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Abstract 

People seek for patterns and pay particular attention to streaks 
even when they are generated by a random process. The 
present paper examines statistics of pattern time in sequences 
generated by Bernoulli trials. We demonstrate that streak 
patterns possess some statistical properties that make them 
uniquely distinguishable from other patterns. Because of the 
uncontaminated continuity, streak patterns have the largest 
amount of self-overlap, resulting in the longest waiting time 
and the largest variance of interarrival times. We then discuss 
the psychological implications of pattern time such as in 
memory encoding and perception of randomness. 

Keywords: Perception of randomness; representativeness; 
hot hand belief; gambler’s fallacy; waiting time; patterns. 

 

Introduction 
 

When faced with temporal sequences of events, people often 
attempt to make sense out of apparent patterns even when 
they are completely random. Among the most perceptible 
patterns, “streaks” or “runs,” defined as continuous series of 
the same outcomes, are notorious for they not only yield 
counterintuitive statistical properties but also inspire 
extensive investigations on the biases in human perception 
of randomness and probabilistic judgment and reasoning. 

One well-known example is the hot hand belief. Many 
basketball fans believe that some players have the “hot 
hand” and tend to make successful shots in streaks. 
However, in a seminal study, Gilovich, Vallone, and 
Tversky (1985) find no significant statistical evidence to 
distinguish the actual shooting sequences from the 
sequences of Bernoulli trials. This finding has been 
controversial but withstood several critical attacks (for a 
comprehensive summary on the hot hand study, see, Bar-
Eli, Avugos, & Raab, 2006). In explaining the hot hand 
belief, Gilovich et al. (1985) use the representativeness 
heuristic, which has also been used to explain the gambler’s 
fallacy (Tversky & Kahneman, 1974). By such heuristic, 
people expect the essential characteristics of a chance 
process to be represented not only by the entire global 
sequence but also by local subsequences. For instance, when 
tossing a fair coin, a streak of four heads—which is quite 
likely in even relatively small samples—would appear to be 

non-representative.1 Thus, in the gambler’s fallacy, a tail is 
“due” to balance a streak of heads. In the hot hand belief, a 
streak of successful shots may lead people to reject the 
randomness of sequences and signal the existence of a hot 
hand. Several researchers have questioned  the 
representativeness heuristic for its incompleteness in 
accounting for two opposite psychological dispositions, but 
their arguments are still based on the evidence that the hot 
hand belief is false  (e.g., Ayton & Fischer, 2004; Burns, 
2004). Together, the hot hand belief and the gambler’s 
fallacy have been considered as two outright fallacies in 
people’s perception of streak patterns, and this stance has a 
great impact on studies in other disciplines such as 
behavioral finance and economics (e.g., Camerer, 
Loewenstein, & Prelec, 2005; Gilovich, Griffin, & 
Kahneman, 2002; Rabin, 2002). 

Moreover, studies on people’s judgment and generation of 
random sequences show that people expect fewer and 
shorter streaks when observing sequences produced by an 
independent and identically distributed process (i.i.d.) and 
they tend to avoid long streaks when instructed to generate 
such sequences (e.g., Budescu, 1987; Falk & Konold, 1997; 
Nickerson, 2002; Olivola & Oppenheimer, 2008). Besides 
behavioral evidence, the salience of streak patterns is also 
indicated by the results from a functional magnetic 
resonance imaging (fMRI) study (Huettel, Mack, & 
McCarthy, 2002). In a “pattern violation task,” participants 
were informed of the random order of the sequences. 
However, greater activation was found in prefrontal cortex 
(PFC) when participants observed violations of streak 
patterns (e.g., [AAAA] vs. [AAAB]) than violations of an 
alternating pattern (e.g., [ABABAB] vs. [ABABAA]) in a 
random binary sequence. In addition, the amplitude of fMRI 
hemodynamic responses (HDR) started increasing at lengths 
2 for streak patterns (i.e., [AAB]) but only started increasing 
at lengths 6 and larger for alternating sequences (i.e., 
[ABABAA]). (Oskarsson, Van Boven, McClelland, & 
Hastie, 2009, provided a comprehensive review on 
judgments of random and nonrandom sequences of binary 
events.) 

Given the unique role of streaks in people’s perception 
and judgment of temporal sequences, an inevitable question 
is what is so special about streaks? To answer this question, 
we have to examine the statistics of patterns more carefully 

                                                           
1 The probability of observing four heads in a row at least once 

in 20 tosses is 0.48. 
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since they are widely known for producing counterintuitive 
results (for the same reason, many people are surprised by 
the results of the runs test in the hot hand study). 

It would seem too obvious to mention once again the 
unique composition of a streak: a streak is composed of an 
uncontaminated run of the same elements, which makes it 
exceptionally stand out from other non-streak patterns (such 
as alternation and symmetry) or any composition without an 
apparent order. While this property does not affect how 
often a streak occurs, it does affect when a streak first 
occurs. To exemplify, we compare two patterns HHH and 
THH (where H = heads and T = tails in tossing a fair coin). 
Governed by the independence and stationarity assumptions 
of Bernoulli trials, these two patterns have the same 
probability of occurrence in any three consecutive tosses 
(hence the fallacy in the gambler’s fallacy and the hot hand 
belief). However when the coin is tossed repeatedly, the 
probability of first occurrence—the probability that a 
pattern first occurs at the nth toss, given that the pattern has 
not occurred before—can be different for different patterns 
(see Figure 1). For example, both patterns THH and HHH 
are equally likely to occur or not occur in the first three 
tosses. If THH has not occurred before, it will have a 
probability of 0.125 to first occur at the 4th toss. In contrast, 
if HHH has not occurred before, its probability of first 
occurrence at the 4th toss is only 0.0625, half of that for 
THH (for a method of calculating the probability of first 
occurrence, see Sun, Tweney, & Wang, 2010a). Overall, it 
will on average take 14 tosses to observe the first 
occurrence of HHH but only take 8 tosses to observe the 
first occurrence of THH. Moreover, if we monitor these two 
patterns simultaneously, it is more likely that we first 
encounter THH than we first encounter HHH (the odds are 
7:1). In other words, it appears that the first occurrence of 
the streak pattern HHH has been “delayed.” 

The time it takes for the first occurrence of a pattern 
(measured by the number of trials) is a statistical property 
known as waiting time. Compared to the long history of 
studies on the gambler’s fallacy (see, Ayton & Fischer, 
2004), the development of waiting time and its related 
properties is fairly new (see, Gardner, 1988; Graham, 
Knuth, & Patashnik, 1994). Most recently, this development 
has received attention in psychological literature. Hahn and 
Warren (2009) argue that given people’s limited exposure to 
the environment (i.e., the number of coin tosses is finite), 
the longer waiting time of streak patterns would have made 
them less likely to be observed, thus, “there is something 
right about the gambler’s intuition that the longer the run, 
the more likely, by contrast, is a sequence with a final tails” 
(p. 458). Sun et al. (2010a) criticize Hahn and Warren’s 
interpretation, and argue that it is the particular composition 
of patterns, rather than the length of the global sequence, 
that plays an essential role in both the statistics of waiting 
time and people’s perception of randomness (also see Sun, 
Tweney, & Wang, 2010b). 

Notwithstanding the debate above, the unique 
composition of a streak and its “delayed” first occurrence 

may provide a new prospective in the investigations on 
human perception of randomness. Particularly, different 
compositions of patterns may be directly related to memory 
encoding due to the limited working memory capacity (e.g., 
Falk & Konold, 1997; Olivola & Oppenheimer, 2008). For 
example, a streak of HHH can be easily memorized as 
“3Hs.” In addition, different waiting times in effect indicate 
different variances in the distribution of pattern occurring 
times (Sun & Wang, 2010), and this fact may have direct 
consequence in people’s intertemporal choices as it has been 
suggested that human brains are sensitive to time 
discounting (e.g., Ainslie & Monterosso, 2004; McClure, 
Ericson, Laibson, Loewenstein, & Cohen, 2007; McClure, 
Laibson, Loewenstein, & Cohen, 2004). In the following, 
we demonstrate some interesting properties in the statistics 
on the time of patterns and discuss the psychological 
implications. 

 

 
Figure 1: Probabilities of first occurrence for patterns 
HHH, HTH and THH when a fair coin is tossed 
repeatedly. 
 
 

Mean Time and Waiting Time 
The time of patterns has been studied by several different 
methods and different terminologies exist (e.g., Graham, et 
al., 1994; Li, 1980; Ross, 2007). To be consistent, here we 
clarify some basic concepts. In a process of coin tossing, the 
interarrival time (T) is the number of trials (tosses) between 
any two successive occurrences (arrivals) of the pattern, and 
the first arrival time (T*) is the number of trials required to 
encounter the first occurrence of the pattern since the 
beginning of the process2. Then, mean time (E[T]) is the 
expected value of the interarrival time, and waiting time 
(E[T*]) is the expected value of the first arrival time. We 
also distinguish the variance of interarrival time and the 
variance of the first arrival time by Var(T) and Var(T*), 

                                                           
2 T and T* may have different distributions, so that the process 

of counting patterns is also called a general renewal process or a 
delayed renewal process (Ross, 2007). 
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respectively. To simplify the discussion, here we only 
discuss the case of a fair coin (i.e., pH = pT = ½) and focus 
on pattern length r = 3. Unless specified, the discussion in 
the following will extend to patterns for all r  3. (A more 
general treatment can be found in Sun & Wang, 2010.) 

Overlap and Waiting Time 
We first note that when generated by an independent 
Bernoulli process, a pattern will have a mean time that is the 
inverse of its probability of occurrence. Thus, any pattern of 
the same length will have the same mean time. For example,  

         3

HHH HTH THH 1/ 2 8.E T E T E T
     

However, waiting time can be different for different 
patterns. Compared to other patterns of the same length,  
streak patterns always have the longest waiting time. For 
example,  

      HHH HTH THH* 14,  * 10,  and, * 8.E T E T E T    

 
Table 1 lists the mean and variance of interarrival time T 

and the first arrival time T* for all possible patterns of 
length 3. Extra caution should be taken to properly explain 
these results. An example is given in Figure 2, which 
depicts pattern time in two different contexts where 
individual patterns are monitored either independently 
(panel A) or simultaneously (panels B and C). Note that the 
colored circles in Figure 2 highlight the position where 
individual patterns have occurred and they actually 
represent the values of an “indicator variable” for pattern 
occurrence. In addition, arrows represent the minimum 
interarrival time between successive occurrences of 
patterns—the “minimum succeeding distance” for a pattern 
to occur given a previous occurrence of either the same 
pattern or another pattern. 
 

Table 1: Mean and variance of interarrival time T and 
the first arrival time T* for patterns of length r = 3. 
Note that for non-overlapping patterns such as HHT, 
the two pairs of statistics are identical (shown in bold). 

 
Patterns E[T] Var[T] E[T*] Var[T*] 
HHT 8 24 8 24 
HTT 8 24 8 24 
THH 8 24 8 24 
TTH 8 24 8 24 
HTH 8 56 10 58 
THT 8 56 10 58 
HHH 8 120 14 142 
TTT 8 120 14 142 

 
 

 
 

Figure 2: Visualization of pattern occurrences. Each circle 
represents the outcome of a single toss and the colored 
circle indicates one occurrence of the corresponding 
pattern. Arrows represent the “minimum succeeding 
distance” between successive occurrences of patterns, 
which also inversely indicate the levels of self-overlap 
(A) and inter-overlap (B and C). 
 
Figure 2A illustrates the essence of waiting time as it is 

defined independently for each individual pattern. When the 
coin has been tossed exactly 3 times, the probability of 
occurrence for any pattern is the same, 1/8 (also see Figure 
1)3. However, interesting phenomena will happen at the 4th 
toss (or, an observational window of size 3 starts moving 
from the beginning towards the end of the sequence one 
position a time). For example, if pattern HHH has occurred 
at n = 3, it can have an immediate reoccurrence at n = 4. In 
contrast, if pattern HTH has occurred at n = 3, its earliest 
next occurrence will have to be 2 tosses away at n = 5. More 
extremely, if we are monitoring pattern HHT and it has 
occurred at n = 3, then its earliest next occurrence will have 
to be 3 tosses away at n = 6. An intuitive explanation for 
this is that the reoccurrences of HHH can self-overlap with 
each other thus tend to be mostly clustered and the 

                                                           
3 Alternatively, we can imagine that a coin is tossed repeatedly 

and a long sequence of heads and tails is generated. Then, an 
observational window of width r = 3 randomly lands on any 
position of the sequence and captures exactly 3 trials. Given the 
independence assumption of Bernoulli trials, the probability that 
the observational window will capture any pattern is the same 1/8, 
as if the process starts from scratch (i.e., the window lands at the 
beginning of the sequence). 
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reoccurrences of HHT cannot overlap thus tend to be mostly 
dispersed.  

Figure 2A in effect illustrates all 3 possible levels of self-
overlap for patterns of length 3, since reoccurrences of 
reciprocal patterns self-overlap in the same way (e.g., HHH 
and TTT, HTH and THT), and reoccurrences of HHT, HTT, 
THH, and TTH do not self-overlap. Comparing Figure 2A 
with Table 1, we can see that with other factors remaining 
constant, the self-overlapping property of a pattern 
completely determines the pattern’s waiting time E[T*] and 
the variance of interarrival time Var(T). Since a streak 
pattern is an uncontaminated run of the same elements, by 
such unique composition, a streak pattern will have the 
largest amount of self-overlap and consequently, the longest 
waiting time.4 As a comparison, non-streak patterns such as 
HTH or HHT only have partial self-overlap or no self-
overlap at all so that they will have shorter waiting times. 
Moreover, waiting time grows approximately exponentially 
as the amount of self-overlap grows. As a consequence, the 
difference in waiting time between HHH and HTH is much 
greater than that between HTH and HHT. 

The difference in waiting time can be viewed as one type 
of precedence relationships in which individual patterns are 
monitored independently and only the self-overlap within 
each pattern is considered. For example, suppose two 
players are betting on two patterns HHH and HHT, 
respectively, then each player tosses a coin of her own in 
isolation (i.e., the “solitaire game” in Sun, et al., 2010a). 
Because of the different waiting time, the player who bets 
on HHT will be more likely to get her desired pattern earlier 
than the player who bets on HHH. 

 

Inter-overlap and Nontransitivity 
The result above might give an impression that pattern HHT 
is always more likely to occur earlier than pattern HHH, 
thus the gambler’s fallacy might actually have a valid 
statistical basis.  However, such precedence relationship 
may not hold if two patterns are monitored simultaneously 
in the same sequence and both self-overlap and inter-
overlap are involved (the “interplay game”). The fact is that 
although HHT is faster than HHH in the solitaire game, in 
the interplay game, HHT overlaps with the end of HHH 
(two positions) more than HHH overlaps with the end of 
HHT (none) (see Figure 2B). Overall, it can be calculated 
that in the interplay game, we are equally likely to first 
encounter HHH as to first observe HHT.  

Figure 2C shows another comparison between HHT and 
HTT. Despite that these two patterns have the same waiting 
time of 8 tosses, because of the different amount of inter-
overlap, the odds of HHT preceding HTT against HTT 

                                                           
4 It might seem counterintuitive that overlapped occurrences 

(hence faster reoccurrences) are associated with a longer waiting 
time. However, a reoccurrence of the pattern has to be based on a 
previous occurrence. Since a pattern of length r  2 is more likely 
to have not occurred in the first r tosses than it has occurred, faster 
reoccurrences actually signify a delay in the waiting time. 

preceding HHT are 2:1. This indicates that the precedence 
relationship in the interplay game is nontransitive. That is, 
for pattern length r  3, if one player first chooses any one 
of the patterns, the other player can always choose another 
pattern of the same length to ensure a better than even 
chance to win. In other words, the interplay game only 
favors the player who chooses later. 

 

 
 

 

 
 
Figure 3: Pair-wise precedence in the interplay game and 
the corresponding odds. Arrows originate from the faster 
patterns and point to the slower patterns. A: pattern length 
r = 3. B: pattern length r = 4. Only the relationships in 
legends are connected between patterns and all other 
connections are either downward wins or horizontal ties. 
Note that in both A and B, no arrow originates from 
streak patterns. 
 
Figures 3 shows the pair-wise precedence relationships in 

the interplay game for pattern length r = 3 and 4. Close 
examinations of Figure 3A confirm that the precedence 
relationship does not exactly follow the order of waiting 
time listed in Table 1. Particularly, a pattern with a shorter 
waiting time may not be necessarily encountered earlier 
than a pattern with a longer waiting time. Nevertheless, it 
appears that streaks are still the slowest patterns—at best, a 
streak pattern can tie with its “end-reversal” counterpart or 
its reciprocal streak (e.g., HHH vs. HHT, or, HHH vs. TTT), 
and it can never “beat” any other pattern. In other words, 
nontransitivity in the interplay game does not mean the 

A

B
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equivalence (or indifference) between patterns in a circular 
fashion. Considering all possible pair-wise comparisons, 
streak patterns are still unique for their delayed first 
occurrences.5 This fact holds for all pattern length r  2. 
Figure 3B shows the pair-wise comparison in the interplay 
game when pattern length r = 4, in which streak patterns are 
still at the bottom of the game. 

 

Discussion 
We have examined several types of pattern time statistics in 
different contexts and demonstrated that streak patterns 
indeed possess some unique statistical properties. Here we 
discuss their psychological relevance and implications in the 
investigations on human perception of randomness. 

First, the particular unbroken continuity of a streak leads 
to the maximum amount of self-overlap. As a consequence, 
successive occurrences of a streak tend to be clustered and 
such tendency would make it harder for human memory to 
keep an exact count of the actual number of occurrences. By 
contrast, successive occurrences of other patterns have to be 
either partially or completely separated (e.g., Figure 2A) and 
much more evenly distributed (indicated by the small 
variance of interarrival time in Table 1). For example, in 
Figure 2A, if the observational window is in size 4 instead 
of 3, two consecutive instances of 3Hs can be captured by 
one window. If the memory is encoded as the number of the 
windows containing the streak (at least once), two instances 
of 3Hs captured in the same window would have the same 
weight as one instance of 3Hs. Alternatively, two instances 
of 3Hs could be replaced by one instance of 4Hs. In either 
case, the remembered number of occurrences of 3Hs will be 
less than it actually is. 

Moreover, compared with all other patterns, a streak is the 
slowest pattern to occur, determined by either self-overlap 
alone (solitaire) or a combination of self-overlap and inter-
overlap with another pattern (interplay). In other words, as a 
random sequence unfolds over time, we are more likely to 
first encounter another pattern other than a streak. The only 
exception is the case in interplay where a streak can tie with 
its end-reversal counterpart or another streak (e.g., Figure 
3). Even in this exception, a streak retains an inferior status 
because of the “minimum succeeding distance” (see Figure 
2B). Although it is equally likely HHH preceding HHT as 
HHT preceding HHH, if HHH occurs first, HHT can 
immediately follow. If HHT occurs first, the next best shot 
for HHH has to be 3 tosses away. That is, the discrepancy in 
the minimum succeeding distance can obscure people’s 
experience of HHH more than it does to HHT.  

Together, although streak patterns have the same mean 
time as any other pattern, their longest waiting time and 
maximum clustering tendency can leave them 

                                                           
5 Guibas and Odlyzko (1981) and Graham et al. (1994) provide  

strategies to construct a “winning pattern” to beat a given pattern 
for pattern length r  3, in which a streak can never be constructed 
as a winning pattern. 

underrepresented in people’s experience thus make them 
appear rare or “non-representative” in recollection. 
Actually, a recent study by Olivola and Oppenheimer 
(2008) seems to confirm our speculation: when participants 
recalled the studied binary sequence, the lengths of streaks 
present in the original sequence were underestimated. Even 
more interestingly, Olivola and Oppenheimer found that 
when a streak was present early or late in a 25-event 
sequence, the overall sequence was judged as less likely to 
be random, compared to when the same streak occurred in 
the middle of the sequence. It appears that people may 
actually have an intuitive and accurate response to waiting 
time such that a streak is unlikely to occur early in 
sequences generated by a random process.  

It should be noted that besides the delayed first 
occurrence, the particular composition of streaks can 
manifest itself in many other forms. One example is the 
probability of occurrence at least once and its 
complementary “probability of nonoccurrence,” whose roles 
in affecting people’s perception of event likelihood have 
been discussed (Hahn & Warren, 2009; Sun, et al., 2010a). 
Another example is the shear disparity in the variance of 
interarrival times between different patterns. When time is 
essential in predicting future events, different levels of 
variance may have direct consequences in people’s risk 
preference (e.g., Lopes, 1996; Markowitz, 1991; Sun & 
Wang, 2010).  

Last but not least, in the examples discussed throughout 
the paper, the sequences of coin tosses are generated by 
Bernoulli trials (hence inter-event independent and 
memoryless). However, the process of counting patterns, 
particularly streak patterns, are not exactly memoryless (this 
is implied by the unequal mean time and waiting time, see 
Table 1). As human memory plays essential roles in 
predicting and planning future events, studies on such 
process can be useful in order to untangle the interaction of 
human memory and perception of randomness. Among 
these different statistics of the similar nature, people can be 
more sensitive to one form of manifestation than to another 
or even completely indifferent. We may not be able to use 
these statistics to vindicate a certain type of bias or fallacy. 
Nevertheless, these statistics can aid us to better understand 
the task environment so that we may eventually be able to 
more precisely pinpoint the source of the error. 
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