. It is noted that in 6 cases, the optimal travel patterns lowered the reported travel 

disutility.  

Using Level 2 charging, only 13 vehicles experience waiting time increases with an 

average of lower and upper values of $6.7 and $9.8 for 81 patterns (average total travel disutility 
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cost of $256.72 and $259.88 for lower and upper bounds) with more than 60 miles, and $2 (both 

the lower and upper) for all 392 patterns.   

Compared to the results of HFCVs, apparently there is little that individual drivers can do 

to ease the inconvenience of operating BEVs. Rather, this inconvenience is highly dictated by 

charging rates. By switching from Level 1 Charging to Level 2 Charging strategy, the average 

inconvenience cost, as well as the number of affected travel patterns, dropped significantly. If 

public charging options become available, it is expected to remove most of the inconvenience. 
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 (a) Histogram of Inconveniences: Level 1 Charging  (b) Lower vs Upper Bounds of Inconvenience: Level 1 Charging  

    

(c) Histogram of Inconveniences: Level 2 Charging  (d) Lower vs Upper Bounds of Inconvenience: Level 2 Charging 

Figure 3-6 Lower and upper bounds of inconvenience cost of operating a BEV 
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3.5 POLICY IMPLICATIONS 

Inconvenience as measured in this paper can be used to guide some useful policy 

implications. From the scenarios resulting the lower and upper bounds of two types of vehicles, 

it is found that the inconvenience cost of operating a HFCV is between $19 and $38 for the day 

of refueling. The inconvenience cost of operating a BEV is between $47 and $50 using level 1 

charging infrastructure, or between $6 and $10 using level 2 charging infrastructure for drivers 

with more than 60 miles of travel in a day. From these results, we find that it is more critical to 

deploy faster charging infrastructure for the promotion of BEVs than it is for simply making 

Level 1 outlets more commonly available. On the other hand, for the promotion of HFCVs, it 

may benefit from such rather “soft” strategies as awareness campaigns or providing drivers with 

information on the locations of refueling stations in an effort to mobilize the behavioral changes 

that will deliver the lower-bound, best, usage case.  

These results can also be used as guidelines for state and federal government subsidy 

policies since we have derived the inconvenience in units of monetary cost. Many state 

governments offer various subsidies on fuel cost, household charging infrastructure installment, 

vehicle purchase, and etc. NCSL (2013). It can be argued that the inconvenience cost needs to be 

additionally subsidized—at least during the early adoption stages—when the inconvenience is 

apparent as verified in this analysis. For example, inconvenience of limited refueling 

opportunities can be subsidized as $991 per year, assuming one refueling trip per week13 and the 

lower bound inconvenience cost of $19. Although there is travel disutility cost associated with 

ICEVs, we assume that it is zero since a refueling trip to a gasoline station typically does not 

require the preplanning as for an alternative fuel with limited refueling opportunities (Kitamura 

and Sperling, 1987; Kelly and Kuby, 2012). For BEVs, it may be argued that inconvenience cost 
                                                 
13 Daily driving range of 29.69 miles and 250 mile fuel range result in one refueling activity in 8.4 days. 
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of $3,431 needs to be subsidized if a vehicle is driven more than 60 miles for 20% of the time (as 

seen in the data—81/392 patterns exceeded the full-charge range capability of a BEV) when only 

the basic level 1 charging infrastructure is provided. With widespread installment of Level 2 

charging infrastructure, which is more economical than either Level 3 or fast charging 

(Schroeder and Traber, 2012), this subsidy can be reduced to $453.  

Using the analysis described in this paper, similar policy guidelines can also be extracted 

to other units such as travel times or travel distance to compensate for increases in such units.  

 

3.6 CONCLUSION 

In this chapter, we presented analyses to help quantify the monetary cost of the 

inconvenience of operating an HFCV and a BEV. Assuming that people would continue to 

participate in the same set of activities done with ICEV, additional conditions that are specific to 

each vehicle type are imposed. For HFCV, a refueling trip is inserted for all travel patterns to 

measure the inconvenience of limited refueling infrastructure. For BEVs, battery status is 

monitored along with consumption and charging actions. The inconvenience is defined as the 

difference between the monetary cost of travel disutility of the reported travel pattern and that of 

the travel pattern with an AFV.  

Two scenarios are tested representing the upper bound, the worst case and the lower 

bound, the best case. Although these two extreme scenarios may not likely be the only feasible 

travel patterns, they provide the bounds of inconvenience of operating AFVs for which quality 

data are currently unavailable due to their limited market penetration. The first scenario tries to 

keep the currently reported travel pattern; a refueling insertion that deviates the least is generated 

via deviation analysis for HFCVs, and delay is assumed to occur when charge status at the time 
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of completion of activities is not sufficient to make the next trip. The second scenario derives the 

“best” solution given the set of activities to perform and also the conditions of vehicle types. 

HAPPR and HAPPC are developed from the original HAPP to accommodate those conditions. 

Results suggest that for HFCVs, the inconvenience of refueling is $19 - $38, and for drivers with 

more than 60 miles would experience monetary inconvenience of average $47-$50 and $6 - $10 

with level 1 and level 2 charging infrastructure respectively.  These values provide insight to 

policy guidelines and strategies for AFV promotions.  

Calculating the lower bound is possible using the property of HAPP that it includes 

temporal and spatial constraints a traveler faces in completing various activities throughout the 

day. This property allows simulation of travel associated with previously unobserved 

circumstances when some level of behavioral change is expected. For AFV applications in this 

paper, it is possible to impose additional vehicle physical characteristics along with spatial and 

temporal constraints. Although not addressed in this paper, it is noted that with the incorporation 

of activity participation redress decisions (Gan and Recker, 2012), the results would be more 

encompassing when the circumstances dictate changes not only in the itinerary decisions but also 

in the activity participation decisions.  
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CHAPTER 4 LOCATION-HAPP PROBLEM 

 

A facility location strategy that considers individual vehicle’s scheduling and routing is 

presented. By coupling a location strategy of the Set Covering Problem and a routing and 

scheduling strategy of the Household Activity Pattern Problem, this problem falls into the 

category of Location Routing Problem. This problem also introduces a tour-based approach to 

facility location siting, with tour-construction capability within the model. There are multiple 

decision makers in this problem: the public sector as the service provider, and the collection of 

individual households that make their own routing decisions to perform a given set of out-of-

home activities together with a visit to a refueling location. A solution method that does not 

require the full information of the coverage matrix is developed to reduce the computational 

burden. When compared with the point-based Set Covering Problem, the results indicate that the 

minimum infrastructure requirement may be overestimated when vehicle (refueling demand) - 

infrastructure (refueling supply) interactions are excluded.  

In the dissertation, we specifically set the service as “hydrogen refueling” service and 

apply the model to site initial hydrogen stations as the hydrogen station siting itself is an area of 

great interest in recent years.  

 

4.1 BACKGROUND 

Hydrogen fuel cell vehicles (HFCVs) operate on an electric motor powered by a 

hydrogen fuel cell, producing zero emissions during vehicle operation. Their fuel energy 

efficiency is 40-60% while that of Internal Combustion Engine Vehicles (ICEVs) is around 

20%.Because a variety of energy sources can be used to produce the hydrogen vary, increased 
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adoption of HFCVs may lead to lower fossil energy dependency, and may ultimately draw more 

from renewable energy sources. The main advantage of HFCVs over Battery Electric Vehicles 

(BEVs) or Plug-in Hybrid Electric Vehicles (PHEVs) is their similarity to conventional ICEVs.  

Because the full driving range of HFCVs is competitive with ICEVs, as is the time required for 

refueling as low as 3 minutes, use of HFCVs will not require significant change to a driver’s 

previous behavior.    

Despite these advantages for success in the automobile market, HFCVs face a 

tremendous obstacle against widespread early adoption: an enormous investment is needed to 

provide the refueling infrastructure critical for HFCV operations.  According to California Fuel 

Cell Partnership (2009), one hydrogen refueling station is built at between $ 1.5 and 5.5 million. 

The so-called “chicken-and-egg” problem due to insufficient consumer demand needed to 

support the building of hydrogen refueling stations—versus not having in place enough stations 

to enable the consumers to purchase the HFCVs remains largely unsolved.  Therefore, It has 

been presumed that there likely will be a public sector role in making the initial investment likely 

needed to “jump start” the hydrogen infrastructure that could lead to practicality of HFCVs. 

Identifying the minimum requirement for initial siting of hydrogen stations, and maximizing the 

effect of the public investment likely has received increasing attention, albeit mainly on a general 

scale.   

Melaina (2003) examined two stage initial conditions for the US road system: stage 1 to 

support early adopters’ travel and stage 2 to support initial mass production; the minimum 

numbers of stations according to the criteria were estimated to be 4,500 for stage 1 and 17,700 

stations for stage 2. A number of studies have taken facility location siting approach for 

optimizing the initial investment of HFCVs refueling infrastructure.  Nicholas and Ogden (2006) 
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and Nicholas et al. (2004) applied the p-median problem (where p is the number of facilities to 

be located) to minimize the total travel times to the nearest refueling stations for a set of trips 

originating from each TAZ in the California metropolitan areas of Sacramento, San Francisco, 

Los Angeles and San Diego. From various scenarios, the density of stations to achieve certain 

levels of average driving time to nearest station and the population density are shown to have an 

inverse relationship. For example, the Los Angeles metropolitan area requires 6.8 % of current 

gasoline stations to provide hydrogen refueling service to achieve an average of 3 minutes 

driving time while the Sacramento metropolitan area requires 15.8%.  Stephens-Romero et al. 

(2010) and Stephens-Romero et al. (2011) applied a Set Covering Problem for a series of early 

adoption communities in Southern California targeted by auto-manufacturers, and found the 

percentages of current gas stations “refitted for hydrogen refueling” that would guarantee the 

tolerable travel time from all nodes in the areas. Wang and Lin (2009) took the same approach of 

Set Covering Problem with the set comprised of long distance (inter-city) path demands.  Kuby 

and Lim (2005) developed the Flow-Refueling Location Problem from the Flow Capturing 

Location Model (Hodgson, 1990) assuming that vehicles can be refueled between the origin and 

the destination subject to a range limit. Based on this model, a “clustering and bridging” strategy 

of hydrogen infrastructure investment plan was suggested (Kuby et al., 2009). A recent 

development allows deviation from the shortest path (Kim and Kuby, 2012) of a given OD pair. 

In addition to the four different types of models of refueling station locations cited here, there are 

a number of other models, many of which extending the Flow Capturing Location Model. 

MirHassani and Ebrazi (2012) categorized these existing models into three different groups: 

node-based, arc-based, and path-based. Readers are referred to their study for a detailed literature 

review of up-to-date hydrogen refueling station siting studies.  
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By the scope of applications, Flow Refueling Location Problem variations deal with long 

distance, inter-city trips Nicholas and Ogden (2006), Nicholas et al. (2004), Stephens-Romero et 

al. (2010), and Stephens-Romero et al. (2011) on metropolitan/city regions. Melaina (2003) 

considers both metropolitan areas and inter-city approaches.  

Here, we argue that accessibility to refueling is best measured within the context of the 

touring of trips in which drivers commonly insert such activities in planned tours with other 

routine activities as the need arises (typically with a frequency of once in several days, 

depending on driving behavior), for daily travels which are most likely to be traveling within the 

metropolitan area. From a travel behavior modeling perspective, we can visualize such 

accessibility measurements as in Figure 1, which illustrates vehicle-infrastructure interactions 

associated with different types of models, together with routing and scheduling interactions. 

Figure 4-1-(a) represents models using a single point, and Figure 4-1-(b) using a single trip 

(OD). Although the representation of demands in the latter case works well for long distance 

trips (Kuby et al., 2009; Kim and Kuby, 2012), about 70-80% of daily cumulative travel distance 

is less than 40 miles (Kang and Recker, 2009), which is not anywhere near the full range of 

HFCVs. In order to investigate daily travel comprised of a several tours of rather short distance 

trips, here we expand the temporal scope of the problem to a full day and address the “optimal” 

selection of the refueling activity (an individual decision based on the particular travel-activity 

pattern of that individual), together with the “optimal” siting of the refueling locations (a 

decision of the provider based on the collective decisions of the individuals in executing their 

travel-activity patterns) as in Figure 4-1-(c).    
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(a) Refueling trip starting from home ending at home 

 

(b) Refueling trip deviating from a given trip 
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(c) Refueling trip opportunities throughout the day 

Figure 4-1 Alternative HFCV usage patterns for a single day 

 

Specifically, based on the concept that refueling trips are mostly linked to other primary 

activities, we propose a facility location problem with full-day household scheduling and routing 

considerations. This is in line with Location-Routing Problems, where decisions of facility 

locations are influenced by possible vehicle routings. The model we propose takes the Set 

Covering Problem (with the “set” comprising household travel patterns with HFCVs) as a 

location strategy, and the Household Activity Pattern Problem as the scheduling and routing 

algorithm for performance of the households’ activity schemes. The proposed model solves the 

location problem simultaneously with multiple routing problems that include visitation to one of 

the available locations for refueling.  Due to the computational complexity of the problem, a 

solution algorithm specific to the model is also developed.  
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4.2 LOCATION-ROUTING PROBLEM AND LOCATION-HAPP PROBLEM 

The Location-Routing Problem (LRP) refers to locational problems that consider optimal 

locations of facilities from a vehicle routing perspective.  It evolved from the management point 

of view that the location of distribution centers and the routing of vehicles to visit all customers 

from each distribution center are closely interrelated. Location Routing Problems take possible 

routing patterns around these depots, and the costs associated with them, into account at the time 

of locating distribution centers.  Typically, an LRP formulation includes three parts: location, 

routing, and allocation.  During the last few decades, the Location-Routing Problem has been 

studied widely, resulting in various problem formulations and numerous methodological 

advances (Min et al., 1998; Nagy and Salhi, 2007).  The practical applications addressed by 

LRPs are not limited to the private sector. While most cases involve the shipping industry or 

decision making of private firms related to product/goods distribution or plant locations, several 

papers present applications, such as medicine (Or and Pierskalla, 1979; Chan et al, 2001), 

waste/hazardous materials (List et al., 1991), or, more generally, undesirable activities 

(Cappanera et al, 2004), of interest to the public sector.  

To categorize by structure, the standard LRP minimizes the overall cost, comprised of 

depot cost, and vehicle routing cost, which  includes tour planning by which a set of vehicles 

(one or more) traverses customer locations from/to the depots. Many previous works, both in the 

public sector as well as in the private sector, have this structure. Some of the non-standard 

structures include waste/hazardous materials applications (List et al., 1991) that often use 

multiple objective functions and replace tour problems with transportation problems, the many-

to-many LRP of the shipping industry that includes customers sending goods to others (Nagy and 
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Salhi, 1998), and vehicle routing allocation problem (Labbe et al., 2005). Although an important 

aspect for many public sector infrastructure problems (and even for the private sector), there has 

not been substantial effort with a focus on covering problems.   

Here, we formulate a Location–Household Activity Pattern Problem (Location-HAPP) 

that can be identified as an LRP in a broad sense. The goal of the problem is to help identify the 

minimum hydrogen refueling service infrastructure—which may be either fully provided or 

subsidized by the public sector—that is necessary to support the initial phases of HFCV growth, 

i.e., before a sustainable private sector market is generated. The Location-HAPP takes the set 

covering problem as the basis for the location part in the LRP and couples it to an activity-based 

modeling framework to estimate the basic coverage of refueling stations needed to support early 

deployment of HFCVs. Rather than defining basic coverage by a set covering problem based on 

the range of HFCVs, which varies from 190 to 430 miles, the term “basic coverage” here is 

defined in terms of “the maximum tolerable inconvenience” level to drivers for hydrogen 

refueling. A requirement likely to result in much denser packing than one that supports only 

maximum travel to a station. In addition, we stress that coverage in this context is not merely in 

terms of the direct distance (cost function) between home and the service location, but rather in 

terms of an additional distance within the tours of existing activities for any given day, i.e., 

detours.  

For the routing part of standard LRPs, the Traveling Salesman Problem or its variations 

are often used. For the hydrogen refueling stations case, however, a completely different routing 

structure needs to be used.  Assuming that the refueling activity of drivers tends to tour with 

other activities when visiting the refueling service location, the routing part of this problem 

needs to describe how each customer visits the service location within the confines of their daily 
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schedules and within the constraints imposed by the touring of other multiple activities. We use 

the Household Activity Pattern Problem (Recker, 1995) as a tool that optimizes personal and 

household travel behaviors within the context of a Vehicle Routing Problem (VRP). This routing 

structure of HAPP is the reason we emphasize the problem as an LRP rather than an extension 

from the point- or path-based models to a tour-based model. A tour comprised of trips is actually 

an output of a decision-making scheme; specifically, travel decisions determining the sequence 

of activities (trips), departure times, and locations for certain activity types – including refueling 

in the application considered in this problem. It may be argued that, in a conventional setting 

(e.g., ICEV gasoline refueling), a vehicle refueling activity either may or need not influence the 

sequence of trips and departure times; however, that it has significant impact on travel behavior 

when fuel availability is limited has been verified (Kitamura and Sperling, 1987).        

In contrast to LRPs, the Location-HAPP formulation features multiple decision makers in 

the problem: a public/private agency that makes facility location decisions, and a collection of 

individuals that make their own independent daily travel decisions but with consideration of the 

refueling locations common to all. Although this may well be formulated as a bi-level problem, 

we instead have treated it as a single problem by conveniently parameterizing the individual 

travel problem utilizing the structure of the set covering problem shown in the next section. 

Additional notable differences are: 1) we are locating service locations that need to be visited by 

multiple customers, 2) the “depots” are customers’ home locations in the routing problem, and 3) 

activity locations that are neither home (depot) nor service locations are visited as well.  The 

inclusion of locations that are not directly connected to the facilities that are being located allows 

each household’s location selection choice for the service type to be an output of interactions 

among other activities and schedules included in the analysis. These differences between the 
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classical LRP models and what we propose in this chapter are conceptually depicted in Figure 4-

2. 

       

(a) A single-stage Location-Routing Problem 

 

(b) A single-stage Location-HAPP problem 

Figure 4-2 Conceptual diagram of classical location-routing problem vs location-HAPP 

problem 
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Consider a set of H  households, 1 2{ , ,..., ,..., }h h hH H , in possession of one or more 

HFCVs, each of which on a particular day has an agenda, {1,2,..., }h

h AnA , comprised of h

An  

routine out-of-home activities with specific activity locations scheduled for completion, together 

with a need to refuel/service an HFCV at any one of a set of Rn  candidate locations, 

{1,2,..., }R RnA —for example, in the case of hydrogen refueling stations, candidate locations 

RA  might logically be current gasoline stations. The problem is to find the optimal locations of 

the hydrogen refueling stations both with respect to the supply side costs of the refueling stations 

(via the objective function of minimizing the cost) as well as with respect to the corresponding 

demand side optimal activity patterns of the households (via constraints that guarantee that a 

certain level of accessibility is ensured for everyone in the specified area).   

Define ,j RZ jA  as the binary locational decision variable of service type R , and 

,j RC jA  as the corresponding stationary cost associated with operating the service location j . 

We assume that each household’s , hH , travel decisions are made so as to minimize the travel 

disutility subject to temporal and spatial constraints specified by LSP-HAPP developed in 

chapter 2. LSP-HAPP extended the original model (Recker, 1995) to include the capability of 

selecting one location for one or more activity type(s) from many candidate locations. In the case 

of hydrogen refueling, we specify that one and only one candidate locations for service type R  

needs to be visited.  Then, each household has the following form of minimizing the total 

disutility: 
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,
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min Travel Disutility of Household ( , )
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  (4-1) 

 

where hO  is the travel disutility associated with the travel pattern adopted by household h , hN  

is the set of all nodes associated with household h , (including those associated with refueling), 
,
,

v h

u wX is a binary decision variable equal to unity if vehicle v  of household h   travels from 

activity u  to activity  w, and zero otherwise, h

uT  is the time at which participation in activity u of 

household   begins, h

uY  is the total accumulation of either sojourns14 or time spent away from 

home on any tour, of household   on a particular tour immediately following completion of 

activity u, hV is the set of vehicles available to the household (including one or more HFCVs), 

A

h

P is the set of activities with predetermined locations, R

h

P  is the set of potential refueling 

activities (each with specific location common to all households), only one of which is to be 

completed, and hA is a matrix of spatial, temporal constants as well as the tour length limit. (The 

details of Equation (4-1) are presented in the Appendix.). 

Unlike in most general Vehicle Routing Problem (VRP) applications in which the 

objective function is a well-defined quantity (e.g., minimize total cost), individual travel 

behavioral problems typically specify the goal of individual choice in terms of utility 

maximization principles—or, more commonly, in terms of minimizing “travel disutility.” The 

                                                 
14 We have used the total accumulation of sojourns, and a maximum capacity of 4 (D = 4). 
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term “travel disutility” is a personal measurement that is assumed to be comprised of many 

observable (e.g., travel time, waiting time, total time spent outside home, and etc.) and 

unobservable (e.g., preferences, routing choice, spontaneous activity participation decisions, and 

etc.) factors. Even for choices involving a single trip, it is not straightforward to define what each 

individual is trying to minimize, and this has been the subject of numerous studies on estimation 

of such random utility models. For choices involving the interactions among activity/travel 

decisions over the course of some time period, say a day, the estimation problem is vastly more 

complex (see, e.g., Recker, 2001). Recker et al. (2008) and Chow and Recker (2012) focused on 

identifying the weights of the objective function of the HAPP mathematical program formulation 

through estimation processes based on genetic algorithms and inverse optimization, respectively. 

It was found in Chow and Recker (2012) that individual household’s travel disutility can be 

adequately represented as the weighted linear combination of the total extent of the day, the 

travel times, and the delay of return home caused by trip chaining multiple out-of-home 

activities. In Recker et al. (2008), the objective function is defined as the linear combination of 

eight different similarity measurements. One big difference of HAPP objective function 

compared to VRPs is that it includes temporal element (determined from the time variables) 

additional to cost (determined by the spatial path variables) element, which makes the 

computation more difficult as seen in Chapter 2.  

In this study, however, in order to keep the computation simple, we assume that the 

individual travel disutility is measured solely by the cumulated travel time:   is specified by the 

simple linear relationship. 

 

,
, ,( )

h h h

h h v h

u w u w

v u w

f t X
  

   
V N N

X  (4-2) 
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where ,
h

u wt  denotes the travel time from the location of activity  u  to the location of activity w of 

household h . 

 The objective function, (4-1) is to minimize the sum of travel disutility of all households. 

However, because the objective functions and constraints are completely separable into each 

household problem since they do not share any of the variables, parameters or constraints across 

different households.     

 The refueling service provider’s objective is to minimize infrastructure setup costs.  

Adding this objective and constraints, the Covering Location-HAPP formulation is as follows.  

 

min
R

j j

j

Z C Z


 
A

  (4-3) 

Subject to  

,
, ,     , , ,v h

u j j h R hX Z u j v h    N A V H   (4-4) 

,
, , min ,      

h h h

h v h h

u w u w

v u w

t X O L h
  

     
V N N

H   (4-5) 

and conditions (4-A2) – (4-A20), hH , contained in the Appendix C. 

 

Where,  

min
hO :The travel disutility without visiting the service location of type R .  This value can be 

obtained either by solving (4-A1) subject to (4-A2), (4-A4) – (4-A20), independently from 

the proposed problem, or the current value from existing survey data can be used. 

L :  The maximum tolerable inconvenience, or the minimum level of service for service type R  
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The objective of the Location-HAPP to minimize the cost of providing the infrastructure 

available to everyone in the region, 
R

j j

j

C Z



A

.  Equations (4-4) constrain each visit to a service 

location can only be made at a location that provides refueling service.  These are the linking 

constraints between the master problem of locating service centers and the sub-problem of 

household activity and routing decisions.  Conditions (4-A2)-(4-A20), together with conditions 

(4-3) and (4-4) describe the scheduling and routing possibilities for each household’s activities15.  

In the original HAPP and typical location-routing problems, the objective minimizes routing cost 

as well, but for Location-HAPP, optimal routing is not necessarily of the model’s interest.  

Rather, identifying whether obtaining the feasible region as constrained by condition (4-5) is 

possible or not is the key.  Conditions (4-5) guarantee the minimum level of service to every 

vehicle/person or household in the analysis area.  In (4-5), the inconvenience is specified in 

terms of travel times, ,
h

u wt , but other travel disutility functions are equally substitutable.  

(4-A2)-(4-A20) constrain the daily movement of a personal vehicle to perform a given set 

of out-of-home activities at the given locations and a refueling stop at one of the refueling 

locations. The assumption is that the vehicle is replaced with an HFCV, but all individuals do not 

change their participation of the daily activities that they performed with an ICEV and a 

refueling trip per day. Because of the general unavailability of travel diaries over sufficient time 

periods to capture activities of the likely frequency of refueling (say, once in several days), we 

make certain assumptions regarding the refueling activity. In this analysis we insert one refueling 

trip per vehicle, under the assumption that the daily travel diaries reported in the survey represent 

a “typical” travel/activity day for the respondent. This, of course, in no way is meant to imply 

                                                 
15 When two or more activities – both refueling and compulsory – are physically at the same location, each activity 
is labeled separately. This case, the optimization problem is highly likely to output the back-to-back scheduling of 
these two activities since the travel time between these two activities is 0 or a very small nominal number.  
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that such a refueling trip/activity occurs on every day, but rather that on the day that the refueling 

does occur the activity schedule of the individual is that reported in the survey.  We note that, as 

an alternative synthetic activity/travel pattern generation may be utilized as in Xi et al. (2012), 

however this approach is not taken in this dissertation because of the unreliability of such 

generations in forecasting behavior (e.g., refueling at sparsely populated locations) for which 

there is no empirical base. The focus here is on the determination of inconvenience of limited 

refueling opportunities within empirical daily routines. However, we note that information on 

fuel inventory can be easily included in the base formulation described above without changing 

its basic structure simply by adding the additional set of constraints in Appendix 2.  

While the formulation, (4-3) – (4-5), (4-A2) – (4-A20), represents the development from 

the travel behavior modeling perspective, the structure of the set covering model can be utilized 

for the actual computation. By introducing the binary coverage parameters, hja , the Location-

HAPP can also be written as the standard covering problem formulation as follows:  

 

min
R

j j

j

Z C Z


 
A

  (4-3) 

s.t 

1,     
R

hj j

j A

a Z h H


     (4-6) 

Where 
1 if household  is within the tolerable service level from refueling location 

    
0 otherwisehj

h j
a


 
  

 

This alternative formulation specified by (4-3), (4-6) separates each household’s travel 

decision from each other as well as the master facility location problem. It is noted that the first 
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formulation, (4-3) – (4-5), (4-A2) – (4-A20), and the second formulation, (4-3), (4-6), produce 

the same results.  

 

Computationally, the Location-HAPP Problem differs from the Location-Routing 

Problems in the following ways. First, in the routing sub-problem, each activity point (except 

refueling locations) is already assigned to households while in the classical LRPs’ sub-problem 

each customer location can be visited by any vehicle from any depot.  Second, the facility node 

is not the depot, but an intermediate location that each vehicle needs to traverse once and only 

once. These properties make the computational complexity of Location-HAPP much less 

intensive since the numbers of nodes each vehicle visits are rather limited, and the decision of 

choosing one of the open service locations is much easier than the decision of allocation of all 

nodes to depots and vehicles.   

The computational burden of HAPP is usually not as great as that of general VRPs since 

there are empirical limits to the number of household members and the number of activities 

performed. However, time windows are not as constraining for some activities compared to 

PDPTW—especially the return home time windows—which leads to higher computational cost, 

as shown in Desrosiers et al. (1984) and  Desrochers et al. (1991). Moreover, efficient solution 

methods have not yet been developed for more complicated cases that include interactions 

among household members as in HAPP formulations 4 and 5 (Recker, 1995), or that include 

location selection as in Chapter 2. Possible solution methods include using heuristics (Chow and 

Liu, 2012) or employing route length estimators (Beardwood et al., 1959; Bruns et al., 2000) 

with bounded region of one’s mobility. 
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4.3 SOLUTION ALGORITHM 

With (4-6), each vehicle’s routing problem has been completely isolated from those of 

other vehicles, as well as from the master problem.  However, it requires RnH  number of 

HAPP problems in which each visits one of specified candidate locations that are consistent with 

the parameter matrix, hja .  This parameter matrix can be calculated from solving (4-A1)-(4-A20) 

with a condition that the household visits refueling location j . Finding this matrix becomes an 

issue in the Location-HAPP Problem—calculating RnH  sub problems that are NP-hard16 

makes the computational set-up for the master problem important. 

The Set Covering and Set Partitioning problems are well-known binary combinatorial 

problems, and there exist many algorithms to handle the associated computational complexity 

(Caprara et al., 2000; Christofides and Korman, 1975).  For the problem addressed here, the key 

is to have the least number of actual hja  parameters to be added in the master problem of the 

Location – HAPP Problem. Column Generation is a well-known technique that does not require 

all variables and parameters to be in the master problem, which greatly reduces the number of 

hja  parameters actually needed to solve the problem.  Instead, column generation solves a sub 

problem of finding a variable that would reduce the objective function value of the master 

problem.  This procedure is found to be efficient for some types of large combinatorial integer 

problems (Barnhart et al., 1998), including the Set Covering problem.  Moreover, the fact that 

initialization is not difficult and that linear relaxation of the master problem is stable makes 

column generation suitable for application to the problem considered here. 

                                                 
16 However, there are many methodologies to handle HAPP or its original form of PDPTW. 
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For standard column generation, the sub problem is another optimization problem that 

finds the most negative reduced cost. However, this sub problem requires the full information of 

the coverage matrix, which we wish to avoid. Instead, we deploy a new search procedure that 

finds an entering column with a negative reduced cost, not necessarily a minimum. This keeps 

the structure of column generation without requiring full knowledge of the coverage parameters. 

The overall iterative procedure we propose for the Location-HAPP is shown in Figure 3. 

After initialization, the master problem is solved.  It then passes the dual values to the sub-

problem that finds the next entering station location variable, j , with a negative reduced cost by 

our search algorithm. If no dual variable exists with negative cost, or no stations that are not in 

the master problem can deliver a negative dual cost, we conclude that it is optimual.  Otherwise, 

the entering variable and its coverage column are added to the master problem.  Details of 

initialization and the third box are changed from the standard procedure of Column Generation. 

h  is the dual value associated with the coverage constraint of household h . jC  is the marginal 

cost of locating a station at candidate node j . 
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Figure 4-3 Schematic of iterative procedure 

 

 For the initial setup of the problem, it is first assumed that each household is covered by 

the refueling station closest to the home location (home is always one of the nodes in the 

household’s pattern).  If that station is not within the tolerance level, the next closest station can 

be tested.  Although it is likely that the household is covered by a station closer to home location, 

this proximity rule may further be developed to be more sophisticated, and refined to be 

appropriate for routing considerations; for example, by the order of the distance to any of its 

activity nodes.  Once it is decided that station j  is able to cover household h , the remaining hja  

parameters for all households are assumed to be 0 for station j , regardless of whether or not 

station j  covers household h  within the tolerance level.  This is purely for the computational 

convenience that there is no practical advantage to constructing and verifying all parameters, and 

that the number of HAPPs to solve should be kept to the lowest possible.  This way, we reduce 
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the initialization cost of the problem.  For example, assume a case of 5 households and 3 

refueling candidate locations, with full coverage matrix shown in (M1): 

       1 2 3
1 1 1 0
2 1 0 1
3 1 0 0
4 0 1 1
5 1 1 0

c c c

HH

HH

HH

HH

HH

 
 
 
 
 
 
  

         (M1) 

If it is the case that the closest refueling candidate station to households 1, 2, and 3 is 

station candidate 1, and the closest refueling candidate station to households 4 and 5 is station 

candidate 2—all within the tolerance level—then the initial parameter matrix is:  

        1 2
1 1 0
2 1 0
3 1 0
4 0 1
5 0 1

c c

HH

HH

HH

HH

HH

 
 
 
 
 
 
  

          (M2) 

 

Thus, we do not check for the coverage parameters, 4, 1 5, 1 1, 2 2, 2 3, 2, , , ,HH c HH c HH c HH c HH ca a a a a , and 

eliminate the need of solving those 5 HAPPs.   

We also note, however, that degeneracy occurs for cases in which all actual solutions are 

a subset of the initial (synthetic) solution and the real coverage of those stations is superior to 

others not in the initial master problem.  In such cases, at any iteration stations already in the 

master problem cannot be the entering variable, and therefore the initial synthetic coverage 

columns cannot be replaced with real ones, which are superior to the synthetic ones.  For 
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example, assume that the algorithm initialized using (M2), and the original full coverage matrix 

would have been (M3): 

       1 2 3
1 1 1 0
2 1 0 1
3 1 0 0
4 1 1 1
5 1 1 0

c c c

HH

HH

HH

HH

HH

 
 
 
 
 
 
  

         (M3) 

The optimal solution is building one station at site c1, which covers all households.  

Because our initial coverage matrix is (M2), c3 is the only column to be considered for bringing 

into the problem.  However, the master problem would decide that c1, c2 are the solution, which 

will not allow a chance for real columns of those stations to be entered.  This issue can be 

avoided simply by constructing the actual coverage matrix at initialization, but this would require 

calculating  number of initial columnsH  different HAPP models to be solved.   

Following the standard Column Generation procedure, the sub-problem finds one 

station’s coverage column with the most negative reduced cost to be added to the master 

problem, and then the master problem is solved to find the best combinations of stations to be 

built.  As mentioned earlier, finding a station with the most negative reduced cost, full 

knowledge of the coverage matrix, A  is needed.  On the other hand, the sub-problem does not 

necessarily have to be an optimization problem since it is going to lower the objective function 

value in the master problem as long as the entering variable has a negative reduced cost.  This 

may increase the number of iterations since we are not looking for the best variable, but it 

reduces the search cost of the column which presents the greatest difficulty in this particular 

problem.  Therefore, the sub-problem becomes: 
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         s.t. 0j j hj h

h

C C a


   
H

     (4-a) 

Where,  

jC : the marginal cost of locating a station at candidate node j  

h : the dual variables associated with the coverage constraint of household h , hH  

 

 The search method employed here to find station j  with a reduced cost is as follows. 

First, there is no need to search for coverage parameters for constraints with zero dual values, 

0h  ; only those of positive dual values are generated by solving HAPP.  Therefore, we only 

go over households with positive dual values, and update the cumulative term, 
hj h

h

a   as the 

search progresses. And, as soon as 
hj h j

h

a C   has been established, there is no need to keep 

searching since hj ha 
 
is non-negative for any household constraint, so it can be concluded that 

j  would be included in the master problem.  Once it has been decided that j  is to be the 

entering variable, all column parameters of ja  need to be generated.  The most efficient order of 

searching is to check the parameters from the highest h  to the lowest, for instance, using a 

priority queue data structure.  In the example provided in the next section, a uniform unit cost of 

1 is used; so, all dual variable values are either 1 or 0.  If 
hj h j

h

a C  , even after all household 

coverage constraints have positive dual values, that variable is discarded and a new station is 

tested.   

 When choosing a station j  to test, one random household with positive dual values is 

selected.  Then, a priority queue that stores all candidate locations in increasing order of the 
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direct distance to that household is created.  (We note, however, that this procedure can be 

developed to be more sophisticated; for example, by the order of the distance to any of activity 

nodes for all households with positive dual values.)   

  

With the following notations defined for each iteration, i , this search method can be 

summarized as the following:  

 

iZ : the set of stations that are in the solution from the master problem of previous iteration.  

This is the subset of RA  

iM : the set of households with coverage constraints of dual values from previous iteration that 

are greater than 0. 
i

jI : the subset of iM  of which the coverage parameter hja  has been checked for the 

possibility of station j  being the next variable.  If i iI M , all components of iM  have been 

checked. 
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If i M ∅, it is at optimum. 

Else, 

For all ijZ           (loop 1) 

For all ihM ,        (loop 2) 

If, 1hja  , update 
i i

j j

hj h hj h hj h

h h

a a a  
 

     
I I

, i i

j j h I I   

If 
i

j

hj h j

h

a C


 
I

 , select j as the entering variable and break both (loop 1) and (loop 2) 

Else if i i

jM I , select a different ihM , 
i

jhI and continue (loop 2)  

Else, Select a different ijZ  and initiate a new (loop 2) 

If 
i i

j

hj h j

h

a C
 

 
I M

  for all ijZ , it is at optimum. 

 

Algorithm 4-1 The sub-problem of finding an entering variable with a negative reduced 

cost 

 

4.4 CASE STUDY 

Southern California is anticipated to be one of the early adoption areas of HFCVs.  It is 

the location of major auto manufacturers’ US headquarters, and three target areas (Torrance, 

Santa Monica, Irvine and Newport Beach) in Southern California have been identified as early 

adoption communities (CaFCP, 2009; CaFCP, 2010).  As of 2011, sixteen refueling stations are 

under operation and 40 more stations are planned, and the number of HFCVs deployed in this 

area is expected to be in the thousands by 2013, and tens of thousands by 2016 (CaFCP, 2012).   

In the case study presented here, we focus on Irvine and Newport Beach as the study area 

(Figure 4-4). In the example, we presume that the candidate sites for future hydrogen refueling 

stations are drawn only from existing gasoline stations—there currently are 34 gasoline stations 
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in the area.  Existing or planned hydrogen stations are not considered in this analysis17.  Further, 

when there are two or more stations at an intersection, they are considered as one for simplicity. 

These existing gasoline stations are the only candidate sites.  

The analysis is based on a subset of household samples from the study region drawn from 

the California Statewide Household Travel Survey (CalTrans, 2001).  The Travel Survey 

contains the household daily travel activities and their full location data.  Each trip contains 

information on departure and arrival times, trip/activity durations, and geo-coded information on 

longitude/latitude of the activity locations.   From the full set of 500 Orange County households 

in the dataset, we identified a suitable subset of 134 full-day vehicle patterns (households) with 

the requisite complete location information and vehicle types that can be substituted by HFCVs, 

excluding motorcycles, bicycles, etc. Based on these data, person-based trip chains and activity 

ordering are converted to equivalent vehicle-based chains in order to simulate vehicle routing 

patterns.  We assume that this sample is representative of travel behavior in the county. 

  

For each vehicle/household, a travel time matrix is generated associated with all possible 

combinations of ,
,

v h

u wX  for the out-of-home activities performed.  In the formulation, for every 

household, the first 34 nodes, 1 – 34, are specified as candidate locations for refueling—

therefore universal for the entire sample—while nodes labeled 35 and greater are specified as the 

nodes unique to each individual household’s out-of-home activities that were reported as 

performed.  All-to-all travel time matrices are generated by calling MapQuest API.  

Our principal behavioral assumption is that, with replacement of households’ current 

conventional vehicles by HFCVs, each new vehicle will continue to perform activities that were 

                                                 
17 Two current hydrogen refueling stations in the area are: National Fuel Cell Research Center at University of 
California, Irvine and Shell (Newport Beach, CA) which is annexed to a gasoline station 
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reported in the survey, plus an additional refueling activity at one of the candidate locations.  

This vehicle usage model is equivalent to Case 1 in Recker (1995).  For the construction of time 

windows, the method in Recker and Parimi (1999) is adopted.  Work, school, meals between two 

work activities, and pick-up/drop-off activity types are constrained to have exact times as 

reported. The open/close windows of other activity types are specified as the 

minimum/maximum of respondent’s reported activity start/end time and sample mean activity 

start/end time for the activity.  For each individual, the vehicle/household start time window is 

the minimum of respondent’s reported travel start time for his/her initial activity and mean 

reported travel start time for initial activity for the sample.  In general, latest return to home of an 

individual vehicle/household is taken as the max of respondents’ reported return-to-home time 

for his/her final activity and mean reported travel return-to-home time for final activity for the 

sample.  However, when the sequence of activities performed by a household comprises only 

activities with exact start/end times, or in cases where the travel time generated from MapQuest 

is larger than the reported travel time, the last return home is relaxed since even the basic HAPP 

of reported activities becomes infeasible, due to an additional refueling trip will also need to be 

inserted somewhere at some time.   
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Figure 4-4 Study area: Irvine and Newport Beach in California with sample households 

 

The objective function for each household is assumed to be minimizing the total travel time 

throughout the day; i.e.,  

 

,
, ,min ;

h h h

h v h

h u w u w

u N w N v V

O t X h H
  

       (4-7) 

 

When checking for hja , the comparison measurement of min
hO  is generated from HAPP without 

a visit to one of the refueling stations but with visits to all activities given by the survey 

responses for that household.  When solving a HAPP, the exact dynamic program developed by 

Desrosiers et al. (1986) is used; however, direct calculation using an optimization tool, or any 
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other suitable algorithm (e.g., branch and bound) would work as well (Cordeau and Laporte, 

2003). Households in the data set not covered by any of the refueling candidate locations within 

the given tolerance, or households that would require violation of given constraints to visit any of 

the candidate locations, are omitted.  

 

 The detailed results for the base case involving 122 households with a refueling activity 

subject to the additional travel time tolerance of 0.2L hr  are shown in Table 4-1.  Optimality is 

reached after 7 iterations, solving 966 out of 4,148 HAPP cases, to find the hja  parameters 

needed to perform the proposed search algorithm.  

 

Table 4-1 Results of location-HAPP problem (L=0.2 hour) 

 
Initialization 

0i   
1i   2i   3i   4i   5i   6i   7i   

Columns in 
MP 

10 11 9 8 5 5 4 NA 

Optimal 
Solution 

10 8 7 4 4 3 3 NA 

# of HAPPs 
solved 18 

122 2 2 2 6 4 3 93 

# 
constraints 

with (-) 
dual 

NA 9 9 7 6 3 2 2 

  

                                                 
18 This is counting only HAPPs solved to find the next entering variable, or to find that it is at 
optimum.  Once an entering variable is found, 122 additional HAPPs are solved to construct the 
parameter vector, ja  of the entering parameter column at each iteration.  
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 Four different travel time tolerance level cases are tested and compared in Table 4-2.  

Cases 2, 3 and 4 are run using the proposed initialization method.  For Case 1, one of the initial 

columns is found to be highly superior, causing degeneracy, and therefore it is necessary to 

construct the full initial columns.  This increases the number of HAPP models that needed to be 

solved to 35% of total HAPPs.  The best case we tested was case 4, for which only 7% of total 

number of possible HAPP computations were required. 

 The results of same levels of accessibility using the point-based Set Covering Problem 

are compared in Table 4-2. Here, the “Set” refers to “home” locations—that guarantees the same 

levels of access based on the households’ home locations.  The coverage matrices are 

significantly sparser for point-based Set Covering Problem, leading to a larger number of stations 

for a particular level of access. It is found that we cannot guarantee the maximum accessibility 

times of 0.4, 0.3 hour for all households’ home locations, and it requires 5 and 2 stations to 

guarantee the maximum accessibility times of 0.2 and 0.15 hour. When the concept of 

accessibility is expanded out to tours, it is found that we can guarantee the maximum deviation 

times of 0.4, 0.3, 0.2, 0.15 hour with 5, 4, 3, 1 stations, respectively. From the results, it is argued 

that the point-based Set Covering Problem may significantly overestimate the number of stations 

required. Considering the cost of building and operating a station, it can be concluded that by 

including routing and scheduling considerations as a part of “accessibility,” the overall cost of 

infrastructure supply can be lowered significantly as seen from the results of the Location-HAPP 

model.   

 

Table 4-2 Results of Location-HAPP problem vs Point-Based Set Covering Problem 

 Tolerance level Case 1  Case 2  Case 3  Case 4  
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(Guaranteed 
maximum deviation 

time of  L ) 

( 0.15L hr ) ( 0.2L hr ) ( 0.3L hr ) ( 0.4L hr ) 

 # Households in 
Analysis 

116 122 124 124 

LRP – HAPP 

Optimal Solution 5 4 3 1 
% of coverage of 

the full parameter 
matrix19, A  

1,498 / 3,944 
(37.98 %) 

2,048/4,148 
(49.37 %) 

2,888/4,216 
(68.50 %) 

3,108/4,216 
(74.93 %) 

# HAPPs solved20 
1,38521 / 

3,944 
(35.11 %) 

966 / 4,148 
(22.29 %) 

1,077 / 
4,148 

(25.96 %) 

285 / 4,148 
(6.87 %) 

Point-based 
Set Covering 

Problem  

Optimal Solution Infeasible
 

Infeasible
 

5 2 
% of coverage of 

the full parameter 
matrix22, A  

96 / 3,944 
(2.43 %) 

264 / 4,148 
(6.36 %) 

856 / 4,216 
(20.30 %) 

1768 / 4,216 
(41.94 %) 

 

Since we used uniform station construction cost, there are a number of different 

combinations of locations that satisfy the optimality conditions for this particular example. The 

results for one set of optimal refueling locations are shown in Figure 4-5 for four different 

additional travel time tolerances, together with a comparison to the solution to the point-based 

Set Covering Problem (for the case of 0.3 hr and 0.4 hr additional travel time) for this 

application. The results indicate that, based on the reported daily activity agendas (assumed 

repetitive) of households in the study area, Location-HAPP identified that full coverage within a 

                                                 
19 This is calculated by solving all HAPPs for parameters hja  
20  This includes the construction of each 1 2[ , ,..., ,..., ]T

j j j hj j
a a a a a H  column vector at each 

iteration: total of H  number of HAPPs.  This also include thes number of HAPPs that are solved 
during the search method in order to decide whether column j  can be the next entering column. 
Therefore,  some of hja ’s are run twice for both the search and the construction.  
21 Due to degeneracy, all initial column parameters hja  are checked.   
22 This is based on direct distance from home.  Accounting for a round trip, tolerance/2 is used 
measure the coverage. 
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0.4 hr additional travel time window could be achieved with a single refueling station—

tolerances of 0.15 hr, 0.2 hr, and 0.3 hr could be achieved with 2, 3 and 5 stations, respectively. 

In contrast, ignoring these patterns of travel and using a traditional “point-based” Set Covering 

Model based only on the home locations of the residents, full coverage within a 0.4 hr travel time 

required 2 refueling stations and 0.3 hr required 5 refueling stations. There are no feasible 

solutions of the traditional point-based Set Covering Problem for tolerances of 0.15 hr and 0.2 hr. 

These results are consistent with previous studies comparing LRP results to results of more static 

approaches. In Salhi and Rand (1989), Nagy and Salhi (1996), Balakrishnan et al. (1987), the 

results of LRPs are compared to a location-first routing-second approach. The findings are 

consistent with previous works (Salhi and Rand, 1989; Nagy and Salhi, 1996) in that ignoring 

the routing structure for location strategy results in higher cost.  

Another observation is that the Location-HAPP favors areas of high volumes of activities 

(such as central business district or shopping centers) whereas the point-based Set Covering 

Model favors the residential areas. By definition, we only include home locations to be covered 

in the point-based Set Covering Model whereas in the Location-HAPP, we expand the concept of 

“set” to the path connecting activity locations, giving the flexibility to cover any trip to any 

activity location. If there exist certain activity/travel patterns induced by land use, it is reasonable 

that the master problem in the Location –HAPP would favor a high activity volume area in a 

collective sense.  
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(a) Case 1 ( 0.15L hr )      (b) Case 2 ( 0.2L hr ) 

      

       (c) Case 3 ( 0.3L hr )    (d) Point-based SCP: Case 3 ( 0.3L hr ) 
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(e) Case 4 ( 0.4L hr )    (f) Point-based SCP: Case 4 ( 0.4L hr )

 

Figure 4-5 Location-HAPP and Point-Based Set Covering Problem results 

 

We can also conceptualize the accessibility in the Location-HAPP with an example. 

Because the point-based Set Covering Model focuses only on the accessibility of given points 

(for our case, home locations), the accessibility range is limited to the home location, as seen in 

Figure 6a, for the case of household #253229 in the Travel Survey, under the presumption that 

refueling will take place at the station located within the shaded area.  In the Location-HAPP 

model, accessibility is not limited to home but includes accessibility along the path over the 

space throughout the day, expanding the area of coverage, albeit subject to the temporal 

constraints imposed by the available time windows for completion of each household’s activity 

agenda.  This also presumes grouping/touring refueling with other compulsory activities is an 

acceptable alternative.  Although there appears to be evidence that drivers’ tend to prefer to 

refuel “near home” (Kitamura and Sperling, 1987), and some studies assume this preference 
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(Nicholas and Ogden, 2006; Nicholas et al., 2004), refueling activity between origins and 

destinations have been observed at the early adoption stage where there are limited refueling 

opportunities (Kelly and Kuby, 2012).  For household #253229, the reported travel pattern is that 

shown in Figure 4-6b.  The optimal (minimization of travel time) travel/activity pattern for this 

particular household obtained from HAPP is shown in Figure 4-6b. Since one of the compulsory 

activities is near one of the refueling candidate locations, this household completes the refueling 

activity on the way to “personal business” activity at the refueling station that is located close to 

that “personal business” activity location (Figure 4-6c), rather than at the station closest to home. 

Were the reported activity agenda for this household on the day of the survey repetitive 

(representative of this particular household’s daily routine), the service provider’s need to locate 

a facility near its home location could been substituted by a refueling location that would have 

been not considered as accessible by the point-based Set Covering Model constraints.  

 

 

(a) Accessibility of HH 2053229 within 0.4 hr Using Direct Distance Measurement 

 

HH2053229
Home
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(b) Reported Travel Pattern                           (c) Travel Pattern with an added Refueling Trip 

Figure 4-6 Refueling pattern of Household 2053229 (Case 4 = 0.4 hr) 

 

4.5 CONCLUSION AND FUTURE RESEARCH 

In this chapter, we developed a facility location problem with full-day scheduling and 

routing considerations.  The model is a type of Location-Routing Problem (LRP), where the 

decisions of facility location models are influenced by possible vehicle routings.  The model we 

propose takes the classic coverage model as a location strategy, and the Household Activity 

Pattern Problem (HAPP) as the scheduling and routing tool.  The Location-HAPP includes 

multiple decision makers: the public/private sector provides the refueling service, and each 

individual makes his/her own routing decisions, including a visit to one of the service locations. 

It is a LRP that addresses public/private sector’s refueling service provision using a non-standard 

structure that uses an exact solution method via decomposition. Following the LRP categories 

from Nagy and Salhi (2007), this problem has: (a) hierarchical structure, (b) deterministic data 

input, (c) static period planning, (d) exact solution method, (e) objective function of cost 

minimization where cost is facility installation cost, (f) discrete solution space, (g) multiple 

Personal 
Business
(0.5 hr)

Exercise
(1.5 hrs)

Personal 
Business
(0.5 hr)

Exercise
(1.5 hrs)

Refuel
(0.17 hr)
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depots (h) heterogeneous vehicles, and (i) route structure of HAPP.  It also is an extension from 

node-based and path-based models to a tour-based model—to be exact, a special case of a tour-

based model in a way that allows changes in the sequence within the specified time windows.    

Although here we apply the Location-HAPP Problem to refueling station siting, the 

models can be extended to other applications that require coverage and in which customers 

(drivers) can travel to within a tour of other activities (e.g., access to such basic public services 

as post office, public health care). Alternatively, for services that are visited directly to demand 

points from supply points, or that are considered to be primary (e.g., emergency service, 

education service), the point-based Set Covering Model can be sufficiently effective.  

The proposed formulation isolates each vehicle’s routing problem from those of other 

vehicles as well as the master set covering problem.  However, its coverage matrix requires the 

solving of RH n  (number of households x number of candidate locations) HAPPs.  A modified 

column generation that finds a column with a negative reduced price, but not necessarily the 

most negative, is developed.  This way, only partial knowledge of the full coverage matrix is 

needed.  A search method is developed for finding such columns in order to reduce the number of 

HAPPs to be solved.  The performance of the methodology is described by the percentage of 

HAPPs that are actually solved to the total number of HAPPs in the full coverage matrix.   

Although general to the location problem of any service facility that can be considered as 

ancillary to the spatio-temporal movement of households as they complete their daily routines, 

the specific application developed here relates to the incubation of the minimum refueling 

infrastructure that might be required to support early adoption of HFCVs. The proposed model 

and methodology are applied to a case study of HFCV refueling stations in Irvine/Newport 

Beach community—one of four early hydrogen vehicle adoption communities targeted by auto 
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manufacturers—subject to three different values of accessibility measured in terms of tolerances 

to added travel time.  Under optimal conditions, refueling trips are found to be mostly toured 

with other activities, and this traveling behavior is captured by HAPP.  We have tested four 

different levels of service provisions, and the suggested method shows that only 6% – 35% of 

sub problem are need to be solved, compared to direct calculation. More importantly, from the 

results and the coverage matrices, there is evidence that station location approaches that do not 

allow such vehicle-infrastructure interactions as well as routing and scheduling interactions can 

result in over-estimation of the minimum number of facilities.    

This model makes a simplification of imposing one refueling trip per day per a vehicle 

mainly due to limitations imposed by the scarcity of travel diary data covering more than a single 

day. On the other hand, we are trying to define the individual inconvenience level with respect to 

spatial, temporal constraints generated by participating in daily compulsory activities. In that 

context, it serves the goal to insert one additional refueling trip to be performed by every 

individual. More generally, however, data limitation has been one of the major issues for 

conducting activity-based analyses. This may be overcome using simulations to synthesize 

activity/travel patterns – possibly for multi-days – as they are developed more fully. For 

refueling studies, it will certainly help in aggregating results to a whole population, as well as 

multi-day analysis of the refueling needs based on fuel inventory. This way, queuing (waiting 

time) at the refueling service locations can be evaluated. Another shortcoming relative to travel 

behavior is that we have ignored the intra-household interactions of travel decisions. It is 

expected that if an AFV is one of the vehicle sets in a household, some of the activities may be 

shifted to other vehicles depending on the length, property, and exchangeability of activities; 

such an extension could logically be based on HAPP cases 2 – 5.   
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In addition to the improvements to the activity-based analyses mentioned above, this 

work can further be extended to more sophisticated facility location strategies. For example, the 

time frame can be extended to multi-period as in Laporte and Dejax (1989) which would 

ostensibly yield more realistic investment plans since the hydrogen infrastructure is likely to be 

implemented over a long period of time (CaFCP, 2009, 2010, 2012). Station’s fuel capacity 

limitations can also be added following inventory considerations (Liu and Lee, 2003). Finally, an 

extension of LRP with nonlinear costs (Melachovsky et al., 2005) can be used to address 

nonlinear queuing functions frequently associated with location-queuing problems (Berman et 

al., 2007; Berman and Drezner, 2007).   
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CHAPTER 5 NDP-HAPP 

 

As shown in Chapter 4, activity-based travel demand models can be integrated into the 

network problems in order to capture the demand changes at the time of decision making. In this 

Chapter, we generalize such integration into a framework in a bi-level structure. The network 

problem is generalized as a Network Design Problem (NDP) as well. Although roadway NDPs 

focus on congestion effect from the traffic assignment, in this dissertation, we focus on the 

design of network system with the effects of demand changes.   

  This chapter examines network design where OD demand is not known a priori, but is 

the subject of responses in household or user itinerary choices to infrastructure improvements. 

Using simple examples, we show that falsely assuming that household itineraries are not elastic 

can result in a lack in understanding of certain phenomena; e.g., increasing traffic even without 

increasing economic activity due to relaxing of space-time prism constraints, or worsening of 

utility despite infrastructure investments in cases where household objectives may conflict. An 

activity-based network design problem is proposed using the location routing problem (LRP) as 

inspiration. The bilevel formulation includes an upper level network design and shortest path 

problem while the lower level includes a set of disaggregate household itinerary optimization 

problems, posed as household activity pattern problem (HAPP) (or in the case with location 

choice, as generalized HAPP) models. As a bilevel problem with an NP-hard lower level 

problem, there is no algorithm for solving the model exactly. Simple numerical examples show 

optimality gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. 

A large numerical case study based on Southern California data and setting suggest that even if 

infrastructure investments do not result in major changes in link investment decisions the results 
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provide much higher resolution temporal OD information to a decision maker. Whereas a 

conventional model would output the best set of links to invest given an assumed OD matrix, the 

proposed model can output the same best set of links, the same daily OD matrix, and a detailed 

temporal distribution of activity participation and travel from which changes in peak period OD 

patterns can be observed. 

 

5.1 BACKGROUND 

Network design problems (NDPs) are a class of optimization models related to strategic 

or tactical planning of resources to manage a network (Magnanti and Wong, 1984). Even for 

purposes of improving road networks for commuters (Yang and Bell, 1998) and despite the 

complexity of traveler choices (Recker, 2001), NDPs generally assume either static demand at a 

node (elastic or not) or trip-based origin-destination demand. While this assumption is sufficient 

in many applications, there is increasing recognition that explicit consideration of travelers’ 

schedules, choices, and temporal decision factors is needed. This need has grown in parallel to 

three related research trends in network design in the past few years: (operational) network 

design with dynamic assignment considerations when considering only peak period effects, 

(tactical) service network design with schedule-based demand under longer periods of activity, 

and (planning) facility location problems that explicitly consider the effects that they have on 

decisions related to routing and scheduling of vehicles. At the planning level, these NDPs have 

often been based on private firm decisions, rather than on household-based urban transportation 

planning considerations. 

 The rationale behind dynamic network design problems is rooted in bi-level NDPs that 

feature congestion effects. These NDPs operate primarily in civil infrastructure systems, as other 
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types of networks do not generally share the same “selfish travelers” assumptions. In this 

paradigm, the performance of infrastructure improvements is assumed to depend primarily on the 

route choices of travelers (the commuter) during peak periods of travel, which in turn depend on 

the choices of other travelers. The dynamic component further allows modelers to assess 

intelligent transportation systems (ITS) that require more realistic modeling of traffic 

propagation obeying physical queuing constraints and information flow. Some examples include 

the stochastic dynamic NDP from Waller and Ziliaskopoulos (2001), Heydecker’s (2001) NDP 

with dynamic user equilibrium (DUE), the linear DUE-NDP (Ukkusuri and Waller, 2008), 

dynamic toll pricing problem with route and departure time choice (Joksimovic et al., 2005), and 

the reliability maximizing toll pricing problem with dynamic route and departure time choice (Li 

et al., 2007). Although these NDPs are especially useful for ITS evaluation and operational 

strategies, they focus primarily on choices made over a single trip.   

Tactical level NDPs tend to place more emphasis on time use and scheduling over 

congestion effects. Tactical service NDPs (Crainic, 2000) are a specific class used to manage 

fleets of vehicles with such temporal decision variables as service frequency. However, most of 

these NDPs focus on the schedules of the service being provided, rather than on incorporating 

the demand-side schedules of the travelers/users as endogenous elements of the design. Despite 

the incorporation of temporal effects, most service NDPs assume trip-based demand. There has 

been a surge of research in schedule-based transit assignment (as opposed to NDP), where 

travelers’ departure time choices are handled explicitly. Tong and Wong (1998) formulated such 

a model with heterogeneous traveler values of time. Poon et al. (2004) presented a dynamic 

equilibrium model for schedule based transit assignment. Hamdouch and Lawphongpanich 

(2008) developed a schedule-based transit assignment model that accounts for individual vehicle 
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capacities. They proposed one of the few schedule-based service network design problems, in the 

form of a transit congestion pricing problem that models passengers’ departure time choices 

(Hamdouch and Lawphongpanich, 2010). Their model uses a time-expanded network and 

considers fare pricing to optimize the distribution of travelers within specific capacitated transit 

vehicles. The origin-destination (OD) demand remains as fixed trips, and not as linked 

itineraries. 

Despite having the greatest need for such consideration, there are no NDP models at the 

planning level that consider routing and scheduling choices of travelers. It has long been 

acknowledged that models of traveler activities and time use are much more accurate than 

statistical trip-based approaches (Recker, 2001; Pinjari and Bhat, 2011). Activity consideration 

can bring about a tighter integration of infrastructure investment with land use planning and 

demand management strategies. Activity-based models can capture realistic impacts on travelers 

that are not limited to single trips but rather to chains of trips and activities forming detailed 

daily itineraries. Historically, the bulk of activity-based models have been designed as 

econometric models that do not account for network routing and scheduling mechanisms. The 

emerging trend in seeking to integrate network characteristics has been to force an interaction 

with a dynamic traffic assignment problem (e.g. Lin et al., 2008; Konduri, 2012). However, this 

approach still ignores the network constraints present in scheduling and selection of activities for 

a household. There have been two primary exceptions to this approach. The first is the 

disaggregate activity route assignment model (HAPP) pioneered by Recker (1995), with 

subsequent studies on dynamic rescheduling/rerouting of those itineraries Gan and Recker 

(2008) and calibration of the activity route assignment models (Recker et al., 2008; Chow and 

Recker, 2012). The second is the aggregate time-dependent activity-based traffic assignment 
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model (Lam and Yin, 2001; Fu and Lam, 2013). Both modeling frameworks address the issue of 

activity scheduling, although Lam and Yin’s model gives up disaggregate itinerary route choices 

and trip chains in favor of capturing congestion effects. 

Although the transportation planning field has not seen any significant NDP research that 

models traveler routing and scheduling, the private logistics field has. One such model is the 

location routing problem (LRP), formulated and solved by Perl and Daskin (1985). The LRP is a 

set of inter-related problems that includes a facility location problem. What distinguishes LRPs 

from other facility location problems is that it doesn’t assume that demand to a node is accessed 

through a single round trip. Instead, a lower level vehicle routing problem is embedded in the 

model to satisfy demand nodes in the most efficient manner, subject to where the facilities are 

located. In essence, it is an integrated NDP that accounts for responsive routing and scheduling. 

Numerous studies have been conducted on variants of the problem or on applications in industry. 

Several literature reviews have been published, including one from Min et al. (1998) and a more 

recent contribution by Nagy and Salhi (2007). Problem types developed over the years that may 

be applicable to activity-based network design in transportation planning include: stochastic LRP 

(Laporte and Dejax, 1989), where there is more than one planning horizon with time-dependent 

customer locations and demand; LRP with a mixed fleet Wu et al. (2002) for multimodal 

network consideration; location-routing-inventory (Liu and Lee, 2003) for modeling activity 

types as inventory-based needs that are fulfilled periodically; and LRP with nonlinear costs 

(Melachovsky et al., 2005) that may provide means to incorporate congestion effects at link or 

activity node level.  Readers are referred to Nagy and Salhi’s paper for further details. One direct 

application of LRP with a truck fleet replaced by household travelers is shown in Chapter 4. 
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They use HAPP as a routing subproblem in a hydrogen vehicle refueling station LRP that allows 

the behavioral impacts of households’ responses to located facilities to reflect siting decisions. 

Given the increasing realization that transportation planning needs to reflect travelers’ 

preferences at the level of the activity, we make a parallel observation to Perl and Daskin—that 

in the transportation planning field there is also a need for integrated NDPs that feature explicit 

consideration of travelers’ tour patterns that include trip chaining, scheduling, time windows and 

even destination choice. At the activity-based level, we are concerned more with tactical and 

planning level policies, and less so with such operational technologies as ITS and information 

flow (hence foregoing congestion effects for now). In essence, we propose to change the 

conventional NDP, with a given OD matrix, to a new class of activity-based NDPs. This new 

problem accounts for a population of travelers with demand for activities at particular locations 

and at particular times, which are fulfilled via calibrated activity routing models. Like the LRP, 

the activity-based NDP is a set of integrated models. Unlike the conventional NDP, the OD 

matrix is not given a priori, but rather depends on the scheduling choices of households, which 

in turn depend on travel impedances. The solution of this set of models is a corresponding set of 

infrastructure link investments as well as the resulting optimal itineraries decided by the 

households in response to changes in link travel characteristics. The itineraries can then be 

aggregated to obtain the final OD matrix resulting from the NDP. 

 

5.2 MOTIVATING EXAMPLES 

The argument that we provide here, much like Perl and Daskin (1985) did for locating 

warehouses, is that the choice of which element of a network to improve can have a significant 

impact on how households set their itineraries each day. Trip-based (even dynamic ones) or fixed 
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schedules ignore such changes as departure time, sequence of activities, or routing that each 

driver/household makes according to the changes made in the network. The following three cases 

demonstrate the influence that network designs can have on a household, which would be 

unaccountable under trip-based circumstances. For these examples, the utility maximization 

framework from Recker (1995) is assumed: households are multi-objective decision makers with 

their own sets of objectives with respective weights that dictate how they choose to schedule and 

route their activities. This has been demonstrated empirically by Chow and Recker (2012), where 

a population of households were fitted with heterogeneous sets of objective weights and desired 

arrival times to activities such that each of their observed itineraries were considered optimal to 

them. 

 

5.2.1 Departure time choice and itinerary re-sequencing 

Assume a household has one member and one vehicle, and two activities to perform for 

the day: a work activity and a grocery shopping activity. Specifications of start (au, bu) and 

completion (an+u, bn+u) time windows and activity durations (su) are shown in Table 1, in units of 

hours. Here and throughout, the notation used in Recker (1995) is followed. Assume also that the 

household objective is solely to minimize the length of their itinerary, i.e., 

2 1 0min ( )v v

n

v V

Z T T



  , where   
  is the arrival time to node u  via vehicle v, and node 0 is the 

home starting point while node 2n+1 is the home ending point. 
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Table 5-1 Case 1 household characteristics 

 Location  ,u ua b     ,n u n ua b 
    us  

Home Node 0  0 0, 6,21a b     2 1 2 1, [10,22]n na b 
     NA 

Work activity Node 3  9,9   10,22  8 

Grocery Shopping activity Node 1  5,20   6,22  1 

 

Assume a grid network with four nodes, and network connections as shown in Figure 5-

1-(a).  Travel time on each link, tij, is 0.5 hours. Figure 5-1-(b) shows the optimal pattern if no 

investment is made. 

    

(a) Current Network     (b) Optimal Household Activity Pattern 
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(c) 03 0.7t   → Time Adjustment  (d) 30 0.7t   → Activity Sequence and Time Adjustment 

Figure 5-1 The optimal household activity patterns for Case 1 

 

Even in this simplest case, two types of schedule responses can be observed for standard 

link investments which would be ignored in conventional NDPs. If link {0,3} is constructed with 

travel time of 0.7 hours as shown in Figure 5-1-(c), the household member would now be able to 

delay their departure time from 8AM to 8:18AM. Alternatively, if link {3,0} is instead 

constructed with travel time of 0.7 hours as shown in Figure 5-1-(d), the optimal itinerary results 

in a re-sequence of activities as well as an adjustment in departure times. 

 

5.2.2 Trip Chaining Trade-offs 

A paradoxical consequence of considering elastic itineraries in network design is that it is 

possible to evaluate a link investment that generates traffic without any increase in economic 

activity. Traditionally, the argument made with elastic demand considerations is that improving 
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infrastructure may result in additional trips made to fulfill latent demand between an OD pair. 

However, exceptions can also exist if travel is viewed as a way of achieving objectives while 

constrained within a space-time prism. By relaxing some of those constraints through network 

improvements, we may observe only increased trips due to untangling of less desired travel 

patterns within the tighter constraints. This can result in more trips made if it improves the 

overall objective of the household but would not contribute in any way to economic demand 

because the household may be reconfiguring the same itinerary without adding new destinations 

to visit. This occurrence can be best illustrated with a household with activities that have very 

strict time windows. 

We consider the same activity agenda as in the previous section, but with both activities 

having strict start time windows as in Table 5-2.  Both activities require the household member 

to be at the respective locations at a specific time, which is often quite a realistic assumption. 

Assume also that this particular household has two potentially conflicting objectives: to 

minimize the travel time with weight   , and to minimize delay from returning home after an 

activity, with weight   . The delay from the returning home objective represents the desire of the 

household to minimize the duration of any particular activity period away from home, as 

discussed by Recker (1995) and calibrated empirically by Chow and Recker (2012) for a set of 

households. The higher the weight of this objective relative to travel time, the more likely it is 

that a household would not want to trip chain. Then the objective function becomes: 

 

min ( )v

T uw uw C u n u

v V w u u

Z t X T T  

   

      
N N N
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where    
  is a binary variable representing a route taken between node u and node w with 

vehicle v, and the weights are assumed to be      and     . The optimal solution on the 

base network is shown in Figure 5-2-(a), with an objective function travel disutility of 14.25 and 

a total of three trips made.  Due to the time windows, the household traveler is constrained to trip 

chain from the work activity to the social activity. 

 

Table 5-2 Case 2 household characteristics 

 Location  ,u ua b    ,n u n ua b 
    us  

Home Node 0  0 0, 6,21a b     2 2, [10,22]n u n ua b 
     NA 

Work activity Node 3  9,9   10,22  8 

Social activity Node 1  18.25,18.25   18.5,22  1 
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(a) Optimal Household Activity Pattern   (b) 30 0.7t   → extra trip generation 

Figure 5-2 The optimal household activity patterns for Case 2 

 

Now consider a link addition {3,0} with travel time of 0.7 hours.  Because the household 

can now return home immediately after work and still make the social activity in time, they do so 

for an improved travel disutility of 12.9. The result is not only a change in trip ODs (due to re-

sequence in a tour), but one extra trip is also created as shown in Figure 5-2-b (4 trips). 

Essentially a trip has been added without adding a new non-home destination to visit, but the 

household sees an improvement in travel disutility because of the relaxation of spatial-temporal 

constraints that were binding before the network improvement. A conventional trip-based 

approach, or even a fixed schedule approach, would miss such a response altogether. 

 

5.2.3 Increasing travel disutility  

If we consider a continuous link improvement (in which a route travel time is improved), 

then another counterintuitive situation can occur. Consider the household in Table 5-2 again, but 

in this case let’s assume that the household seeks to minimize idle time. Idle time is defined as 

the extent of the travel day that is not used in performing activities or traveling—such tradeoffs 

are similar to studies comparing values of in-vehicle travel time against out-of-vehicle access or 

idle/wait time. The potential for conflict between the two objectives is not immediately apparent; 

however, in the presence of strict time windows it is possible that improving travel times can 

result in increasing idle time. Consider the following: 
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2 1 0min ( ) ( )v v v

T W uw uw W n

v V w u v V

Z t X T T   

   

       
N N

 

 

where      and       . The durations of the activities    are not included because they are 

constant and drop out. In the base case shown in Figure 5-2-(a), the disutility under this new 

objective is 16.625 instead of 14.25.  

If a continuous improvement is made to link {3,1} such that travel time improves from 

0.5 hours to 0.25 hours (e.g. repaving, lane expansion), then due to time window constraints 

there are no other alternative routes and the household would still have to follow the same 

schedule. However, this results in a direct trade-off between travel time and idle time. If a 

household values idle time minimization more than travel time minimization, then such an 

improvement can result in a paradoxically higher disutility, even without considering congestion 

effects. The travel time improvement simply results in a decrease in the travel time objective of 

0.25 but a direct increase in idle time of 0.25. Since      , the disutility actually increases 

from 16.625 to 16.75. Effects such as this would be completely ignored if NDPs were applied 

without considering their effect on household scheduling. However, explicitly incorporating 

household scheduling mechanisms into the NDP allow paradoxes such as this to be avoided.  

We have presented three scenarios that can arise from network improvements when 

realistically considering the effects they have on household scheduling and planning. Network 

changes can cause significant reshaping of temporal /spatial constraints for households that result 

in changes in their trip patterns. We argue that these effects should not be ignored when 

considering NDPs at the tactical or planning level. 

 



138 
 

5.3 NDP-HAPP  

5.3.1 Definitions  

The activity-based NDP using HAPP subproblems to address household schedule 

response to network changes is here designated as NDP-HAPP. As a kernel activity-based NDP, 

the NDP-HAPP is formulated using the simplest structure. More complex formulations that 

explore link capacities, vehicle and household member interactions, multimodal networks, or 

congestion effects will be explored in future research. The kernel formulation is first presented as 

a set of multiple subproblems, and then further modified to consider activity choice in cases with 

non-compulsory activities. There are two distinct types of networks in this problem: an 

infrastructure network where changes can actively be made, and a responsive activity network 

that represents the routing and scheduling decisions made at the household level. Assume an 

infrastructure network layer   , and the following parameters for the infrastructure network 

system: 

 

N  set of all nodes in the analysis 

E  set of all direct links in the analysis 

ijF  fixed link design costs 

ijc  operational per unit link routing costs 

B  total budget for the network system  
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ijt  travel time between the direct link from node i to node j 

,v h

ijc  personal travel cost for vehicle v of household  , between the direct link from 

node i to node j 

 

Variables related to the infrastructure network system are:  

ijf  flow on the direct link       

ijz  binary decision variable that indicates whether or not link       is chosen as part 

of the network’s design 

 

Assume also an activity layer   , and the following parameters for the activity network 

system: 

P  set of all activity nodes in the analysis.  It is a subset of the node set from the 

infrastructure network, . 

( , ),      ,u w u wP  route from activity point u to activity point w . Its connectivity is 

derived from   .    

H   set of households using on the activity nodes P in the analysis. 

 

N
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Although their physical locations are the same, the two sets of networks operate in a bi-level 

fashion. This bi-level property of NDP-HAPP, together with its unfolding in the time-space 

dimension, can be depicted conceptually in Figure 5-3. Such separation of networks—a 

supernetwork approach—has been used widely in activity-based transportation networks, mainly 

concerning various modal choices and their specific networks (e.g. TRANSIMS, 2012; Arentze 

and Timmermans, 2004). However, an optimization-based routing and scheduling procedure, to 

our knowledge, has never been applied to the activity layer in response to infrastructure changes. 

Following the notation of Recker (1995), we define the following sets and parameters that 

are specific for each household, hH : 

 

{ , ,...}a b

h h h β  set of relative weights for different travel disutility terms for 

household h  

hA  set of out-of-home activities to be completed by travelers in household 

h  

hV  set of vehicles used by travelers in household   to complete their 

scheduled activities. 

h hn A  number of activities to be performed by household  h
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hP  P  set designating location at which each assigned activity is performed by 

travelers in household ; the set of activities and their physical locations 

are different for each household. 

hP  P  set designating the ultimate destination of the “return to home” trip from 

out-of-home activities to be completed by travelers in household, . 

(Note: the physical location of each element of A

hP   is “home”.) 

 

 

Figure 5-3 Bi-level interactions between the infrastructure and activity networks 

 

,h h

u ua b    time window of available start times for activity u for household .   

h

h

H1
H2

H

h
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,
h h

h h

n u n ua b 
 
   time windows for the “return home” arrival from activity u  of 

household . (Note: h

ub must precede 
h

h

n ub  by an amount equal to or 

greater than the duration of the activity.) 

0 0,h ha b    departure window for the beginning of the travel day for household . 

2 1 2 1,
h h

h h

n na b 
 
   arrival window by which time all members of the household  must 

complete their travel. 

h

us : duration of activity  u  of household . 

h

uwt  travel time from the location of activity u to the location of activity w. 

,h
uwc  travel cost for household , from location of activity u to the location of 

activity w  by vehicle v. 

h

CB  travel cost budget for household . 

,h
TB  travel time budget for the household ’s member using vehicle v. 

 =  h h h

 P P P  set of nodes comprising completion of the activities of household . 

 0, ,2 1h h hn Q P  set of all nodes for household , including those associated with 

the initial departure and final return to home.  This is a subset of . 

 

h

h

h

h

h

h

h

h

h

P
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In the following,     are used to refer to nodes in the infrastructure layer, and link       

refers to the direct link connecting those two nodes. Notation     are used to refer to activity 

nodes in the activity layer, and it is not necessarily a direct infrastructure link but rather a path 

between      . Such path information as travel time and travel cost are passed onto the activity 

layer from the infrastructure layer, but the connectivity data of the path needs to be drawn from 

the infrastructure layer.   

 

The household-specific decision variables are: 

 

, ,     , , ,v h

uv h hX u w v V h  Q H  binary decision variable equal to one if vehicle  v  

travels from activity  u  to activity  w, and zero 

otherwise. 

,     ,h

u hT u P h H  time at which participation in activity u of household 

 begins. 

, ,
0 2 1, ,     ,

h

v h v h

n hT T u P h  H  times at which vehicle v  from household  first 

departs from home and last returns to home, 

respectively  

,     ,h

u hY u P h H  total accumulation of either sojourns or time 

(depending on the selection of  D  and   )  of 

h

h
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household  on a particular tour immediately 

following completion of activity u. 

 

Variables connecting the infrastructure network,   , and the activity network system,   , are: 

  

, , ( )uw ij uw ij  z  binary indicator variable whether route       in the activity 

network uses link       in   . Assuming the shortest cost path is 

used between two activity nodes, the design variables determine the 

connectivity of nodes in   . If link       is not constructed,      , 

       is automatically 0, and otherwise, it can be identified by 

solving a shortest path problem between the origin and the 

destination,      . 

*, ,
,

0 0
( )

( ) 1
ij

uw ij uw ij

uw ij ij

z

z
 




  


z

 

where         
 
 is the solution of a shortest path problem for each 

activity link      , i.e. 

 

Shortest Path Allocation Problem 

 

h
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,
( , )

min ij uw ij

i j

t 



E

 (5-1) 

 

subject to 

, ,

1
0 ,

1
uw ji uw ij

j j

i u

i u w

i w

 
 




  
 

 
N N

 (5-2) 

, (0,1)uw ji   (5-3) 

 

The problem is defined for all households and their activity routes, 

, , ,h hu w v V h  Q H .  

 

( )uw uwt t z  travel time from the location of activity u to the location of activity w. It is 

a function of the decision variable vector z , and the given network 

( , )N E  since the connectivity decision variables ijz  determine the travel 

times. 

,( ) ( ),     , ,uw uw ij uw ij h

j i

t t z t u w h
 

    
E E

z Q H     (5-4) 
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, , ( )v h v h

uw uwc c z  travel cost from the location of activity u to the location of activity w for 

vehicle v  of household h . It is a function of the decision variable vector z

, and the given network ( , )N E  since the connectivity decision variables 

ijz  determine the travel costs. 

, , ,
,( ) ( ),     ,v h v h v h

uw uw ij uw ij h

j i

c c z c u w
 

   
E E

z Q                     (5-5) 

( )ij ijf f X  link flow on direct link ij. It is a function of the household activity decision 

variable vector, X , and connects the path flow on layer AL  to the link 

flow on layer IL . It is a function of the decision variable vector z , and the 

given network ( , )N E  since the connectivity decision variables ijz  

determine the link flows. 

,
,( ) ( ) ,      ( , )

h
h h

v h

ij uw ij uw

h u w v V

f X X i j
   

    
H Q Q

z E            (5-6) 

 

5.3.2 Decomposed Formulation of NDP-HAPP  

Typically, the LRP formulation includes three parts: location, routing, and allocation. 

This property applies to NDP-HAPP as well, where the upper level “location” is the network 

design variables and the lower level routing part is the HAPP model. Allocation refers to 

assignment of the activity link impedance from the shortest path problem in the infrastructure 

network, shown in Equation (5-1) – (5-3). The objective function of the upper problem in the 

LRP is to minimize the overall cost, which is comprised of depot cost and vehicle cost.  
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Similarly, NDP-HAPP in the most basic form is decomposed into two models solved as a 

bi-level problem: NDP (upper) and HAPP (lower). There are two sets of decision makers, so the 

solution can be classified as a leader/follower Stackelberg equilibrium, as described in Yang and 

Bell (1998). Instead of a traffic equilibrium lower level problem, the NDP-HAPP has a set of 

household scheduling problems in the lower level for each household. Considering the network 

design problem as the upper level decision and the household activity/scheduling/routing 

decisions (HAPP) as reactions to the network design, we can express the problem most generally 

in Equations (5-7). 

 

,min ( , ( )) ( , )

subject to 
( , ( )) 0

z f dNDPG z f X z f

H z f X





                                (5-7a) 

 

where 

 

,min ( ( ( , )), ( ( , ))) ( , )
subject to 

( , ( ( , )), ( ( , ))) 0

X T dHAPPg X f z T f z X T

h z X f z T f z

  

 





           (5-7b) 

 

where G  is the objective function, z is the decision vector, and H  is the constraint set of the 

upper level problem. In the lower level problem, g is the objective function, ,X T are the 

decision vectors, and h  is the constraint set. 

The kernel network design problem we present is a modified version of the unconstrained 

multicommodity case of the formulation in Magnanti and Wong (1984). The formulation 
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minimizes the design cost while satisfying the given flow demands at origin and destination 

nodes. The formulation is in terms of direct links and link flows only, whereas the integrated 

NDP-HAPP includes path flows which are connected by ,uw ij  to direct link flows, ijf ,. In order 

for the OD pairs to be assigned to sequences of direct links, we treat each OD pair ( , )u w as a 

commodity as in the case of multicommodity flow problems, i.e., we define a single commodity

, ( , )uw

ijf u w K  where
( , )

uw

ij ij

u w

f f


 
K

, and where K is the set of all OD  ,u w  pairs.   

We formulate this decomposed NDP (dNDP) in terms of direct link flows only, and each 

OD pair is represented as a commodity. The demand values are calculated as shown in Equation 

(14).  They take household sequence decisions and aggregate them into origin-destination pairs.  

 

 

Upper Level NDP (dNDP) 

( , ) ( , )
min ( , )dNDP ij ij ij ij

i j i j

z f F z c f
 

    
E E

 (5-8) 

subject to: 

 

,     , ( , )uw uw uw

ji il

j l

f f D i u u w
 

       
N N

N K  (5-9) 

,      , ( , ) ,uw uw uw

ij li

j l

f f D i u u w
 

       
N N

N K  (5-10) 

=0,      , , , ( , )uw uw

ji ij

j j

f f i i u i w u w
 

       
N N

N K  (5-11) 

,      ( , ) , ( , )uw uw

ij ijf D z i j u w    E K  (5-12) 

(0,1),      ( , )ijz i j E   (5-13) 
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where 

, ,      , ( , )
h

uw v h

uw

h v V

D X w i u w
 

    
H

N K   (5-14) 

 

Equations (5-9) – (5-10) require each path ( , )u w K  to satisfy the given OD demand.  

Equations (5-11) simply show the conservation of flows for intermediate nodes. Equation (5-12) 

constrains flow variables to be on the links that are built in a manner that does not exceed the 

capacity.  Because we do not consider cases in which the capacity of links is exceeded in this 

problem, only the shortest path will be loaded with flows.  As such, the shortest path information 

is provided directly by the uw

ijf  variable. We can implicitly obtain the shortest path variables for 

each OD pair as shown in Equation (5-15) instead of having to solve Equations (5-1) – (5-3) 

separately.  

 

,
0 0

,        ( , ) , ( , ) , ,
1 otherwise

uw

ij

uw ij h

f
i j u w v V h

 
     


E K H  (5-15) 

 

The decomposed lower-level HAPP (dHAPP) problem is shown in Equations (5-16) – (5-

19). It is composed of the set of constraints in the Appendix which would be equivalent to the 

original constraints from Case 1 in Recker (1995) if travel time/cost factors are not functions of 

the allocated shortest path. More complex variations presented in Recker (1995) can be 

substituted if household member interactions and carpooling effects are desired. Also, each 

household can be treated separately since all of the constraints and objective functions are 
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separable by household. With constant travel times/costs, i.e., without congestion effects, each 

household’s dHAPP is solved separately.  

 

Lower Level HAPP (dHAPP) for Each Household 

 

, , , ,
2 1 0min ( , ) ( )

h
h h

h h

T v h v h C v h v h

dHAPP h n h uw uw

h h u wv V v V

X T T T c X  

    

        
H H Q Q

 (5-16) 

Subject to  

 (5-A-1) – (5-A-26) 

 

where  

,
( , )

( ) ,     , ,uw ij uw ij h

i j

t z t u w h


   
E

Q H  (5-17) 

, ,
,

( , )
( ) ,     ,v h v h

uw ij uw ij h

i j

c z c u w


  
E

Q  (5-18) 

,
0 0

,        ( , ) , ( , ) , ,
1 otherwise

uw

ij

uw ij h

f
i j u w v V h

 
     


E K H  (5-19) 

 

As discussed in other HAPP model studies, the objective shown in Equation (5-16) is just 

one example of a multi-faceted objective problem. Others can be specified and estimated using 

the method from Chow and Recker (2012). The process of specifying the multiple components 

of the objectives and calibrating their coefficients with desired arrival times can be thought of as 

a confirmatory modeling process that seeks to fit a hypothesis of how household travelers behave 

onto a data set. Fitness of an objective is determined by the significance of its estimated 

coefficient relative to other objectives. For example, a data set might reveal that Equation (5-16) 
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results in a length of day coefficient (first term) equal to 0.0001 relative to a weight of 1 for the 

travel cost objective. In that case, it would suggest that the first objective is not very important in 

the travelers’ scheduling choices, and removing it might result in smaller variances in the 

remaining objectives when re-calibrated.  

NDP-HAPP as presented in Section 3.2 differs conceptually from the LRP in two primary 

ways. First, the LRP has a single decision maker involved in both planning and tactical strategic 

design, whereas the NDP-HAPP has a single decision maker involved in planning and multiple 

household decision makers responding to the plan at a tactical level. Second, the node demand 

for the upper level problem in the LRP is known a priori, but the cost of delivering service to the 

demand node is not known. Instead, it is derived from the output of the VRP. Alternatively, the 

NDP-HAPP does not have OD demand known a priori, but costs between nodes are given; the 

OD demand is derived from the output of the HAPP.  

 

5.3.3 Generalized NDP-HAPP (NDP-GHAPP) 

The NDP-HAPP model is extended to include the capability for households to choose 

locations for such non-primary activities as grocery shopping and refueling. This is done by 

relaxing the condition in the HAPP that requires each household to visit every location, 

determined exogenously; rather in NDP-HAPP each household visits one candidate location 

from a cluster of such activity types. This is similar to the generalized traveling salesman 

problem (e.g., the E-GTSP in Fischetti et al., 1997) and generalized vehicle routing problem 

Ghiani and Improta (2000) in the logistics literature, where visits to nodes are modified to visits 

to single nodes from each cluster. The generalized HAPP (GHAPP) has been formulated and 

applied in the earlier chapters, and a “profitable tour” variation of this approach was developed 
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for activity-based traveler information systems (Chow and Liu, 2012) and for testing algorithms 

in scenario analysis (Chow, 2013).  

In GHAPP, the constraints in Equation (5-A1) are modified to Equation (5-A1-1) as 

shown in Chapter 2. Instead of requiring each node to have a flow, the generalized formulation 

instead requires one node from a cluster of nodes to be visited. Compulsory activity types would 

have only one node in the cluster, whereas such non-primary activities as grocery shopping or 

refueling could have multiple candidate nodes from which to choose.  

 

, 1,     ,
h hAa

v h

uw a

v wu

X A h
  

    
V QP

A H  (5-A1-1) 

 

where  

1 2{ , ,..., ,..., }a mA A A AA  set of   different activity types with unspecified locations  

aAP   set designating “potential” locations at which activity aA  may be performed 

 

When integrated with NDP, GHAPP becomes infeasible if one or more candidate nodes are not 

connected to the network; constraints in (A7), (A11) also need to be modified to be conditional 

such that the temporal constraints are imposed only when there is a visit to that candidate 

location.  This allows having one or more of unconnected candidate nodes, which have infinite 

travel times.  

 

, 1 ( ) ,     ,
h h

v h h h h h

wu u u uw n u h

v V w

X T s t T u P h



 

       
Q

z H  (5-A7-1) 
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, 1 ,     ,
h h

v h h h h

wu u u u h

v V w

X a T b u P h
 

      
Q

H  (5-A11-1) 

 

Similarly, when the objective function involves time variables, those of the unvisited activity 

nodes need to be constrained. For example: 

 

, 0 0,     ,
h h

v h h

wu u h

v V w

X T u P h
 

     
Q

H   (5-A7-2) 

 

5.3.4 Decomposition Solution Algorithm 

There are many different types of solution algorithms developed for LRPs (Nagy and 

Salhi, 2007) and discrete or mixed NDPs (e.g. Luathep et al., 2011; Wang et al., 2013), and they 

can potentially be adopted for NDP-HAPP. However, the iterative method proposed here 

decomposes the problem into several blocks that actually represent each decision maker’s 

rationale in this complex problem. Additionally, this kind of decomposition does not necessarily 

require the problem to be formulated in the structure of mathematical optimization as long as the 

drivers’ response to the network design is captured and updated. This means that different types 

of integrated activity-based approaches can be used to model individuals’ routing/scheduling 

behavior. Because the majority of these activity-based models are based on discrete-choice or 

simulation-based models (e.g., Bowman and Ben-Akiva, 2000; Bhat et al., 2004; Balmer et al., 

2006), the suggested decomposition method is highly adaptable to different types of activity-

based models.  

The decomposed problems remain computationally challenging, particularly the NP-hard 

(Recker, 1995) HAPP. Because these problems are widely studied, there are various methods 
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available. Geoffrion and Graves (1974) are referred for network design problems, and Cordeau 

and Laporte (2003) are referred for a survey of algorithms for the Pickup and Delivery Problem 

with Time Windows (PDPTW), on which the simplest HAPP is based. The decomposition 

proposed here is comparable to Perl and Daskin (1985) in the context of Location Routing 

Problems and the Iterative Optimization Assignment (IOA) algorithm in Yang and Bell (1998) in 

the context of bi-level Network Design Problems. Perl and Daskin (1985) used three 

decomposed models to tackle the warehouse location routing problem: the complete multi-depot 

vehicle-dispatch problem (MDVDP), the warehouse location-allocation problem (WLAP), and 

the multi-depot routing-allocation problem (MDRAP).  The location-allocation and muti-depot 

routing allocation blocks are in parallel with dNDP and dHAPP.  For NDP, the iterative 

optimization-equilibrium in Friesz and Harker (1985) includes similar blocks of Equilibrium 

Assignment Program and Design Optimization, in line with dHAPP and dNDP. Since there is no 

congestion in the dHAPP model, the issue of having IOA converge to a Cournot-Nash 

equilibrium is not relevant here. For the examples and case studies presented, the overall 

processes are coded in Java calling a CPLEX library for dHAPP and dNDP problems. 

An iterative solution algorithm for the NDP-HAPP is depicted in Figure 5-4. First, the 

initial network decision solution is assumed to use all links, 0 1, ( , )ijz i j E .  Then, 0
,uw ij  can be 

derived from 0
ijz  using the standard shortest path problem—for example, Floyd’s Algorithm can 

be used to efficiently update the travel time matrix.  Based on the updated travel times, dHAPP is 

solved independently for each household since no congestion effect is present. Hypothetically, if 

congestion is incorporated in future research (perhaps through integration with Lam and Yin’s 

(2001) framework to provide feedback on the skim table in a fashion similar to how the Trip 

Distribution step can be updated with Trip Assignment results in the Four Step Model), this 
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framework should still be feasible. After the travel decisions are made by each household, supply 

and demand are updated from Equations (5-15), and dNDP can then be solved as the 

conventional NDP.  The proposed iterative process continues until there is no improvement in 

the objective function. The implicit shortest path allocation from the upper level problem and the 

path-link conversion conditions in Equations (5-4) – (5-6) are maintained throughout this 

iterative process. The same algorithm can be applied to NDP-GHAPP.  
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Figure 5-4 A decomposition solution method for NDP-HAPP 

 

5.4 Numerical Examples 

5.4.1 Simple example: NDP-HAPP  
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Assume a grid network with nine nodes, with possible link construction as shown in 

Figure 5. When constructed, travel time for each link is 0.5.  Construction cost for each link is 3, 

and operating cost per link flow is 0.5, i.e.,
( , ) ( , )

min ( , ) 3 0.5dNDP ij ij

i j i j

z f z f
 

    
E E

.   

Assume two households, 1 2{ , }h hH , with one vehicle each, 1 2{1},  {1},V V  and their 

activities 1 {work, grocery shopping}A  , 2 {work, general shopping}A   to perform. These 

activities’ locations in the infrastructure layer are shown in Figure 5, and their activity start/end 

time windows, activity durations are all shown in Table 3.  Except for the activity start time 

windows of work activities, time windows are not necessarily constraining, leaving some room 

to explore different path sequences.  Both households’ objective functions are assumed to be 

minimizing total travel cost only (households consider the travel costs for all direct links),

, ,min ( )
h

h h

h v h v h

dHAPP uw uw

u w v V

X c X
  

   
Q Q

. 

 

Table 5-3 Simple example household characteristics 

 
Location 

on IL  
,h h

u ua b    ,
h h

h h

n u n ua b 
 
   

h

us  

1h  home Node 0  0 0, 6,21h ha b     2 1 2 1, [10,24]
h h

h h

n na b 
     NA 

1h  work activity Node 2  9,9.5   10,22  8 

 grocery shopping 
activity 

Node 5  5,22   10,22  1 

2h  home Node 5  0 0, 6,21h ha b     2 1 2 1, [10,22]
h h

h h

n na b 
     NA 

2h  work activity Node 6  8.5,9   10,22  8 

 general shopping 
activity 

Node 8  5,21   10,22  1 

 

1h

2h
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Figure 5-5 Supernetwork depiction 

 

Because the NDP-HAPP is not a simple problem to check for optimality, all possible 

combinations of household decisions are enumerated and given to dNDP, and its objective value 

combined with the objective value of corresponding household decision combination is used to 

derive the true optimal solution value. Figure 5-6 shows the solution from the proposed method 

(5-6-(a), 5-6-(b)) and the actual optimal solution (5-6-(c), 5-6-(d)). The decomposition solution 

converged after one iteration and is 5% worse than the actual optimal solution, 40, for this simple 

example. Detailed illustration of the computational process is available in Table 5-4.   

 

AL

IL
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(a)  Decomposition dNDP Solution        (b) Decomposition dHAPP Solution 

 

   
(c)  Optimal dNDP Solution         (d) Optimal dHAPP Solution 

 
Figure 5-6 NDP-HAPP decomposition solution comparison to enumerated exact solution 
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Table 5-4 Detailed computational illustration of the basic NDP-HAPP example 

 Iteration 1 Iteration 2 

dHAPP1 
Path1: Home (0) → work (2) → grocery 
shopping (5) → home (0) 
Objective Value: 3 

Path: Home (0) → work (2) → 
grocery shopping (5) → home (0) 
Objective Value: 3 

dHAPP2 
Path2: Home (5) → work (6) → general 
shopping  (8) → home (5) 
Objective Value: 3 

Path: Home (5) → work (6) → 
general shopping  (8) → home (5) 
Objective Value: 3 

dNDP 

Network Design Decisions: Z01, Z12, Z25, 
Z30, Z36, Z43, Z54, Z36, Z78, Z85 

dNDP objective value: 36 
HH1 Paths link Flows:  
 Home (0) → (1) → Work (2) 
 Work (2) → Grocery Shopping (5)  
 Grocery Shopping (5) → (4) → (3) → 

Home (0)  
HH2 Paths link Flows:  
 Home (5) → (4) → (3) → Work (6)  
 Work (6) → (7) → General Shopping (8)  
 General Shopping (8) → Home (5) 
Update each dHAPP objective values: 
HH1: 3 
HH2: 3 

NA3 

Final 
Objective 42 42 

1These paths are based on the assumption that all links are available. 

2These paths are based on the assumption that all links are available. 

3No changes in variables and objective function value. Therefore the algorithm stopped after this 

iteration. 

 

5.4.2 Simple example: NDP-GHAPP 

Using the generalized model allows us to include behavioral changes in destination 

choice as well as routing/scheduling of activities with respect to network design decisions. 

Following the example in Section 5.4.1, assume that there are two grocery shopping locations, 
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node 1 and node 5, {1,5}
aA GroceryShoppingP

  , and two general shopping locations, node 3 and node 

8, {3,8}
aA GeneralShoppingP

  —each household is required to visit one, and only one, of the candidate 

locations to perform the shop activity.   

Here, NDP-GHAPP optimality is checked in the same way as in the previous example, 

i.e., by comparing to the results of dNDP for all possible combinations of household decisions, 

including the destination choice as well as path sequence decisions and arrival time decisions to 

return.  The solution from the iterative method reached the true optimal value after three 

iterations, shown in Figure 7. The intuition is that the flexibility introduced by NDP-GHAPP 

allows the method to search for many different options. Detailed illustration of the computational 

process of the proposed algorithm is shown in Table 5-5.  In this simple example, changes in 

activity sequence, link level flow in dNDP, and dNDP network design decisions are shown, 

resulting in a joint output of infrastructure link investments, destination choices for each 

household, and schedule choices for each household.   
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Table 5-5 Detailed computational illustration of the NDP-GHAPP example 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

dHAPP1 

Path1: Home (0) → grocery 
shopping (1) → work (2) → 
home (0) 
Objective Value: 2 

Path: Home (0) → work (2) 
→ grocery shopping (1) → 
home (0) 
Objective Value: 2 

Path: Home (0) → grocery 
shopping (5)  → work (2) → 
home (0) 
Objective Value: 4 

Path: Home (0) → 
grocery shopping (5)  → 
work (2) → home (0) 
Objective Value: 3 

dHAPP2 

Path2: Home (5) → work (6) 
→ general shopping  (8) → 
home (5) 
Objective Value: 3 

Path: Home (5) → work (6) 
→ general shopping  (8) → 
home (5) 
Objective Value: 3 

Path: Home (5) → work (6) 
→ general shopping  (3) → 
home (5) 
Objective Value: 4 

Path: Home (5) → work 
(6) → general shopping  
(3) → home (5) 
Objective Value: 4 

dNDP 

Network Design Decisions: 
 Z01, Z10, Z12, Z21, Z58, 
Z67, Z76, Z78, Z85, Z87 

dNDP objective value: 35 
HH1 Paths link Flows:  
 Home (0) → Grocery 

Shopping  (1) 
 Grocery Shopping (1) → 

Work (2)  
 Work (2) → (1) → Home 

(0)  
HH2 Paths link Flows:  
 Home (5) → (8) → (7) → 

Work (6)  
 Work (6) → (7) → General 

Shopping (8)  
 General Shopping (8) → 

Home (5) 
Update each dHAPP 

Network Design Decisions: 
Z03, Z10, Z21, Z36, Z52, 
Z67, Z78, Z85 

dNDP objective value: 32 
HH1 Paths link Flows:  
 Home (0) → (3) → (6) → 

(7) → (8) → (5) →  Work 
(2) 

 Work (2) →Grocery 
Shopping (1)  

 Grocery Shopping (1) → 
Home (0)  

HH2 Paths link Flows:  
 Home (5) → (2) → (1) → 

(0) → (3) → Work (6)  
 Work (6) → (7) → General 

Shopping (8)  
 General Shopping (8) → 

Home (5) 

Network Design Decisions: 
Z03, Z10, Z21, Z34, Z36, 
Z45, Z52, Z63 

dNDP objective value: 31 
HH1 Paths link Flows:  
 Home (0) → (3) → (4) → 

Grocery Shopping (5)  
 Grocery Shopping (5) → 

Work (2)  
 Work (2) → (1) → Home 

(0)  
HH2 Paths link Flows:  
 Home (5) → (2) → (1) → 

(0) → (3) → Work (6)  
 Work (6) → General 

Shopping (3)  
 General Shopping (3) → (4) 

→ Home (5) 
Update each dHAPP 

NA3 
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1These paths are based on the assumption that all links are available.  

2These paths are based on the assumption that all links are available.  

3No changes in variables and objective function value. Therefore aborted after this iteration. 

objective values: 
HH1: 2 
HH2: 3 

Update each dHAPP 
objective values: 
HH1: 4 
HH2: 4 

objective values: 
HH1: 3 
HH2: 4 

Final 
Obj 40 40 38 38 
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(a)  Optimal Solution         (b) Optimal Solution 

Figure 5-7 NDP-GHAPP example enumerated optimal solution 

 

5.4.3 Large Network example: NDP-HAPP 

This case study illustrates the performance of the NDP-HAPP solution algorithm for a 

major roadway system located in Orange County, California, a subsystem of the Los Angeles 

metropolitan roadway network. The base network with household locations and their activities 

throughout the day are shown in Figure 5-8-(a). We assume that the network design decision 

maker is a public agency from Orange County, and its goal is to provide the best mobility for 

Orange County residents, where the mobility is expressed in terms of total travel times.  

Hypothetically suggested candidate improvements on the network system are extensions of SR 

39, SR 57, SR 55, SR 22, SR 261, and SR 241 as seen in dashed red lines in Figure 5-8-(b).     
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Specifications of each candidate link are in Appendix 5-B. Speeds are drawn from the 

average speed for all links on the same facility, and construction cost for each link is assumed to 

be proportional to both average speed and distance.   

A sample of 60 single-member, single-vehicle households residing in Orange County 

drawn from the 2001 California Household Travel Survey (Caltrans, 2001) is used to reflect 

fairly realistic trip patterns of this class of households. The objective function for dNDP is to 

minimize the total travel time for the system, 
( , )

min ( , )dNDP ij ji

i j

z f t f


 
E

, and the objective 

function for each dHAPP is to minimize its own travel disutility. For this example, individual 

household’s travel disutility is defined by the linear combination of the total extent of the day, 

the travel times, and the delay of return home caused by trip chaining multiple out-of-home 

activities using weights , ,E T D

h h h   : 

 

 

, , , ,
2 1 0min ( , ) ( ) ( )

h h
h h

h h

E v h v h D h h T v h v h

dHAPP h n h w n w h uw uw

h h h u wv V w v V

X T T T T T t X    

      

            
+
hH H H Q QP
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(a) Sample households and their activity locations   (b)   Extracted network 

Figure 5-8 Large-scale case study area 

 

The weights of these 60 households are individually estimated from the inverse 

optimization calibration process in Chow and Recker (2012).   For the households in the sample, 

the estimated results have average values of 0.84, 0.74, 3.45E D T

h h h     , which means that 

on average these household decision makers value a minute of travel time savings about 4 times 

more than a minute of total extent of the day savings, and about 5 times more than a minute 

delay in returning home caused by trip chaining from out-of-home activities. The values were 

based on having the same set of arrival time penalties for all activity types, with 0.613 early 

penalty and 2.396 late penalty, similar to Chow and Recker (2012). The correlations from the 60 

samples were close to zero for ,E T  and ,D T , although the correlation between extent of day 

savings and return home delay was , 0.248E D  . Time windows of activities are separately 
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estimated using the methodology as in Chapters 2, 3 and 4, which adopted the method from 

Recker and Parimi (1999) with slight modifications. 

In Table 5-6, results of NDP-HAPP are compared to conventional NDP solutions that 

take the O/D matrix derived from the optimal HAPP results with current network as an input. Six 

different budget limits are tested. The results indicate that both dNDP and dHAPP objective 

function values improved with increasing budget limits, together with more households 

benefiting from the improvements. These households experience shorter travel times, but given 

the coarse geographic network and the limited activity participation from the 60 single-member 

households sampled, these improvements are not sufficiently large for the sample households to 

change their activity sequences For example, 38% of the total trips are intrazonal trips; although 

we have assigned a nominal travel time for intrazonal trips, it is highly unlikely that one would 

change the sequence of trips in a way that shifts intrazonal trips to interzonal trips. Another 

explanation can be the activity participation. More than 70% of households in the sample 

performed only one out-of-home activity: these cases can never change activity sequences 

regardless of network level-of-service. The O/D table stays the same, and therefore the 

conventional NDP delivers what appears to be the same results as NDP-HAPP. However, a view 

of the time of day distribution of all activity participation reveals changes that can be captured as 

a result of the NDP-HAPP, as shown in Figure 5-9.  
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Figure 5-9 Comparison of activity arrival time histogram 

 

As shown in Figure 5-9, the schedules of most households did not change much towards 

the evening, but shifts in arrival times can be seen as a consequence of changes in the network. 

There is a noticeable shift, particularly in the morning periods, as a result of the network 

improvements and the structure of the time windows defined for the households’ activities. In 

other words, even though the total daily OD patterns did not change, the morning peak period 

OD patterns shifted in this simplest of examples drawn from a small sample of households. We 
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Table 5-6 Large-scale NDP-HAPP results 

Budget 

NDP-HAPP Conventional NDP 

# iter Link Construction 
Decision 

dNDP 
obj 

dHAP
P obj 

# total 
trips 

(# intra 

zonal) 

# 
HHs 
affec
-ted 

Time 
(sec)

23 

Link Construction 
Decision NDP obj 

Before 
Improvement NA NA 27.02 617 

199 

(76) 
NA NA NA 27.02 

1000 2 8988, 7875, 7578 25.99 610 
199 

(76) 
5/60 306 8988, 7875, 7578 25.99 

2000 2 
8988, 7875, 7578, 
7937, 8660, 6786, 

8887 
25.30 607 

199 

(76) 
13/6

0 294 
8988, 7875, 7578, 
7937, 8660, 6786, 

8887 
25.30 

3000 2 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 

8889 

24.88 605 
199 

(76) 
14/6

0 326 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 

8889 

24.88 

4000 1 
8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 

24.79 604 
199 

(76) 
17/6

0 196 
8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 

24.79 

                                                 
23 For calculating this computation time, we did not use any decomposition or heuristic method. All calculations are done by calling a CPLEX library directly 
from proposed formulations.  
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8765, 8788 8765, 8788 

5000 1 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 
8765, 8788, 6261 

24.79 604 
199 

(76) 
17/6

0 191 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 
8765, 8788, 6261 

24.79 

No Limit 1 All 24.79 604 
199 

(76) 
17/6

0 215 All 24.79 
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5.5 Conclusion 

 Given the arguments for considering activity behavior in transportation planning, it is 

logical to consider the applicability of activity scheduling in network design problems. 

Conventional NDPs studied previously focused on congestion issues, such as Braess’ Paradox, 

and at best considered only supply side schedules. This research takes a step in advancing NDP 

theory where OD demand is not known a priori, but rather is the subject of responses in 

household itinerary choices that depend on the infrastructure improvements. Using simple 

examples, we show that falsely assuming that household itineraries are not elastic can result in a 

lack of understanding in certain phenomena; e.g., increasing traffic even without increasing 

economic activity due to relaxing of space-time prism constraints, or worsening of utility despite 

infrastructure investments in cases where household objectives may conflict. 

An activity-based network design problem is proposed using the location routing problem 

as inspiration. The kernel problem is a bilevel formulation that includes an upper level network 

design and shortest path problem while the lower level includes a set of disaggregate household 

itinerary optimization problems, posed as HAPP (or in the case with location choice, as 

generalized HAPP) models. By using the simplest case HAPP model to represent the kernel 

problem, conclusions made with it can be extended to more complex variations. As a bilevel 

problem with an NP-hard lower level problem, there is no algorithm for solving the NDP-HAPP 

exactly. Nonetheless, the simple numerical examples demonstrate the sufficient accuracy of the 

decomposition heuristic algorithm derived from the LRP. The large numerical example based on 

Southern California data shows that the solution algorithm can handle medium-sized 

applications. The computation times were found to be reasonable considering the complexity of 



172 
 

the problem posed. The setting also suggests that even if infrastructure investments do not result 

in major changes in itineraries (or any, in this particular example due to the small sample of 

simple 1-member households that do not have many activities in their itineraries), the results 

provide much higher resolution information to a decision maker. Whereas a conventional NDP 

would output the best set of links in which to invest given an assumed daily OD matrix, the 

NDP-HAPP can output the same best set of links, the same daily OD matrix, plus a detailed 

time-of-day temporal distribution of activity participation and travel that shows changes in OD 

patterns for peak periods of interest. 

 Beyond the most obvious extensions and future research applicable to this work 

(improved heuristics, adding uncertainty, dynamic policies, etc.), there are a number of important 

issues that need further study. Congestion effects certainly fall among the top of that list, and the 

interplay between congestion effects and schedule effects will be an interesting challenge to 

tackle. The kernel NDP-HAPP currently handles planning and tactical considerations, but 

expansions of the problem are needed to include such operational network design strategies as 

optimal toll pricing, ramp metering, or signal timing. There are actually two levels of congestion 

for consideration. The first is the effect on the infrastructure layer, which is what Lam and Yin 

(2001) or a dynamic traffic assignment integration could achieve. Congested links in the upper 

level problem would result in multiple paths between each pair of nodes, which means some 

weighting of travel times is needed to translate over a single perceived travel time matrix for the 

lower level household scheduling problems. We suspect that although incorporating congestion 

effects in HAPP should be straightforward by using feedback loops with a connected DTA 

model, the consideration of congestion along with demand scheduling within an NDP framework 

will be not be so simple. Recent advances in activity-based travel simulations can at least provide 



173 
 

a convenient platform to generate synthetic data for a whole population, which is required for 

integration of network design problems with both congestion and demand.  

The other congestion effect is at the activity layer, and more generally speaking refers to 

both negative (congestion) and positive (bandwagon) effects. For example, the time-dependent 

utility of some activities may depend heavily on how popular they are with multiple individuals. 

Another effect that can be incorporated is the link/node capacity in the upper level problem. 

Since only the shortest path between all nodes is being allocated to the households, adding 

capacity would require some weighted average path travel times similar to the link congestion 

effect. Also, by adding node capacity, we can impose upper limits of each facility location which 

ultimately leads to utility changes of activity participation at a given time segment.   

 We believe that there is a tremendous opportunity to apply activity-based NDPs to 

networks where demand scheduling is a more important consideration than congestion effects: 

one obvious application is multimodal transport system network design. Because there are only 

supply-side scheduling considerations in the state-of-the-art NDPs for multimodal systems, each 

system can only be evaluated on its own. However, a unified demand scheduling platform is 

needed so that alternative systems and their effects on households’ schedules can be evaluated in 

a NDP framework. Due to the lack of such a unified treatment using demand scheduling, many 

modern multimodal transport systems (park-and-ride, carsharing, demand responsive transit, 

parking pricing, etc.) cannot be evaluated by public planning agencies—the historical attention 

on only congestion has left out the importance of demand scheduling which is more critical for 

developing these modern systems.  
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Another important consideration is the number of new types of NDPs that can benefit 

from having activity or itinerary response, not just from transportation planning perspective. For 

example, private firms can integrate supply chain demand networks with their facility networks 

in a similar fashion so that supply chain patterns (modeled as activity schedules) can be output 

along with facility investment decisions in an integrated fashion. 
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CHAPTER 6 CONCLUSION 

 

This dissertation proposes various methods to integrate the travel demand procedure with 

transportation infrastructure from both the demand and supply sides. The particular travel 

demand model we use in this dissertation is the HAPP problem. Its structure of mathematical 

programming provides a convenient platform for integration with network problems since 

network problems are often formulated as mathematical programming. Then these models are 

applied to transportation sustainability regarding the adoption of AFVs.  

  

6.1 SUMMARY OF CONTRIBUTIONS 

 The LSP-HAPP is developed in Chapter 2. This model adds destination choice to the 

HAPP, which originally made simultaneous travel decisions of activity allocation between 

household members, sequence of activities, departure time, and mode choice. Destination is not 

an independent decision but rather a complex decision made from interactions with other travel 

decisions such as accessibility, time-of-day, trip-chaining, or travel mode. An exact dynamic 

programming method is adopted to solve LSP-HAPP. When applied to a real data set, the results 

generated reasonable destination and activity start time predictions. Computational time is also 

found to be superior to direct calculation. An application of using LSP-HAPP as a synthetic full-

day travel pattern is also presented. This model can work as a bridge to link between travel 

demand models with transportation network, more generally, with infrastructure as seen in the 

later chapters.  
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 In Chapter 3, HAPPR and HAPPC are developed to represent the best usages of HFCVs 

and BEVs, respectively. For the worst usages of HFCVs and BEVs, refueling trip insertion 

analysis and charging delay analysis are used. This analysis derives several useful policy 

implications. This kind of upper and lower bound analysis can also be utilized for other 

circumstances with no apparent data such as infrastructure service level changes, vehicle (or 

personal) constraint changes, policy changes, or fuel cost changes. This is possible due to the 

HAPP structure that it formulates the physical spatial and temporal constraints. We can impose 

the circumstantial constraints in addition to the original spatial and temporal constraints.  

 In Chapter 4, a facility location problem with full-day scheduling and routing 

considerations (Location-HAPP) is formulated as a Location-Routing Problem (LRP). Column 

generation technique is adapted to solve this problem. The sub-problem of finding an entering 

column vector is found via a new search method we developed to ease the computation of 

calculating many np-hard HAPP problems. Although this formulation can be applied to services 

that require coverage, we specify its application to hydrogen refueling station siting in this 

dissertation. From the perspectives of refueling station siting works, it introduces a tour-based 

approach with tour construction capability. The results and the coverage matrices indicate that 

excluding vehicle-infrastructure interactions as well as routing and scheduling interactions may 

over-estimation of the minimum number of refueling stations to guarantee the same level of 

accessibility.    

In Chapter 5, a generalized framework for travel demand models and network problems 

is proposed. OD demand is assumed not known a priori, but rather is the subject of responses in 

household travel decisions that depend on the network level of service. A solution method that 

decomposes the problem into each decision maker’s rationale is developed and applied to small 
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examples and a case study. Computational time is reasonable given the complexity of the 

problem, and the error rate is between 0 – 5% when tested with examples with known optimal 

solutions. Although the particular travel demand model we use is HAPP, and the particular 

network problem is NDP (NDP-HAPP), these sub-problems can be substituted with other travel 

demand and network models. 

 

6.2 FUTURE RESEARCH 

One important feature of activity-based travel demand models is that it can be used as a 

micro-simulation tool for the whole population in the study area. In this dissertation, we only 

used a sample data set from the California Travel Survey, and the applications simply utilize the 

reported data set. Activity-based travel demand model needs to be able to synthesize the feasible 

activity/travel patterns to represent the whole population. Not only would this approach output 

better forecasting results, but the data set size of real demand leads us to evaluate various 

infrastructure capacities. For example, we can test service quality (waiting time) via queuing at 

early stage refueling stations as mentioned in Location-HAPP. This can also be tied to the 

congestion effect mentioned in NDP-HAPP to address the interplay between congestion effects 

and schedule effects. 

The HAPP needs many further methodological and practical developments to be 

functional as a simulation tool, such as CMEM (Bhat et al., 2004), ALBATROSS (Arentze and 

Timmermans, 2004), or TASHA (Miller and Roorda, 2003). As noted throughout this 

dissertation, HAPP formulates the physical constraints of time and space dimensions and 

therefore can provide feasible synthetic patterns of certain phenomena with no preceding data or 
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observations. Also, its unique structure can be used to tackle some transportation issues that 

cannot be explained by other types of models. Major developments that need to be made is, first, 

the full integration of mode choice. Although the original HAPP includes some level of mode 

choice – vehicles owned by the household, along with carpooling decisions, it needs to be able to 

include other types of travel modes such as public transit, walking and biking. Second, activity 

participation decisions need to be endogenous. Some level of activity participation is addressed 

in Gan and Recker (2012), but activity duration decisions need to be made within the model. 

Third, more efficient computational methods need to be explored since computation has been 

one of the issues regarding the practicality of HAPP. The primary goal of activity-based travel 

demand models is travel demand forecasting to represent the population, and therefore their 

process times need to be highly efficient.  

Extensions and future research on network problems in this dissertation include adding 

uncertainty and multi-period approach. We have presented the problems with rather simple 

network problems to focus on the presentation of the concept, but it is unrealistic that network 

decisions are made for one period with deterministic parameters. For the extension of more 

sophisticated network problems, we can utilize various ideas, concepts, and heuristics from the 

rich literature in this area.  
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APPENDIX 2-A LSP-HAPP NOTATION 

 

The following notations (extended from those in Recker, 1995) are used in the formulation:  

 

  {            }:  the set of   different activity types with unspecified locations that 

the household needs to complete in a given day. The household 

needs to choose one, and only one, location from among many 

candidate locations for each activity in this set.  

aAn : the number of alternative locations for conducting activity type aA  

   {            }:  the set of those out-of-home activities, each with a single 

“predetermined” location, to be completed by travelers in the 

household. 

      :  the combined set of all out-of-home activities scheduled for 

completion by the household 

  
  {        }:  the set designating the respective locations at which activities with 

predetermined locations are performed. 

   

  {                  
}: the set designating “potential” locations at which 

activity    may be performed—one, and only one, may be 

selected. 

   

  {   ∑    

   
         ∑    

   
           ∑    

 
   }              : the 

set designating “potential” locations at which activity    may be 
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performed—one, and only one, may be selected for each activity 

          . 

  
      

 
     {                  

       
        ∑    

 
     } : the 

set designating “potential” locations at which all activities with 

unspecified locations,     , may be performed. 

     
    

    
     

       

  {           } : the set designating locations at 

which the combined sets of activities with predetermined and 

multiple candidate locations may be performed. 

  
  {              }: the set designating the ultimate destinations of the "return to 

home" trips for activities with predetermined locations.  (It is noted 

that the physical location of each element of   
  is "home".) 

   

  {                        
}: the set designating the ultimate 

destinations of the "return to home" trips for the    activity—each 

element is paired to the location selected for activity   .  (It is 

noted that the physical location of each element of    

  is "home".) 

   

  {     ∑    

   
           ∑    

   
             ∑    

 
   }       

     : set designating ultimate destination of the "return to 

home" trip for each activity   —each element is paired to the 

location selected for each activity           . (Note that the 

physical location of each element of    

  is "home".) 

  
      

 
     {                     ∑    

 
            } : set 

designating all possible ultimate destinations of the "return to 

home" trips for “potential” locations at which all activities with 
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unspecified locations,     .  (It is noted that the physical 

location of each element of   
  is "home".) 

     
    

    
     

       

  {                      } : set 

designating all possible ultimate destinations of the "return to 

home" trips for the combined set of activities. (Note that the 

physical location of each element of    is "home".) 

       : set of nodes comprising both predetermined locations and 

candidate locations of activities, and their corresponding “return 

home nodes”. 

  {        }: set of all nodes, including those associated with the initial and final 

return to home. 

  {          | |}:  set of vehicles used by travelers in the household to complete their 

scheduled activities. 

 ,i ia b
:  time window of available start times for activity  i.  (Note: ib  must 

precede the closing of the availability of activity i by an amount 

equal to or greater than the duration of the activity.) 

 ,n i n ia b  :  time windows for the "return home" arrival from activity  i. 

 0 0,a b
:  departure window for the beginning of the travel day. 

 2 2,n i n ia b  :  arrival window by which time all members of the household must 

complete their travel. 

is : duration of activity  i. 
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uwt
: travel time from the location of activity u to the location of activity 

w. 

uwc
: travel cost from location of activity u  to the location of activity  w  

by vehicle . 

CB
: household travel cost budget. 

tB

: travel time budget for the household member using vehicle . 
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APPENDIX 2-B LABEL GENERATION PROCEDURE OF GROCERY SHOPPNG 

LOCATION SELCTION: SINGLE VEHICLE 

Iteration Index Visited 
nodes,   

Terminal 
node,   

Current 
cost, 

        

Time window 
constraints, 
       24 

Previous 
Path index 

    

(3 labels) 

1 {1} 1 1.38 

        

       

           

0 

2 {2} 2 0.31 

        

           

           

0 

3 {3} 3 1.56 

        

           

           

0 

    

(7 labels) 

4 {1 2} 1 1.69 
       

         
    

2 

5 {1 3} 1 1.63 
       

         
    

3 

6 {1 2} 2 2.75 
            

            
1 

7 {1 3} 3 1.44 
            

         
    

1 

8 {1 4} 4 2.75             1 

                                                 
24 This column only shows arrival time windows that are newly added during the iteration.  Constraints from 
previous paths carry on, but due to space limit, they are not shown in this table.  The full set of constraints can be 
constructed by tracking down previous indexes. 
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9 {2 5} 5 0.63 
          

         
    

2 

10 {3 6} 6 3.13 
          

         
    

3 

    

(12 
labels) 

11 {1 2 5} 1 2.00 
       

           
9 

12 {1 3 6} 1 4.50 
           

           
10 

13 {1 2 4} 2 3.06 
            

           
8 

14 {1 3 4} 3 4.31 
           

           
8 

15 {1 3 4} 4 3.00 
            

         
    

5 

16 {1 3 4} 4 3.00 
            

         
    

7 

17 {1 2 4} 4 3.06 
            

         
    

4 

18 {1 2 4} 4 3.06 
            

         
    

6 

19 {1 2 5} 5 3.06             4 
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20 {1 2 5 } 5 3.06 
            

         
    

6 

21 {1 3 6} 6 3.00 
            

         
    

5 

22 {1 3 6} 6 3.00 
            

         
    

7 

    

(12 
labels) 

23 {1 2 4 5} 4 3.38 
            

         
    

11 

24 {1 3 4 6} 4 3.00 
            

      
21 

25 {1 3 4 6} 4 3.00 
            

      
22 

26 {1 3 4 6} 4 5.88 
            

         
    

12 

27 {1 2 4 5} 4 3.06 
            

      
19 

28 {1 2 4 5} 4 3.06 
            

      
20 

29 {1 2 4 5} 5 3.06 
            

      
18 

30 {1 2 4 5} 5 3.06 
            

      
17 
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31 {1 2 4 5} 5 3.38 
            

         
    

13 

32 {1 3 4 6} 6 3.00 
            

      
15 

33 {1 3 4 6} 6 3.00 
            

      
16 

34 {1 3 4 6} 6 5.88 
            

         
    

14 

    

(12 
labels) 

35 {1 2 4 5 
7} 7 3.00 

            

      
24 

36 {1 3 4 6 
7} 7 3.00 

            

      
32 

37 {1 3 4 6 
7} 7 3.00 

            

      
25 

38 {1 2 4 5 
7} 7 3.06 

            

      
30 

39 {1 3 4 6 
7} 7 3.00 

            

      
33 

40 {1 2 4 5 
7} 7 3.06 

            

      
28 

41 {1 2 4 5 
7} 7 3.06             

      29 

42 {1 2 4 5 
7} 7 5.88             

      26 

43 {1 2 4 5 
7} 7 3.38             

      31 
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44 {1 3 4 6 
7} 7 3.38             

      23 

45 {1 3 4 6 
7} 7 3.06             

      27 

46 {1 3 4 6 
7} 7 5.88             

      34 
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APPENDIX 3-A HFCV: INSERTION ANALYSIS 

 
Let hn  be the number of out-of-home and at-home activities performed by household h : 

each household’s activity locations are 0 1 0{ , ,..., ,..., , }h

h h h h h

i n
P P P P PhP  where 0

hP  denotes the 

home location of household h , and h

iP  denotes the location for activity i  of household h . It is 

noted that in-home activities during the day are also considered as separate activities. 

Corresponding arrival times are 1 0{ , ,..., ,..., , }h

h h h h

i n
NA a a a aha  and departure times are 

0 1{ , ,..., ,..., , }h

h h h h

i n
b b b b NAhb . There are a total of 1hn   trips for household h .  

 

For  s.t 0 1hk k n       

Initially, start with a sequence of activities of home: 

 0{ }hPh
kP , { }NAh

ka , 0{ }hbh
kb  

 For all activities before refueling, 0 i k      

 Add activities and corresponding times:  

h

iPh h
k kP P , h

iah h
k ka a , h

ibh h
k kb b   

 For r R          

Add a refueling activity at refueling station r : 

rPh h
k,r kP P  

,
,( )r h h h

k k k ra a t  h h
k,r ka a  

,
,( )r h h h

k k k rb b t s   h h
k,r k Rb b   

where  
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rP  denotes the refueling location of station r  

,
h

k rt  denotes the travel time from activity location k  of household h  to 

refueling station r  

,r h

ka / ,r h

kb  denote arrival/departure time at refueling station r when the 

refueling trip is following activity k  of household h  

sR  denotes refueling time 

Then, add a trip from the refueling station to the next activity location: 

1
h

kP h h
k,r k,rP P  

1 , , 1 , 1( )h h h h h

k k k r r k k ka a t t t s       h h
k,r k,r Ra a

1 , , 1 , 1( )h h h h h

k k k r r k k kb b t t t s       h h
k,r k,r Rb b   

where  

, 1
h

r kt   denotes the travel time from refueling station r  to activity location 

1k   of household h  

, 1
h

k kt  denotes travel time from activity location k  to 1k  . 

, , 1 , 1
h h h

k r r k k kt t t    is the deviation time caused by refueling at station r  

between activities k  and 1k   

sR  refers to refueling duration 

Then select the least deviated pattern among r different generated patterns: 

h h
k k,r*P P , h h

k k,r*a a , h h
k k,r*b b  

where *r represents a refueling station with the least deviation:   
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, , 1 , 1* arg min( )h h h

k r r k k k
r

r t t t     

, * *, 1 , 1
h h h h

k k r r k k kd t t t     refers to the deviation time when visiting *r  between 

activities k  and 1k   

 

 Then, for the remaining activities of the sequence, 1 1k i n      

Add activities and corresponding times:  

h

iPh h
k kP P , ( )h h h

i i ka a d s   h h
k k Ra a , ( )h h h

i i kb b d s   h h
k k Rb b  

Following activities arrival/departure times are delayed by the deviation and 

refueling time 

 

Select the smallest deviant insertion and the largest deviant insertion and measure by the earliest 

and the latest return home times: 

h
k_bestP where 0_ arg min( ( ))h

k

k best a h
ka  
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APPENDIX 3-B HAPPR 

 

Define the following sets that are specific for each household, hH  

 

{1,2,..., }h hV V : set of vehicles available to travelers in household   to complete 

their scheduled activities, one or more of which is a HFCV. 

{1,2,..., }R

h Rn P : set designating candidate location at which each service type R  

can be performed.  Index numbers and physical locations of this set 

are identical for all households, but the set is defined specifically 

for each household since index numbers of “return home” nodes 

from this set are different across households.  

{ 1, 2,..., }A h

h R R h R An n n n n     P : set designating location at which each assigned activity is 

performed for household,  .  Each activity and the physical 

location is different for each household.  

{1,2,..., , 1, 2,..., }R A h

h h h R R R h R An n n n n n        P P P : set designating location at which 

each activity is performed for household  . 

{ 1, 2,..., }R

h h h h Rn n n n    P : set designating the ultimate destination of the "return to home" 

trip from candidate locations of service type R . Physical 

locations of this set are identical for all households, but the set is 

defined specifically for each household since index numbers are 

different across households.  (It is noted that the physical location 

of each element of R

h

P  is "home".) 
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{ 1, 2,...,2 2( )}A h

h h R R h R An n n n n n      P : set designating the ultimate destination of the 

"return to home" trip from out-of-home activities to be completed 

by travelers in household,  . (It is noted that the physical location 

of each element of A

h

P  is "home".) 

{ 1, 2,..., , 1, 2,...,2 2( )}R A h

h h h h h h R h R R h R An n n n n n n n n n            P P P : set 

designating the ultimate destination of the "return to home" trip for 

each activity for household  . (It is noted that the physical location 

of each element of h

P  is "home".) 

,h h

i ia b   :  time window of available start times for activity i for household h .  (Note: h

ib  

must precede the closing of the availability of activity i of household h , by an 

amount equal to or greater than the duration of the activity.) 

,
h h

h h

n i n ia b 
 
  :  time windows for the "return home" arrival from activity  i of household h . 

0 0,h ha b   :  departure window for the beginning of the travel day for household h . 

2 2,
h h

h h

n i n ia b 
 
  : arrival window by which time all members of the household h  must complete 

their travel. 

h

is :  duration of activity  i of household h . 

,
h

u wt :  travel time from the location of activity  u  to the location of activity w. 

,
,
h

u wc : travel cost for household h , from location of activity u to the location of activity w  

by vehicle . 

h

CB :  travel cost budget for household h . 
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,h
TB :  travel time budget for the household h ’s member using vehicle . 

 =  h h h

 P P P : set of nodes comprising completion of all the activities of household h . 

 =  A A A

h h h

 P P P : set of nodes comprising completion of the activities household h . This 

does not include trips related to service type R  

 =  R R R

h h h

 P P P : set of nodes comprising completion of service type R  of household h . 

 =    A A R R A R

h h h h h h h

       P P P P P P P : set of nodes comprising completion of the 

household's scheduled and service type R  activities. 

 0, ,2 1h h hn N P : set of all nodes for household h , including those associated with the initial 

departure and final return to home.  
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, , ,
2 1 0 , ,( ) ( )

h h
h h

h h h

E v h v h T h h D h v h

h h n h w n w h u w u w

v w w u v

Z T T T T t X  


 

    

            
V P N N V

   (3-A1) 

Subject to  

,
, 1,     

h h

v h A

u w h

v w

X u 

 

  
V N

P          (3-A2)  

,
, 1,     

R
hh

v h

u w h

wu

X v
 

  
NP

V          (3-A3) 

, ,
, , 0,     ,

h h

v h v h

u w w u h h

w w

X X u v
 

    
N N

P V        (3-A4) 

,
0, 1,     

h

v h

w h

w

X v


 
P

V          (3-A5) 

, ,
,2 1 0, 0,     

h

h h

v h v h

u n u h

u u

X X v
 



 

   
P P

V         (3-A6) 

, ,
, , 0,     ,

h

h h

v h v h

w u w n u h h

w w

X X u v



 

    
N N

P V        (3-A7) 

, ,     ,
h

h h h h

u u u w n u hT s t T u w 

   P         (3-A8) 

,
, ,1 ,     , ,v h h h h h

u w u u u w w h hX T s t T u w v      P V       (3-A9) 

, ,
0, 0 0,1 ,     ,v h v h h h h

w u w w h hX T s t T w v      P V      (3-A10) 

,
,2 1 ,2 1 2 11 ,     ,

h h h

v h h h h h

u n u u u n n h hX T s t T u v

        P V     (3-A11) 

,     h h h

u u u ha T b u  P          (3-A12) 

,
0 0 0 ,     h v h h

ha T b v  V         (3-A13) 

,
2 1 2 1 2 1,     

h h h

h v h h

n n n ha T b v    V        (3-A14) 

,
, 1 ,     , ,v h h h

u w u w w h h hX Y d Y u w v      P P V      (3-A15)  
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,
, 1 0,     ,w ,v h h

u w w h h hX Y u v     P P V       (3-A16)

,
0, 01 ,     ,v h h h

w w w h hX Y d Y w v     P V       (3-A17) 

0 0,     0 ,     h h

u hY Y D u    P        (3-A18) 

, , ,
, ,

h h h

v h v h v h

u w u w C

v u w

c X B
  

   
V N N

        (3-A19) 

, ,
, ,

h h h

h v h v h

u w u w T

v u w

t X B
  

   
V N N

        (3-A20) 

 

The household-specific decision variables in (A1)-(A20) are: 

 

,
,

v h

u wX  binary decision variable equal to unity if vehicle    travels from activity  u  to 

activity  w, and zero otherwise. 

h

uT   the time at which participation in activity u of household   begins. 

, ,
0 2 1,

h

v h v h

nT T   the times at which vehicle  from household   first departs from home and last 

returns to home, respectively  

h

uY  the total accumulation of either sojourns or time (depending on the selection of  D  

and  
ud )  of household   on a particular tour immediately following completion 

of activity u. 
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APPENDIX 3-C HAPPR: FUEL INVENTORY EXTENSION 

 

, , ,
, 1 ,     , ,v h v h v h R

u j w h h hX F I u j v     N P V      (3-A21)  

, , , ,
, ,1 ,     , ,v h v h v h v h

u w w u u w h hX F F f u w v     N V      (3-A22) 

,0 ,     ,v h v

u h hF I u v   N V        (3-A23) 

, , ,
, ,1 0,     , ,v h v h v h

u w u u w h hX F f u w v     N V       (3-A24)  

where the variable ,v h

wF  is defined as: 

,v h

uF  the fuel inventory of vehicle   of household   at the arrival at the location for activity u. 

and related parameters of  

,v hI  the full fuel inventory of vehicle   of household  .  

,
,
v h

u wf   fuel usage from the location of activity  u  to the location of activity w using vehicle   of 

household  . 

 

In the above, (A21) represents the refueling activity. We assume that a vehicle is refueled to the 

maximum. (A22) represents the fuel consumption, and updates the fuel inventory value. (3-A23) 

constrains that vehicles can only be operated when the fuel inventory is not empty. (3-A24) 

constrains the fuel inventory to be non-negative while traveling since ,v h

uF  is defined only upon 

the arrival at activity u. 

If the fuel inventory constraints are employed, we can relax the constraint of one visitation to a 

refueling trip. A driver can choose not to refuel or to refuel one or more times (for long distance 

trips) as in (A2-1) instead of one refueling trip per day as in (A2).   
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,
, 0,     

R
hh

v h

j w h

wj

X v
 

  
NP

V         (3-A2-1)  
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APPENDIX 3-D BEV: DELAY ANALYSIS 

 

Let hn  be the number of out-of-home and at-home activities performed by household h : 

each household’s activity locations are 0 1 0{ , ,..., ,..., , }h

h h h h h

i n
P P P P PhP  where 0

hP  denotes the 

home location of household h , and h

iP  denotes the location for activity i  of household h . It is 

noted that in-home activities during the day are also considered as separate activities. 

Corresponding reported arrival times are 1 0{ , ,..., ,..., , }h

h h h h

i n
NA a a a aha  and departure times are 

0 1{ , ,..., ,..., , }h

h h h h

i n
b b b b NAhb . There are a total of 1hn   trips for household h . Define set of 

battery status 1 0{ , ,..., ,..., , }h

h h h h h

i n
R E E E EE . It is assumed that the vehicle starts with a fully 

charged battery.  

 

Initially, start with a sequence of activities of home: 

 Add the home node departure at the reported departure time. 

0{ }hPhP , { }NAha , 0 0{ }h hb b hb  

{ }h RE  

Repeat for 1 1hk n            

rPh hP P  

1 1,( )h h h

k k k ka b t   h ha a  

h

kbh hb b  where 
, 1

, 1

, 1

,
h

k k k h

k k k k k
k

h

k k k k k k

e E
a E r s e

b r

a s E r s e







 
   

 
    
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1 , 1( max{ ( ), } )h h h h h h h

k k k k k kE E r b a R e      E E  

where k k ks b a   denotes the reported duration of activity k  of household h   
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APPENDIX 3-E: HAPPC 

 

Define the following sets that are specific for each household, hH  

 

, , ,
2 1 0 , ,( ) ( )

h h
h h

h h h

E v h v h T h h D h v h

h h n h w n w h u w u w

v w w u v

Z T T T T t X  


 

    

            
V P N N V

   (3-A1) 

Subject to  

(3-A2), (3-A3) – (3-A20) 

, , , ,
0, 0,1 ,     w ,v h v h v h v h

w w w h hX E R e v     N V       (3-A25) 

, , , , ,
, , ,1 ( ) ,     ,w ,v h v h v h v h v h

u w w u w u u w u w h hX E E r T T t e u v         P V    (3-A26-1) 

, , , ,
, ,1 ,     ,w ,v h v h v h v h

u w w u w h hX E R e u v     P V      (3-A26-2) 

, , , ,
, ,1 ,     ,w ,v h v h v h v h

u w w u u w h hX E E e u v     P V      (3-A27) 

,0 ,     h v h

u hE R u  N         (3-A28) 

, , , ,
,2 1 2 1 , ,2 11 ( ) ,     ,

h h h

v h v h v v h v h

u n u n u u w u n h hX E r T T t e u v          P V    (3-A29) 

 

where the variable ,v h

uE  is defined as: 

,v h

uE  the electric battery inventory of vehicle   of household   right before the 

beginning of activity u. 

and related parameters of  

,v hI  the full electric battery inventory (capacity) of vehicle   of household  .  
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,
,

v h

u we   the electric battery consuption from the location of activity  u  to the location of 

activity w using vehicle   of household  . In this study, travel distance is used for 

electric battery usage.  

r  the rate at which the electric battery is recharged 

 

(3-A25) represents the battery consumption, and updates the battery inventory value for 

the first trip. A vehicle is assumed to be fully charged at the start of the travel day. (3-A26-1) 

constrains that if the electric battery is recharged, the amount is dependent on time and rate, if it 

is less than the capacity of the battery. If the battery reaches the capacity while performing an 

activity, charged amount is the capacity (3-A26-2). This is equivalent to taking the battery status 

as the maximum of ( )k k kE r b a    and the capacity.  

 (3-A26-1) (3-A26-2) along with (3-A27) states the upper and lower bounds of the battery 

status. If the vehicle is charged, the upper bound of charged battery is decided by time and 

charging rate (3-A26-1), or the capacity (3-A26-2). If the vehicle is not charged at all, the battery 

status is subtracting the consumption (3-A28). (3-A29) constrains the battery status of the final 

return home that it needs to be greater than the final battery consumption. Although the final 

return home has no distance value since it is one of the return home trips to final return home 

trip,  this condition is imposed to earlier trips through (3-A26) – (3-A28).  
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APPENDIX 4-A NOTATIONS AND FORMULATIONS OF HAPPR 25 

min Travel Disutility of Household hO h       (4-A1) 

,
, 1,     

h h

v h A

u w h

v w

X u 

 

  
V N

P         (4-A2)  

,
, 1,     

R
hh

v h

j w h

wj

X v
 

  
NP

V         (4-A3) 

, ,
, , 0,     ,

h h

v h v h

u w w u h h

w w

X X u v
 

    
N N

P V       (4-A4) 

,
0, 1,     

h

v h

w h

w

X v


 
P

V          (4-A5) 

, ,
,2 1 0, 0,     

h

h h

v h v h

u n u h

u u

X X v
 



 

   
P P

V        (4-A6) 

, ,
, , 0,     ,

h

h h

v h v h

w u w n u h h

w w

X X u v



 

    
N N

P V       (4-A7) 

, ,     ,
h

h h h h

u u u w n u hT s t T u w 

   P        (4-A8) 

,
, ,1 ,     , ,v h h h h h

u w u u u w w h hX T s t T u w v      P V      (4-A9) 

, ,
0, 0 0,1 ,     ,v h v h h h h

w u w w h hX T s t T w v      P V      (4-A10) 

,
,2 1 ,2 1 2 11 ,     ,

h h h

v h h h h h

u n u u u n n h hX T s t T u v

        P V     (4-A11) 

,     h h h

u u u ha T b u  P          (4-A12) 

,
0 0 0 ,     h v h h

ha T b v  V         (4-A13) 

,
2 1 2 1 2 1,     h h h

h v h h

n n n ha T b v    V        (4-A14) 

,
, 1 ,     , ,v h h h

u w u w w h h hX Y d Y u w v      P P V      (4-A15)  

                                                 
25 It is noted that this is the same as HAPPR in APPENDIX 3-A, except for the objective function.  
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,
, 1 0,     ,w ,v h h

u w w h h hX Y u v     P P V       (4-A16)

,
0, 01 ,     ,v h h h

w w w h hX Y d Y w v     P V       (4-A17) 

0 0,     0 ,     h h

u hY Y D u    P        (4-A18) 

, , ,
, ,

h h h

v h v h v h

u w u w C

v u w

c X B
  

   
V N N

        (4-A19) 

, ,
, ,

h h h

h v h v h

u w u w T

v u w

t X B
  

   
V N N

        (4-A20) 

 

The household-specific decision variables in (4-A1)-( 4-A20) are: 

 

,
,

v h

u wX  binary decision variable equal to unity if vehicle    travels from activity  u  to 

activity  w, and zero otherwise. 

h

uT   the time at which participation in activity u of household   begins. 

, ,
0 2 1,

h

v h v h

nT T   the times at which vehicle  from household   first departs from home and last 

returns to home, respectively  

h

uY  the total accumulation of either sojourns or time (depending on the selection of  D  

and  
ud )  of household   on a particular tour immediately following completion of 

activity u. 
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APPENDIX 5-A dHAPP CONSTRAINTS  

, 1,     ,
h h

v h

uw h

v V w

X u P h

 

   
Q

H        (5-A1) 

, , 0,     , ,
h h

v h v h

uw wu h h

w w

X X u P v V h
 

     
Q Q

H      (5-A2) 

,
0 1,     ,

h

v h

w h

w P

X v V h


   H         (5-A3) 

, ,
,2 1 0, 0,     ,

h h

v h v h

u n u h

u P u P

X X v V h
 



 

     H       (5-A4) 

, ,
, 0,     , ,

h h

v h v h

wu w n u h h

w w

X X u P v V h



 

     
Q Q

H      (5-A5) 

,     , ,h h h h

u u uw n u hT s t T u w P h

    H       (5-A6) 

, 1 ,     , , ,v h h h h h

uw u u uw w h hX T s t T u w P v V h       H     (5-A7) 

, ,
0 0 01 ,     , ,v h v h h h h

w u w w h hX T s t T w P v V h       H     (5-A8) 

,
,2 1 ,2 1 2 11 ,     , ,v h h h h h

u n u u u n n h hX T s t T u P v V h

         H     (5-A9) 

,     ,h h h

u u u ha T b u P h   H         (5-A10) 

,
0 0 0 ,     ,h v h h

ha T b v V h   H        (5-A11) 

,
2 1 2 1 2 1,     ,h v h h

n n n ha T b v V h     H        (5-A12) 

, 1 ,     , , ,v h h h

uw u w w h h hX Y d Y u P w P v V h       H     (5-A13) 

, 1 0,     ,w , ,v h h

uw w h h hX Y u P P v V h      H      (5-A14)

,
0 01 ,     , ,v h h h

w w w h hX Y d Y w P v V h      H      (5-A15) 

0 00,     0 ,     ,h h

hY Y D u P h    H       (5-A16) 
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, , , ,     
h h h

v h v h v h

uw uw C

v V u w

c X B h
  

    
Q Q

H        (5-A17) 

, , ,     ,
h h h

h v h v h

uw uw T h

v V u w

t X B v V h
  

     
Q Q

H       (5-A18) 

, (0,1),     , , ,v h

uv h hX u w v V h H   Q       (5-A19) 
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APPENDIX 5-B CASE STUDY LINK IMPROVEMENT 

 

ID A node B node Facility 
Distance 

(miles) 

Travel Time 

(minutes) 

Avg Speed 

(MPH) 
Cost 

3779 37 79 SR 39 6.03 13.13 27.56 166.19 

7937 79 37 SR 39 6.03 13.13 27.56 166.19 

7917 79 17 SR 39 5.5 11.98 27.56 151.58 

1779 17 79 SR 39 5.5 11.98 27.56 151.58 

6086 60 86 SR 57 6.36 6.50 58.75 373.65 

8660 86 60 SR 57 6.36 6.50 58.75 373.65 

8667 86 67 SR 57 4.77 4.87 58.75 280.24 

6786 67 86 SR 57 4.77 4.87 58.75 280.24 

4839 48 39 SR 55 12.27 15.68 46.96 576.20 

3948 39 48 SR 55 12.27 15.68 46.96 576.20 

6162 61 62 SR 22 5.29 6.71 47.28 250.11 

6261 62 61 SR 22 5.29 6.71 47.28 250.11 

6587 65 87 SR 261 4.6 4.30 64.20 295.32 
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8765 87 65 SR 261 4.6 4.30 64.20 295.32 

8788 87 88 SR 261 2.53 2.36 64.20 162.43 

8887 88 87 SR 261 2.53 2.36 64.20 162.43 

8889 88 89 SR 261 4.07 3.80 64.20 261.29 

8988 89 88 SR 261 4.07 3.80 64.20 261.29 

7875 78 75 SR 241 5.65 5.21 65.09 367.76 

7578 75 78 SR 241 5.65 5.21 65.09 367.76 

  




