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Abstract

Background.—Pathologists analyze biopsy material at both the cellular and structural level to 

determine diagnosis and cancer stage. Mitotic figures are surrogate biomarkers of cellular 

proliferation that can provide prognostic information; thus, their precise detection is an important 

factor for clinical care. Convolutional Neural Networks (CNNs) have shown remarkable 

performance on several recognition tasks. Utilizing CNNs for mitosis classification may aid 

pathologists to improve the detection accuracy.

Methods.—We studied two state-of-the-art CNN-based models, ESPNet and DenseNet, for 

mitosis classification on six whole slide images of skin biopsies and compared their quantitative 

performance in terms of sensitivity, specificity, and F-score. We used raw RGB images of mitosis 
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and non-mitosis samples with their corresponding labels as training input. In order to compare 

with other work, we studied the performance of these classifiers and two other architectures, 

ResNet and ShuffleNet, on the publicly available MITOS breast biopsy dataset and compared the 

performance of all four in terms of precision, recall, and F-score (which are standard for this data 

set), architecture, training time and inference time.

Results.—The ESPNet and DenseNet results on our primary melanoma dataset had a sensitivity 

of 0.976 and 0.968, and a specificity of 0.987 and 0.995, respectively, with F-scores of .968 

and .976, respectively. On the MITOS dataset, ESPNet and DenseNet showed a sensitivity of 

0.866 and 0.916, and a specificity of 0.973 and 0.980, respectively. The MITOS results using 

DenseNet had a precision of 0.939, recall of 0.916, and F-score of 0.927. The best published result 

on MITOS (Saha, et al. [1]) reported precision of 0.92, recall of 0.88, and F-score of 0.90. In our 

architecture comparisons on MITOS, we found that DenseNet beats the others in terms of F-Score 

(DenseNet 0.927, ESPNet 0.890, ResNet 0.865, ShuffleNet 0.847) and especially Recall 

(DenseNet 0.916, ESPNet 0.866, ResNet 0.807, ShuffleNet 0.753), while ResNet and ESPNet 

have much faster inference times (ResNet 6 seconds, ESPNet 8 seconds, DenseNet 31 seconds). 

ResNet is faster than ESPNet, but ESPNet has a higher F-Score and Recall than ResNet, making it 

a good compromise solution.

Conclusion.—We studied several state-of-the-art CNNs for detecting mitotic figures in whole 

slide biopsy images. We evaluated two CNNs on a melanoma cancer dataset and then compared 

four CNNs on a public breast cancer data set, using the same methodology on both. Our 

methodology and architecture for mitosis finding in both melanoma and breast cancer whole slide 

images has been thoroughly tested and is likely to be useful for finding mitoses in any whole slide 

biopsy images.

Keywords

Pathology; mitoses; melanoma; convolutional neural networks; machine learning

1. INTRODUCTION

Melanomas account for approximately 75% of all skin-cancer-related deaths and are 

responsible for over 10,000 deaths annually in the United States alone [2]. Melanoma is 

highly curable when detected in its earliest stage [3]. The gold standard for diagnosis of 

melanoma is the histopathological examination in which the skin biopsy specimen is 

examined under a microscope by a pathologist [4]. However, a single whole slide image of 

one tissue sample has a size of approximately 2.2 Gigapixels and the biopsy material often 

includes more than one tissue section with hundreds of thousands of cells on each slide, 

posing a great challenge for the pathologist to fully analyze all of the cellular data within the 

images. A pathologist’s diagnosis is often subjective and prone to variability [5, 6]; 

automated diagnosis holds promise to improve accuracy and reproducibility [7]. Thus, 

research on the automated classification of skin biopsies has gained traction with the overall 

goal of assisting pathologists to make accurate diagnoses.

Melanoma diagnosis involves histological analysis of various cellular and architectural 

features. Melanocytic lesions range across a broad spectrum of categories: 1) benign, 2) 
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variably atypical (e.g. demonstrating mild, moderate or severe atypia), 3) melanoma in situ, 

4) invasive melanoma stage T1a, and 5) invasive melanoma >= stage T1b [8]. A mitosis (or 

mitotic figure) remains an important entity in the review of skin biopsy cases as their 

presence may aid in the diagnosis of a melanoma in addition to being associated with poorer 

prognosis. A high mitotic rate in a primary invasive melanoma is associated with a lower 

survival probability. Among the independent predictors of melanoma-specific survival, 

mitotic rate is the strongest prognostic factor after tumor thickness [9]. Thus, the accurate 

detection of mitotic activity is an important role for the pathologist in making cancer 

diagnoses, and because mitoses are small objects with various shapes that can resemble 

normal nuclei, mitosis detection remains a challenging task for humans. Because of its 

clinical importance, the development of automated mitosis detection has become an active 

area of research with the goal of developing decision support systems to assist pathologists 

[10].

Various approaches have been applied to detect mitotic figures. Sertel et al. [11] computed 

the probability map based on the likelihood functions and then used a component-wise two-

step thresholding to find mitoses in neuroblastoma. A graph-based multi-resolution approach 

with color and texture features was used by Roux et al. [12, 13] for mitosis extraction in 

breast biopsy images. Irshad et al. used morphological features to identify cellular entities in 

a breast biopsy dataset [14].

In recent years, with the development of fast and accessible Graphics Processing Units 

(GPUs), Convolutional Neural Networks (CNNs) have gained attention for medical image 

analysis, primarily because of their capability to learn strong structural representations about 

objects of interest (e.g. cellular entities [4] or tissues [15, 16]). For example, Cireşan, et al. 

[4] used a CNN-based method for mitosis detection and won the International Conference 

on Pattern Recognition 2012 (ICPR 2012) mitosis detection challenge by a significant 

margin. Since then, much of the research on mitosis detection in breast cancer biopsy images 

has used CNNs. Simo-Serra [17], Irshad [14] and Wang [18] developed different methods 

that merge CNN image descriptors and handcrafted features to improve the detection. Chen 

and Hao [19] proposed a two-stage mitosis detection pipeline, with a coarse retrieval model, 

followed by a fine discrimination model. In recent work, Li, et al. [20] used a deep detection 

network using residual connection when only the weak label is given. López-Tapia, et al. 

[21] introduced a pyramidal model to detect mitoses. On each pyramid level, a Bayesian 

convolutional neural network is trained to compute class prediction and uncertainty on each 

pixel.

Several CNN-based methods have been proposed for mitosis detection in different tissues, 

including breast [4, 14, 19], stem cells [22], and skin [21]. Unlike natural image datasets 

(e.g. the ImageNet [23]), the number of training samples are limited in medical image 

datasets usually by an order of a few hundred [12, 24, 25]. To achieve strong performance on 

these datasets, CNNs have been complemented with several methods, including hand-crafted 

features [1, 14, 26] and better augmentation strategies [16]. U-Net [16] introduced an 

encoder-decoder architecture with skip-connections for segmenting different biological 

structures in images and demonstrated good performance across several datasets
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Most research in mitosis detection has been conducted on biopsy images other than the skin 

[1, 7, 15, 19]. However, skin biopsy images are different from these biopsy images in terms 

of texture, color, and mitosis shape, as shown in Figure 1. As a result, existing CNN-based 

classifiers trained on these biopsy images may have poor performance on skin biopsies. 

Moreover, to the best of our knowledge, there are no publicly available skin biopsy datasets 

with mitosis annotations. Given the importance of mitosis detection in skin cancer diagnosis, 

we created a new dataset with mitosis-level markings from an expert pathologist. We studied 

and compared the performance of two different state-of-the-art CNNs, one that is 

lightweight in terms of parameters and execution time and one that is much bigger, in terms 

of accuracy, sensitivity, specificity, precision, recall, and F-score. We then compare the 

performance of these two CNNs with two additional state-of-the-art architectures on a public 

breast cancer data set in terms of precision, recall, F-score, architecture, training time, and 

inference time. Our work has several contributions: 1) This is the first paper to experiment 

with finding mitotic figures in whole slide melanoma biopsies. 2) After determining the best 

possible performances on the melanoma biopsy slide images, we showed that this pipeline 

could be applied to a well-known breast cancer data set (MITOS) and compared the results 

from our two models (ESPNet, which was chosen for lightweight network and speed, and 

DenseNet, which was an example of a state-of-the-art network) with the results from several 

published papers, showing that DenseNet could beat all of them and ESPNet came close 

(Table 4). 3) We ran two more models, ResNet and ShuffleNet, on the MITOS dataset for 

further comparison and found that DenseNet is still the best performer in terms of F-1 score 

(DenseNet 0.927, ESPNet 0.890, ResNet 0.865 and ShuffleNet 0.847) and, particularly, in 

terms of Recall (DenseNet 0.916, ESPNet 0.866, ResNet 0.870 and ShuffleNet 0.753), 

which is very important for cancer grading. 4) Our paper, in general, gives a methodology 

and architecture for mitosis finding in both melanoma and breast cancer whole slide images, 

and that is likely to be useful for finding mitoses in any whole slide biopsy images.

2. MATERIALS AND METHODS

2.1. Dataset and Preprocessing

Our dataset comes from hematoxylin and eosin (H&E) stained slides of skin biopsy images, 

acquired in the MPATH study (R01 CA151306). The Institutional Review Board at the 

University of Washington approved all test set study activities. The identification and 

development of these images has been previously described in [5]. All glass slides of skin 

biopsies were scanned at 40x magnification with a high-quality digital scanner. The 

compression method we used on these images is tiff.

2.1.1. Dataset and Materials—An experienced pathologist (SK) chose six skin biopsy 

cases of >= pT1b invasive melanoma, a diagnostic category known to be associated with 

high mitotic activity, from our dataset and cropped 34 areas in the whole slide images 

(WSIs) of these cases. The size of the areas and the number of areas per each case were not 

fixed but were based on the pathologist’s judgment with the aim of marking as many mitoses 

as possible. A total of 628 mitoses in the cropped image areas were marked by the same 

pathologist with a green dot on each mitosis, using the Sedeen Viewer [27]. These marked 
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mitoses provide “class mitosis” samples for training and validation of our binary classifiers. 

The details about our skin biopsy dataset are summarized in Table 1.

Distinguishing mitoses from normal nuclei is a challenge for automated mitosis classifiers. 

Mitoses and nuclei can appear very similar in color and shape; thus, the classifiers require a 

large number of nuclei samples to differentiate between these cellular entities. If the whole 

non-mitosis regions of the image were to be sampled uniformly, many of the non-interesting 

instances such as background would be in the class “non-mitosis” and training a strong 

classifier would be inefficient. To avoid this, we used a standard watershed-based nuclei 

segmentation method [28] to find nuclei in the images and use them as examples for the 

class non-mitosis. Figure 2 shows the output of this nuclei detector on a cropped portion of a 

skin biopsy.

Figure 3 shows some examples of mitoses and normal nuclei, which we note are very similar 

in terms of texture, color, and shape. In the process of sampling mitoses and nuclei, based on 

our experiments, we used a 101×101 patch approximately centered on the target entity’s 

center. If a part of this window lies outside of the image borders, the image is padded using 

mirroring of the border pixels. To help our classifier learn rotation, scale, and translation-

invariant representations, we augmented our training set with standard augmentation 

methods such as rotation (45, 90, 135 or 225 degrees) and mirroring (horizontal and vertical)

The number of mitoses per slide is an order of magnitude fewer than other entities, such as 

nuclei and melanocytes present in the slide. In other words, the dataset is imbalanced. If we 

train a classifier with such an imbalanced dataset, then the classifier will be biased towards 

the entities with more samples. To address this imbalance, a standard approach [29, 30] is to 

maintain a good ratio between positive samples (patches that contain mitoses) and negative 

samples (patches that do not contain mitoses). For our dataset, we empirically found that this 

ratio is 1:3 i.e. the number of negative samples available for training is approximately 3 

times the number of positive samples; resulting in 4,364 mitoses and 12,640 non-mitosis 

samples after data augmentation. Since we used a watershed-based nuclei segmentation [28] 

as a pre-processing method, non-mitosis samples mostly contain nuclei.

2.1.2. Data Split—We split our dataset randomly into training (80%) and validation 

(20%) sets, respectively. The validation set was withheld during the training phase. After the 

training is complete, validation set is used to evaluate the trained model performance.

2.2. Training

2.2.1. Networks: Our classification network uses a standard pipeline [31, 32] that stacks 

encoding and down-sampling units to learn latent representations. In our experiments, we 

used two state-of-the-art encoding units: 1) Efficient Spatial Pyramid of Dilated 

Convolutions (ESPNet) [33] and 2) Densely Connected Convolutional Networks (DenseNet) 

[34]. The same dataset split was used for both ESPNet and DenseNet training and validation.

Efficient spatial pyramid of dilated convolutions (ESPNet):  ESPNet [33] is a fast and 

efficient CNN that was designed for semantic segmentation on mobile devices. The core 

building block of the ESPNet architecture is the ESP unit that decomposes a standard 

Nofallah et al. Page 5

Comput Med Imaging Graph. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convolution into a point-wise convolution and a spatial pyramid of dilated convolution. This 

factorization reduces the computational complexity of the ESP unit in comparison to the 

standard convolution. Figure 4 (a) visualizes the ESP unit. We chose this unit in our study 

because of its good performance in segmenting breast biopsy whole slide images [15].

Densely Connected Convolutional Networks (DenseNet):  DenseNet, densely connected 

convolutional neural network [34], introduces a novel connectivity mechanism to improve 

the flow of information between different stacked convolutional layers. As shown in Figure 

4 (b), this unit establishes a direct link between different convolutional layers. This 

connectivity pattern provides multiple paths for gradients to flow back to the input and thus, 

helps in learning better representations.

2.2.2. Training parameters: We train our classifiers using the ADAM optimizer [35] 

for a total of 20 epochs with an initial learning rate of 0.001. We decay the learning rate by 

0.1 after every 5 epochs. During training, we minimize the cross-entropy loss [36].

2.2.3. Evaluation metrics: We evaluate the performance of our classifier on the 

melanoma dataset using six metrics: four standard metrics (precision, recall, F-score, and 

accuracy) and two widely used metrics in clinical care (sensitivity and specificity):

• Accuracy = TP + TN
TP + FP + TN + FN

• Precision = TP
TP + FP

• Recall = TP
TP + FN

• F ‐score = 2 × Precision×Recall
Precision+Recall

• Sensitivity = TP
TP + FN

• Specificity = TN
TN + FP

where True Positive (TP) is the number of correctly predicted mitosis and True Negative 

(TN) is the number of correctly predicted non-mitosis samples, while False Negative (FN) is 

the number of mitosis samples which classified as non-mitosis by the classifier and False 

Positive (FP) are the non-mitosis samples predicted as mitosis. F-score is the harmonic mean 

of precision and recall.

3. RESULTS

3.1. Mitosis detection results on Melanoma dataset:

Table 2 summarizes the results of our classifiers using two different encoding units: 1) 

ESPNet and 2) DenseNet. Both networks achieved high accuracy on classifying mitoses 

with a sensitivity of 0.976 and 0.968, and specificity of 0.987 and 0.995, respectively. 

Though DenseNet outperformed ESPNet, this outperformance was not statistically 
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significant (p-value is 0.5716), and the training time of ESPNet is about a third that of 

DenseNet (see Table 2).

3.2. Generalizability of the MITOS dataset:

To study the generalization ability of our classifiers on other datasets, we evaluated the 

performance on a publicly available mitosis dataset for breast biopsies: MITOS [12, 13]. The 

dataset consists of 50 images corresponding to 50 high-power fields in 5 different breast 

cancer slides stained with hematoxylin and eosin. This dataset contains 800 mitoses.

We first compared our two classifiers (ESPNet and DenseNet) to the results reported in 

several papers in the recent literature [1, 4, 10, 21, 26] The architectures of these classifiers 

can be summarized as follows:

• Saha, et al. The deep learning consists of two parts: (1) a convolutional neural 

network and (2) a handcrafted feature extractor. The deep architecture contains 

five convolution layers, four max-pooling layers, four ReLUs, and two fully 

connected layers.

• Dodballapur et al. In this work, handcrafted features extracted from the masks 

generated from the Mask R-CNN network are combined with deep features to 

classify the candidate cells. To extract an image-level representation, the 

Xception network pre-trained on ImageNet without the last two fully connected 

layers was used.

• Li, et al. Their pipeline consists of three components: (1) a deep detection model 

(DeepDet) that produces primary detection results, (2) a deep verification model 

(DeepVer) that verifies these detections and eliminates false positives, and (3) a 

deep segmentation model (DeepSeg) that segment the images and generates 

bounding box annotations around segmented regions to provide weak box-level 

annotations. The DeepDet model consists of an RPN (Region Proposal Network) 

and a region-based classifier. The DeepVer model is based on the ResNet.

• López-Tapia, et al. Their pipeline consists of two components: first, a coarse-to-

fine cascade of CNN Bayesian models for mitosis detection; then, to make the 

model resistant to local and shape deformations, a Spatial Transforming Layer is 

applied before the 4th and 7th residual blocks in scale x40.

• Cireşan, et al. They trained two DNNs and ensembled the performance 

evaluation results: DNN1 contains five convolutional layers, five max-pooling 

layers, and two fully connected layers. DNN2 contains four convolutional layers, 

four max-pooling layers, and two fully connected layers.

For comparison, the architectures of ESPNet and DenseNet are as follows:

• ESPNet: Our classification network uses a standard pipeline that stacks encoding 

and down-sampling units to learn latent representations. The model contains one 

conventional 2D convolution layer, five ESP blocks, four down-sampling layers, 

one average-pooling, and two fully connected layers.
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• DenseNet: We used the DenseNet161 architecture which contains one 

conventional 2D convolution layer, four Dense block, three Transition layers, one 

max-pooling, and two fully connected layers.

In comparison to existing state-of-the-art methods (see Table 4), our classifiers achieve a 

competitive performance. In particular, our DenseNet-based classifier is 2% more accurate 

than Saha et al. [1].

In order to compare more thoroughly, we added two more state-of-the-art CNNs, ResNet 

[32]and ShuffleNet [37] to the original two (ESPNet and DenseNet). We compared all four 

classifiers on precision, recall, and F-score (as is standard for MITOS) and measures of 

architecture and speed. Results with precision, recall and F-score are summarized in Table 5. 

DenseNet is the clear winner in this contest with F-score of 0.927 compared to 0.890 for 

ESPNet, 0.865 for ResNet and 0.847 for ShuffleNet. Furthermore, results with respect to 

architecture and speed are summarized in Table 6. Here ResNet is the most efficient with 

ESPNet a close second.

4. DISCUSSION

While it is the role of the pathologist to make cancer diagnoses and evaluate for important 

prognostic indicators, such as mitoses, concerning levels of variability have been noted 

among pathologists [5, 6]. Variability has been noted both between different pathologists 

reviewing the same case (inter-observer variability) and within the same pathologist when 

they are shown the same case on two different occasions, usually with a “wash-out” period 

between interpretations and they are not told that they are seeing the same cases (intra-

observer variability). Clinically, this variability is noted by the submitting clinician if a 

second opinion is received from another institution. The submitting clinician will not know 

which opinion is closer to the true biologic nature of the lesion sampled due to the lack of 

well-established ancillary tests in these circumstances. This places the submitting clinician 

in the difficult position of discussing variability with the patient, who will likely have 

associated anxiety of not knowing if their lesion is truly benign or malignant in addition to 

making the difficult decision of having to decide which treatment option to undergo.

One microscopic parameter that is both helpful to the pathologist in establishing a cancer 

diagnosis and in assessing prognosis, is the presence or absence of mitotic figures; a 

microscopically visible nuclear feature closely tied to cellular proliferation. In mitosis a cell 

divides to form two new cells. Cancer tissue generally has more mitotic activity than normal 

tissues, and this is assessed by calculation of the mitotic index - the number of cells in 

mitosis divided by the total number of cells However, measurement of the mitotic index 

depends on the subjective visual analysis by pathologists who have a hard time both in 

identifying and also counting mitotic figures and total cell counts [38]. Thus, development of 

supporting tools that can be more accurate and reproducible would greatly aid clinical care. 

Machine learning techniques, including CNNs, have shown incredible performance in visual 

recognition tasks, and thus have the potential to improve histologic diagnostics, both as aids 

for pathologists to improve the quality and reproducibility of their diagnoses and in the 

medical research domain [15, 39, 40].
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In this work, we trained two CNN methods, ESPNet and DenseNet, as two separate 

classifiers; both CNNs had high accuracy on our dataset of skin biopsies of invasive 

melanoma. We further generalized our classifiers to the MITOS breast biopsy dataset and 

compared our results with the existing state-of-the-art on the MITOS dataset with high 

accuracy in classifying mitoses [1, 4, 19–21, 26] and ran experiments with two more state-

of-the-art CNNs to make more thorough comparisons. We achieved competitive accuracy on 

the MITOS dataset compared to the existing state-of-the-art methods.

No study is without limitations, and our research is not an exception. First, both the 

melanoma dataset and the MITOS dataset (as well as other public digital datasets) make use 

of less information than a microscopic examination, in which a typical tissue section is 5μm 

and on which the pathologist can focus through an infinite number of planes, ensuring all 

cells of interest are in optimal focus. Secondly, for the public datasets, the use of only two-

dimensional images with no recourse to looking at three-dimensional tissue sections makes 

it difficult to confirm the given diagnoses.

Marking biopsy images is an onerous task and obtaining samples with variation in the 

dataset is a challenge. To expand our dataset, we generated new samples out of our existing 

samples with horizontal and vertical mirroring and with rotations of 45, 90, 135 or 225 

degrees. However, having samples from more patients would be beneficial for training a 

precise classifier for mitosis detection.

Given the complex and dense nature of working with biopsy tissue datasets, a significant 

challenge is posed in developing training sets that reflect the full spectrum of cases seen in 

clinical practice and also that accurately identify the cellular entity of interest. In our skin 

cancer work, the cases were carefully selected to represent the full spectrum of skin biopsies 

obtained in clinical practice and a three-person expert defined consensus diagnosis was used 

[6]. In addition, each case was carefully reviewed by an expert dermatopathologist to 

identify and mark the individual mitotic figures.

Mitotic activity is an important biomarker that can assist in the diagnosis and may provide 

prognostic information. However, each biopsy specimen may contain hundreds of thousands 

of cells, making their identification a significant challenge. We have shown that mitoses can 

be identified using our machine learning method with high accuracy; thus, this method has 

the potential of being a powerful diagnostic and prognostic aid to practicing pathologists.
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Highlights

• Use of CNNs to find mitotic figures in skin and tranfer of the same 

technology to breast biopsy images.

• Comparison of two state-of-the-art CNNs (ESPNet and DenseNet) for mitosis 

detection.

• Very high accuracy results for finding mitoses in both melanoma and breast 

cancer biopsies.
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Figure 1. 
Example crops of biopsy images with mitoses in them; (top) skin; (bottom) breast. These 

biopsies are different in terms of color, texture, and mitosis phase and shape.

*A mitosis in each image is present near the center and is marked with a green circle for 

visualization.
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Figure 2. 
Examples of applying the nuclei segmentation method [28] on a crop of skin biopsy image 

(a) original crop (b) nuclei segmentation result

* Two mitoses that are present in the original crop are marked with red dots for 

visualization.

* Segmentation method was able to find the mitoses. We marked them here with red boxes 

for visualization.
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Figure 3. 
Examples of (top) sampled mitoses, and (bottom) sampled nuclei that are not mitoses. 

These two entities have similarity in color, surrounding and texture.
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Figure 4. 
Two convolutional units, ESPNet (a) and DenseNet (b), that are used in our experiment. 

Each of these units receives a 3D tensor with width W, height H, and depth N as an input 

and produces a 3D tensor with width W, height H, and depth M as an output. The projection 

channel dimension in ESPNet unit is represented by d while in DenseNet unit, it is 

represented by di. For ESPNet, output tensor depth is M = k × d, where k is the number of 

parallel branches in the ESPNet unit (k = 3 in (a)), the size of the point-wise convolution is 1 

× 1, and ni is the size of the dilated convolutional layers. For more information, see [33]. For 

the DenseNet unit, output tensor depth is M = ∑di, i = {1, … , L}, where L represents the 

number of stacked layers (L = 3 in (b)). It is common to use 3 × 3 standard convolutional 

layers in DenseNets. For more information, see [34].
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Table 1

Mitosis dataset summary - Melanoma

Case ID Number of slices Number of cells in WSI Number of areas Number of mitoses

Case # 1 5 ~ 250k 14 197

Case # 2 3 ~ 237k 6 32

Case # 3 6 ~ 320 7 232

Case # 4 1 ~ 115k 5 156

Case # 5 3 ~ 49k 1 6

Case # 6 4 ~ 39k 1 5

Total - - 34 628
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Table 2

Quantitative results of ESPNet and DenseNet on validation set* of Melanoma

Metrics ESPNet [33] DenseNet [34]

Accuracy 0.984 0.988

Precision 0.961 0.984

Recall 0.976 0.968

F-score 0.968 0.976

Sensitivity 0.976 0.968

Specificity 0.987 0.995

FP, FN 5, 3 2, 4

TP, TN 122, 370 121, 373

Training Time** 35 minutes 106 minutes

*
Validation set contains 20% of the whole set (no data augmentation).

**
Experiments were performed on a 2.10GHz Intel Xeon Silver 4110 CPU with GeForce GTX 1080 GPU. Utilization of a GPU and small patch 

size speed up the training process. In addition, ESPNet is a much lighter model than DenseNet, which explains the lower training time of ESPNet 
compared to that of DenseNet. We trained our classifiers using the ADAM optimizer for a total of 20 epochs with an initial learning rate of 0.001. 
We decayed the learning rate by 0.1 after every 5 epochs. During the training process, we minimized the cross-sentropy loss.
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Table 3

Quantitative results of ESPNet and DenseNet on MITOS [12]

Metrics ESPNet DenseNet

Accuracy 0.946 0.964

Precision 0.916 0.939

Recall 0.866 0.916

F-score 0.891 0.927

Sensitivity 0.866 0.916

Specificity 0.973 0.980

FP, FN 16, 27 12, 17

TP, TN 175, 582 185, 586

Comput Med Imaging Graph. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nofallah et al. Page 20

Table 4

Performance comparison of ESPNet and DenseNet with other approaches on MITOS [12] reported in the 

literature

Method ESPNet 
(Our trained 
model)

DenseNet (Our 
trained model)

(Saha, et 
al.) [1] 
(2018)

(Dodballapur, et 
al.) [26] (2019)

(Li, et al.) 
[20] (2018)

(López-Tapia, 
et al.) [21] 
(2019)

(Cireşan, et al.) 
[4]** (2013)

Precision 0.916 0.939* 0.92 0.93 0.854 N/A 0.886

Recall 0.866 0.916* 0.88 0.80 0.812 N/A 0.70

F-score 0.890 0.927* 0.90 0.87 0.832 0.826 0.782

*
Precision, recall, and F-score of our DenseNet model are higher than other approaches in the literature on the MITOS dataset.

**
ICPR12 winner
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Table 5

Performance comparison of ESPNet, DenseNet, ResNet, and ShuffleNet on MITOS [12]

Method ESPNet DenseNet ResNet ShuffleNet

Precision 0.916 0.939 0.931 0.968

Recall 0.866 0.916 0.807 0.753

F-Score 0.890 0.927 0.865 0.847
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Table 6

Architecture, training and inference time comparison of ESPNet, DenseNet, ResNet, and ShuffleNet on 

MITOS [12]

Network #params (in million) #blocks (depth) #channels (width) Training time* Inference time*

ESPNet 0.078 16 16 to 64 6 min 8 sec

DenseNet 28.68 161 48 to 2024 19 min 31 sec

ResNet 11.69 12 64 to 512 4 min 6 sec

ShuffleNet 2.28 56 24 to 1024 6 min 11 sec

*
Experiments were performed on a 2.10GHz Intel Xeon Silver 4110 CPU with GeForce GTX 1080 GPU.
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