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Developing Predictive Models for Risk of Postoperative Complications and Hemodynamic
Instability in Patients Undergoing Surgery
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Patients undergoing high-risk surgeries are often at higher risk of developing
hemodynamic instability during surgery resulting in poor postoperative outcomes. This is
usually associated with significantly increased postoperative morbidity and mortality, which
therefore makes the early identification of these critical events and those patients at risk of
postoperative complications crucial. With these motivations in mind, we first created a large
deidentified research dataset of surgical case medical records from University of California,
Irvine Medical Center (UCIMC) matched with physiological waveforms as well as intermittent
vital sign values, lab values, and ventilator settings. To our knowledge, such a dataset does not
currently exist for the intraoperative environment. We hope that creating a such a dataset will
allow for advances in machine learning for intraoperative care. Using medical data from UCLA,
we have developed deep neural network models to classify the risks of postoperative mortality,

acute kidney injury, and reintubation utilizing readily available intraoperative information. Our
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risk scores were compared to currently commonly used risk indices ASA and Surgical Apgar as
well as logistic regression. While the deep neural network models performed better than the
risk scores and logistic regression, clinicians require additional information to assess what led to
increased risk of complications. To address this, we also assessed the use of generalized
additive neural networks (GANNSs) to create a graphical look at how different features
contributed to the risk of in hospital mortality. Finally, we were also interested in predicting
critical intraoperative events to allow for time for the clinician to avoid such events. We focused
on intraoperative hypotension as it is easier to define and has been shown to lead to increased
risk of acute kidney injury, stroke, and myocardial injury. For the hypotension prediction
models, we looked at the arterial pressure waveform and EMR data as inputs.

Overall, these aims address a gap in current clinical decision guidance and support to

reduce adverse events during surgery as well complications after.
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INTRODUCTION

Patients undergoing high-risk surgeries are often at higher risk of developing
hemodynamic instability during surgery as well as having poor postoperative outcomes. This is
usually associated with significantly increased postoperative morbidity and mortality, which
therefore makes the early identification of these critical events and those patients likely to have
poor outcomes crucial. As instability develops in a patient, there are small but complex changes
in multiple vital signs that are not immediately apparent to a clinician. This instability continues
to progress until significant large shifts occur in the patient (i.e. elevated heart rate and blood
pressure), which are now obvious and detectable by the clinician but at which point may be too
late to treat. Known methods are available to monitor invasive and noninvasive hemodynamic
parameters to identify instability, however no such mechanism exists to predict the onset of
instability in real time.

Although instability can be identified and diagnosed by abnormalities in the values of
hemodynamic parameters seen on clinical monitors, the true underlying physiological
mechanism of cardiorespiratory instability is neither straightforward nor linear and is much
more complex. Currently, most clinician decisions are based solely on the values of individual
hemodynamic parameters consistent with severe instability and outside of normal clinical
range, such as mean arterial blood pressure less than 55 mmHg or a heart rate greater 120

III

bpm. However, the definition of “normal” is subjective to the treating clinician. While there are
currently available risk scores such as the Surgical Apgar score and real time parameters such as

stroke volume variation and heart rate variability that are used to better guide clinical

decisions, they are still dependent on absolute thresholds of normal clinical range. It is known



that there is large patient to patient variability, and to focus on such thresholds is a major
limitation. While there is the goal to minimize instability during surgery to improve
postoperative outcomes, there is also a secondary need to identify patients who are at higher
risk for postoperative complications. Being able to identify these patients would allow for more
effective care and hopefully avoid complication altogether. In addition, with the payment of
healthcare moving towards bundled payments, there is a financial need to efficiently allocate
hospital resources and time.

There is a large potential for significant advancements in medicine and machine learning
methods exist to help utilize the underlying complexity of patient physiology that current
clinical monitors and decision support tools lack. We hypothesize that deep neural networks
can leverage the complexity of intraoperative data taken from clinical monitors as well as
medical records to better classify risk of specific postoperative complications and better predict
postoperative outcomes as well as the onset of instability (hypotension).

With more than 230 million major surgical procedures are performed annually
worldwide and an estimated 10% of surgical patients at high risk accounting for 80% of
postoperative deaths, many lives can be saved simply by identifying patients at highest risk of
specific postoperative complications to avoid onset of those complications.?™ In addition,
helping to guide the intraoperative anesthesia care can help reduce this risk or avoid the
complication altogether. Many of the currently developed models for clinical risk are not robust
to patient to patient variability and rely on limited features selected by domain experts. On the
other hand, while there is work being done utilizing machine learning, including deep neural

networks, to classify patient risk and leverage time series data, there has been no work that we



know of specific to the intraoperative environment or on a shorter time scale. Events in the
operating room are on the order of minutes or even seconds to an adverse event, in contrast to
the slow decline of patients in the ICU setting. Much of the advancement of model
development on surgical patients has also been limited by the availability of data. While high
resolution clinical data exists for the critical care setting through the publicly available MIMIC I
database created by the Massachusetts Institute of Technology, the same such database does
not exist for the surgical setting.®> Thus, the creation of such a database would significantly help

to advance the progress of research on these types of patients.

The Need for Perioperative Risk Assessment

It has been shown that while only about 10% of surgical patients are considered at high
risk for complications, this high risk population accounts for 80% of postoperative deaths.>™
Postoperative complications, as defined by the National Surgical Quality Improvement Program
(NSQIP), comprise of cardiac, neural, renal, pulmonary, and vascular/thrombotic events as well
as infections. These complications include cardiac arrest, renal insufficiency or failure,
pneumonia, etc. It has been shown that occurrence of these complications within 30 days
following a major surgery is a more significant determinant of survival than either preoperative
comorbidity or intraoperative adverse events.® The top most important predictors of mortality
included the following postoperative complications: cardiac arrest, failure to wean, systemic
sepsis, cerebrovascular accident, renal failure, myocardial infarction, and renal insufficiency.

Therefore, there needs to be a focus on the prevention of postoperative complications.



One such method of avoiding complications would be direct postoperative critical care
admission. Despite the high mortality rates of the high risk surgical population, less than 15% of
these patients are admitted to the ICU.%3 This suggests a systematic failure in the allocation and
process of critical care resources. One way to assist with this would be able to identify the
patients at most risk of major postoperative complications and death. In addition, there is a
need for identifying patients who are at continued risk following discharge. Hospital
readmission within 30 days is broadly considered as a healthcare quality measure and cost
driver in the United States, and under the Affordable Care Act, Medicare has started penalizing
hospitals according to their 30-day readmission rate. Currently, about 1 in 5 Medicare
beneficiaries are rehospitalized within 30 days after discharge.” Three quarters of these
readmissions were considered avoidable. In 2011, there were approximately 3.3 million adult
30-day all-cause hospital readmissions in the United States, resulting in about $41 billion in
hospital costs and in 2004 Medicare payments for unplanned readmissions accounted for
approximately $17 billion.”® Overall, there is a need for methods to best prioritize care to avoid
postoperative complications as well as readmission from both a public health as well as cost
stand point. Such methods would allow for hospital systems to more effectively allocate

resources available to high risk patients.

Current Parameters for Risk Assessment
Accurate risk prediction is crucial to guiding clinical decision and management.
Currently, risk assessment is performed as a one-time risk score at patient admission or

presentation, or is calculated as needed, for example at the end of each postoperative day.



Some well-known risk scores include the American Society of Anesthesiologists (ASA) physical
status score, Acute Physiology and Chronic Health Evaluation (APACHE) II, and Surgical Apgar.®~
11 The ASA score was developed in 1963 and is still used in the preoperative environment as a
subjective assessment of a patient’s overall health prior to surgery. An ASA score of 1 means
completely health and 5 means not expected live 24 hours.® The APACHE score is calculated
upon admission into the ICU to estimate mortality, and takes the worst values of vital signs such
as mean arterial pressure and heart rate as well as labs such as serum creatinine and
hematocrit from the first 24 hours to assign risk points.'! Out of a possible 71 points, the higher
the score, the more likelihood of mortality. The Surgical Apgar score, also a point based system,
uses only 3 intraoperative values: estimated blood loss, lowest mean arterial pressure, and
lowest heart rate to predict postoperative risk of major complication.'® There are also risk
scores that can be calculated more frequently based on vital signs. These types of scores tend
to primarily be used as triggers for immediate action such as calling the rapid response teams to
recognize and respond to clinical deterioration. While there are several, two well-known ones
include the Modified Early Warning Score (MEWS) and the Shock Index. MEWS is used in the
critical care setting and is calculated at intermittent times during admission.> MEWS combines
values of respiratory rate, heart rate, systolic blood pressure, urine output, temperature and
neurological assessment. The Shock Index is mainly used in critical care as well as emergency
settings. It is calculated as the ratio of heart rate over systolic blood pressure and can be used
to predict cardiac arrest, hypovolemic shock, and sepsis.*> While measures like MEWS and the
Shock Index can be calculated continuously during a patient’s admission, they are currently only

calculated on a “need base”. In summary, current risk scores do exist for patients undergoing



surgery and critical care. However, the scores themselves as well as the clinical variables used in
their calculations tend to be specific to the preoperative setting or are calculated once the
patient is already in critical care. In response to this there has been work to create newer and

potentially more robust scores.

Related Work in Clinical Risk Modeling Efforts

The above scores were developed to create a set of easy to apply rules derived from
expert opinion on what leads to a patient’s deterioration. With the passing of the HITECH Act in
2009, there has been an explosion in the amount and availability of electronic medical data.
This has lead to a growing body of research applying predictive models to medical data. The
Preoperative Score to Predict Postoperative Mortality (POSPOM) was developed as a
preoperative risk score to predict postoperative in hospital mortality.'* The POSPOM was
developed via a logistic regression model that takes into account preoperatively available
patient demographics and conditions such as age, diabetes and chronic heart failure as well as
type of surgery. The regression coefficients are then normalized to the regression coefficient for
age to create POSPOM points. For example, age has a regression coefficient of 0.303 and
diabetes and chronic heart failure have regression coefficients of 0.189 and 1.124, respectively,
and so are assigned POSPOM points of 1 and 4, respectively. These POSPOM points are then
summed to assign the patient with a final POSPOM. In addition, there is the Rothman Index (RI)
which claims “real time” assessment of a patient’s current condition, and was developed to
predict excess risk of one year mortality, which was defined as the percent increase in one year

all cause mortality associated with each clinical variable in the model.'®> A polynomial regression



line was then fit to the data to create an “excess risk function” for each clinical variable. The
final Rl is essentially the sum of these excess risk functions. The model also allows for
infrequently collected lab test values via creating a model for no labs and a model with labs.
The Rl score is calculated every time a new model input is available, and thus is in “real time”
and takes 26 clinical variables, including lab values. Rl has been shown to be correlated with
mortality as well as 30 day readmission. While Rl can be calculated in real time, it is still limited
by the time lag of specific variables such as lab values and nursing assessments that are
infrequent and irregular and the prediction is not actually predicting any specific in hospital
complications or in hospital mortality.

There is also work being done on more specific complications such as reintubation as
well as acute kidney injury. Acute kidney injury develops in about 5% of hospitalized patients.
Acute kidney failure has been shown to increase cost, length of stay, as well as mortality. This
highlights the need for accurate prediction of AKI for early diagnosis and treatment. There have
been risk scores developed to predict acute kidney injury following surgery such as one
developed by Thakar et al.* Similar to the POSPOM, Thakar’s AKI risk score used logistic
regression model to select the most significant features and those features are assigned points
based on the the regression coefficients. Score points were calculated as the regression
coefficient multiplied by 2 and rounded to the nearest integer. The final AKI risk score is a sum
of these points. This model, like POSPOM, also uses only preoperatively available information
such as comorbidities like COPD and diabetes, as well as surgery type and preoperative
creatinine. However, it was specifically developed on and for cardiac patients. Another AKI

score, but one for non-cardiac surgery patients, was developed also using only preoperative



patient information.'”*® Following development of a logistic regression model, risk scores were
assigned similar to POSPOM and Thakar et al. with the regression coefficient normalized to the
smallest coefficient then multiplied by 2 and rounded. This study also assessed intraoperative
hypotension as a potential variable for the risk of AKI. Intraoperative hypotension features
included amount of time blood pressure was less than an absolute hypotension cutoff such as
SBP < 80 mmHg, SBP < 70, as well as intraoperative vasopressor administration and urine
output. No specific amount or duration of hypotension was found to be associated with AKl in
this study, however in other studies intraoperative hypotension has been shown to highly
correlate with post operative complications such as cardiac death, pulmonary edema, mortality,
and excess length of stay.'®* This highlights the potential for using prevention of hypotension
as a continuous, intraoperative way to change decision and management to improve
postoperative outcomes.

Apart from AKI, other postoperative complications of concern are respiratory ones such
as pneumonia, failure to wean, and post extubation respiratory failure, which have been shown
to be the second most frequent type of postoperative complication after wound infection.5242>
Post extubation respiratory failure has been shown to increase poor outcomes and mortality.®
Thus, being able to predict which patients are at highest risk of post extubation respiratory
failure is clinically important. A preoperative risk score to predict risk of postoperative
reintubation has been developed combining only 5 features (ASA>3, emergency procedure,
high risk service, congestive heart failure, and chronic pulmonary disease).?® Similar to other

models, the Score for Prediction of Postoperative Respiratory Complications (SPORC) also uses

a logistic regression model’s coefficients to assign points to each feature which are then



summed as the final risk score. In addition to the current work in complications risk, there have
also been efforts to predict risk of readmission in specific cohorts of patients such as congestive
heart failure, cancer, and emergency.?”?8 The Preadmission Readmission Detection Model
(PREADM) was developed as a logistic regression model to predict 30 day readmission using 11
variables that included chronic conditions, prior health services uses, BMI, and geographical
location (PREADM). Again, similarly to other models discussed here, the regression coefficients
were transformed into scoring points.

There is also current research in utilizing other methods apart from logistic regression.
One study compared using support vector machines, logistic regression, decision trees, random
forest and generalized boosted modeling for predicting both hospital readmission as well as
cost of that readmission, and found that all methods’ results were comparable.?® Variables used
in that study were mainly patient demographic and admission information such as age,
ethnicity, admission type, number of co morbidities, length of stay, with the only vital sign
being blood pressure at discharge. Another study utilized random forests to forecast
cardiorespiratory instability, using continuous and high resolution vital signs such as heart rate,
respiratory rate, and blood pressure.3° Deep neural networks, or deep learning, is also
becoming a popular approach. One study utilized temporal convolutional neural networks on
lab values to predict onset of diseases such as atrial fibrillation and chronic kidney disease.3!
Another applied LSTM recurrent neural networks to predict mortality and number of ventilator
free days.3? They used static features such as demographics and admission diagnosis as well as
temporal features such as ventilator settings and blood gas values). Nguyen et al. developed

Deepr (Deep net for medical Record), a convolutional neural network that takes the electronic



clinical notes from patient visits to predict future outcomes (specifically diagnoses and
procedures).3® Lipton et al. utilized LSTM recurrent neural networks to recognize patterns in
multivariate time series of clinical measurements (vital signs as well as labs) to classify
diagnoses.3*

The ultimate goal of all the above current research is to change modern medicine to
becoming more prospective or proactive, rather than reactive. There are 2 ways to think of
prospective healthcare: 1) A one-time risk classification to help allocate hospital resources
more efficiently to ensure patients receive necessary critical care and 2) Continuous, real time
risk classification to avoid onset of complications altogether. One-time risk classification would
be to better predict which patients are at risk of which bad outcomes or complications. This
would be to help stratify patients prior to care and better allocate hospital time and resources.
Continuous risk classification would be similar to a new continuous vital sign for a patient, i.e.
an arterial blood pressure signal that outputs blood pressure values every 20 seconds. The
point of a continuous risk indicator would be to predict short term onset of adverse events such

as atrial fibrillation. We believe that the best way to do both is through deep learning.

Introduction to Deep Neural Networks

Deep neural networks, aka deep learning, is a currently popular approach in machine
learning. The aim of deep learning is to learn from raw data and perform desired tasks without
any feature engineering. In other words, deep learning is capable of modeling the complex
nonlinear and linear features from low level features or raw data that are necessary for an

accurate output. Current deep learning is mostly based on multilayered neural networks, where
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each layer is connected via neurons.3® Each neuron applies a nonlinear transform to a linear
function of inputs. This is referred to as an activation function and the most commonly used

ones are sigmoid, tanh, and the Rectified Linear Unit (ReLU). The sigmoid function o(x) =

o= has a range of 0 to 1. The tanh nonlinearity has a range of -1 to 1 and can be considered

a scaled sigmoid neuron where tanh(x) = 20(2x) — 1. RelLU simply thresholds a value at zero
via the function f(x) = max (0,x). Deep learning has been developed for decades, but over
the past few years it has broken records in visual object recognition, speech recognition, and
natural language.3® There are three main types of deep neural networks: feedforward,
recurrent, and convolutional. Feedforward networks pass information from one end to the
other, usually input to output, and can be thought of as universal function approximators.3’
Recurrent neural nets (RNNs) model varying length sequential data (sequential over time or
space) and can maintain some form of memory and capture long term dependencies.3® RNNs
selectively pass information across sequential steps, while processing sequential data one
element at a time. Convolutional neural nets (CNNs) exploit local motifs across time and space,
small pieces of data with predefined sizes such as a batch of pixels. CNNs contain convolutional
layers that aim to learn feature representations of the inputs and compute different feature

maps.3°

UCI ANESTESHIOLOGY RESEARCH DATABASE

All data collected in this study was obtained with IRB approval from UC Irvine, and was a
collaborative effort with Edwards Lifesciences (Irvine, CA), CardioPulmonary

Corporation/Bernoulli (Milford, CT) and the Department of Anesthesiology at UC Irvine Medical
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Center (UCIMC). All data in this effort were deidentified prior to access by IRB approved

researchers.

Creating the Database

Starting in August of 2015, all adult surgical patients presenting at all nineteen UCI
operating suites have been being consented for data collection. This database consists of three
types of clinical data: high resolution waveforms, intermittent values, and clinical anesthesia
record. We are currently collecting three types of high resolution waveforms: arterial blood
pressure, EKG, and plethysmography directly from the GE (General Electric Healthcare, Chicago,
IL) patient monitors (B850 and Solar 8000) in the operating room (OR). Intermittent values are
collected as standard of care and are contained in the anesthesia medical record. Intermittent
values consist of the standard vital signs such as heart rate and blood pressure, but also include
ventilator values such as end tidal CO2 and PEEP. Intermittent values also consist of any
manually input lab values such as hemoglobin. The anesthesia record also consists of all
medical record data associated with the surgical case, including patient demographics as well as
drug and fluid interventions. Combining all three types of clinical data makes this database

unique and novel. Data collection currently remains ongoing with IRB renewal.

Contents of the Database

The data available in the UCI database was collected from two sources: the
intraoperative electronic medical record (EMR) and directly from the GE bedside monitor

(Figure 1). All EMR data was pulled retrospectively once a week by the UC Irvine Medical
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Center (UCIMC) Honest Broker and pushed to a data processing server. All waveforms were
collected by Bernoulli systems from bedside monitors and pushed to the data processing server
before being aggregated with EMR data, post processed, and deidentified. These data can be

separated into specific classes summarized in Table 1.

GE Bedside Monitor
- Physiologic Waveforms | Bernoulli
(EKG, Arterial Blood Systems
Pressure,
Plethysmography)
Electronic Medical Record Data Processing
Dem_ographics' ‘ Data Processing 1 D . Deidentified
\S/"‘t;gll?l Description Server _ 2' P::? :ffg:f:i:;r; g Data Research
ital Signs . o
Ventilator/Respiratory ucimc waveforms I
Ee;\ings —— Honest — 3. Deidentification
abs
Broker

Medications
Intraoperative events
Adverse events

Figure 1. Overview of data collection points

Table 1. Description of data classes and sources found in the UCIMC Anesthesiology Research Database

Data Class Source Description
L Demographic detail, ASA score, admission type,
Descriptive EMR grap . s P
surgical description
Events EMR All manually annotated intraoperative events (e.g.

induction, intubation) and physician comments

All manually annotated intraoperative adverse

Adverse Events EMR .
events or complications

All manually annotated administered medications

Medications EMR and fluids
Manual All manually input observations including
EMR intraoperative blood gas values, estimated blood

Observations .
loss, and urine output
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All automatically collected 1 minute observations

Automated EMR such as intermittent vital signs (e.g. heart rate,
Observations blood pressure), ventilator settings (e.g. tidal
volume, respiratory rate)
Physiologic Bedside All automatically collected, available waveforms
Waveforms monitor (EKG, Plethysmographic, Arterial Blood Pressure)

Electronic Medical Record (EMR) Data

All EMR data was obtained from the intraoperative EMR system Surgical Information
Systems (SIS) and pushed to the data server by a UCIMC once per week. All data was organized
to replicate the SIS EMR structure of 6 unique EMR classes, which were saved as individual csv
files per patient (Table 2).

Table 2. Description of the 6 EMR classes of data pulled from the UCIMC Surgical Information Systems
(SIS) per patient.

EMR Type Description

e Free text surgery description
e Admission type
Patient e Height, weight, age, sex
e American Society of Anesthesia (ASA) Score
e Surgery and anesthesia start and stop times

Category e Adverse events that occurred intraoperatively

e Comments by the anesthesiologist during surgery
e All standard anesthesia events such as intubation,

Events . . o .
induction, arterial line placement, positional changes etc.
with timestamps
e All start and end (if available) timestamps annotated by
Drugs and the clinician
Fluids e Medication name

e Volume administered or rate of administration
e All Estimated Blood Loss and Urine Output values
Input/Output annotated by the clinician with time stamps
e Total sum of volumes of fluids administered
e All 1 minute sampled vitals and ventilator information
with timestamps
e All manually input vitals with timestamps
e All manually input lab values with timestamps

Observations
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Physiologic Waveform Data

All physiologic waveform data was collected from the bedside monitors using Bernoulli
systems. Every operating room (OR) of UCIMC currently contains one of the following bedside
monitors: GE Solar 8000 or GE B850. The Bernoulli system acquires a maximum of 2 (GE Solar
8000) or 3 (GE B850) waveform channels directly from the monitors, and all waveform data per
OR was saved into XML files. The newer GE B850 monitors output all 3 waveform channels: EKG
sampled at 300 Hz, plethysmograph sampled at 100 Hz, and invasive arterial blood pressure (if
available) sampled at 100 Hz. The older GE Solar 8000 monitors have an analog output and
output only 2 waveform channels: EKG and invasive arterial blood pressure (if available). It
should be noted that due to the analog output of the GE Solar monitors, the sampling rate was
approximated in post-processing for corrected time alignment with EMR data. All waveform
data from each OR were transmitted through the hospital network to a data processing server,
where it was temporarily stored until the EMR data was available on the data server for data

processing as described in Figure 1.

EMR and Waveform Data Postprocessing

The surgery start and stop times and OR location from the EMR data were used to parse
and match waveform data to the correct patient. In the EMR data, unique surgeries are
identified by a unique Case Confirmation Number (CCN). The CCN is unique to the surgical case,
while a medical record number is unique to the patient, i.e. a patient can have only 1 MRN but

multiple CCNs. We chose to keep each surgical case unique and used the CCN to identify
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patients and their associated data. Once the waveforms and EMR data were matched and
aggregated, all data was assigned a new unique deidentified ID.

The waveform data is parsed into 30 minute XML files per patient. To be more user-
friendly, the waveform data was processed in a secondary step. First, all the waveform data
was translated from 16 bit data. Due to hardware and monitor limitations, there also exists
data gaps. In the GE B850, these are annotated as flags by the monitor itself. However, in the
GE Solar 8000, the data gaps are identified via an algorithm and assumed to be true. After the
waveforms are corrected for data gaps they are also corrected for gain and sampling
frequencies to be time synced with the EMR data. Waveform data are saved in a .bin file format
that includes patient sex, age, height, weight, Body Surface Area (BSA), sampling frequency, and

start timestamp (in serial format).

Deidentification and HIPPA Compliance

All patient identifiers such as name, medical record number (MRN) and social security
number (SSN) were completely removed and all birthdates were replaced with age at the date
of surgery prior to being made available to IRB-approved researchers. Before making a
database to be accessible by a larger group of researchers, we intend to do further
deidentification of the data. This includes the removal and replacement of all timestamps with
timestamps that are shifted by a random offset, and the removal of hospital resources, such as

OR location.
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Patient Characteristics

The first version of the UCI database includes data from all distinct surgeries from UC
Irvine Medical Center (UCIMC) performed between 2015 and 2017. In 2017, UCIMC
transitioned from Surgical Information Systems to Epic (Verona, WI) for their intraoperative
EMR. Additional data collection is ongoing, however not merged or processed. Table 3 provides
a summary of the patient population.

Table 3. Summary of patient population in UCIMC Research Database 2015 — 2017. Data is represented
in mean * standard deviation, unless otherwise noted.

# of OR Days 630
# of Patients 19,636
ASA # Patients % of Patients
1 561 2.86
1E 78 0.40
2 6,175 31.45
2E 288 1.47
3 9,455 48.15
3E 446 2.27
4 2,039 10.38
4E 386 1.97
5 20 0.10
5E 155 0.79
6 27 0.14
6E 6 0.03
Age (years) 52+19
Gender # Patients % of Patients
Female 9,985 50.85
Male 9,645 49.12
Other 2 0.01
Unknown 4 0.02
Admission Type # Patients % of Patients
Inpatient 7,630 38.86
23 Hour Observation 2,165 11.03
AM Admission 4,491 22.87
Outpatient 5,189 26.43
Midnight Admission 58 0.30
Day Prior Admission 93 0.47
Unknown 10 0.05
Anesthesia Type # Patients % of Patients
General 17,629 89.78
MAC 1,693 8.62
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Regional Block 104 0.53

Spinal 139 0.71
Combined Spinal/Epidural 17 0.09
Combined 10 0.05
General/Epidural
Epidural 11 0.06
Local 4 0.02
Bier block 9 0.05
None 18 0.09
Unknown 2 0.01
Total Anesthesia Time 3 hours 20 minutes + 2 hours 13 minutes

Data Mining Tools

The goal of this data effort is to promote research. To make the UCI database more user
friendly, we have created definition tables for the EMR classes Events, Observations, and Drugs
(Table 4, 5, 6, respectively), as well as various data mining resources. The definition tables
contain all the unique possible item names found in each EMR class, with metadata in the form
of number of times the item is present as well as number of unique patients with the item
name. For the Observations class, we included a long label provided by UCIMC SIS as well as
manually assigned description of the item name (Table 5). For the Drugs class, we included the
manually assigned common drug types (i.e. analgesic, vasopressor, vasodilator, etc.) as well as
the unique units found for the specific item name (Table 6). We have also created data mining
resources for querying the database based on these definition tables as well as visualization

tools. An example of this is shown in Figure 2 below.

18



Table 4. Sample subset of definition table for EMR Events.

Event Name Event Counts Patient Counts
MD Maintenance 16130 7038
Anesthesia Positioning Note 10942 7754
Rhythm 10286 7829
Anesthesia Note 9624 4115
SBar Time 8190 7851
Report to RN 8050 7891
Temperature Management 8046 7752
Patient Positioning 7938 7887
Anesthesia Time 7891 7891
Surgery Time 7891 7891
Time out completed 7891 7891
Patient Transport Note 7890 7890
Pre-Induction Patient Safety 7886 7886
OR Time 7861 7861

Table 5. Sample subset of definition table for EMR Observations.

Observation
vati Long Label

Description

Observation

Patient Counts

Name Counts
Saturation Pulse Measurement of
Sp02 . oxygen saturation 1398284 7854
Oximetry .
at periphery
HR (EKG) Anesthesia Heart rate 1378752 7852
Non-invasive Non-invasive
NIBP SYS Blood Pressure systolic arterial 295526 7848
Systolic pressure
Non-invasive Non-invasive
NIBP DIA Blood Pressure diastolic arterial 295431 7847
Diastolic pressure
HR (Sp02) Anesthesia Heart rate 1387764 7846
Set Rate
RR Ventilator Respiratory rate 1120342 7837
DC1320
T1 Temperature 887261 7835
;?:x:;:iniirubrin- End tidal carbon
ETCO2 dioxide 1422340 7790
Capnometer .
concentration
Wave
. Gas Monitor Inspired oxygen
Fi02 DC3424 concentration 1420074 7788
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Table 6. Sample subset of definition table for EMR Drugs.

. . Patient

Drug Name Drug Category Drug Counts Unique Units Counts
FENTANYL analgesic - narcotic 23565 'MICROgm, ML' 7274
PROPOFOL anesthetic 13642 'MICROgm, mg' 6775
MIDAZOLAM benzodiazepine 6451 'mcg, mg' 5862
ONDANSETRON antiemetic 5582 'mg' 5381
LIDOCAINE analgesic - local 4855 'mL, mg, ml' 4755
GLYCOPYRROLATE anticholinergic 4446 'mg' 3771
PLASMALYTE crystalloid 8655 'mL' 3713
PLASMALYTE crystalloid 8655 'mL' 3713
DEXAMETHASONE glucocorticoid 3760 'MG, mg' 3674
CEFAZOLIN antibiotic 4051 'g, gm, mg' 3535

acetylcholinesterase
NEOSTIGMINE inhibitor; paralytic 3474 'mg' 3402
reversal

PHENYLEPHRINE vasopressor 12251 'MICROgm, Mcg, mg' 3114
EPHEDRINE vasopressor 7723 'mg' 3042
SUCCINYLCHOLINE paralytic 2881 'mg' 2832
LACTATED RINGERS crystalloid 4926 'mL' 2819

180 ~—— filtered waveform

® EMR MAP Cuff
EMR MAP Aline
+ Induction
+ MAP 55

160

140
120
100
80
60 |

40

Figure 2. Example of a UCI surgical patient's arterial blood pressure waveform plotted with noninvasive
blood pressure cuff (MAP cuff) and invasive arterial blood pressure (MAP Aline) measurements from the
EMR Observations, as well Induction from the EMR Events.
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PREDICTING POSTOPERATIVE IN-HOSPITAL MORTALITY

About 230 million surgeries are performed annually worldwide.* While the estimated
postoperative mortality is low, less than 2%, studies have shown that about 12% of all patients -
the high-risk surgery group - account for 80% of postoperative deaths. To assist in guiding
clinical decisions and prioritization of care, several perioperative clinical and administrative risk
scores have been proposed. These scores tend to be subjective like the American Society of
Anesthesiologists (ASA) physical status score (a preoperative score) or are developed using
simple methods like logistic regression, such as with the Preoperative Score to Predict
Postoperative Mortality (POSPOM).>14

In collaboration with UCLA Medical Center’s Department of Anesthesiology, our first
deep neural network (DNN) models were created for predicting in hospital mortality.
Performance is presented together with other published clinical risk scores (ASA, Surgical
Apgar, POSPOM) and administrative risk scores (Risk Stratification Index and Risk Quantification
Index), as well as a logistic regression model using the same intraoperative features as the
DNN.2101441-43 The DNNs were also assessed for leveraging preoperative information by the

addition of ASA and POSPOM as features. This work has been published.**

Data Description

Electronic Medical Record (EMR) Data Extraction
All data for this study were extracted from the Perioperative Data Warehouse (PDW), a

custom built robust data warehouse containing all patients who have undergone surgery at
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UCLA since the implementation of the electronic medical record (EMR) (EPIC Systems, Madison
WI) on March 17t", 2013. The construction of the PDW has been previously described.**All data
used for this study were obtained from this data warehouse and IRB approval was been
obtained for this retrospective review.

A list of all surgical cases performed between March 17, 2013 and July 16, 2016 were
extracted from the PDW. The UCLA Health System includes two inpatient medical centers as
well as three ambulatory surgical centers, however only cases performed in one of the two-
inpatient hospitals (including operating room and “off-site” locations) under general anesthesia
were included in this analysis. Cases on patients younger than 18 years of age or older than 89
years of age were excluded. In the event that more than one procedure was performed during
a given health system encounter only the first case was included.

Model Endpoint Definition

The occurrence of an in-hospital mortality was extracted as a binary event [0, 1] based
upon either the presence of a “mortality date” in the EMR between surgery time and discharge
or a discharge disposition of expired combined with a note associated with the death (i.e. death
summary, death note). The definition of in-hospital mortality was independent of length of stay
in the hospital.

Model Input Features

Each surgical record corresponded to a unique hospital admission and contained 87
features calculated or extracted at the end of surgery (Table 7). These features were considered
to be potentially predictive of in-hospital mortality by clinicians’ consensus and included

descriptive intraoperative vital signs, such as minimum and maximum blood pressure values;
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summary of drugs and fluids interventions such as total blood infused and total vasopressin

administered; as well as patient anesthesia descriptions such as presence of an arterial line and

type of anesthesia (all features are detailed in Table 7).

Table 7. Description of model input features and applied maximum possible values as defined by domain

experts.
Maximum
Possible
Feature Name(s) Description Absolute
Value (if
applicable)
COLLOID_ML* Total Colloid Transfused (ml) -
CRYSTALLOID_ML* Total Crystalloid Transfused (ml) -
DBP MAX* MIN* AVG Maximum, Minimum, Average, Median, and
MEIID STD ’ ’ Standard Deviation Diastolic Blood Pressure for the 150
! case (mmHg)
. Maximum, Minimum, Average, Median, and
DBP_1 L. . .
P;ngll;l‘E'\lglA;("rllijl Standard Deviation Diastolic Blood Pressure for the 150
! ! last 10 minutes of the case (mmHg)
EBL* Total Estimated Blood Loss (ml) -
EPHEDRINE BOLUS* Total bolus dose of Ephedrine (mg) during the case -
EPINEPHRINE BOLUS* Total bolus dose (mcg), End of case infusion rate
END RATE* MAX RATE’* (mcg/kg/min), and Highest infusion rate -
! (mcg/kg/min) of Epinephrine during the case
Total bolus dose (mg), End of case infusion rate
E LOL BOLUS*, END . . .
SQ/IA?_EE MiXURSA';'E""\I (mcg/kg/min), and Highest Infusion rate -
! (mcg/kg/min) of Esmolol during the case
HR MAX*, MIN*, AVG, Maximum, Minimum, Average, Median, and 180
MED, STD Standard Deviation Heart Rate (bpm) for the case
HR 10min MAX. MIN Maximum, Minimum, Average, Median, and
"AVG. MED S,TD ’ Standard Deviation Heart Rate (bpm) for the last 10 180
! ’ minutes of the case
Invasive Central venous, arterial, or Pulmonary
E_LINE * s ’ ’ -
INVASIVE_LINE_YN Arterial Line used for the case (Yes/No)
Maximum, Minimum, Average, Median, and
* * '] 7] 7] 7
MAP MI\A/I)I(ED '\2_:_'; P AVG, Standard Deviation Mean Blood Pressure (mmHg) 300
! for the case
. Maximum, Minimum, Average, Median, and
1 L.
MAP_10min MAX, MIN, Standard Deviation Mean Blood Pressure (mmHg) 300

AVG, MED, STD

for the last 10 minutes of the case
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DES MAX*

GLUCOSE MAX*, MIN*

ISO MAX*

SEVO MAX*

MILRINONE END RATE*,
MAX RATE*

HGB MIN*

MINUTES MAP < 50

MINUTES MAP < 60

NICARDIPINE END RATE*,
MAX RATE*

NITRIC_OXIDE_YN*

NITROGLYCERIN BOLUS*,
END RATE*, MAX RATE*

NITROPRUSSIDE END
RATE*, MAX RATE*

PHENYLEPHRINE BOLUS*,
END RATE*, MAX RATE*

SBP MAX*, MIN*, AVG,
MED, STD

SBP_10min MAX, MIN,
AVG, MED, STD

Sp02 MAX*, MIN*, AVG,
MED, STD

Sp02_10min MAX, MIN,
AVG, MED, STD

uop*

VASOPRESSIN BOLUS*,
END RATE*, MAX RATE*

Maximum Minimum alveolar concentration of
desflurane during the case (note this is not age
adjusted)

Maximum and Minimum plasma Glucose
concentration for the Case (mg/dl)
Maximum Minimum alveolar concentration of
isoflurane during the case (note this is not age
adjusted)

Maximum Minimum alveolar concentration of
sevoflurane during the case (note this is not age
adjusted)

End of case Infusion Rate and Highest Infusion rate
of Milrinone during the case (mcg/kg/min)

Minimum Hemoglobin concentration (g/dl) during
the case

Cumulative minutes with mean arterial pressure
<50 mmHg (min)

Cumulative minutes with mean arterial pressure <
60 mmHg (min)

End of case infusion Rate and Highest Infusion Rate
of Nicardipine during the case (mg/hr)

Nitric Oxide Used for the Case (Yes/No)

Total bolus dose (mcg), End of case infusion rate
(mcg/min), and Highest Infusion rate (mcg/min) of
Nitroglycerin during the case

End of case infusion Rate and Highest Infusion Rate
of Nitroprusside (mcg/kg/min) during the case

Total bolus dose (mcg), End of case infusion rate
(mcg/min), and Highest Infusion rate (mcg/min) of
Phenylephrine during the case
Maximum, Minimum, Average, Median, and
Standard Deviation Systolic blood pressure (mmHg)
for the case
Maximum, Minimum, Average, Median, and
Standard Deviation Systolic blood pressure (mmHg)
for the last 10 minutes of the case

Maximum, Minimum, Average, Median, and
Standard Deviation Sp0O2 (%) for the case

Maximum, Minimum, Average, Median, and
Standard Deviation Sp0O2 (%) for the last 10
minutes of the case

Total Urine Output (ml)

Total bolus dose (units), End of case infusion rate
(units/hr), and Highest Infusion rate (units/hr) of
Vasopressin during the case
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XFUSION_RBC_ML* Total Red Blood Cells Transfused (ml) -

Data Preprocessing

One of the biggest issues with this data and other clinical data is missing values. For
example, minimum hemoglobin during surgery could be missing for a specific patient. This
missing value is not due to error, but rather that the anesthesiologist felt the patient was
normal and no blood samples were taken because the patient did not need one. It should also
be noted that the fact that the variable is missing is important information in itself and a
different way to address these gaps would be to include binary variables that indicate whether
or not a value was missing. Another way to address these gaps for future work would be to fill
them with clinically normal values as defined by domain experts.

Prior to model development, missing values were filled with the mean value for the
respective feature, or filled with the most common value or zero (Table 8). In addition, to
account for observations where the value is clinically out of range, values greater than a
clinically normal maximum were set to a maximum possible value (Table 7). These out of range
values were due to the data artifact in the raw EMR data. For example, a systolic blood pressure
of 400 mmHg is not clinically possible, however, it may be recognized as the maximum systolic
blood pressure for the case during EMR extraction. The data was then randomly divided into
training (80%) and test (20%) data sets, with equal % occurrence of in-hospital mortality.
Training data was rescaled to have a mean of 0 and standard deviation of 1 per feature. Test

data was rescaled with the training data mean and standard deviation.
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Table 8. Description of missing value preprocessing per feature.

Number Patients With

Feature Missing Data Data Fill Type Mean Value
MAX_ISO 57230 0 1.3
CURRENT_HB 51659 Mean 10.7
MIN_HB 51512 Mean 10.2
MAX_GLUCOSE 51211 Mean 161.0
MIN_GLUCOSE 51211 Mean 121.0
MAX_DES 46961 0 1.0
STARTING_HB 26115 Mean 12.3
MAX_SEVO 20017 0 1.2
BASELINE_GFR 16599 Mean 86.5
MAX_MAP 1510 Mean 114.3
MIN_MAP 1510 Mean 60.2
MIN_MAP_LT_40 535 Mean 0.5
MIN_MAP_LT_45 535 Mean 11
MIN_MAP_LT_50 535 Mean 2.6
MIN_MAP_LT_55 535 Mean 6.8
MIN_MAP_LT_60 535 Mean 16.7
MIN_MAP_LT_65 535 Mean 33.6
MAX_PULSE_OX 212 Mean 99.9
MIN_PULSE_OX 212 Mean 91.3
MAX_SBP 207 Mean 164.4
MIN_SBP 207 Mean 79.4
MAX_DBP 207 Mean 94.5
MIN_DBP 207 Mean 43.8
MAX_HR 194 Mean 109.1
MIN_HR 194 Mean 55.7
ASA_SCORE 22 Most common ASA Score 3 2.6

Model Development

In this work, we were interested in classifying patients at risk of in-hospital mortality
using deep neural networks (DNNs), also referred to as deep learning. During development of
DNNs, there are many unknown model parameters that need to be optimized by the DNN
during training. These model parameters are first initialized and then optimized to decrease the
error of the model’s output to correctly classify in-hospital mortality. This error is referred to as
a loss function. The type of DNN used in this study is a feedforward network with fully

connected layers and a logistic output. “Fully connected” refers to the fact that all neurons
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between two adjacent layers are fully pairwise connected. A logistic output was chosen so that
the output of the model could be interpreted as probability of in-hospital mortality [0-1]. To
develop a DNN, it is important to fine-tune the hyperparameters as well as the architecture. We
utilized stochastic gradient descent (SGD) with momentums [0.8, 0.85, 0.9, 0.95, 0.99] and
initial learning rates [0.01, 0.1, 0.5], and a batch size of 200. We also assessed DNN
architectures of 1 to 5 hidden layers with 10 - 300 neurons per layer, and rectified linear unit
(ReLU) and hyperbolic tangent (tanh) activation functions. The loss function was cross entropy.
We utilized five-fold cross validation with the training set (80%) to select the best
hyperparameters and architecture based on mean cross validation performance. These best
hyperparameters and architecture were then used to train a model on the entire training set
(80%) prior to testing final model performance on the separate test set (20%).
Overfitting

While ~50,000 examples is large for clinical data, it is small relative to datasets found in
deep learning tasks like vision and speech recognition where millions of examples are available.
Thus, overfitting was a major concern and regularization is critical. The first and most obvious
solution to this would be to just collect more data. This is currently being addressed by data
collection efforts at UC Irvine, but to collect more data at a large enough scale can take years,
as it is limited by the number of patients that come through the hospital. Thus, early stopping,
L2 weight decay, and dropout were all used to address overfitting. Early stopping is used during
the training process. A loss function is calculated after each epoch on a validation set and once
the validation loss starts to increase, indicating overfitting, training is stopped. The point at

which to stop training depends on a “patience” parameter, corresponding to the number of
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epochs to wait for to see if validation loss continues to increase. For all models, the patience
was set to 10. L2 weight decay is a method of limiting the size of the weights. The standard L2
weight penalty involves adding an extra term to the loss function that penalizes the squared
weights, keeping the weights small unless the error derivative is big. The loss function used for

all models was log loss, also known as cross entropy loss. Log loss is defined by

1
L= - Zylna+(1—y)ln(1—a)
X

where n is the total number of examples in the training data, the sum is over all the training
inputs x and y is the corresponding desired output and a is the calculated output. The output
used for all models is sigmoid. If L is the loss function, then the new loss function with L2

penalty is the following, where i indicates the i-th example:

A 2
i

We utilized an L2 weight penalty of 0.0001. Dropout is a relatively new way to deal with the
limited data as compared to the large number of learning parameters seen with deep neural
networks [57]. Neurons are removed from the network with a specified probability during
training. This prevents neurons from co-adapting too much. The procedure is repeated for each
example at each training epoch. After training is complete, predictions are produced by
multiplying the weights by the specified dropout probability. Dropout was only applied before
the output layer. The following figure describes drop out and was taken from paper by

Srivastava et al.*® Dropout was applied to all layers with a probability of 0.5.
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a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Data Augmentation

The goal of training was to optimize model parameters to decrease classification error
of in-hospital mortality. However, the actual percent of occurrence of in-hospital mortality in
the data was low and thus the data was skewed. The % occurrence of mortality in the training
dataset was < 1%. To help with this skewed distribution, training data was augmented by taking
only the observations positive for in-hospital mortality and adding Gaussian noise. This was
performed by adding a random number taken from a Gaussian distribution with a standard
deviation of 0.0001 to each feature’s value. This essentially duplicated the in-hospital mortality
observations with a slight perturbation. The in-hospital mortality observations in the training
data set were augmented using this method to approximately 45% occurrence prior to training.
During cross validation, this meant that only training folds were augmented. The validation fold

was not augmented.

Feature Reduction and Preoperative Feature Experiments

Experiments to assess the impact of 1) reducing the number of features from the

clinician chosen 87 to 45 features, and 2) adding ASA and POSPOM as a feature were also
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conducted. The reduced 45 feature set was created by excluding all “derived” features,
specifically average, median, standard deviation, and last 10 minutes of the surgical case
features (Table 7).
After choosing the best performing DNN architecture and hyperparameters with the complete
87 features data set, five additional DNNs were each trained with the following:

1) the addition of ASA as a model feature (88 features)

2) the addition of POSPOM as a model feature (88 features)

3) areduced model feature set (45 features)

4) the addition of ASA to the reduced feature set (46 features).

5) the addition of POSPOM to the reduced feature set (46 features).

Model Performance Methods

All model performances were assessed on 20% of the data held out from training as a test
set. Model performance was compared to ASA, Surgical Apgar, RQl, RSI, POSPOM, and a
standard logistic regression model using the same combination of features as in the DNN. ASA
was extracted from the UCLA preoperative assessment record. Surgical Apgar was calculated
using Gawande et al.1° RQl could not be calculated using the downloadable R package from
Cleveland Clinic’s website <

http://my.clevelandclinic.org/departments/anesthesiology/depts/outcomes-research> due to

technical issues with the R version, and so RQl log probability and score were calculated from
equations provided in Sigakis et al.** Uncalibrated RSI was calculated using coefficients

provided by the original authors. To calculate RSI, all ICD-9 diagnosis codes for each patient
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were matched with an RSI coefficient and the coefficients were then summed. POSPOM scores
were extracted from the PDW, where they were calculated as described by Le Manach et al.'*
Each of the diseases described by Le Manach et al. were extracted as a binary endpoint from
the admission ICD codes for the relevant hospital admission. In addition to assigning points
based on patient co-morbidities the POSPOM also assigns points for the type of surgery
performed. These points were assigned based on the primary surgical service for the given
procedure.

Model performance was assessed using Area Under the ROC Curve (AUC) and 95%
confidence intervals for AUC were calculated using bootstrapping with 1,000 samples. The F1
score, sensitivity, and specificity were calculated for different thresholds for the DNN models,

logistic regression model, ASA, and POSPOM. The F1 score is a measure of precision and recall,

precisionsrecall

ranging from O to 1. Itis calculated as F1 = 2 * , Where precision is (true

precision+recall

positives/predicted true) and recall is equivalent to sensitivity. Two different threshold
methods were assessed: 1) a threshold that optimized the observed in-hospital mortality rate
and 2) a threshold based on the highest F1 score. The number of true positives, true negatives,
false positives, and false negatives were then assessed for each threshold to assess differences
in the number of patients correctly predicted by each model.
Calibration

Calibration was performed to account for the use of data augmentation on the training
data set to be used during training of the DNN. This data augmentation served to balance
classes in the training data set to approximately 45% mortality vs the true distribution of

mortality (<1%). This extreme augmentation of the training data set classes skewed predicted
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probabilities to be higher than the expected probability based on the true distribution of
mortality (<1%). Therefore, we performed calibration after finalizing the model. Calibration was
performed only on the test data set. Calibration of the DNN predicted probability output was

performed using the following equation:

Calibrated Predicted Probability =

—

1 P(0
1+ (Predicted Probability 1) (1)

# Observed Mortality inTest __ 87

,where P(1) = ; =
# Test Patients 11997

and P(0) = 1 — P(1). This calibration
formula was used to maintain the rank of predicted probabilities, and thus not changing any

model performance metrics (AUC, sensitivity, specificity, or F1 score).

In addition, calibration plots and Brier scores were used to assess calibration of predictions.

Feature Importance

To assess which features are the most predictive in the DNN, we performed a feature
ablation analysis. This analysis consisted of removing model features grouped by type of clinical
feature, and then re-training a DNN with the same final architecture as well as
hyperparameters on the remaining features. The change in AUC with the removal of each
feature was then assessed to evaluate the importance of each group of features. To assess
which features are the most predictive in the logistic regression model, we assessed which

features corresponded to the largest weights.

All DNN models were developed and applied using Keras.*” Logistic regression models and

performance metrics were calculated with scikit-learn.*®
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Results

The data consisted of 59,985 surgical records total. Patient demographics and
characteristics of the training and test data sets are summarized in Table 9. The in-hospital
mortality rate of both the training and test set is less than 1%. The presence of invasive lines is

also similar for both sets (26.5% in training; 26.7% in test). The most prevalent ASA is 3 at 49.9%

for both sets.

Table 9. Description of patient demographics

Train Test
# Patients 47985 11996
Age 56 +/- 17 56 +/- 94
EBL 96 +/- 539 18 +/- 410
# with Aline 8583 2135
# with PA 1641 430
# with CVC 2443 635
ASA Score
1 3022 762
2 17930 4477
3 23960 5985
4 2910 735
5 144 30
6 4 0
Unknown 15 7
Primary CPT by Specialty

Gastroenterology
General Surgery
Urology
Orthopaedics
Neurosurgery
Otolaryngology
Obstetrics and Gynecology
Vascular Surgery
Cardiac Surgery
Thoracic Surgery
Other

Unknown

AKI
Class 1
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6615 (13.8%)
6552 (13.7%)
4005 (8.3%)
3916 (8.2%)
3686 (7.7%)
3268 (6.8%)
2630 (5.5%)
1834 (3.8%)
1396 (2.9%)
1095 (2.3%)
8497 (17.7%)
4491 (9.4%)

2501 ( 5.21 %)

1614 (13.5%)
1646 (13.7%)
1062 (8.9%)
979 (8.2%)
916 (7.6%)
860 (7.2%)
672 (5.6%)
445 (3.7%)
372 (3.1%)
273 (2.3%)
2049 (17.1%)
1108 (9.2%)

622 (5.19 %)



Class 2 369 (0.77 %) 99 ( 0.83 %)

Class 3 1001 ( 2.09 %) 246 ( 2.05 %)

Null 30616 ( 63.8 %) 7689 ( 64.1 %)

Reintubation 548 (1.14 %) 159 (1.33%)
Mortality 389(0.81%) 87(0.73%)

The final DNN architecture consists of four hidden layers of 300 neurons per layer with
rectified linear unit (ReLu) activations and a logistic output. The DNN was trained with dropout
probability of 0.5 between all layers, L2 weight decay of 0.0001, and a learning rate of 0.01 and

momentum of 0.9.

Model Performance

All performance metrics reported below refer to the test data set (n =11,997). ROC
curve and AUC results are shown in Figure 2. All logistic regression models (LR) and all DNNs
had higher AUCs than POSPOM (0.74 (95% Cl, 0.68 — 0.79)) and Surgical Apgar (0.58 (95% Cl,
0.52 - 0.64)) for predicting in-hospital mortality (Figure 3). All DNNs had higher AUCs than LRs
for each combination of features except for the reduced feature set with POSPOM (LR 0.90
(95% Cl, 0.86 —0.93) vs DNN 0.90 (95% Cl, 0.87 — 0.93)). In addition, reducing the feature set
from 87 to 45 features did not reduce the DNN model AUC performance and the addition of
ASA and POSPOM as features modestly improved the AUCs of both the full and reduced feature
set DNN models. The highest DNN AUC result was the DNN with reduced feature set and ASA
(0.91 (95% Cl, 0.88 — 0.93)). The highest clinical risk score AUC was RSI (0.97 (95% Cl, 0.94 —
0.99)) and the highest LR AUCs were the LR with reduced feature set and ASA (0.90 (95% Cl,

0.87 - 0.93)) and the LR with reduced feature set and POSPOM (0.90 (95% Cl, 0.86 - 0.93)).
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Figure 3. ROC Curve and AUC (95% Cl) results for in-hospital mortality models and scores.

For comparison of F1 scores, sensitivity and specificity at different thresholds, DNN with
original 87 features (DNN), DNN with a reduced feature set and POSPOM (DNNtspospom), and
DNN with a reduced feature set and ASA (DNNsasa) are compared to ASA, POSPOM, logistic
regression with original 87 features (LR), logistic regression with a reduced feature set and
POSPOM (LRrspospom), and logistic regression with a reduced feature set and ASA (LRrfsasa)
(Table 4). If we choose a threshold that optimizes the observed in-hospital mortality rate, the

thresholds (% observed mortality) for POSPOM, ASA, and LR, LRrtspospom, LRrsasa are 10 (93.1%),
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3(97.7%), 0.00015 (98.9%), 0.002 (97.7%), and 0.0034 (96.66%), respectively. The thresholds
for DNN, DNNrfspospom and DNNissasa are 0.05 (98.9%), 0.2 (96.6%) and 0.22 (96.6%),
respectively. At these thresholds, POSPOM, ASA, LR, LRrtspospom, LRrfsasa, DNN, DNNrspospom and
DNNissasa , all have high and comparable sensitivities. The DNN with the highest AUC DNNrfsasa
had a sensitivity of 0.97 (95% Cl, 0.92 — 1) and specificity of 0.64 (95% Cl, 0.64 — 0.65) and the
LR with the highest AUC LRsasa had a sensitivity of 0.97 (95% Cl, 0.92 — 1) and specificity of 0.64
(95% Cl, 0.63 — 0.65). However, all DNNs reduced false positives while maintaining the same or
similar number of false negatives. DNN with all 87 original features decreased the number of
false positives compared to LR from 11,873 to 9,169 patients. DNNsasa decreased the number
of false positives compared to LRrsasa from 4,332 patients to 4,241 patients; and compared to
POSPOM and ASA from 9,169 patients and 6,666 patients, respectively.

If we choose a threshold that optimizes precision and recall via the F1 score, the
thresholds for POSPOM, ASA, LR, LRrspospom, and LRrsasa are higher at 20, 5, 0,1, 0.1, and 0.1,
respectively (Table 4). All the thresholds for DNN, DNNtspospom, and DNNifsasa also increased to
0.3, 0.4, and 0.3, respectively. The highest F1 scores were comparable for ASA, LRrtsasa, and
DNNisasa at 0.24 (95% ClI, 0.14 — 0.35), 0.26 (95% ClI, 0.18 —0.33) and 0.22 (95% Cl, 0.12 — 0.30).
However, DNNsasa had a lower number of false positives at 35 patients compared to LRrfsasa
115 patients.

Calibration

For comparison of calibration, Brier scores and calibration plots were assessed for LR,

DNNrfsasa, and calibrated DNNissasa. DNNifsasa had the worst Brier score of 0.0352, and LR had

the best score of 0.0065. However, the calibrated DNNsasa had a comparable Brier score of
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0.0071. Calibration of DNN£sasa shifted the best thresholds for observed mortality optimization

and F1 optimization from 0.2 and 0.4 to 0.0018 and 0.0048, respectively.

Feature Importance

To assess feature importance, we assessed the decrease in AUC for the removal of
groups of features from the best DNN (DNNsasa) (Figure 4). For the analysis, 13 groups were
used (Age, Anesthesia, ASA, Input, BP, Output, Vasopressor, Vasodilator, Labs, HR, Invasive
Line, Inotrope, and PulseOx). Labs, ASA, anesthesia type, blood pressure, and vasopressor
administration were the top features in this analysis. To assess feature importance, we
assessed the weights for the logistic regression model (LRrtsasa). ASA had the highest weight. In
addition, similar to the DNN, vasopressin, hemoglobin, presence of arterial or pulmonary

arterial line, and sevo administration are found in the top 10 weights. (Figure 5)
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Figure 4. Feature ablation results for DNN models.
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Figure 5. Logistic regression models coefficients.

We have also developed a website application that performs predictions for DNNsasa
and DNN on a given data set. The application as well as downloadable model package are

available at <risknet.ics.uci.edu>.
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PREDICTING POSTOPERATIVE OUTCOMES: ACUTE KIDNEY INJURY,
REINTUBATION, AND MORTALITY

Building off our previous work described above, we were interested in predicting which
patients were at risk of poor postoperative outcomes: acute kidney injury (AKI) and

reintubation, as well as mortality.

Data Description
Data used in this study was equivalent to the previously described.

Model Endpoint Definition

The occurrence of an in-hospital mortality was extracted as a binary event [0, 1] and
described previously. Acute kidney injury (AKI) was determined based upon the change from
the patient’s baseline serum creatinine (Crs) as described in the Acute Kidney Injury Network
(AKIN) criteria. Patients were defined as having AKI if they met criteria for any of the AKIN
stages based upon changes in their Cr (e.g. had a Crsmore than 1.5 times their baseline).
Patients who lacked either a preoperative or postoperative Cr were excluded only from the AKI
and any event models. Postoperative reintubation was determined by documentation of an
endotracheal tube or charting of ventilator settings by a respiratory therapist following surgery.
Model Input Features and Data Preprocessing

All data preprocessing and input features were replicated in this study per our previous
work. New to this study was the addition of 6 new features: minutes of case time spent with
mean arterial pressure (MAP) < 40, 45, 50, 55, 60, and 65 mmHg. These new MAP features were

added as potentially relevant features per studies showing the importance of low blood
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pressure to the risk of AKI and myocardial infarction.??%° For this model, given the addition of 6
new features, we also chose to remove features with a Pearson’s correlation > 0.9 with other
features and were thus left with a reduced feature set (RFS) of 44 features total. Thus, while the
overall architecture of this model is similar to aforementioned model to predict mortality, the

various models here have somewhat different input features.

Model Development

We utilized five-fold cross validation with the training set (80%) to select for the best
performing deep neural network (DNN) models’ hyperparameters and architecture. The
hyperparameters assessed were number of hidden layers (1 to 5), number of neurons (10 to
100), learning rate (0.01, 0.1), and momentum (0.5, 0.9). To avoid overfitting, we also utilized
L2 regularization (0.001, 0.0001) and dropout probability (0, 0.5, 0.9)*6°°, These
hyperparameters and architecture were then used to train a model on the entire training set
(80%) prior to testing final model performance on the separate test set (20%). For patients
without a preoperative baseline Cr and/or a postoperative Cr, we could not determine
postoperative AKI. Those patients were excluded from training for the individual AKI models
and the combined models. In total that amounted to exclusion of 38,305 patients or 63.8% of
the total sample.
Individual Models to Predict Each Postoperative Outcome Separately

Similar to our previous work, three separate DNN models were created with each
predicting one postoperative outcome of interest: in-hospital mortality, acute kidney injury,

reintubation. A logistic output was chosen so that the output of each outcomes model could be
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interpreted as probability of each postoperative outcome of interest [0-1]. We also assessed
DNN architectures of 3 to 5 hidden layers with [90, 100, 300, 400] neurons per layer, and
rectified linear unit (ReLU) and hyperbolic tangent (tanh) activation functions. The loss function
was cross entropy. To deal with the highly unbalanced data sets, we also utilized data
augmentation during training per our previous work with prediction of in-hospital mortality.
Observations positive for reintubation or in-hospital mortality were augmented 100 fold.
Observations positive for AKI were augmented 3 fold. Augmentation was done by adding

Gaussian noise taken from a Gaussian distribution with a SD of 0.0001.

Combined Model to Predict All Postoperative Outcomes

To assess if a model could leverage the relationship between the three outcomes (i.e.
multitask learning), we also created combined models that output probabilities of all three
outcomes at once. The same hyperparameters as the individual models were assessed, with the

exception of the use of a batch size of 100.

Stacked “Any” Postoperative Outcome Model

We were also interested in predicting the probability of the occurrence of any of the
three postoperative outcomes. For the combined DNN model, we took the average of the
predicted probability outputs for each outcome (Figure 6). In other words, each predicted
probability was given equal weight. The averaged value was considered as the probability of
any of the 3 outcomes occurring. For the individual outcome models (DNN and LR) we took the
predicted probability of each respective outcome model per equivalent feature set inputs and

averaged the three values (Figure 6). For example, the outputs of each of the models for AKI,
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reintubation, and mortality with a reduced feature set were averaged to represent the

probability of any outcome occurring.

Individual Individual Individual
DNN Combined (DNN or LR) (DNN or LR) (DNN or LR)
Model 1 Model 2 Model 3
Probability Probability Probability Probability Probability Probability
of of of of of of
AKI Reintubation Mortality AKI Reintubation Mortality

Averaged

|

Any Outcome
Stacked Model
Probability

Averaged

|

Any Outcome
Stacked Model
Probability

Figure 6. Summary figure describing the stacked “any” postoperative outcome models for the combined
deep neural networks (DNN Combined) trained to output probabilities of all 3 outcomes vs the deep
neural networks (DNN Individual) and logistic regression (LR) models.

Feature Reduction and Clinically Significant Feature Addition Experiments

After choosing the best performing DNN architectures for the reduced features set
(RFS), we also assessed the performance of models with two other input feature sets: 1)
original 46 features set (OFS) and 2) OFS plus the addition of 6 new MAP features (OFS + MAP).
This was done to assess if the reduction of features improved performance compared to a
model with more features, and also to assess if the addition of the clinically significant MAP

features not used in previous improved performance overall.
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Model Performance Methods

All model performances were assessed on 20% of the data held out from training as a
test set. Those patients without an AKI label were excluded from evaluation of test set results
for AKI, but not for in-hospital mortality, reintubation, or any outcome results. This is due to the
input features of each model independence from the determination of AKI, and so all test
patients can have an AKI model predicted probability even if AKI class is unknown. Model
performance and comparison was performed similar to our previous work, with the addition of
average precision (AP) and the McNemar’s test.
McNemar’s Test to Compare Model Accuracy

To compare the predictions of the DNN and LR models to each other, we utilized
McNemar’s test.>® McNemar’s test compares the number of correctly predicted samples vs
wrongly predicted samples and where they do and do not predict the same label. If the p value
of McNemar’s test is significant, we can reject the null hypothesis that the 2 models have the
same classification performance. McNemar’s test was performed using the freely available
package MLxtend.%?
All neural network models were developed using Keras.*” All performance metrics, except for

McNemar’s Test, and logistic regression models were developed using scikit-learn.*®

Results
Patient characteristics have been previously described in Table 9. The final model

hyperparameters are described in Table 10 below.
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Table 10. Final postoperative outcomes models hyperparameters.

#Layers # Neurons L2Lambda Learning Momentum Dropo.u.t
Rate Probability

DNN Individual for AKI 4 100 0.0001 0.01 0.9 0.5

DNN Individual for 3 100 0.0001 0.01 0.5 05
Reintubation

DNN Individual for 4 90 0.0001 0.01 0.5 0.5

Mortality

DNN Combined, best 4 100 0.0001 0.1 0.5 05
AUC for AKI

DNN Combined, best 5 90 0.0001 0.1 0.9 0.5

AUC for Reintubation
DNN Combined, best 5 90 0.0001 0.1 0.9 0.5

AUC for Mortality

Individual Model Performance

As a baseline, models were created to predict each outcome separately (i.e. AKI,
mortality, reintubation or any outcome) using a DNN (DNN OFS). The models all performed well
with AUCs of 0.780 (95% ClI 0.763-0.796) for AKI, 0.879 (95% Cl 0.851-0.905) for reintubation,
0.895 (95% Cl .854-0.930) for mortality and 0.866 (95% Cl 0.855-0.878) for any outcome. These

results as well those for the other models can be found in Table 11.
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Table 11. AUC (95% confidence intervals) for all DNN and LR models as well as risk scores for all

outcomes.

Score AKI* Reintubation Mortality Any Outcome
ASA 0.652 (0.636 - 0.669) 0.787 (0.757 - 0.818) 0.839 (0.804 - 0.875) 0.76 (0.748 - 0.773)
rRQI** 0.652 (0.623 - 0.683) 0.878 (0.842 - 0.90%) 0.907 (0.86 - 0.942) 0.8 (0.778 - 0.821)
RSI*** 0.594 (0.571 - 0.615) 0.829 (0.783 - 0.873) 0.97 (0.944 - 0.99) 0.597 (0.576 - 0.621)
Any Outcome
M IT AKI* i i M li
odel Type K Reintubation ortality (Stacked Model)
LR OFS 0.767 (0.748 - 0.785) 0.856 (0.82 - 0.888) 0.9 (0.865 - 0.93) 0.843 (0.829 - 0.857)
LR OFS + MAP 0.767 (0.749 - 0.785) 0.855 (0.818 - 0.887) 0.898 (0.863 - 0.93) 0.843 (0.829 - 0.857)
LRRFS 0.767 (0.748 - 0.785) 0.862 (0.827 - 0.854) 0.899 (0.864 - 0.93) 0.843 (0.829 - 0.858)

DNN Individual OFS 0.78 (0.763 - 0.796) 0.879 (0.851-0.905) 0.895 (0.854 - 0.93) 0.866 {0.855 - 0.878)

DNN Individual OFS + MAP 0.792 (0.775 - 0.808) 0.876 (0.848 - 0.902) 0.903 (0.871 - 0.933) 0.874 (0.864 - 0.886)

DNN Individual RFS 0.783 (0.766 - 0.799) 0.879 (0.851-0.905) 0.9 (0.865 - 0.931) 0.866 (0.854 - 0.878)

DNN Combined OFS 0.785 (0.767 - 0.801) 0.858 (0.829 - 0.886) 0.907 (0.872 - 0.938) 0.865 (0.854 - 0.877)

DNN Combined OFS + MAP
DNN Combined RFS

0.783 (0.765 - 0.8)
0.789 (0.772 - 0.806)

0.84 (0.808 - 0.872)
0.842 (0.811 - 0.871)

0.906 (0.87 - 0.937)
0.906 (0.87 - 0.937)

0.86 (0.848 - 0.872)
0.852 {0.84 - 0.864)

Each model was also evaluated for each feature set combination of original feature set (OFS), OFS + the minimum
MAP features (OFS + MAP), and reduced feature set (RFS). Note that for the LR and individual models, there is one
model per outcome and the predicted outcome probabilities from each model is stacked to predict any outcome.
For the combined models, there is one model for all 3 outcomes and those probabilities are stacked to predict any
outcome.

*It should be noted that AKI labels were only available for 4307 of the test patients, and so all AUCs reflect results
for only those patients with AKI labels.

** RQl was calculated on 5,591 test patients (63 Reintubation; 38 Mortality, 491 Any Label); and on 2,319 test
patients with AK| labels (445 positive)

*** RSl was calculated on 11,939 test patients (159 Reintubation; 86 Mortality, 1066 Any Label); and on 4,294 test
patients with AKI labels (967 positive)

Combined Model Performance

In an effort to improve model performance we attempted to train a combined model
that would output the risk of each individual outcome. The thought was that in using a model
that had information on all of the outcomes the model could “learn” from one outcome in

order to predict the others. In fact, these models did not perform better than the original
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model: AUC 0.785 (95% CI 0.767-0.801) for AKI, 0.858 (95% Cl 0.829-0.886) for reintubation,
0.907 (95% Cl 0.872-0.938) for mortality and 0.865 (95% ClI 0.854-0.877) for any outcome.
McNemar’s Test

In order to assess the ability of the DNN as compared to LR, we used the McNemar Test
to look at overall model accuracy. All results were based on the threshold that optimized the F1
score for that model. These results are shown in Table 12. In general, we see that the DNN

models and the LR models do perform significantly differently.

Table 12. McNemar's Test Results

AKI* Reintubation Mortality Any Outcome
DNN Individual DNN Combined p p <0.05 P p <0.05 p p <0.05 P p <0.05
DNN Individual OFS DNN Combined OFS 7.78E-03 TRUE 1.00E+00 FALSE 6.16E-01 FALSE 5.58E-01 FALSE
DNN Combined OFS + MAP
DNN Individual OFS Features 2.50E-01 FALSE 6.54E-40 TRUE 1.67E-38 TRUE 7.99E-13 TRUE
DNN Individual OFS DNN Combined RFS 1.34E-01 FALSE 2.74E-51 TRUE 2.46E-47 TRUE 9.38E-28 TRUE
DNN Individual RFS DNN Combined OFS 1.42E-07 TRUE 2.76E-05 TRUE 1.05E-07 TRUE 1.50E-02 TRUE
DNN Combined OFS + MAP
DNN Individual RFS Features 1.42E-01 FALSE 1.93E-18 TRUE 2.36E-15 TRUE 4.71E-05 TRUE
DNN Individual RFS DNN Combined RFS 2.54E-01 FALSE 3.36E-29 TRUE 1.21E-23 TRUE 2.92E-16 TRUE
DNN Individual OFS + MAP
Features DNN Combined OFS 1.80E-10 TRUE 1.97E-27 TRUE 4.81E-31 TRUE 4.93E-07 TRUE
DNN Individual OFS + MAP  DNN Combined OFS + MAP
Features Features 2.51E-03 TRUE 1.28E-02 TRUE 4.41E-02 TRUE 1.06E-01  FALSE
DNN Individual OFS + MAP
Features DNN Combined RFS 1.04E-02 TRUE  4.93E-07 TRUE 2.40E-05 TRUE 8.26E-09 TRUE

PREDICTING POST-LIVER TRANSPLANT MORTALITY

Liver transplantation is the definitive treatment for irreversible liver failure, with
thousands of lives saved each year in the Unites States through deceased donor organ
donation. Unfortunately, with the demand for donor organs far exceeding the supply,
thousands of patients die waiting for this life saving procedure.>?As such, the development of

predictive models of post-transplant mortality is crucial to avoid transplanting an individual
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with an unacceptably low probability of post-transplant survival. While the prediction of pre-
operative mortality among those waiting for an organ has been quite successful with the
adoption of the Model for End-Stage Liver Disease (MELD) score to prioritize organ allocation,
the accurate prediction of post-transplant mortality has been difficult and less successful.>3->¢
Two of the most commonly cited risk models are the Balance of Risk (BAR) score and the
Survival outcomes following liver transplantation (SOFT) score, both of which predict 90-day
post-liver transplant mortality using United Network of Organ Sharing (UNOS) registry data.>”>8
The SOFT score incorporated a combination of 18 recipient and donor variables and achieved a
c-statistic of 0.7, and the BAR score achieved a C-statistic of 0.7 using a combination of just 6
recipient and donor variables. Despite the popularity of these models in academic circles, their
clinical use has been limited due to their modest discriminative performance.
In this study, we attempted to develop a DNN model using pre-operative variables from the

UNOS registry to predict 90-day post-liver transplant mortality.

Data Description

Data Extraction

All data for this study were extracted from the standard transplant analysis and research
(STAR) dataset which contains patient-level data for all transplants in the Unites States reported
to the Organ Procurement and Transplantation Network (OPTN) since October 1, 1989. The
database has been used in numerous important studies of transplantation and contains data on
pre-transplant variables pertaining to the recipient, donor variables reported from the organ

procurement organization, as well as post-transplantation outcome data. The OPTN mortality
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data are linked by UNOS to the Social Security Death Master file to improve ascertainment of
recipient. *°

The study sample included adult deceased donor liver transplants performed from 2005
to 2015. Transplants performed from 2016 onwards were not included in this analysis to ensure
adequate time for ascertainment of outcome data, and transplants performed prior to 2005
were excluded because 1) transplants before 2002 were performed prior to implementation of
the MELD score allocation system, and 2) data on several predictor variables were either not
reported or were inconsistently recorded prior to that time. Exclusion criteria included age less
than 18 years, living donor transplantation (n=2,347), multiple-organ transplantation (n=5,267),
as well as those lost to follow-up within 90 days post-transplantation (n=70) as these cases
were excluded in the development of the SOFT score and BAR score. For patients who
underwent more than one liver transplantation (n=3,503), we included each of the
transplantations in the analysis as did other comparable prediction models. The study sample
included split liver as well as Donation after Cardiac Death (DCD) donors. In sum, we analyzed
57,544 recipients.
Model Endpoint Definition

The occurrence of death within 90 days from transplantation was extracted as a binary
event [0, 1]. An event occurred if the value of the variable “pstatus” from the STAR dataset was
equal to “1” and the variable “ptime” was less than or equal to 90. The variable “pstatus”
indicates whether the recipient had died post-transplant, and the variable “ptime” indicates the
time from transplantation to either death or censoring. These variables are based on the

combination of mortality data from OPTN database as well as verified external sources of death
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(described above), and not based on the variable “PX_STAT” which only accounts for death as

documented by the OPTN alone.

Model Input Features

The original STAR dataset contained 395 variables, many of which were not considered
for inclusion in the model. Variables that were excluded from model development included
those pertaining to post-transplant data, living donor transplants, multi-organ transplants, and
identifier code variables. Variables with zero or near zero variances, high levels of missing data
(>98%) or those that were highly correlated to other variables (r>0.99) were removed. A few
variables with >50% missing data combined with low clinical significance based on domain
experts were not analyzed. This resulted in 202 features including 132 recipient variables and
70 donor-related variables (Appendix A). To further reduce the feature set, variables with
greater than 50 percent missing data or those containing greater than 95% zero values were
removed and the remaining variables comprised a reduced feature set (RFS).

While most of the categorical features had a simple binary encoding (Appendix A),
categorical features identified by domain expert that required more complex encoding were
encoded based on clinician judgment. For example, the variable “DIAG”, which indicates a
recipient’s primary liver disease diagnosis at transplantation, contains 70 possible unique
diagnosis codes. Rather than creating 70 new, binary categorical features, groups of diagnosis
codes were used to collapse the 70 unique codes into 11 new categorical features.

BAR Score and SOFT Score
The BAR score and SOFT score are two models used to predict 90-day post-liver

transplant survival using UNOS data. To compare the discriminative ability of the DNN to that of
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these models, the BAR score and SOFT score were calculated for recipients in this dataset. Data
on cold ischemia time was missing for 2.8% of recipients, and therefore, the BAR score could
not be calculated for these subjects. The amount of missing data for other variables was <0.1%,
and these cases were removed from the calculation of the BAR score’s area under the receiver
operating characteristics curve (AUC). Missing data for the SOFT score was handled by assigning
the missing value to the reference group category as indicated by the scoring methodology.
One of the 18 variables that comprises the original SOFT score is the presence of a portal bleed
within 48 hours of transplantation. This variable was not available in the STAR dataset and
therefore was not included in the calculated SOFT score. In our analysis, we calculated the SOFT
score using the remaining 17 components.
Data Preprocessing

Prior to model development, missing values were imputed with the mean value for
continuous variables and with O for categorical variables. The data were then randomly divided
into training (80%) and test (20%) data sets. The training data was rescaled to have a mean of 0
and standard deviation of 1 per feature. The test data was rescaled to the training mean and

standard deviation.

“Soft” Binning Features

Besides following the standard approach of normalizing individual input features we
also experimented with a novel idea that we will refer to as "soft binning". Similar to
standard/"hard" binning, the data representation of any feature is replaced by a fixed number
of bins, containing numbers between 0 and 1. Ordinary binning discretizes a feature by

representing it as a single "1" in one bin, and zeroes in all other bins, potentially resulting in loss
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of information and making the classification task harder. "Soft" binning is the most straight-
forward generalization of binning without loss of information, where two bins are assigned
values in the range of 0 to 1, which sum to one. These values encode the fraction to which the
feature's value falls into the given bins. For example, if in standard binning a value would fall
exactly on the boundary between two bins, then it would instead be represented as two
neighboring entries of "0.5" in the neighboring bins in "soft" binning. Our motivation for
creating "soft" binning was that binning alleviates the burden for the neural network to learn
individual features thresholds (i.e. "high", "average", or "low"), and thus improves classification

accuracy.

Model Development

The primary aim of the study was to classify recipients with 90-day post-liver transplant
mortality using deep neural networks (DNNs), also referred to as deep learning. The type of
DNN used in this study was a feedforward network with fully connected layers and a logistic
output. A logistic output was chosen so that the output of the model could be interpreted as
probability of mortality [0-1]. We utilized stochastic gradient descent with momentum [0.2, 0.5,
0.9] and initial learning rates [0.01, 0.001, 0.1], and a batch size of 500. We also assessed DNN
architectures of 1 to 5 hidden layers with [10, 50, 100, 110, 115, 120, 130, 140, 150] neurons
per layer, and rectified linear unit (ReLU) activation functions. The loss function was cross
entropy. To minimize overfitting, we utilized three methods: 1) early stopping with a patience
of 10 epochs, 2) L2 weight decay, and 3) dropout.*®>° We assessed L2 weight penalties of [0.01,

0.001, 0.0001] and dropout was applied to all layers with a probability of [0, 0.2, 0.5, 0.9]. We
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utilized five-fold cross validation with the training set (80%) to select the best hyperparameters
and architecture based on mean cross validation performance. These best hyperparameters
and architecture were then used to train a model on the entire training set (80%) prior to

testing final model performance on the separate test set (20%).

Model Performance Methods
All model performances were assessed on 20% of the data held out from training as a
test set. Model performance was assessed using area under the receiver operating curve (AUC)

and were compared to the BAR score and the SOFT score.

Results

Best neural network hyperparameters for each DNN and feature set are described in

Table 13.
Table 13. Final model hyperparameters for liver transplant models.

# Hidden # Neurons L2 Lambda Dropo.u't Learning Momentum
Layers per layer probability Rate
DNN w/ original 202 features (OFS) 5 100 0.001 0.5 0.01 0.5
DNN w/ OFS + softbin 5 110 0.001 0 0.01 0.5
DNN w/ reduced 140 features (RFS) 5 100 0.001 0.5 0.01 0.5
DNN w/ RFS + softbin 5 110 0.001 0 0.01 0.5

Model Performance
All performance metrics reported below refer to the test dataset.
The best DNN model (DNN with OFS + softbin) had a higher AUC (0.703 (95%Cl: 0.682 -

0.726)) compared to that for the BAR score and SOFT score models (0.655 (95%Cl: 0.633 -
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0.678); 0.688 (95%Cl: 0.667 - 0.711)), respectively on the 11,207 patients with available BAR
scores (Table 14). In addition, softbin preprocessing of input features improved performance of
both the OFS and RFS models. While the best DNN had a significantly higher AUC than the BAR
score, the DNN did not achieve a significantly higher AUC than the SOFT score. The DNN with
the reduced feature set and softbin preprocessing (DNN with RFS + softbin) performed
comparably (AUC 0.702 (95%Cl:0.68 - 0.725)) to the DNN with OFS + softbin.

Table 14. AUC (95% confidence intervals) for all DNN models as well as BARscore and SOFTscore,

AUC (95% Cl)

n = 11,509 n =11,207*
BARscore* 0.655 (0.633 - 0.678) 0.655 (0.633 - 0.678)
SOFTscore 0.691 (0.671 - 0.714) 0.688 (0.667 - 0.711)
D iginal 202
NN w/ Original 202 .5, (4 678 - 0.72) 0.695 (0.675 - 0.717)

Features Set (OFS)
DNN w/ OFS + softbin 0.708 (0.689 - 0.73) 0.703 (0.682 - 0.726)

DNN w/ Reduced 140
Features Set (RFS)

DNN w/ RFS + softbin  0.707 (0.688 - 0.729) 0.702 (0.68 - 0.725)

0.699 (0.681 - 0.722) 0.698 (0.679 - 0.72)

*BARscore was calculated on 11,207 test patients due to missing data.

By choosing a threshold that optimizes the F1 score, the SOFT score achieved the
highest F1 score (0.215 (95%Cl:0.191 - 0.238)) at a threshold of 20, with sensitivity and
specificity of 0.375 (95%Cl:0.336 - 0.416) and 0.881 (95%Cl:0.875 - 0.888), respectively for the
11,207 patients with available BAR scores. This score was not significantly different from the
highest F1 score among the DNN models, which was achieved by DNN with RFS + softbin (0.21
(95%CI:0.187 - 0.236)) at a threshold of 0.106, with sensitivity and specificity of 0.331
(95%Cl:0.296 - 0.369) and 0.898 (95%Cl:0.892 - 0.904), respectively. At this threshold, the SOFT
score had slightly more true positives compared to the DNN model (223 vs 199) as a result of

the higher sensitivity, but with more false positives (1194 vs 1099) as a result of the lower
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specificity. The best DNN model based on AUC, namely DNN with OFS + softbin, had a
comparable F1 score 0.209 (95%Cl:0.184 - 0.234) at a threshold of 0.113.

Overall, the results demonstrated that a DNN can be utilized to predict 90-day post-liver
transplant mortality using UNOS registry data. While the AUC for the best performing DNN
(DNN with OFS + softbin) was the highest among the tested models, significantly outperforming

the BAR score, it did not achieve significantly higher performance compared to the SOFT score.

PREDICTING INTRAOPERATIVE HYPOTENSION USING THE ARTERIAL
BLOOD PRESSURE WAVEFORM

In collaboration with Edwards Lifesciences, we developed a continuous predictor of risk
of hypotension, also known as Hypotension Probability Index (HPI™). It has been shown that
even just one minute of intraoperative hypotension can lead to increased risk of poor
postoperative outcomes.??* Thus, there is a need in critical care monitoring to help clinicians

identify the onset of a hypotensive event.

Data Description

Data used in the development and testing of HPI came from Edwards Lifesciences
internal database from clinical studies as well as from the MIMIC Il Waveform Database for a
total of 1,280 patients.> 954 patients came from the Edwards internal database. These patients
included both surgical and ICU patients, and represented a wide range of surgical procedures
such as cardiac bypass and liver transplants and various acute conditions such as sepsis. 326

patients came from the MIMIC Il database, and these were all ICU patients. 302 patients were
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used for training, 628 patients were used for validation and 350 patients were set aside as a

test set.

Model Endpoint

The first task was to define a hypotensive event. A hypotensive event was defined as
MAP < 65 mmHg for at least 1 minute. Non hypotension was defined as MAP > 75 mmHg and at
least 20 minutes away from the start or end of an event. These definitions were settled on after
discussion with domain experts as well as review of the literature looking at all currently used
definitions for hypotension in the clinical and research setting.® It should be noted that the
model features and results are proprietary to Edwards Lifesciences. Due to the proprietary
nature of this model, description of the methods and all results being shown have been either

published or are currently accepted conference abstracts.5?

Model Input Features: Description of Arterial Blood Pressure Waveform Features

After defining hypotensive events, feature selection was performed to select the best
features from the radial arterial pressure waveform as calculated by the Edwards Lifesciences
FloTrac™. The FloTrac™ is a pressure transducer that transforms the arterial pressure
waveform for display on the anesthesia monitor, but more importantly the FloTrac™ calculates
physiologically relevant features of the waveform that clinicians use in the hemodynamic
management of the patient such as stroke volume, stroke volume variation, blood pressure,
systemic vascular resistance etc. There are also other more complex features that are

calculated but not currently displayed for the clinician for research and development purposes.
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These include spectral features of the waveform, durations between different peaks and
troughs in the waveform, areas, slopes, entropy, variability, etc. In addition to these features,
the FloTrac™also calculates combinatorial features, nonlinear and linear combinations of all
features. All features are calculated on a beat to beat basis and then averaged over 20 seconds.
A beat is defined by the systole onset to end of diastole, reflecting the contraction and

relaxation of the heart (Figure 7). The FloTrac™ currently calculates ~2,600,000 features.
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Figure 7. A typical arterial pressure waveform and a zoomed in view of one cardiac beat.

Model Development

The 302 patients used for training contained 25,461 positive (for hypotension)
observations and 56,143 negative observations. Observations were defined as instantaneous 20
second values calculated by FloTrac™at a positive or negative time point. The 628 patients used
for validation contained 25,350 positive observations and 70,864 negative observations. The
350 patients used for test contained 14,969 positive observations and 49,011 negative

observations.

Feature Selection
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To reduce the number of features from >2 million to a more reasonable number, first
the AUC for every feature was calculated and the features with an AUC > 0.85 were selected.
This resulted in 62 features. Sequential forward feature selection with logistic regression and
ten-fold cross validation was then performed on those features, resulting in 23 features.
Sequential forward feature selection is a method that adds features one by one to a logistic
regression model, the feature that improves the misclassification rate is kept until some
stopping point is set where the addition of another feature only improves the misclassification
rate by a negligible amount. These 23 features were used as the final variables for a logistic
regression model. The Hypotension Probability Index (HPI™) is the probability outputted by the

logistic regression model, displayed as a % value.

Model Performance Methods

AUC of the ROC curve was used to evaluate the performance of the model on the
validation set to choose the best model. The best model’s performance was then evaluated on
the test set using ROC analysis performance as well. For test evaluation, we were specifically
interested in if the model could not only detect the start of an event, but also how it performed
on the time points leading up to the start of an event. The model was evaluated on the time
points at the start of an event as well as time points leading up to an event. It was assumed that
these time points should indicate positive for hypotension. In other words, 0 minutes to event
were all the time points at the start of a hypotensive event. X minutes to event were all the
time points between X minutes prior to the event and start of event. The reason for this is that

HPI is intended to be an indicator for not only the detection of an event but also the onset of
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the event. In other words, we expected that HPI should increase as blood pressure starts
heading towards a hypotensive event. It should be noted that all events are 100% detected by
definition. As in, HPI is 100% regardless of the logistic regression model’s output if MAP < 65

mmHg.

Results

HPI performed with AUC > 0.9 up to 15 minutes prior the start of a hypotensive event
(Table 15).

Table 15. AUC results at x minutes prior to start of a hypotensive event.

Time to Start
of

Hypotensive

Event (min) AUC

0 1
1 1
2 0.998
3 0.994
4 0.99
5 0.987
10 0.973
15 0.964

In addition, we see qualitatively that HPI works as intended, trending towards 100% as
MAP approaches a hypotensive event. In Figure 8, we can see that HPI is greater than 50%
about 15 minutes prior to the start of an event. After the first event ended, another one started

about 10 minutes after and HPI remained high.
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Figure 8. An example of blood pressure decreasing towards a hypotensive event.

Overall, HPI shows great performance for the prediction of hypotensive events and we
expect that it can be used to help reduce time spent in hypotension and thus improve

postoperative outcomes.

PREDICTING POST-INDUCTION HYPOTENSION USING THE ARTERIAL
BLOOD PRESSURE WAVEFORM AND EMR

Intraoperative hypotension has been shown to be associated with postoperative
morbidity and mortality.?%*° One time period of specific interest is the time following induction
of anesthesia and prior to the start of surgery, aka postinduction. While later on in a patient’s
case hemodynamic changes are affected by surgical stimulation in combination with general

anesthesia, postinduction hypotension can uniquely be attributed to the induction event.
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While there has been research into the various predictors of postinduction hypotension,
machine learning has not been leveraged until recently by Kendale et al. to tackle this
problem.®2-%° Utilizing data from 13,323 surgical procedures, Kendale et al. compared the use of
logistic regression, support vector machines, naive Bayes, k nearest neighbor, linear
discriminant analysis, random forest, neural networks, and gradient boosting machines to
predict post induction hypotension. The overall best performing model type was gradient
boosting machine with an AUC of 0.74. The input features for these models included
demographics, ASA, medical comorbidities, preoperative medications, intraoperative
medications, intraoperative medications, surgical start, mean peak inspiratory pressure, and
first mean arterial pressure. Kendale et al.’s study demonstrated that the prediction of
postinduction hypotension was feasible using machine learning and readily available pre-
induction information.

In this work, we aimed to expand on Kendale et al.’s work to develop a deep neural
network model for predicting postinduction hypotension using data from both electronic
medical record (EMR) and arterial blood pressure (ABP) waveform. We hypothesized that the
use of more complex features in combination with a well-trained complex model would

improve performance of the classification.

Data Description

All data for this study was collected retrospectively from the University of California,
Irvine Medical Center (Orange, California), and was described previously in the UCIMC data

collection section.
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EMR Features

We chose to replicate the features used by Kendale et al. in the prediction of
postinduction hypotension®. The original Kendale et al. features include patient comorbidities
and preoperative medications which we did not have available in our EMR data extraction.
Thus, we included only the following subset of Kendale et al.’s original EMR features: age, sex,
body mass index (BMI), ASA score, intraoperative medications, mean peak inspiratory pressure,
first mean arterial pressure (MAP), and hour of surgery start time (Table 16). Sex was binary
encoded as 0 or 1 for male or female, respectively. Intraoperative medications included the first
administered amounts for midazolam, propofol, etomidate, fentanyl, rocuronium, and
succinylcholine; and maximum sevoflurane concentration and desflurane concentration from
case start to 10 minutes from induction start. Mean peak inspiratory pressure was also
extracted from the same time window. If no medication or gas was administered, the value was
set as 0. All medications were also cleaned for uniform units (i.e. all fentanyl was converted to
mg). Incorrect “annotations” for medications and peak inspiratory pressure were identified by
values outside the clinically acceptable range and set to either the minimum or maximum
possible (Table 16). Prior to extracting the first MAP value, MAP values outside of a physiologic
range similar to Kendale et al. (MAP less than 20 mmHg, MAP greater than 200 mmHg, or pulse
pressure less than 20 mmHg) were excluded, and then the first MAP was extracted. ASA score
was treated as categorical and one hot encoded (each unique ASA score 2 to 6 was binary
encoded as its own categorical feature), with the emergency annotation excluded. In addition
to the Kendale et al. features, we also included maximum, minimum, and mean heart rate (HR),

MAP, and pulse oximetry (SpO2) values, resulting in 28 EMR features total.
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Table 16. Description of model input features.

Feature Feature Description Source Minimum; Max Values
Age* Age at date of surgery (years) EMR
Sex* Female = 1; Male=0 EMR
BMI* Body mass index (kg/m2) EMR
ASA 2* ASAScore2=1,else 0 EMR
ASA 3* See above EMR
ASA 4* See above EMR
ASA5* See above EMR
ASA B* See above EMR
First MAP™ First MAP cuff value of case (mmHg) EMR
Surgery Start* Hour of surgery start time EMR
Max DES* Maximum desoflurane concentration administered EMR
Max SEVO* Maximum sevoflurane concentration administered EMR
mean PIP* Mean peak inspiratory pressure EMR
First Etomidate * Amount of first etormidate administered {mg) EMR 1;40
Fist Fentanyl® Amount of first fentanyl administered (meg) EMR 0; 500
First Midazolam* Amount of first midazolam administered (mg) EMR 0; 10
First Propofol® Amount of first propofol administered (mg) EMR 10; 1000
First Succinylcholine* Amount of first succinylcholine administered (mg) EMR 0; 400
First Rocuronium® Amount of first rocuronium administered {mg) EMR 0; 3000
Max HR Maximum HR (EXG) EMR
Max MAP Maximum MAP from cuff EMR
Max SpO2 Maximum Sp02 EMR
Mean HR Mean HR (EXG) EMR
Mean MAP cuff Mean MAP from cuff EMR
Mean Sp0O2 Mean SpO2 EMR
Min HR Minimum HR (EKG) EMR
Min MAP cuff Minimum MAP from cuff EMR
Min SpO2 Minimum Sp02 EMR
Mean S3P Mean systolic BP Waveform
Mean D3P Mean diastolic BP Waveform
Mean MAP Mean MAP Waveform
Mean PP Mean pulse pressure Waveform
Mean Period Mean beat period Waveform
Mean Dyneg Mean of all negative slopes Waveform
Mean SYS Area Mean area under systole Waveform
Mean HR Mean heart rate Waveform

*These features were replicated from Kendale et al.

Arterial Blood Pressure (ABP) Waveform Processing and Feature Extraction

All available ABP waveforms from 5 minutes prior to induction up to induction were

extracted and resampled to 100 Hz for uniformity. The waveform was then split into 20 second
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windows, and processed for beat detection, beat-to-beat features and beat signal quality index
(5Ql) using algorithms provided by the blood pressure waveform analysis tools in the PhysioNet
Cardiovascular Signal Toolbox (Figure 9).6¢ 8 beat-to-beat waveform features were calculated:
systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), mean arterial
pressure (MAP), mean of all negative slopes (noise; dyneg), beat period, heart rate, and area
under systole. SQl is binary, and any beats considered “bad” were excluded from analysis. The

mean of all features’ “good” values were then taken as input features into the model.
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Figure 9. Description of processing the raw arterial blood pressure (ABP) waveform for model inputs

Model Endpoint
Induction was defined as the first time between the EMR recorded induction event,
propofol administration, and etomidate administration. We chose this definition rather than

just the induction event time recorded in the EMR to avoid inaccurate labeling caused by
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potential delays in clinician annotations. We extracted “clean” beat-to-beat MAP values from
the ABP waveform as described above in waveform processing, and then calculated the median
MAP preinduction and the median MAP 0 to 5 minutes and 5 to 10 minutes post induction.®*
We chose to define hypotension from the MAP extracted from the ABP waveform rather than
the EMR data to control for signal quality of the MAP values for labeling as well as to ensure
time synchronization. In addition, rather than the original Kendale et al. definition of any MAP
less than 55 mmHg within 10 minutes of induction, we chose the Reich et al. definition as it
includes two time periods for the label prediction and is more robust to single value outliers.
Postinduction hypotension was defined as during 0 to 5 or 5 to 10 minutes post induction: 1)
postinduction MAP decrease of > 40% from preinduction and postinduction MAP < 70 mmHg or

2) postinduction MAP < 60 mmHg

Model Development

In this work, we were interested in predicting 2 labels: hypotension within 0to 5
minutes and within 5 to 10 minutes postinduction using deep neural networks (DNN), aka deep
learning. We utilized feed forward networks with fully connected layers and a logistic output to
output a probability of hypotension (0 to 1). We trained all models with the Adam optimizer®’
with default parameters and initial learning rates (0.01, 0.1, 0.5), and a batch size of (32, 64,
128). The learning rate was reduced by a factor of 10 when validation loss stopped improving.

We also assessed DNN architectures of 1 to 5 hidden layers with 10 to 100 neurons per
layer, with hyperbolic tangent (tanh) activation functions. To reduce overfitting, we utilized

early stopping with a patience of 10 epochs, L2 weight regularization (0.001, 0.0001) and
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dropout #¢59(0, 0.25, 0.5). The loss function was cross entropy. We trained two separate
models, one for each label. Due to the limited number of patients available for training, we
utilized leave one out (LOO) cross validation. For each iteration of LOO, 1 patient was held out
from training for validation and the other 223 were split into 80% for training and 20% for
“training-validation” to track loss to avoid overfitting. The model results reported here are for
the models with the best LOO validation performance. We also trained models with different
input feature sets: 1) ABP waveform features (n=8), 2) EMR features (n=28) and 3) both

waveform and EMR features (n=36).

Model Performance Methods
For comparison, we looked at logistic regression (LR) with the same feature sets. For all
performance results, we took each leave one out validation result and pooled them together to
calculate area under the receiver operating characteristic curve (AUC) and average precision
(AP). Sensitivity, specificity, precision, and F1 scores were calculated for thresholds chosen by
highest F1 score for each model. 95% confidence intervals were calculated with bootstrapping.
We assessed feature importance in the DNN models with feature ablation analysis. After
finalizing the model architectures, we removed each feature, performed leave one out training
and validation, and assessed the decrease in AUC for the validation data. To assess which
features are the most predictive in the logistic regression model. We calculated the mean
weights for each feature following leave one out training.
All deep neural network models were developed using Keras®®. Logistic regression models and

performance metrics were developed with scikit-learn.*®
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Results

There was a total of 19,545 surgical patients from November 2015 to August 2017, of
which 1,120 patients had arterial blood pressure (ABP) waveform data prior to induction. After
waveform preprocessing for signal quality, there were 224 patients included in the model
development. The significant decrease in patient numbers from those with ABP waveforms to
those with “good” signal quality is due to the presence of a signal even if there is no arterial line
connected to the monitor. As long as an arterial line transducer is connected to the patient
monitor, an ABP signal is collected. The transducer is usually set up prior to arterial line
placement, and thus noise is collected until the arterial line is placed and zeroed. Preprocessing
the waveform for signal quality was essential to exclude noisy data. Of the 224 patients, 22
patients (9.8%) had postinduction hypotension within 0 to 5 minutes and 20 patients (8.9%)
had postinduction hypotension within 5 to 10 minutes. Patient demographics are described in
Table 17.

The final deep neural network parameters for each DNN model and feature set
combination are described in Table 18. All performance metrics reported below refer to the

LOO validation data (n=224).
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Table 17. Description of patient demographics

# Patients 224
Age 57 +/-21
BMI 26.7 +/-5.7
Anesthesia Time (hours) 5.2+/-2.8 % of 224
Female 150 67.0
ASA Score
1 0.4
2 2.2
3 75 33.5
4 119 53.1
5 18 8.0
6 6 2.7
Admission Type
Unknown 1 0.4
Day Prior Admission 4 1.8
23 Hour Observation 1 0.4
Outpatient 5 2.2
AM Admission 26 11.6
Midnight Admission 13 5.8
Inpatient 174 77.7
Anesthesia
None 1 0.4
General 218 97.3
MAC 4 1.8
Combined Spinal/Epidural 1 0.4
Postinduction Hypotension
0 to 5 minutes 20 8.9
5 to 10 minutes 22 9.8
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Table 18. Final model hyperparameters for each DNN model and feature combination for predicting
hypotension 0 to 5 minutes or 5 to 10 minutes postinduction

0 to 5 Minutes Post Induction Hypotension

# Features # Layers # Neurons P?Js::illli:y L2 Llambda Batch Size Le;;rt\‘i!ng
Waveform Only 8 2 60 0.25 0.0001 128 0.001
EMR Only 28 2 50 0.25 0.001 128 0.001
Waveform + EMR 36 2 50 0.25 0.001 128 0.001

5 to 10 Minutes Post Induction Hypotension

# Features # Layers # Neurons P::l::l:llli:y L2 Lambda Batch Size Le:;rt\;ng
Waveform Only 8 2 70 0.25 0.0001 128 0.001
EMR Only 28 2 100 0.25 0.001 128 0.001
Waveform + EMR 36 2 80 0.25 0.0001 128 0.001

Model Performance

Area under the receiver operating characteristic curve (AUC ROC) and average precision
(AP) are summarized in Table 19. All DNN models had higher AUCs than logistic regression (LR)
for each feature set, except for the EMR only features model to predict 5 to 10 minutes post
induction hypotension (DNN AUC 0.63 (0.497 — 0.76); AP 0.143 (0.084 — 0.266) vs LR AUC 0.667
(0.555-10.78); AP 0.151 (0.089 — 0.284)). The best performing model for predicting0to 5
minutes post induction hypotension was DNN with waveform only features (AUC 0.88 (0.812-
0.934); AP 0.391 (0.241 — 0.631), followed by LR with waveform only features (AUC 0.875 (0.81-
0.929); AP 0.372 (0.224 — 0.598)). The best performing model for predicting 5 to 10 minutes
postinduction was DNN with waveform only features (AUC 0.703 (0.557-0.823); AP 0.228 (0.115
—0.433)), followed by LR with EMR only features (AUC 0.667 (0.555-0.78); AP 0.176 (0.089 —
0.345)). When assessing the different feature sets, the use of waveform only features
performed best overall, and EMR only features performed the worst, except in predicting 5 to

10 minutes postinduction hypotension with LR.
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Table 19. AUC and AP with 95% Cls for the DNN and LR models for prediction of postinduction

hypotension.
AUC AP
0 to 5 Minutes Post Induction 0 to 5 Minutes Post Induction
Feature Set DNN Model LR Model Feature Set DNN Model LR Model
0.88 0.875 0.391 0372
Waveform Only (0.812-0.934) (0.81-0.929) Waveform Only (0.241:0.631)  (0.224-0.598)
051 0.505 0.102 0.106
EMR Only (0.402-0.623)  (0.363-0.637) EMR Only (0.064-0.182)  (0.066-0.193)
0.804 0.792 0.294 0317
Wavefonn +EMR (0.703-0.888)  (0.695-0.873) Wavefonm + EMR (0.168-0.509) (0.164-0.53)
5 to 10 Minutes Post Induction 5 to 10 Minutes Post Induction
Feature Set DNN Model LR Model Feature Set DNN Model LR Model
0.703 0.613 0.228 0.176

Waveform Only Waveform Only

(0.557-0.823)  (0.452-0.752) (0.115-0.433)  (0.089-0.345)

0.63 0.667 0.143 0.151

EMR Only (0.497-0.76) (0.555-0.78) EMR Only (0.084-0.266)  (0.089-0.284)
0.653 0.603 0.15 0.121

Waveform + EMR (0.512-0.779)  (0.475-0.725) Waveform + EMR (0.087-0.266)  (0.069-0.223)

We used the highest F1 score to choose a threshold for all models, as it balances
sensitivity and specificity. When predicting 0 to 5 minutes postinduction hypotension, the DNN
model with waveform features had the highest F1 score (0.537 (0.324-0.706), followed by the
LR model with waveform features (0.5 (0.279-0.667)). The DNN model with waveform features
had a higher specificity than the LR model (0.96 (0.931-0.985) vs 0.946 (0.912-0.975)), and
equivalent sensitivity (0.5 (0.286-0.714) vs 0.5 (0.278-0.714)). When predicting 5 to 10 minutes
postinduction hypotension, the DNN model with waveform features had the highest F1 score
(0.364 (0.158-0.533)), followed by the LR model with waveform features (0.312 (0.08-0.513)).
The DNN model had higher sensitivity than the LR model (0.4 (0.176-0.625) vs 0.25 (0.059-

0.444)), but lower specificity (0.922 (0.884-0.956) vs 0.966 (0.939-0.99)).
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Feature Importance

Although the models trained with the waveform and EMR feature sets were not the
best performing model, we wanted to compare not only the difference in feature importance
across model types (DNN vs LR) but also how each model looked at the EMR vs waveform
features. We assessed the results of feature ablation for the DNN trained with EMR and

waveform features and the LR model weights for the same feature set.
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Figure 10. Feature ablation results for DNN models
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Figure 11. Logistic regression models coefficients

The top five DNN features for the 0 to 5 minutes postinduction hypotension model were
the mean beat period (waveform), mean systolic area (waveform), mean heart rate
(waveform), max heart rate (EMR), and surgery start (EMR; Kendale et al.) (Figure 11). The top
five logistic regression features were mean MAP (waveform), ASA 4 (EMR; Kendale et al.), mean
pulse pressure (waveform), ASA 3 (EMR; Kendale et al.), and beat period (waveform) (Figure
12). Overall, three of the top five features in both the DNN and logistic regression models were
waveform features.

The top five deep neural network features for the 5 to 10 minutes postinduction
hypotension model were ASA 4 (EMR; Kendale et al.), maximum desflurane (EMR; Kendale et

al.), maximum MAP from cuff (EMR), mean MAP (waveform), and mean pulse pressure
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(waveform). The top five logistic regression features were minimum heart rate (EMR), ASA 5
(EMR; Kendale et al.), surgery start (EMR; Kendale et al.), ASA 4 (EMR; Kendale et al.), and ASA
2 (EMR; Kendale et al.). Both the DNN and logistic regression models had ASA 4 as a top
feature, however, the logistic regression model had no waveform features in either the top five
or the top ten features. In addition, this logistic regression model performed the worst of the 5

to 10 minutes postinduction hypotension models.

AN INTERPRETABLE NEURAL NETWORK FOR PREDICTING
POSTOPERATIVE IN-HOSPITAL MORTALITY

We recently showed that deep neural networks (DNNs) using only readily available
intraoperative information extracted from the electronic health record can successfully predict
postoperative in-hospital mortality with an AUC of 0.91.% While DNNs are great machine
learning models and often have higher accuracy than more simple models like logistic
regression, they are often thought of as a “black box” and not interpretable. In healthcare,
intelligible models not only help clinicians to understand the problem and create more targeted
action plans, they also help to gain the clinicians’ trust. Thus, logistic regression models remain
popular in the healthcare space, as they are robust, easy to implement and usually have good
performance, as we have also seen in our previous work comparing DNNs to logistic
regression.** However, logistic regression is limited by the fact that it can only model a linear
relationship between the input features and its target response, which may not only be
misleading but also not clinically intuitive. For example, both hypervolemia and hypovolemia

have been shown to increase the risk of postoperative complications, reflecting a nonlinear
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relationship between a patient’s volume status and the risk for complications®. While DNNs are
capable of learning nonlinear relationships, they lack the interpretability of logistic regression.

One method of overcoming the limitations of a linear model such as logistic regression is
through generalized additive models (GAMs). Caruana et al. demonstrated GAMs could be
applied to real healthcare problems such as pneumonia risk with high accuracy.”® Through a
graphical representation of each model feature’s learned contribution to the predicted risk, the
interpretable GAMs help to visualize learned patterns and identify new patterns in the data or
confirm what clinicians already know. Inspired by GAMs, the same idea can be applied to neural
networks through an architecture referred to as Generalized Additive Neural Networks
(GANNSs).”* Bras-Geraldes et al. showed GANNs could be used to predict mortality in the ICU
with an AUC of 0.83, using 19 features from vital signs, lab values, demographics, admission
information, and comorbidities.”?

Models like DNNs allow for learning the more complex relationship between the input
and class label, however, they are not as easily interpretable as logistic regression. In this work,
we applied the same idea of the Generalized Additive Neural Networks architecture to allow for
interpretability by visualizing the learned feature patterns related to risk of in-hospital

mortality.

Data Description

Data Extraction
All data used in this study came from the UCLA Medical Center described previously.

The original 87 features from this data set were reduced to 45 features in our previous work,
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and ASA was added as a feature in the final model (46 features) that improved model
performance.? In this study, we used the same features, but also added previously not
included features: total anesthesia case time (1 feature); the time spent with MAP below 40,
45, 50, 55, 60, and 65 mmHg (6 features); and HCUP Code Descriptions of the Primary CPT
codes (33 features). There were 183 unique HCUP Code Descriptions in our data set, and we
selected 33 HCUP Code Descriptions that were present in at least 1 percent of the total data

(Appendix B). These HCUP Code Descriptions were then encoded as 33 binary features.

Data Preprocessing

Before model development, missing values for ASA scores were filled with the most
common value (ASA 3); missing values for medications administration features were filled with
0; and all other missing values were filled with the means for that feature. Values that were
greater than a clinically normal maximum (determined by M.C. and I.H.) were set to a maximum
possible, as described in previous work.** Finally, all training data were rescaled to have mean 0
and standard deviation 1 per feature. Test data were rescaled with the training data mean and

standard deviation.

Model Development

In this work, we were interested in classifying patients at risk of in-hospital mortality

utilizing a proposed generalized additive neural network (GANN) architecture (Figure 13).
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Figure 12. Proposed generalized additive neural network (GANN) architecture and description of feature
contributions calculation, for n individual continuous features vs binary features

All data was randomly split into 80% for training (n=47,988) and 20% for test (n=11,997)
prior to model development. All GANNs were trained on 80% of the data with 5-fold cross
validation to optimize hyperparameters. All models were trained with a batch size of 256 and
Adam optimization®” with default parameters and reduced the learning rate by a factor of 10
when the validation loss stopped improving for a patience of 5 epochs, a batch size of 256, and
a maximum of 100 epochs. Dropout (0.25, 0.5, 0.9)*¢°9, L2 regularization (0.001, 0.0001) and
early stopping with a patience of 5 epochs were used to prevent overfitting. In our GANN
architecture, each feature had its own network of hidden layers (1, 4) with (10, 40 to 50, 90,
100) neurons with (rectified linear unit (RelLu), hyperbolic tangent (tanh)) activations (Figure
13). These hidden layers are followed by a last layer with just 1 neuron with a tanh activation.
This last tanh layer transforms the previous layer’s output into one value and forces the

feature’s neural network final output to be between -1 and 1. The outputs of all the features’
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tanh layers are then concatenated prior to being input into a logistic layer. The feature
contributions are calculated as their tanh layer outputs multiplied by their respective logistic
weights. Binary features only had a direct connection from input to the logistic layer, and so
their feature contributions are calculated as the input value multiplied by their respective

logistic weights.

Model Performance Methods

Model performance was assessed using area under the receiver operating characteristic
curve (AUC) and average precision (AP). All results reported were calculated on the test set and
95% confidence intervals were calculated using bootstrapping with 1,000 samples. The same
training and test sets were used in this work as our previous work on in-hospital mortality for
comparison.** In addition, as HCUP codes are not immediately available at the end of surgery,
we assessed model performance for models developed with and without HCUP features.

All neural network models were developed using Keras.®® Logistic regression models and

performance metrics were calculated with scikit-learn.*®

Results

The data consisted of 59,985 surgical records, and the % occurrence of in-hospital
mortality was 0.81% (n=389) in the training set and 0.72% (n=87) in the test set. The final

hyperparameters for each GANN model and feature set combination are described in Table 20.
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Table 20. Final model hyperparameters for each GANN model with and without HCUP category

description features
. Hidden
# Features #Ll-:dden # Neurons Layer PDr: p:.tll.t L2 Lambda
Yers Activation robability
With HCUP Features 88 1 50 tanh 0.5 0.0001
Without HCUP Features 55 1 50 tanh 0.5 0.001

Model Performance

All performance metrics reported below refer to the test set (n=11,997). Area under the
receiver operating characteristic curve (AUC ROC) and average precision (AP) are summarized in
Table 21. The GANN model with HCUP features had the highest AUC 0.921 (0.895-0.95). Overall,
both GANN models had higher AUCs than LR models, however had lower APs. The LR model

without HCUP features had the highest AP 0.217 (0.136-0.31).

Table 21. AUC results of GANN and LR models with and without HCUP features

Feature Set Model AUC AP
With HCUP Features GANN 0.921 (0.895-0.95) 0.176 (0.109-0.26)
LR 0.912 (0.879-0.94)  0.207 (0.127-0.3)
Without HCUP Features GANN 0.912 (0.883-0.94) 0.197 (0.124-0.29)
LR 0.906 (0.873-0.94) 0.217 (0.136-0.31)

Interpretability

To assess the interpretability of the GANNs, we visualized the learned contributions of
the GANNs vs the learned contributions of the LRs for the models with HCUP features. As
described in the methods, the learned contribution of the GANNSs for each feature is its last

tanh layer’s output multiplied by its respective weight from the logistic layer. Since the binary
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features have a direct connection from input to the logistic layer, the binary features’ learned
contributions would be their input values multiplied by their respective weight from the logistic
layer. The learned contribution of the LR model is the input value multiplied by its respective
weight from the LR model.

In Figure 14, we visualize these contributions and selected a sample of the top 9
contributing features in the GANN model. The top 9 were chosen by selecting the features with
the highest mean GANN contribution. We did not include any binary features in this example,
such as presence of arterial line, as their visualization would not be as interested, since there
would only be 2 values to plot. We see that overall the direction of the learned contributions
from both the GANN and LR models were similar, i.e. as MAX_DES increases the contributions
for both models decreased. However, while the LR model will always have a linear relationship,
the GANN learned non-linear relationships that were unique to each feature. For example, for
the feature AVG_MAP_10_MIN we see a non-linear function where GANN contributions
increase for MAP < 60 mmHg and for MAP > 60 mmHg. One odd relationship is the one
observed between ANES_CASE_HOURS and mortality risk, where with less hours spent under
anesthesia there was more contribution to mortality risk. This could be a reflection of the
infrequency of extremely high anesthesia case hours (> 10 hours), and that in-hospital mortality
patients may not spend significantly longer amounts of time under anesthesia compared to
non-mortality patients. In addition, while risk contribution increased with lower MIN_DBP,
there was the opposite relationship for AVG_DBP_10_ MIN and AVG_DBP, which could indicate
that not all summary measures of vital signs are the same, and that these should be taken into

consideration when selecting features.
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Figure 13. Sample of 9 continuous features that had the highest mean mortality risk GANN contributions
across all patients, in order of highest to lowest (left to right, top to bottom).

The feature’s values for all patients are plotted on the x axis and the respective GANN contribution (blue) on the
primary y axis and LR contribution (green) on the secondary y axis. The more negative the risk contribution, the less
contribution the respective value has to the risk of mortality.

In our interpretable model, we can also look at the top contributors to a risk of mortality

(Table 22). If we look at the top 10 GANN contributions from the best performing GANN with

HCUP features for 2 unique in-hospital mortality patients from the test set, we can see that the

features that contributed most were different. For example, a high ASA score of 4 contributed

highly for Patient Example 1, bud did not show up as a top contributor for Patient Example 2.
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Table 22. Top 10 neural network contributions learned from the best performing GANN model with HCUP
features, for 2 in-hospital mortality patient examples from the test set.

Patient Example 1 (Top 10 Contributions) Patient Example 2 (Top 10 Contributions)
Feature Value  Contribution Feature Value  Contribution
ART_LINE_YN 1 0.993 HCUP_cat_1_YN 1 1.080
ASA_SCORE 4 0.939 ART_LINE_YN 1 0.993
MIN_DBP 22 0.269 MIN_DBP 19 0.271
AGE 81 0.259 MIN_HB 7.6 0.184
AVG_DBP 68 0.234 PHENYLEPHRINE_CURRENT_RATE_MCG_MIN 43 0.177
PHENYLEPHRINE_CURRENT_RATE_MCG_MIN 45 0.191 PHENYLEPHRINE_MAX_RATE_MCG_MIN 43 0.174
PHENYLEPHRINE_MAX_RATE_MCG_MIN 45 0.176 MIN_MAP 17 0.132
MIN_MAP 30 0.122 AGE 69 0.094
AVG_HR 95 0.104 AVG_DBP_10_min 72 0.043
AVG_DBP_10_min 74 0.060 ANES_CASE_HOURS 39 0.001

CONCLUSIONS AND RECOMMENDED FUTURE WORK

Modern medicine requires tools to change from “reactive” patient management to a
more “prospective” or “proactive” approach. However, these tools need to not only be
accurate, but also interpretable and therefore actionable by the clinician. There are 2 ways to
approach prospective healthcare: 1) A one-time risk classification to help allocate hospital
resources more efficiently to ensure patients receive necessary critical care and 2) A
continuous, real time risk classification to avoid onset of complications altogether.

Throughout this thesis, | have shown the deep neural networks can perform with high
accuracy when compared to currently used common risk scores for adverse outcomes, such as
AKI, reintubation, and mortality. We were also able to develop models for predicting acute
intraoperative events, such as hypotension, that can increase the risk of those same adverse

outcomes. In addition, while logistic regression performed comparably for many of the
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problems, we have also shown its limitations. Logistic regression is often preferred in the
medical field due to its easy implementation and interpretability. However, it can only impose
linear relationships between features and response labels, such as the risk of in-hospital
mortality. One of the drawbacks of deep neural networks has been its “black box” reputation.
In response, we proposed a generalized additive neural network (GANN) architecture to learn
nonlinear patterns in the data that resembled more of clinical intuition and can be interpreted
easily. With these GANNS, we were able to show that we can automatically learn clinically
intuitive relationships without domain knowledge or extra featurization, give clinicians
interpretability, and maintain model performance.

While one-time risk classifications are useful, clinicians need continuous indicators for
managing patients in a real-time, acute setting. We made a first attempt at this by developing a
Hypotension Prediction Index (HPI™), which predicts the probability of future onset of
hypotension using features from the arterial blood pressure waveform. HPI™ is currently FDA-
approved and a commercial product (Edwards Lifesciences, Irvine, CA).

Future work would include leveraging the >19,000 surgical patients worth of data we
have collected from the UCI Medical Center and prepared for research-use. Much of the initial
years of my research were spent on gathering, cleaning, and understanding this data set. While
we were able to successfully unify EMR and arterial blood pressure waveform data to predict
postinduction hypotension using deep neural networks with this dataset, we were severely
limited by the number of includable patients and thus did not get good results with more
complex models such as convolutional neural networks that would require more data. Next

steps would be to use more frequently available inputs, such as HR, Sp02, and blood pressure
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cuff measurements that are available for all patients, in models like LSTMs which would
incorporate time. There is also much to be learned from the waveforms we have collected.
Instability and subsequent shock are very complicated physiologically, and thus may require a
more complex input that is not captured in the static features like HR and BP which are
extracted from the waveform to begin with. Future work could also include utilizing
unsupervised learning on the waveforms to determine periods of uniqgue hemodynamic
patterns, and see if those correlate to what is occurring or will occur in the patient. Supervised
learning could also be used if a definition for shock can be extracted from the EMR.

This thesis work can be summarized as follows: by utilizing readily available patient
monitoring data, we can build predictive models to help inform clinicians in the management of
their patients as well as help them avoid poor outcomes or acute events. These models need to
be easily implementable, interpretable, and accurate. Once trained, most models, even ones
large and complex as a deep neural network, are easily implementable. The models created
throughout this thesis were developed initially with only the classic approach of just meeting
the accuracy need. However, we then shifted our approach to develop for interpretability in
addition to accuracy. Next steps would be to leverage the large UCIMC dataset we have created
to continue to develop more interpretable models that can also be displayed continuously, in

real-time during patient management.
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Appendix A. Description of liver transplant features

feature extraction keep feature in

categorical_LY ung_categorie
feature description N & - s a- & reduced feature set
remove due to >95
i 1 2
abo_A iftype A, AL or A Y [0.0, 1.0] percent zero
abo_AB if type AB, A1B, or A2B vy [0.0, 1.0] keep
abo_B if type B Y [0.0, 1.0] keep
abo_don_A see above Y [0.0, 1.0] keep
see above remove due to >95
abo_don_AB Y [0.0,1.0] percent zero
abo_don_B see above Y [0.0, 1.0] keep
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abo_don_O
abo_mat
abo_O

age

age_don
albumin_tx
antihype_don
arginine_don
ascites_tx
bact_perit_tcr
bmi_calc
bmi_don_calc
bmi_tcr

bun_don

cardarrest_neuro

cdc_risk_hiv_don

citizenship

citizenship_don
clin_infect_don
cmv_don

cmv_igg

cmv_igm

cmv_status

cod_cad_don_1
cod_cad_don_2
cod_cad_don_3

cod_cad_don_4

cold_isch

coronaryl
creat_don

creat_tx

if type O

if type O

if not equal to 1, setto 1;
otherwise, 0

if cod_cad_don==1, setto
1

if cod_cad_don ==2, setto
1

if cod_cad_don ==3, setto
1

if cod_cad_don ==4, set to
1

if
"coronary_angio_norm_do
n" equals 0 and
"coronoary_angio_don"
equals 1, set to 1; if
"coronary_angio_norm_do
n" equals 1 and
"coronoary_angio_don"
equals 1, set to 2;

< <X Z2 2 2 2 < Z2 < < Z2Z2 2 < < <<

< < < < =<

<
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[1.0,0.0]
[1.0, 2.0, 3.0]
[1.0,0.0]

[1.0, 0.0, nan]
[1.0, 0.0, nan]

[0.0, nan, 1.0]

[0.0, 1.0, nan]
[0.0, 1.0, nan]

[0.0, 1.0]

[0.0, 1.0]

[1.0, 0.0, nan]
[0.0, 1.0, nan]
[1.0, 0.0, nan]

[nan, 0.0, 1.0]
[1.0, 0.0, nan]

[1.0,0.0]
[0.0, 1.0]
[0.0, 1.0]

[0.0, 1.0]

[0.0, 2.0, 1.0]

keep
keep
keep
keep
keep
keep
keep
keep
keep
keep
keep
keep
keep
keep
keep

keep
remove due to >95
percent zero
remove due to >95
percent zero

keep
keep

keep
remove due to >50
percent null

keep
keep
keep

keep
remove due to >95
percent zero

keep

keep
keep
keep



dayswait_chron
ddavp_don

death_circum_don

death_mech_don

dgn_tcr_AHN

dgn_tcr_autoimmune

dgn_tcr_cryptogenic

dgn_tcr_etoh

dgn_tcr_etoh_hcv

dgn_tcr_HBV

dgn_tcr_HCC

dgn_tcr_HCV

dgn_tcr_NASH

dgn_tcr_PBC

dgn_tcr_PSC

dgn2_tcr_AHN

dgn2_tcr_autoimmune

dgn2_tcr_cryptogenic

dgn2_tcr_etoh

dgn2_tcr_etoh_hcv

if not equal to 6, setto 1

if equal to 12, setto 1

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at "dgn_tcr"

see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
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[0.0, 1.0, nan]
[1.0,0.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[1.0,0.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

keep
keep

keep
remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

keep

keep

keep

remove due to >95
percent zero

keep

keep

keep

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero



dgn2_tcr_HBV

dgn2_tcr_HCC

dgn2_tcr_HCV

dgn2_tcr_NASH

dgn2_tcr_PBC

dgn2_tcr_PSC

diab
diabdur_don

diabetes_don

diag_AHN
diag_autoimmune
diag_cryptogenic
diag_etoh
diag_etoh_hcv
diag_HBV
diag_HCC
diag_HCV
diag_NASH
diag_PBC
diag_PSC

dial_tx

distance

ebv_igg cad_don

see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
see diag_* description;
except looking at
"dgn2_tcr"
if not equal to 1, setto 1;
otherwise, 0

if "diag" isin [4100, 4101,
4102, 4103, 4104, 4105,
4106, 4107, 4108, 4110,
4217], setto 1
if "diag" isin [4212], set to
1
if "diag" isin [4213, 4208],
settol
if "diag" isin [4215], set to
1
if "diag" isin [4216], set to
1
if "diag" is in [4202, 4592],
settol
if "diag" is in [4400, 4401,
4402], setto 1
if "diag" isin [4204, 4593],
settol
if "diag" isin [4214], set to
1
if "diag" isin [4220], set to
1

if "diag" isin [4240, 4241,
4242, 4245], setto 1

< z < =<
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[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0, nan]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[0.0, 1.0]

[1.0, 0.0]
[0.0, 1.0, nan]

[1.0, nan, 0.0]

remove due to >95
percent zero

keep

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

remove due to >95
percent zero

keep
keep
keep

remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero

keep

remove due to >95
percent zero
remove due to >95
percent zero

keep
keep

keep
remove due to >95
percent zero

remove due to >95
percent zero

keep
keep
keep



ebv_igm_cad_don
ebv_serostatus
ecd_donor
education

enceph_tx

end_stat
ethcat_1
ethcat_2
ethcat_4

ethcat_5

ethcat_don_1
ethcat_don_2
ethcat_don_4

ethcat_don_5
ethcat_don_other
ethcat_other
ever_approved
exc_case
exc_diag_id_catl
exc_diag_id_cat2
exc_diag_id_cat3
exc_diag_id_cat4
exc_diag_id_cat5
exc_diag_id_catb

exc_diag_id_cat7
exc_ever
exc_hcc

final_inr

final_serum_sodium

func_stat_tcr

if equal to 6010 or 6011,
settol

if "ethcat" =1
if "ethcat" = 2
if "ethcat" = 4

if "ethcat" =

see above
see above

see above

see above

if "ethcat_don" >=6, set to
1

if "ethcat" >=6, setto 1

if "exc_diag_id" equals 1,
3,or 10, setto 1

if "exc_diag_id" equals 2,

settol
if "exc_diag_id" equals 4,
settol
if "exc_diag_id" equals 5,
settol
if "exc_diag_id" equals 6 or
12,setto 1
if "exc_diag_id" equals 11,
settol
if "exc_diag_id" equals 9,
settol

HCC =1, non-HCC=0

Replaced [2, 2040, 2050,
2060, 2070] as 1; Replaced
[3, 2010, 2020, 2030] as 2;

otherwise 0 if not empty

< < < =< Zz z < < <

< < =< =<

ZzZ z < < =<
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[0.0, nan, 1.0]
[1.0, 0.0, nan]
[0.0, 1.0]

[0.0, 1.0]
[0.0, 1.0]
[1.0,0.0]
[0.0, 1.0]

[0.0, 1.0]
[1.0,0.0]
[0.0, 1.0]
[0.0, 1.0]

[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[nan, 1.0, 0.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]

[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]

remove due to >95
percent zero

keep
keep
keep

keep
remove due to >95
percent zero

keep
keep

keep
remove due to >95
percent zero

keep
keep

keep

remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero
remove due to >50
percent null

keep

keep

remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero

keep
keep
keep
keep
keep

keep



Replaced [2, 2040, 2050,
2060, 2070] as 1; Replaced
[3, 2010, 2020, 2030] as 2;

func_stat_trr otherwise Oif notempty N keep
gender Y [0.0,1.0] keep
gender_don Y [0.0,1.0] keep
hbv_core Y [0.0,1.0, nan]  keep
hbv_core_don Y [0.0,1.0, nan]  keep
remove due to >95
hbv_sur_antigen Y [0.0,1.0, nan]  percent zero
remove due to >95
hbv_sur_antigen_don Y [0.0,1.0, nan]  percent zero
remove due to >50
hcc_ever_appr [nan, 0.0, 1.0] percent null
hcv_serostatus [0.0,1.0, nan]  keep
hematocrit_don keep
remove due to >95
hep_c_anti_don Y [0.0,1.0, nan]  percent zero
heparin_don Y [1.0,0.0, nan]  keep
hgt_cm_calc N keep
hgt_cm_don_calc N keep
hgt_cm_tcr N keep
remove due to >95
hist_cancer_don Y [0.0,1.0, nan]  percent zero
hist_cig_don Y [1.0,0.0, nan]  keep
hist_cocaine_don [1.0,0.0, nan]  keep
remove due to >50
hist_insulin_dep_don [nan, 1.0,0.0] percent null
hist_oth_drug_don [1.0,0.0, nan]  keep
remove due to >95
history_mi_don Y [0.0,1.0, nan]  percent zero
if "hist_hypertens_don"
hypertens_dur_don equals 0, setto 1 N keep
Created by Brent: This
variable indicates the
number of liver transplants
the patient has ever had
index2 previously N keep
init_age N keep
init_albumin N keep
init_ascites N keep
init_bilirubin N keep
init_bmi_calc N keep
remove due to >95
init_dialysis_prior_week Y [nan, 0.0, 1.0] percent zero
init_enceph replaced 4 with null N keep
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init_hgt_cm

init_inr
init_meld_peld_lab_sco
re

init_serum_creat

init_serum_sodium

init_stat
init_wgt_kg
inotrop_support_don

inr_tx

insulin_dep_don

insulin_don

life_sup_tcr

life_sup_trr

lityp

macro_fat_li_don
malig

malig_tcr

malig_type
med_cond_trr
meld_diff_reason_cd_1

meld_diff_reason_cd_2

meld_peld_lab_score

micro_fat_li_don
non_hrt_don
num_prev_tx

on_vent_trr
oth_life_sup_tcr

oth_life_sup_trr

if equal to 6010 or 6011,
settol

if not equal to 1, set to 1;
otherwise, 0

if equal to 20, set to 1; else

0 if not null

if "macro_fat_li_don" < 30,

set to 1; if "li_biopsy"=1

AND "macro_fat_li_don" is

null, set to 1; if

"macro_fat_li_don" >= 30,

set to 2; if "li_biopsy" is

null OR "li_biopsy" equals

0,setto0

if not in [4096 to 8192] and

not null, set to 0;
otherwise 1

if "meld_diff_reason_cd"
==150r16,setto1

if "meld_diff_reason_cd"
==8,setto 1

see "macro_*" for
transformations

z < z <

< z < =<
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[0.0, 1.0]

[1.0, 0.0, nan]

[1.0,0.0]
[1.0, 0.0, nan]

[0.0, 1.0, nan]
[0.0, 1.0]

[1.0, 0.0, nan]

[0.0, 1.0, 2.0]
[0.0, 1.0, nan]
[0.0, 1.0, nan]

[nan, 1.0, 0.0]
[3.0, 2.0, 1.0]
[0.0, 1.0]

[0.0, 1.0]

[0.0, 2.0, 1.0]
[0.0, 1.0, nan]
[0.0, 1.0]
[0.0, 1.0]

[0.0, 1.0]

keep
keep

keep
keep

keep
remove due to >95
percent zero

keep
keep
keep

keep

keep
remove due to >95
percent zero

keep

keep

keep
keep
keep

remove due to >50
percent null

keep

remove due to >95
percent zero

keep
keep

keep
keep
keep

keep

remove due to >95
percent zero
remove due to >95
percent zero



ph_don

portal_vein_tcr
portal_vein_trr
prev_ab_surg_tcr
prev_ab_surg_trr
prev_tx
pri_payment_tcr
pri_payment_trr
protein_urine
prvtxdif filled null with O
pt_diuretics_don

pt_oth_don

pt_steroids_don

pt_t3_don
pt_t4_don

recov_out_us
resuscit dur filled null with 0
sgot_don

sgpt_don
if 3or4, setto0;if50r 6,
share_ty settol
tattoos
tbili_don
thili_tx
tipss_tcr
tipss_trr

vasodil_don
vdrl_don

ventilator_tcr

warm_isch_tm_don filled null with 0

wgt_kg_calc
wgt_kg_don_calc
wgt_kg_tcr
work_income_tcr

work_income_trr

< < < Z < < < < < < < < zZ

< =<

< < < zZz z < =< z =z =z <

<

<

< < zZzZz =z zZz Z
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[nan, 0.0, 1.0]
[0.0, 1.0, nan]
[0.0, 1.0, nan]
[0.0, 1.0, nan]
[0.0, 1.0]

[1.0, 0.0, nan]
[1.0,0.0]

[1.0, 0.0, nan]

[1.0, 0.0, nan]
[1.0, 0.0, nan]
[1.0, 0.0, nan]

[0.0, nan, 1.0]
[1.0, 0.0, nan]

[0.0, 1.0]

[0.0, 1.0]
[1.0, 0.0, nan]

[nan, 0.0, 1.0]
[0.0, 1.0, nan]
[0.0, 1.0, nan]

[0.0, 1.0, nan]

[0.0, 1.0]

[nan, 1.0, 0.0]
[0.0, nan, 1.0]

keep
remove due to >95
percent zero

keep
keep
keep
keep
keep
keep
keep
keep
keep
keep

keep
remove due to >95
percent zero

keep
remove due to >95
percent zero

keep
keep

keep
remove due to >95
percent zero

keep
keep
keep
keep
keep

keep

remove due to >95
percent zero
remove due to >95
percent zero
remove due to >95
percent zero

keep
keep
keep
keep
keep



Appendix B. Description of HCUP features for the GANN model

HCUP Category ID HCUP Description
1 Incision and excision of CNS
3 Laminectomy; excision intervertebral disc
9 Other OR therapeutic nervous system procedures
10 Thyroidectomy; partial or complete
12 Other therapeutic endocrine procedures
33 Other OR therapeutic procedures on nose; mouth and

pharynx
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37

42

43

48

61

67

70

76

78
80

82

84

86
99
104

105
114
124
126
146
152
153
158
160
161
172
225

Diagnostic bronchoscopy and biopsy of bronchus

Other OR therapeutic procedures on respiratory
system

Heart valve procedures

Insertion; revision; replacement; removal of cardiac
pacemaker or cardioverter/defibrillator

Other OR procedures on vessels other than head and
neck

Other therapeutic procedures; hemic and lymphatic
system

Upper gastrointestinal endoscopy; biopsy
Colonoscopy and biopsy

Colorectal resection

Appendectomy

Endoscopic retrograde cannulation of pancreas (ERCP)

Cholecystectomy and common duct exploration

Other hernia repair
Other OR gastrointestinal therapeutic procedures

Nephrectomy; partial or complete

Kidney transplant
Open prostatectomy
Hysterectomy; abdominal and vaginal
Abortion (termination of pregnancy)
Treatment; fracture or dislocation of hip and femur
Arthroplasty knee
Hip replacement; total and partial
Spinal fusion
Other therapeutic procedures on muscles and tendons
Other OR therapeutic procedures on bone

Skin graft
Conversion of cardiac rhythm
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