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Mechanistic models have proven to be accurate tools for the numerical analysis of the hydraulic behavior
of Low Impact Development (LIDs) techniques. However, their widespread adoption has been limited by
their computational cost. In this view, surrogate modeling is focused on developing and using a compu-
tationally inexpensive surrogate of the original model. While having been previously applied to various
water-related and environmental modeling problems, no studies have used surrogate models for the
analysis of LIDs. The aim of this research thus was to investigate the benefit of surrogate-based modeling
in the numerical analysis of LIDs. The kriging technique was used to approximate the deterministic
response of the widely used mechanistic model HYDRUS-2D, which was employed to simulate the
variably-saturated hydraulic behavior of a contained stormwater filter. The Nash-Sutcliffe efficiency
(NSE) index was used to compare the simulated and measured outflows and as the variable of interest
for the construction of the response surface. The validated kriging model was first used to carry out a
Global Sensitivity Analysis of the unknown soil hydraulic parameters of the filter layer, revealing that
only the shape parameter a and the saturated hydraulic conductivity Ks significantly affected the model
response. Next, the Particle Swarm Optimization algorithm was used to estimate their values. The NSE
value of 0.85 indicated a good accuracy of estimated parameters. Finally, the calibrated model was val-
idated against an independent set of measured outflows with a NSE value of 0.8, which again corrobo-
rated the reliability of the surrogate-based optimized parameters.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

During the last few decades, stormwater management has
become a major component of the prevention of floods in urban
areas and for the preservation of water resources. An increase of
impervious surfaces, connected with demographic growth, has
altered the natural hydrological cycle by reducing the infiltration
and evaporation capacity of urban catchments while also increas-
ing surface runoff. In their report, the Organization for Economic
Co-operation and Development (OECD) (2013) identified an
expected increase in flash and urban floods in large parts of Europe
as one of the major issues for the future.

In this context, urban drainage systems play a fundamental role
in improving the resilience of cities. In recent years, an innovative
approach to land development known as a Low Impact Develop-
ment (LID) has gained increasing popularity. A LID is a ‘green’
approach to storm water management that seeks to mimic the nat-
ural hydrology of a site using decentralized micro-scale control
measures (Coffman, 2002). LID practices consist of bioretention
cells, infiltration wells/trenches, storm water wetlands, wet ponds,
level spreaders, permeable pavements, swales, green roofs, vege-
tated filter/buffer strips, sand and gravel filters, smaller culverts,
and water harvesting systems. Several studies have evaluated the
benefits of LIDs. For example, Newcomer et al. (2014) used a
numerical model to demonstrate the benefits of LIDs, and an infil-
tration trench in particular, on recharge and local groundwater
resources for future climate scenarios. In another paper, Berardi
et al. (2014) demonstrated how green roofs may contribute to
the development of more sustainable buildings and cities. Green
Roofs (GR) were able to significantly reduce peak rates of storm
water runoff (Getter et al., 2007) and retain rainfall volumes with
retention efficiencies ranging from 40% to 80% (Bengtsson et al.,
2004). Permeable pavements offered great advantages in terms of
runoff reduction (Carbone et al., 2014; Collins et al., 2008), water
retention, and water quality (Brattebo and Booth, 2003). Even
though the results of available studies are encouraging, more
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research is needed to precisely assess the impact of LIDs on the
hydrological cycle.

As pointed out by several authors (e.g., Elliot and Trowsdale,
2007; Wong et al., 2006), there is a strong demand for predictive
models that can be applied across a range of locations and condi-
tions to predict the general performance of a range of stormwater
treatment measures. In recent years, researchers have focused
their attention on applying and developing empirical, conceptual,
and physically-based models for LIDs analysis. In their review arti-
cle, Li and Babcock (2014) reported that there were >600 papers
published worldwide involving green roofs, with a significant por-
tion of them related to modeling. Several studies demonstrated
that physically-based models can provide a rigorous description
of various relevant processes such as variably-saturated water
flow, evaporation and root water uptake, solute transport, heat
transport, and carbon sequestration. Brunetti et al. (2016a,
2016b) used a mechanistic model, HYDRUS-3D (Šimůnek et al.,
2016; Šimůnek et al., 2008), to analyze an extensive green roof in
a Mediterranean climate. The model, previously validated against
field scale measurements, was used to investigate the hydraulic
response of a green roof to single precipitation events and its
hydrological behavior during a two-month period. Metselaar
(2012) used the SWAP model (van Dam et al., 2008) to simulate
the one-dimensional water balance of a substrate layer on a flat
roof with plants. Li and Babcock (2015) used HYDRUS-2D to model
the hydrologic response of a pilot green roof system. The model
was calibrated using water content measurements obtained with
TDR (Time Domain Reflectometer) sensors. The calibrated model
was then used to simulate the potentially beneficial effects of irri-
gation management on the reduction of runoff volumes. The
VFSMOD model (Munoz-Carpena and Parsons, 2004) was exten-
sively used for the analysis of the hydraulic behavior and solute
transport of vegetated filter strips (Abu-Zreig et al., 2001;
Dosskey et al., 2002).

However, physically-based modeling often involves highly non-
linear, partial, differential equations that are solved using various
numerical approximation methods, requiring a high computational
cost. Moreover, a comprehensive simulation framework includes
model calibration, sensitivity analysis, and uncertainty quantifica-
tion aimed at enhancing confidence in the model and its ability to
describe real world systems. These tasks require running the sim-
ulation model hundreds or thousands of times and thus the com-
putational cost exponentially increases.

Surrogate modeling focuses on developing and using a computa-
tionally inexpensive surrogate of the original model. The main aim
is to approximate the response of an original simulation model,
which is typically computationally intensive, for various quantities
of interest (Razavi et al., 2012). Surrogate models have been widely
applied in various water-related and environmental modeling
problems. Khu and Werner (2003) used artificial neural networks
(ANN) in conjunction with genetic algorithms (GA) to reduce the
computational budget required in the uncertainty quantification
framework of the rainfall-runoff model SWMM. The GA was first
used to identify the areas of higher importance in the parameter
space and ANNs were then used to approximate the response sur-
face in these areas (Khu andWerner, 2003). Borgonovo et al. (2012)
tested a surrogate model for the estimation of the sensitivity
indices of an environmental model. Zhang et al. (2009) evaluated
ANN and Support Vector Machine (SVM) for approximating the Soil
and Water Assessment Tool (SWAT) model in two watersheds.
Keating et al. (2010) used a surrogate model to carry out a compar-
ison between the null-space Monte Carlo sampling (NSMC) and the
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm for
parameter estimation and uncertainty quantification. In another
study, Laloy et al. (2013) used Polynomial Chaos Expansion (PCE)
to emulate the output of a large-scale flow model. The surrogate
model was used in a Bayesian analysis framework to derive the
posterior distribution of different parameters. In their study,
Younes et al. (2013) used a surrogate model to estimate three soil
hydraulic parameters from a drainage experiment. In particular,
PCE was used to run a Monte Carlo Markov Chain (MCMC) analysis.
However, although the widespread diffusion of surrogate modeling
tools could drastically reduce computational budgets, their use for
physically-based modeling of LIDs is still unexploited.

The primary objective of this paper is to investigate the suitabil-
ity of surrogate modeling for the numerical analysis of LIDs tech-
niques by analyzing data from a real case study. The mechanistic
model HYDRUS-2D is first used to simulate the hydraulic behavior
of a Stormwater Filter (SF) at the University of Calabria, Italy. The
surrogate model, based on kriging, is then used to carry out a Glo-
bal Sensitivity Analysis (GSA) and a Global Optimization of soil
hydraulic parameters. The use of a surrogate model for the sensi-
tivity analysis of model outputs to soil hydraulic properties repre-
sents a new application of this technique that can provide a
significant contribution in this field.

The problem is addressed in the following way. First, the evap-
oration method is used to measure the soil hydraulic properties of
the vegetated substrate above the gravel filter, for which the
hydraulic properties were unknown. The measured soil hydraulic
properties of the vegetated substrate and the selected ranges of
parameters of the filter layer are then used in HYDRUS-2D to set
up the model. A Latin Hypercube Sampling (LHS) plan is used to
build a first trial of the surrogate model. Before continuing with
the other tasks, the surrogate model is validated and improved
by using specific infill criteria. Once validated, the surrogate model
is first used for the GSA based on Sobol’s method to compute the
sensitivity measures, and then for the inverse parameter estima-
tion carried out using the Particle Swarm Optimization (PSO) algo-
rithm. Finally, estimated parameters are used in the original
mechanistic model for the validation purpose.
2. Materials and methods

2.1. Stormwater filter and site description

The University of Calabria is located in the south of Italy, in the
vicinity of Cosenza (39�180 N 16�150 E). The climate is Mediter-
ranean with a mean annual temperature of 15.5 �C and average
annual precipitation of 881.2 mm. The stormwater filter (SF) has
a surface area of 125 m2, an average slope of 2%, and a total profile
depth of 0.75 m. Fig. 1 shows a schematic of the SF.

The filter layer is covered by a vegetated soil substrate with a
measured bulk density of 1.59 g/cm3. A high permeability geotex-
tile with a fiber area weight of 60 g/m2 is placed at the interface
between the soil substrate and the filter layer to prevent fine par-
ticles from migrating into the underlying layer. The filter layer is
composed of a gravelly material characterized by a high permeabil-
ity. An impervious membrane is placed at the bottom of the profile
to prevent water from percolating into deeper horizons.

The SF is used to treat stormwater runoff from the adjoining
impervious parking lot, which is characterized by an area of
220 m2. Stormwater runoff from the parking lot is first conveyed
into a manhole and then to an instrumented channel where the
flow rate is measured by a flux meter composed of a rectangular,
sharp crested weir coupled with a pressure transducer. The pres-
sure transducer (Ge Druck PTX1830) measures the water level
inside the channel and has a range of measurements of 75 cm with
an accuracy of 0.1% of the full scale. The pressure transducer was
calibrated in the laboratory using a hydrostatic water column, link-
ing the electric current intensity with the water level inside the



Fig. 1. A schematic of the experimental site (top) and a typical cross-section (bottom) of the stormwater filter.
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column. An exponential head-discharge equation for the flux meter
was obtained by fitting the experimental data.

Measured runoff is next conveyed into a 14 m long, horizontal
perforated pipe where it is distributed on the top of the filter layer
(Fig. 1). As shown in Fig. 1, the soil substrate is not used to treat
stormwater runoff, which is directly routed into the filter, but only
to increase the retention and evapotranspiration capacity of the
system itself. The baseflow is collected in a horizontal drain, which
consists of a perforated PVC pipe, and is conducted to a manhole
for quantity and quality measurements. A second flux meter, com-
posed of a PVC pipe with a sharp-crested weir and a pressure trans-
ducer, measures the flow rate. Runoff and baseflow data were
acquired with a time resolution of one minute and stored in a
SQL database. No measurements of pressure heads or volumetric
water contents inside of the filter were taken.

A weather station located directly at the site measures precipi-
tation, wind velocity and direction, air humidity, air temperature,
atmospheric pressure, and global solar radiation. Rain data are
measured using a tipping bucket rain gauge with a resolution of
0.254 mm and an acquisition frequency of one minute. Climatic
data are acquired with a frequency of five minutes. Data are pro-
cessed and stored in the SQL database.

Twomonth-long data sets were selected for the analysis (Fig. 2).
The first data set, which started on 2014-01-15 and ended on
2014-02-15, was used for obtaining the surrogate model. The sec-
ond data set, which started on 2014-03-01 and ended on 2014-03-
31, was used for model validation. The precipitation totals for the
first and second data sets were 274 and 174 mm, respectively.
The second data set was selected because it had significantly differ-
ent meteorological dynamics than during the first period. The opti-
mization set is characterized by multiple rain events with few dry
periods. The validation set has fewer rain events, which are con-
centrated at the beginning and end of the time period and sepa-
rated by a relatively long dry period.

Hourly reference evapotranspiration was calculated using the
Penman-Monteith equation (Allen et al., 1998). Considering that
vegetation mainly consisted of herbaceous plants, an average value
of albedo of 0.23 was assumed in calculations of net short-wave
radiation (Breshears et al., 1997).

2.2. Evaporation method and parameter estimation

2.3.1. Evaporation method
Modeling of water flow in unsaturated soils by means of the

Richards equation requires knowledge of the water retention func-
tion, h(h), and the hydraulic conductivity function, K(h), for each
soil layer of the SF, where h is the volumetric water content
[L3L�3], h is the pressure head [L], and K is the hydraulic conductiv-
ity [LT�1]. In order to reduce the dimensionality of the optimization
problem, the soil hydraulic properties of the soil substrate were
measured in the laboratory using a simplified evaporation method
with an extended measurement range (down to �9000 cm), as
proposed by Schindler et al. (2010a, 2010b). For a detailed descrip-
tion of the modified evaporation method, please refer to Schindler
et al. (2010a, 2010b).

Peters and Durner (2008) conducted a comprehensive error
analysis of the simplified evaporation method and concluded that
it is a fast, accurate, and reliable method to determine soil hydrau-
lic properties in the measured pressure head range, and that the
linearization hypothesis introduced by Schindler (1980) causes
only small errors. The above cited method has already been used
in the LIDs analysis for the determination of the unsaturated soil



Fig. 2. Precipitation (black line) and subsurface flow (grey line) for the optimization (top) and validation (bottom) periods, respectively.
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hydraulic properties of a green roof substrate (Brunetti et al.,
2016a). In that study, the measured soil hydraulic properties were
used in HYDRUS-3D to simulate the hydraulic behavior of a green
roof and validated by providing optimal correspondence between
simulated and measured outflows. The simplified evaporation
method was similarly used in this study for the determination of
the unsaturated hydraulic properties of the soil substrate. For a
complete description of the system, please refer to UMS GmbH
(2015).

The soil for the laboratory analysis was directly sampled from
the SF using a stainless-steel sampling ring with a volume of
250 ml. The soil sample was saturated from the bottom before
starting the evaporation test. The measurement unit and tensiome-
ters were degassed using a vacuum pump, in order to reduce the
potential nucleation sites in the demineralized water. Since
Peters and Durner (2008) suggested a reading interval for struc-
tured soils of less than 0.1 day, the reading interval was set to
20 min in order to have high resolution measurements. At the
end of the experiment, the sample was placed in an oven at
105 �C for 24 h, and then the dry weight was measured.
2.4. Parameter estimation

The numerical optimization procedure, HYPROP-FIT (Pertassek
et al., 2015), was used to simultaneously fit retention and hydraulic
conductivity functions to experimental data obtained using the
evaporation method. Fitting was accomplished using a non-linear
optimization algorithm that minimizes the sum of weighted
squared residuals between model predictions and measurements.
The software uses the Shuffled Complex Evolution (SCE) algorithm
proposed by Duan et al. (1992), which is a global parameter esti-
mation algorithm. The goodness-of-fit was evaluated in terms of
the Root Mean Square Error (RMSE), while the Akaike information
criterion (AIC) (Hu, 1987) was used to choose between different
hydraulic conductivity functions. The software also provides 95%
confidence intervals to assess the uncertainty in parameter estima-
tion. In order to calculate the parameter uncertainties a linear
approximation of the covariance matrix for each estimated param-
eter is calculated. The confidence interval for the i-th parameter is
then computed by combining the covariance matrix and the upper
a/2 quantile of the Students t-distribution, where a is set to 0.05 for
the computation of the 95% confidence intervals.

2.5. Modeling theory

2.5.1. Water flow and root water uptake
The HYDRUS-2D software (Šimůnek et al., 2008) was used to

model the hydraulic behavior of the SF. HYDRUS-2D is a two-
dimensional model for simulating the movement of water, heat,
and multiple solutes in variably-saturated porous media.
HYDRUS-2D numerically solves the Richards equation for multi-
dimensional unsaturated flow:

@h
@t

¼ O½k � Oðh� zÞ� � S ð1Þ

where t is time (T), z is the vertical coordinate (L), and S is a sink
term (L3L�3T�1), defined as a volume of water removed from a unit
volume of soil per unit of time due to plant water uptake. The uni-
modal van Genuchten–Mualem (VGM) model (van Genuchten,
1980) was used to describe the soil hydraulic properties of the
two layers:

H ¼
1

ð1þðajhjÞnÞm if h 6 0

1 if h > 0

(
ð2Þ

H ¼ h� hr
hs � hr

K ¼ KsH
L½ð1� ð1�H

1
mÞÞm�

2
if h < 0

Ks if h > 0

(
ð3Þ
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m ¼ 1� 1
n

where H is the effective saturation (�), a is a shape parameter
related to the inverse of the air-entry pressure head (L�1), hs and
hr are the saturated and residual water contents, respectively (�),
n and m are pore-size distribution indices (�), Ks is the saturated
hydraulic conductivity (LT�1), and L is the tortuosity and pore-
connectivity parameter (�).

While the soil hydraulic properties of the soil substrate were
determined using the simplified evaporation method, those of
the filter were optimized in the surrogate analysis framework.
However, not all parameters were included in the optimization
process. The residual water content hr was fixed to 0, considering
that the filter is composed of coarse gravel, and the tortuosity L
was set to 0.5, which is a common value in the literature. The initial
range of the investigated parameters is reported in Table 1.

Feddes et al. (1978) defined S as:

SðhÞ ¼ aðhÞ � Sp ð4Þ
where a(h) is a dimensionless water stress response function that
depends on the soil pressure head h and has a range of values
between 0 and 1, and Sp is the potential root water uptake rate.
Feddes et al. (1978) proposed a water stress response function in
which water uptake is assumed to be zero close to soil saturation
(h1) and for pressure heads larger (in absolute values) than the wilt-
ing point (h5). Water uptake is assumed to be optimal between two
specific pressure heads (h2, h3 or h4), which depend on a particular
plant. At high potential transpiration rates (5 mm/day in the model
simulation) stomata start closing at lower pressure heads (h3) (in
absolute value) than at low potential transpiration rates (1 mm/d)
(h4). Parameters of the stress response function for a majority of
agricultural crops can be found in various databases (e.g., Taylor
and Ashcroft, 1972; Wesseling et al., 1991). Considering that the
vegetation cover was mainly constituted of herbaceous plants,
parameters reported for grass in Wesseling et al. (1991) were used
in this study.

The local potential root water uptake Sp was calculated from the
potential transpiration rate Tp. Beer’s equation was first used to
partition reference evapotranspiration, calculated using the
Penman-Monteith equation (Allen et al., 1998), into potential tran-
spiration and potential soil evaporation fluxes (e.g., Ritchie, 1972).
The partitioning of evapotranspiration into potential transpiration
and potential evaporation allows the computation of different
actual fluxes in the soil-vegetation system. The Leaf Area Index
(LAI) is needed to partition evaporation and transpiration fluxes.
In this study, a LAI value of 2.29 as reported by Blanusa et al.
(2013) for a sedum mix was used, considering its similarity with
the installed vegetation. For a detailed explanation of evapotran-
spiration partitioning, please refer to Sutanto et al. (2012).

HYDRUS-2D allows for the consideration of a spatially variable
root distribution. In this study, a homogeneous root zone within a
depth of 15 cm was defined. The root density was assumed to be
uniform inside the root zone and zero in the remaining part of
the numerical domain. The total potential transpiration flux from
a transport domain is equal in HYDRUS to potential transpiration
Tp, multiplied by the surface length associated with vegetation.
Table 1
Ranges of investigated parameters for the surrogate-based analysis.

Parameter Range

hs [�] 0.1–0.3
a [1/cm] 0.001–0.3
n1 [�] 3.0–7.0
Ks1 [cm/min] 30.0–100.0
This total potential transpiration flux is then distributed over the
entire root zone for the computation of the actual root water
uptake.
2.6. Numerical domain and boundary conditions

The two-dimensional domain had a length of 8.0 m and a depth
of 0.75 m. The geotextile was not included in the model consider-
ing its negligible thickness, its limited hydraulic effect due to its
high permeability, and that its sole function was to separate the
soil substrate from the filter layer. The domain was discretized into
two-dimensional triangular elements using the MESHGEN tool of
HYDRUS-2D. The mesh was refined in the right part of the domain,
where the effect of the surface runoff from the parking lot was sim-
ulated. This refinement was necessary in order to numerically
accommodate the significant pressure head gradients generated
by infiltration of runoff, and thus to reduce the mass balance
errors. The generated FE mesh had 736 nodes and 1350 two-
dimensional elements. The quality of the FE mesh was assessed
by checking the mass balance error reported by HYDRUS-2D at
the end of the simulation. Mass balance errors, which in this sim-
ulation were always below 1%, are generally considered acceptable
at these low levels.

The surface of the SF was exposed to precipitation, evapotran-
spiration, and surface runoff from the impervious parking lot. As
a result, in HYDRUS, two different boundary conditions were spec-
ified at the top of the modeled domain, as well as at its bottom
(Fig. 3).

The ‘‘Atmospheric” boundary condition, which was assigned on
the surface of the soil substrate (green line in Fig. 3), can exist in
three different states: (a) precipitation and/or potential evapora-
tion fluxes, (b) a zero pressure head (full saturation) during pond-
ing when both infiltration and surface runoff occurs, and (c) an
equilibrium between the soil surface pressure head and the atmo-
spheric water vapor pressure head when atmospheric evaporative
demand cannot be met by the substrate. The threshold pressure
head, which was set to �10,000 cm, divides the evaporation pro-
cess from the soil surface into two stages: (1) a constant rate stage
when actual evaporation, equal to potential evaporation, is limited
only by the supply of energy to the surface, and (2) the falling rate
stage, when water movement to the evaporating sites near the sur-
face is controlled by subsurface soil moisture and the soil hydraulic
properties. In such conditions, actual evaporation, calculated as a
result of the numerical solution of the Richards equation, is smaller
than potential evaporation.

The ‘‘Variable Flux” boundary condition, which included both
precipitation and measured surface runoff, was used in the area
under the perforated pipe (red line in Fig. 3). Evaporation was
excluded since most of the surface was covered by the perforated
pipe, which reduced the exposure of the surface to wind and solar
radiation.

A seepage face boundary condition (brown line in Fig. 3) was
specified at the bottom left corner of the numerical domain to sim-
ulate the effect of the horizontal drain. A seepage face boundary
acts as a zero pressure head boundary when the boundary node
is saturated and as a no-flux boundary when it is unsaturated. A
zero flux boundary condition (black line in Fig. 3) was applied to
all remaining boundaries of the domain to simulate the effect of
the impervious membrane placed at the bottom and on the sides
of the SF.

The initial conditions were specified in terms of the soil water
pressure head and were set to linearly increase with depth, from
�90 cm at the top of the flow domain (z = 0) to �0.5 cm at the bot-
tom (z = �75). The surface layers are assumed to be drier than the
bottom layers since they are directly exposed to the atmosphere.



Fig. 3. The spatial distribution of applied boundary conditions.

268 G. Brunetti et al. / Journal of Hydrology 548 (2017) 263–277
The numerical model is expected to be sensitive to the initial con-
ditions only during the first few simulated days.
2.7. Surrogate based model

2.7.1. Kriging
There are two broad families of surrogate modeling techniques:

Response Surface Surrogates (RSS) and Lower-Fidelity Surrogates
(LFS). While RSS are data-driven techniques for approximating
the response surface of high-fidelity (original) models based on a
limited number of original model evaluations, LFS are essentially
cheaper-to-run, alternative simulation models with different levels
of accuracy (Razavi et al., 2012). As pointed out by Razavi et al.
(2012) in their review paper, LFS outperforms RSS when the
dimensionality of the problem is high and the response surface
landscape is characterized by multimodality. In such circum-
stances, RSS would need a higher number of original model runs
to correctly approximate the response surface. O’Hagan (2006)
highlighted how the same number of design sites can lead to dif-
ferent parameters space coverages depending on the dimensional-
ity of the problem. However, when the problem is low-dimensional
and the response surface is characterized by a low or moderate
multimodality, RSS are preferred since a limited number of high-
fidelity model runs is required to build a reliable surrogate model.

The present study involves a SF model with four parameters to
be investigated. Considering the low dimensionality of the prob-
lem, the kriging response surface approximation technique was
used. Unlike other RSS, kriging models have their origins in mining
and geostatistical applications involving spatially and temporally
correlated data. The kriging technique has also been referred to
in the literature as a Gaussian Process (GP) prediction
(Rasmussen and Williams, 2006; Sacks et al., 1989). A Gaussian
Process is formally defined as being a probability distribution over
a (possibly infinite) number of variables, such that the distribution
over any finite subset of them is a multi-variate Gaussian. As the
Gaussian distribution is fully specified by its mean and covariance
matrix, the GP is specified by a mean and a covariance function
(Mackay, 1998). The mean is usually assumed to be zero, and, in
such circumstances, the covariance function completely describes
the GP behavior. One of the most attractive features of GP is that
it treats the deterministic response of a computer model as the
realization of a stochastic process, in particular a Gaussian random
process, thereby providing a statistical basis for fitting. This capa-
bility provides a first approximation of uncertainty associated with
each value predicted by the surrogate. Another advantage of krig-
ing against other RSS techniques such as Artificial Neural Networks
(ANN) or Support Vector Machines (SVM) is that kriging is an exact
emulator. An exact emulator precisely predicts all design sites used
to build the surrogate, while inexact emulators can introduce bias
in such sites. As described by Razavi et al. (2012), an exact emula-
tion is recommended for approximating the deterministic response
of computer simulation models. Inexact emulators have smoothing
capabilities that can help when the response surface is noisy (e.g.,
physical experiments), however this feature can lead to poor
approximation of the response surface when it is characterized
by multiple local minima.

The kriging model is a combination of a polynomial model and a
localized deviation model, which is based on a spatial correlation
of samples (Eq. (4)):

yðxÞ ¼ f ðxÞ þ ZðxÞ ð5Þ
where y(x) is an unknown function of interest, f(x) is an approxima-
tion function, and Z(x) is the realization of a stochastic process with
zero mean, the variance r2, and nonzero covariance. While f(x)
globally approximates the response surface through design sites, Z
(x) creates localized deviations. The covariance matrix of Z(x) is
given by Eq. (6):

Cov ½ZðxiÞ; Zðx jÞ� ¼ r2Wð½Rðxi; x jÞ�Þ ð6Þ
whereW is the p x p symmetric correlation matrix and R(xi, xj) is the
correlation function between two of the p sampled data points. R(xi,
xj) can assume different forms and is specified by the user. In this
study, the Gaussian correlation function has been used (Eq. (7)):

Rðxi; x jÞ ¼ exp �
XN
k¼1

sjjxik � xkkj2
 !

ð7Þ

where N is the number of parameters, sj are the unknown correla-
tion parameters used to fit the model, and xk

i and xk
j are the kth com-

ponents of the sample points xi and xj. Correlation parameters sj are
estimated using the maximum likelihood methodology. The ‘‘best”
kriging model is found by solving a j-dimensional, unconstrained,
nonlinear optimization problem. In this study, the PSO global opti-
mization algorithm has been used to identify kriging parameters.

2.8. Design of experiments

The first step in the generation of a surrogate model is to sample
the response surface at some specific design sites. This procedure is
usually referred to in the literature as the Design of Experiments
(DoEs). As pointed out by Razavi et al. (2012), a sufficiently large
and well-distributed set of initial design sites is crucial for a suc-
cessful application of a metamodeling framework. There are sev-
eral DoEs methods available in the literature. Factorial design
(Gutmann, 2001), Latin Hypercube Sampling (LHS) (McKay et al.,
1979), and Symmetric Latin Hypercube Sampling (SLHS) (Ye
et al., 2000) are the most commonly used. In this study, the LHS
has been used. The size of the DoEs sample is strongly dependent
on the complexity of the original response surface and computa-
tional budget available. The kriging model requires at least N+1
design sites to fit, while additional sites will improve the accuracy
of the surrogate. Several relations were proposed in the literature
to choose the size p of the initial sample (e.g., Gutmann, 2001;
Regis and Shoemaker, 2004). In this study, the relation proposed
by Jones et al. (1998) has been used (Eq. (8)):

p ¼ 10N ð8Þ
Considering that the number of investigated parameters was 4,

40 sampling points were generated using the LHS.
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2.9. Approximation uncertainty framework

The surrogate model fitted on a DoEs sample is only the first
approximation of the original response function. Its accuracy can
be improved using further original model runs (infill points) in
addition to the initial sampling plan. The distribution of infill points
strongly depends on the complexity of the original response sur-
face and on the type of analysis conducted. When the purposes
of the analysis of the surrogate model includes uncertainty and
sensitivity analyses, it is necessary to have an accurate global
approximation of the response surface. The adaptive-recursive
framework relies on the assumption that the optimal solution of
the surrogate represents well the original model. However, this is
not always true, especially when the response surface is character-
ized by high multimodality. When the approximation of the
response surface by the surrogate model is limited, this framework
is not recommended for the uncertainty and/or sensitivity analysis.
Jones (2001) concluded that the adaptive-framework is helpful at
best for local optimization.

In this study, the approximation uncertainty framework was
applied to address the shortcoming of the adaptive-recursive
framework, which considers uncertainties associated with the
approximation. RSS, such as kriging, explicitly provide a measure
of uncertainty since they treat the deterministic response of a com-
puter simulation as the realization of a stochastic process. The
model can then be evaluated at points with the highest uncer-
tainty, which can then be included among the design sites.
Although globally convergent, such an approach requires an
impractically large number of original function evaluations. An
effective uncertainty based framework should balance exploitation
(i.e., fine tuning of a good solution) and exploration (i.e., reducing
the overall uncertainty of the surrogate). The expected-
improvement approach (Schonlau, 1997) was used in this study.
An expected-improvement is a measure that statistically quantifies
the obtained improvement when a given point is evaluated by the
original model and added to design sites. For a complete descrip-
tion of the expected-improvement approach please refer to
Schonlau (1997).

In this study, the expected-improvement approach was used to
add 15 infill points to the initial design sites. In order to have good
accuracy, the surrogate was refitted after each new original model
evaluation (Razavi et al., 2012).

2.10. Surrogate validation

Validation of the RSS model is important for evaluating the reli-
ability of the surrogate. Although exact emulators such as kriging
exactly interpolate the response surface at design sites, their accu-
racy in unexplored regions of the parameter space must be evalu-
ated. The validation can be conducted by evaluating the
agreement between values of the variable of interest predicted by
both the surrogate and original models on an independent set of
sample points. Cross validation strategies such as k-fold and
leave-one-out cross validation have also been used in the literature
(Wang and Shan, 2007). In the present study, an independent set of
sample points was generated using the LHS and used to validate the
model. Ten pointswere used to carry out the validation process. The
Pearson coefficient R2 was used to assess the agreement between
predicted and modeled values. As suggested by Forrester et al.
(2008), a value of the correlation coefficient higher than 0.8 indi-
cates a surrogate model with good predictive capabilities.

2.11. Global Sensitivity Analysis (GSA)

A sensitivity analysis (SA) can identify the most influential
parameters, their interactions, and how these parameters affect
the output (Saltelli et al., 2005). Most SAs performed in the litera-
ture of environmental sciences are the so-called ‘one-at-a-time’
(OAT) sensitivity analyses, performed by changing the value of
parameters one-at-a-time while keeping the other parameters
constant (Cheviron and Coquet, 2009; Houska et al., 2013; Rezaei
et al., 2015). However, when the model includes interactions
between multiple parameters, results of the OAT analysis are inac-
curate because parameter interactions can be globally identified
only by simultaneously changing multiple parameters. For this rea-
son, when the property of a model is a priori unknown, a Global
Sensitivity Analysis (GSA) is always preferred (Saltelli and
Annoni, 2010). Practitioners call this analysis a model-free setting,
which means that a particular application does not depend on par-
ticular assumptions regarding the behavior of the model, such as
linearity, monotonicity, etc (Saltelli and Annoni, 2010).

Variance-based methods aim to quantify the amount of vari-
ance that each parameter contributes to the unconditional vari-
ance of the model output. In Sobol’s method, these measures are
represented by Sobol’s sensitivity indices (SIs). These indices give
quantitative information about the variance associated with a sin-
gle parameter or with interactions of multiple parameters. For a
more complete explanation about Sobol’s method, please refer to
Sobol’ (2001). Sobol’s sensitivity indices are expressed as follows:

FirstOrder Si ¼ Vi

V
ð9Þ

SecondOrder Sij ¼ Vij

V
ð10Þ

Total ST ¼ Si þ
X
j–i

Sij þ ::: ð11Þ

where Vi is the variance associated with the ith parameter and V is
the total variance. The first-order index, Si, is denoted in the litera-
ture as the ‘‘main effect.” When the model is additive, i.e., when it
does not include interactions between input factors, the first-
order index is sufficient for decomposing the model’s variance.
For additive models, the following relation is valid:X
i

Si ¼ 1 ð12Þ

On the other hand, the total effect index, ST, gives information
about a non-additive part of the model. STi = 0 is a condition neces-
sary and sufficient for Xi to be non-influential. For an accurate
description of the calculation of Sobol’s indices please refer to
Saltelli et al. (2010).

When the model is nonlinear, as most environmental models
are, Sobol’s indices are calculated using Monte Carlo integrals.
Obviously, the accuracy in the estimation of integrals becomes
more accurate as the number of samples increases, which also
increases the computational cost of the SA. However, this limita-
tion is avoided when using a surrogate model since the computa-
tional cost associated with the evaluation of a large number of
samples is very low (O’Hagan, 2006; Oakley and O’Hagan, 2004).
For this reason, 1000 samples for a total of 30,000 surrogate model
runs were used in this study. To sample the parameters’ space we
used Sobol’s quasi-random sampling technique (Sobol’, 2001).

In order to assess the accuracy of the estimations of the sensi-
tivity indices, the bootstrap confidence intervals (BCIs) (Efron and
Tibshirani, 1986) were estimated. The basic idea of the bootstrap-
ping is that the sample contains all available information about the
underlying distribution. In our particular case, we were interested
in computing the uncertainty of estimated sensitivity indices.
However, since their distribution is unknown it is not possible to
compute the confidence intervals analytically. The rationale of
the bootstrap method is to replace the unknown distribution with
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its empirical distribution and to compute the sensitivity indices
using a Monte Carlo simulation approach where samples are gen-
erated by resampling the original sample used for the sensitivity
analysis. In our case, the samples used for the GSA were sampled
1000 times with replacement, whereby Sobol’s indices were calcu-
lated for each resampling. In this way, 95% confidence intervals are
constructed using the percentile method and the moment method
(Archer et al., 1997).
2.12. Particle Swarm Optimization

Numerous applications of inverse modeling for the estimation
of soil hydraulic properties exist in the literature (Abbaspour
et al., 2004; Hopmans et al., 2002; Vrugt et al., 2008; Vrugt et al.,
2004). The gradient methods (Marquardt, 1963) have been most
widely used among hydrologists and soil scientists. However, these
methods are sensitive to the initial values of optimized parameters
and the algorithm often remains trapped in local minima, espe-
cially when the response surface exhibits a multimodal behavior.
These considerations inspired researchers to develop and use glo-
bal optimization techniques such as the annealing-simplex method
(Pan and Wu, 1998), genetic algorithms (Ines and Droogers, 2002),
shuffled complex methods (Vrugt et al., 2003), and ant-colony opti-
mization (Abbaspour et al., 2001), among many others.

In this paper, a global search method based on Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995) was used. This
method simulates the behavior of a flock of birds collectively forag-
ing for food (i.e., searching for the optimum of the objective func-
tion). In their recent study, Brunetti et al. (2016b) used PSO to
estimate the soil hydraulic properties of a permeable pavement
with satisfactory results. PSO is a relatively new algorithm for evo-
lutionary computation methodology, but its performance has pro-
ven to be comparable to various other more established
methodologies (Kennedy and Spears, 1998; Shi et al., 1999). One
of the main advantages of PSO is the easiness of its implementation
(Liang et al., 2006). A detailed description of the PSO algorithm is
given in Shi and Eberhart (1998).

In PSO, each particle represents a possible solution of the prob-
lem. First, particles are placed in the search space, each character-
ized by a particular value of the objective function. Each particle
then changes its position after exchanging information about its
own current and best positions with other members of the swarm.
The next iteration starts after all particles have changed their posi-
tions. The most important parameters in the PSO are c1, c2, and w.
c1 and c2 are constant parameters known as the cognitive and
social parameters, respectively, which drive the search behavior
of the algorithm. Depending on the values of c1 and c2 the PSO
can be more or less ‘‘responsive”. However, their values should
be selected carefully because large values of these parameters
can lead to instabilities in the algorithm. w is the inertia-weight,
which plays a key role in the optimization process by providing
balance between exploration and exploitation. In PSO, each particle
is influenced by its nearest neighbors. The arrangement of neigh-
bors that influence a particle is called the topology of the swarm.
Different types of neighborhoods are reported in the literature
(Akat and Gazi, 2008). In this study, the all topology is used, in
which the neighborhood encompasses the entire swarm. The PSO
parameters used in this study for both scenarios are reported in
Table 2 and are as suggested by Pedersen (2010).
Table 2
Parameters used in the PSO optimization.

Swarm size c1 c2 w

63 �0.73 2.02 �0.36
2.13. Objective function

The Nash-Sutcliffe efficiency (NSE) index (Nash and Sutcliffe,
1970) was used to evaluate the agreement between measured
and modeled hydrographs and as the variable of interest in the sur-
rogate analysis:

NSE ¼ 1�
XT

i¼1
ðQobs

i � Qmod
i Þ2XT

i¼1
ðQobs

i � Qobs
meanÞ

2

2
4

3
5 ð13Þ

where Qi
obs is the ith measured value, Qi

mod is the ith simulated
value, and Qmean

obs is the mean value of observed data. The NSE index
ranges between �1 and 1.0, is equal to 1 in case of perfect agree-
ment, and generally, values between 0.0 and 1.0 are considered
acceptable (Moriasi et al., 2007). The NSE index was used because
it is often reported to be a valid measure for evaluating the overall
fit of a hydrograph (Sevat et al., 1991).

It is important to emphasize that subsurface outflow from a LID
system is among the most important outputs in the analysis of
urban drainage systems. In our case, the stormwater filter was
impervious at the bottom and hydraulically connected with the
sewer system. An accurate numerical reconstruction of the subsur-
face hydrograph is thus fundamental in order to quantify its effect
on the drainage system.
3. Results and discussion

3.1. Evaporation method

Soil hydraulic properties measured using the evaporation
method are displayed in Fig. 4. The retention data point close to
log (|h|) = 4 (h in cm) was obtained by using the air-entry pressure
head of the ceramic cup of the tensiometers. Measured retention
points were not available in the very dry range, between 2.7 and
3.8, since cavitation occurred in the tensiometers. The behavior
of the retention curve appears to be sigmoidal and characterized
by a clearly identifiable air-entry pressure head at log (|h|) = 2 (h
in cm). Below this pressure head, the soil quickly desaturated, indi-
cating a narrow pore-size distribution. Measured points of the
hydraulic conductivity function were sparser and concentrated in
the dry range between volumetric water contents of 0.10 and
0.20. The measured soil porosity and bulk density were 0.44 and
1.59 g/cm3, respectively.

The unimodal van Genuchten-Mualem model (van Genuchten,
1980) was fitted to measured points using the HYPROP-FIT soft-
ware. The RMSE values for retention and conductivity functions
were 0.04 (cm3cm�3) and 0.6 (in log K, cm/day), respectively. The
VGM function (full lines in Fig. 4) described the retention data well,
especially in the dry and medium-wet regions (volumetric water
contents of 0.5–0.3), while it introduced some bias near saturation
where it poorly described the sharp increase in water retention at
the air-entry pressure head. However, the low RMSE value was
considered acceptable for the purposes of the present study. The
RMSE value for the hydraulic conductivity was higher, indicating
a slightly worse performance of the VGM function in describing
the hydraulic conductivity of the substrate. The estimated soil
hydraulic parameters (reported with their confidence intervals in
Table 3) were used in HYDRUS-2D to model the hydraulic behavior
of the soil substrate.

3.2. Kriging approximation of the response surface

The DoEs sample, generated with the LHS technique, was used
to build the first approximation of the response surface for the
investigated soil hydraulic parameters. First, the HYDRUS-2D



Fig. 4. Measured values and modeled functions of soil water retention, h (log10(|h|)) (left) and the unsaturated hydraulic conductivity, K(log10(|h|)) (center) and K(h) (right).
Symbols represent the measured values, and full lines the fitted VGM functions.

Table 3
Estimated soil hydraulic parameters and their confidence intervals for the bimodal
hydraulic function.

Parameter 2.5% Estimated value 97.5%

hr (�) 0.02 0.03 0.04
hs (�) 0.43 0.44 0.45
a (1/cm) 0.021 0.025 0.029
n (�) 1.84 1.97 2.10
Ks (cm/day) 200 260 320
L (�) �0.63 �0.44 �0.25

Fig. 5. Comparison between the HYDRUS-2D and kriging-predicted values of the
NSE for the validation sample. The initial (grey diamonds) and infilled (red circles)
kriging models are compared. A bisector (a black line) and regression lines for the
initial (a dashed grey line) and infilled (a dashed red line) kriging models are
reported.
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model was executed 40 times (Eq. (8)), and the NSE index was
computed for each run and stored in a 1D array. A single run of
the original HYDRUS-2D model required almost 1 min of CPU time
on a laptop equipped with a CPU Intel� Core i7-4700 MQ 2.40 GHz
processor and 8 GB of RAM. Next, the LHS sample and the NSE array
were used in the PSO optimization framework to estimate the krig-
ing parameters. To check its accuracy, the obtained kriging model
was validated on another independent sample generated with
the LHS. As shown in Fig. 5, the validation sample covered values
of NSE ranging from 0.2 to 0.8, providing information about the
response surface for both less and more accurate portions of the
parameters space.

At the first inspection, the kriging model based on the initial
sample exhibited a moderate accuracy. The determination coeffi-
cient R2 for the initial kriging model was 0.91, which already indi-
cated an overall accuracy of the surrogate model (Forrester et al.,
2008). This confirmed the good coverage of the DoEs sample. How-
ever, as shown in Fig. 5, the surrogate, while being highly accurate
for low values of the objective function, introduced a significant
bias for high values of NSE, which are those of interest in an opti-
mization framework. The regression line for the initial surrogate (a
dashed grey line in Fig. 5) almost overlapped the bisector (a black
line in Fig. 5), which indicates a perfect agreement between the
surrogate and the original model in the range of 0.2–0.4, while it
underestimated values of the response surface in the region
around 0.8. The underestimation of the response surface values
in the region where optimal parameter values are likely located
could influence the next surrogate-based optimization of soil
hydraulic properties.

To increase the accuracy of the kriging model, the approxima-
tion uncertainty framework was used next. As described in the
methodology section, 15 infilled points were added to the initial
design sites using the expected improvement approach. As shown
in Fig. 5 and as expected, the infilled kriging model outperformed
the initial kriging model. The determination coefficient R2

increased to 0.98, indicating that the infilled kriging improved
the description of the response surface. This behavior was con-
firmed by the regression line (a dashed red line in Fig. 5), which
almost overlapped a bisector line. Moreover, the accuracy of the
kriging model improved for high values of NSE, which are those
of interest in an optimization process, while remaining similarly
high for low values of NSE. This global accuracy of the surrogate
is fundamental for the GSA, which explores the response surface
landscape. However, it should be noted that even when the surro-
gate accuracy improves after applying the approximation uncer-
tainty framework, a certain degree of bias remains. A possible
solution to further investigate this bias would be to increase the
validation sample size. However, there are no clear indications in
the literature regarding the size of the validation sample in similar
problems (i.e. optimization and sensitivity analysis of soil hydrau-
lic properties), making the choice rather subjective. Moreover,
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increasing the validation sample size would significantly increase
the computational cost of the analysis. In our particular case, in
view of all the possible sources of uncertainty that affect the anal-
ysis, the validation of the surrogate-based optimized parameters
against an independent set of data, performed towards to end of
the study, was specifically intended to provide a final check on
the accuracy of the estimated parameters. Considering the rela-
tively high accuracy of the surrogate, no additional points were
thus added to the design sites considering the relatively high accu-
racy of the surrogate, and the final surrogate was used for the GSA
and optimization.
3.3. Global Sensitivity Analysis

The validated kriging model was next used in the GSA. Sobol’s
sensitivity indices, with their confidence intervals for each param-
eter, are reported in Table 4.

The sensitivity analysis revealed that the model was additive.
This was confirmed by the sum of the first-order indices, which
was almost 1, and by negligible differences between the first-
order and total-effect indices for each parameter. An additive
model Y = f(X1, X2,. . ., XN) can be decomposed into a sum of N func-
tions, where N is the number of parameters. This means that the
effects of interactions between model parameters on model results
were negligible.

As shown in Table 4, the most influential parameter was the
shape parameter a. Its first-order (S1) and total effect (ST) indices
were more than an order of magnitude higher than corresponding
indices for the second most influential parameter Ks. The pore-size
distribution index n and the saturated water content hs exhibited
the lowest sensitivity, indicating their marginal role on the out-
put’s variance. Moreover, since their total effects were almost zero,
these parameters can be fixed to any feasible value in the param-
eter space without affecting the value of the objective function,
reducing the dimensionality of the inverse problem to only two
parameters, a and Ks. Such results are very useful in an optimiza-
tion framework, since they can simplify the parameter estimation
procedure. Some of the total effect indices were only slightly larger
than the first order indices. This is mainly due to approximation in
the numerical integration of the total unconditional variance
(Sobol’, 2001).

It must be emphasized that additivity is quite unusual for envi-
ronmental models, which are generally characterized by high non-
linearity and interactions between parameters (Brunetti et al.,
2016b; Nossent et al., 2011). In our particular case, the dominant
effect of the a parameter on the hydrograph makes it difficult to
identify interactions between parameters. This may also indicate
that water flow in the filter layer deviates from the traditional Dar-
cian behavior and involves other physical processes, such as pref-
erential and film flows. In such circumstances, some parameters
can exhibit a negligible effect on the model’s response. This may
indicate that the proposed modeling approach could be affected
by model discrepancy, a concept introduced by Kennedy and
O’Hagan (2001) to assess sources of uncertainty due to underlying
missing physics, numerical approximations, and other inaccuracies
Table 4
The first-order (S1) and total (ST) effect indices (in a decreasing order) with their
bootstrap confidence intervals (BCI) for the soil hydraulic parameters.

Parameter S1 S1 (BCI) ST ST (BCI)

a [1/cm] 0.93 0.24 0.94 0.05
Ks [cm/min] 0.04 0.08 0.05 0.007
n [�] 0.01 0.02 0.008 0.001
hs [�] 0.002 0.01 0.001 0.001
Sum �1.0 �1.0
of the model. When themodel discrepancy is not directly accounted
for, the model parameters can be treated as simple tuning param-
eters, which often act as a simplified surrogate for somemore com-
plex process that is not modeled in the simulator (Brynjarsdottir
and O’Hagan, 2014). In our case, it is plausible that the shape
parameter a acted as a tuning parameter, condensing and repre-
senting more complex phenomena, namely preferential and film
flows. It must be emphasized that the surrogate-based sensitivity
analysis can be extremely useful in detecting different sources of
uncertainties. Future researches should explicitly account for
model discrepancy in the analysis (Brynjarsdottir and O’Hagan,
2014) to examine its impact on the model’s behavior, or perform
the same type of analysis using more complex models which
account for preferential flows in the filter layer.

As mentioned in the methodology section, the GSA required
30,000 evaluations of the surrogate model. The computational cost
of the kriging-based sensitivity analysis was limited to 1–2 s on a
laptop equipped with a CPU Intel� Core i7-4700 MQ 2.40 GHz pro-
cessor and 8 GB of RAM. On the other hand, since a single HYDRUS-
2D model run required approximately 1 min, the same type of GSA
performed using the original HYDRUS-2D model would have
required approximately 21 days of continuous computation. This
clearly represents one of the main advantages of surrogate-based
modeling: performing the same type of analysis with negligible
computation time and a similarly good level of accuracy.

3.4. Kriging-Based optimization

Using the results of the GSA, only shape parameter a and the
saturated hydraulic conductivity Ks were optimized. The saturated
water content hs and the pore-size distribution index n were
assumed to be 0.15 and 3.2, respectively, considering that the filter
layer consisted of coarse gravel, usually characterized by reduced
porosity and narrow pore-size distribution. The soil hydraulic
parameters of the filter layer, including the optimized parameters,
are summarized in Table 5. The filter layer exhibited both a high
value of the saturated hydraulic conductivity Ks (90 cm/min) and
a very low value of the shape parameter a (0.001 1/cm).

The estimated parameters indicated that the hydraulic behavior
of the filter layer was characterized by high flow rates and negligi-
ble retention capacity, which are both typical for coarse textured
media. The optimized parameter values are similar to those
reported in Brunetti et al. (2016b) for the base layer of a permeable
pavement. In that study, the base layer consisted of crushed stones
and was modeled using either the classical VGM function or the
dual-porosity approach to account for preferential flow. Specifi-
cally, for the unimodal VGM function, the authors reported a value
of 0.023 1/cm for the shape parameter a and a saturated hydraulic
conductivity Ks of 68.7 cm/min. Moreover, the plausible occurrence
of film flow in the filter layer, which can support very high flow
rates, especially at near-zero matrix potential (Tokunaga, 2009),
needs to be contemplated. Under such circumstances, the hydrau-
lic behavior of the material tends to deviate from the typical
Richard’s type flow, and the optimized parameters attempt to
approximate a combination of fingering and film flow that likely
occur in this layer.

Fig. 6 shows a comparison between the measured and modeled
hydrographs for the optimization period. The PSO resulted in the
NSE value of 0.85, which confirmed the accuracy of the measured
and estimated parameters. As reported byMoriasi et al. (2007), val-
ues of NSE between 0.75 and 1.0 indicate a very good agreement
between hydrographs, and an adequate model calibration. The
model was able to correctly reproduce the fast hydraulic response
of the hydrograph during precipitations and to reasonably estimate
peak flows. The insert of Fig. 6 shows the simulated against mea-
sured SF outflows. The same plot also shows a bisector line, which



Table 5
Unimodal VGM parameters for the filter layer. The shape parameter a and the saturated hydraulic conductivity Ks were estimated using the PSO algorithm.

Soil hydraulic parameters

Layer hr (�) hs (�) a (1/cm) n (�) Ks (cm/min) L (�)
Filter 0 0.15 0.001 3.2 90 0.5

Fig. 6. A comparison between measured and simulated outflows versus time and against each other (in the insert) for the calibration period. The full and dashed lines in the
insert are a bisector and linear regression line, respectively.

Fig. 7. The a-Ks response surface obtained using a regular grid of 40,000 points. The
red lines indicate the cross sections reported in Fig. 8.
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indicates a perfect agreement between simulated and measured
outflows, and a linear regression line. The good performance of
the model is confirmed by the determination coefficient R2 = 0.85.
The comparison between the bisector and regression lines indicates
that, in general, the model slightly overestimated the outflow.

A careful inspection of simulated fluxes revealed that the model
tends to underestimate low flows (Fig. 6). This behavior could be
related to the coarse nature of the filter layer, which closely resem-
bles ‘‘fractured aquifers”. Typical breakthrough curves for fractured
aquifers are characterized by early breakthrough and long tailing
(Geiger et al., 2010). This is due to a delayed response in the matrix
to pressure head changes that occur in the surrounding fractures.
Brattebo and Booth (2003), Brunetti et al. (2016b), and Fassman
et al. (2010) observed a similar behavior in permeable pavements,
the base and sub-base layers of which are composed of crushed
stones. In such circumstances, more complex models are needed
to simultaneously describe fast preferential flow and the matrix-
fracture interactions in the filter layer (Brunetti et al., 2016b).

Since the computational time associated with a single surrogate
model evaluation was negligible, the approximate response surface
was investigated. Fig. 7 shows the a-Ks response surface obtained
using a regular grid of 40,000 points. The darkest areas represent
regions of the parameter space with high values of NSE. At the first
inspection, the response surface was characterized by a moderate
multimodality. As shown in Fig. 7, optimal solutions were concen-
trated in the left part of the plot for values of a between 0.001 and
0.05. For a values > 0.05, the objective function dropped quickly to



274 G. Brunetti et al. / Journal of Hydrology 548 (2017) 263–277
0.3–0.4. The NSE values slowly increased for values of a > 0.2. This
can be expected since the a parameter for gravels usually has rel-
atively high values. However, in our case, high values of awere not
able to accurately reproduce the hydraulic behavior of the SF. For
large a values, the filter layer quickly desaturates and increases
its retention capacity. This effect delays the hydraulic response of
the system to precipitation events. On the contrary, the use of
low a values delays the desaturation of the filter layer, thus reduc-
ing its retention capacity (Cey et al., 2006). This makes the filter
layer more responsive to precipitation events, which was the
behavior observed in the measured hydrograph. On the other hand,
the response surface exhibited limited variability in the Ks direc-
tion, since high values of NSE were guaranteed for a broad range
of saturated hydraulic conductivity values.

These results confirmed the findings of the GSA, which clearly
indicated that the variance of the objective function was mainly
driven by the shape parameter a, with only a limited influence of
Ks. This behavior is shown in detail in Fig. 8.

Fig. 8 shows horizontal (Ks = 90 cm/min) and vertical
(a = 0.001 1/cm) cross-sections (red lines in Fig. 7) through the
response surface. Yellow rectangular areas are expanded in the
right part of the plot. With respect to Ks, the optimum was not
clearly identifiable at the first inspection. The values of the objec-
tive function ranged between 0.8 and 0.85 in the entire range of the
saturated hydraulic conductivity, indicating its limited effect on
the response surface. The area around the PSO-optimized value
of Ks (90 cm/min) is expanded in the bottom-right corner of
Fig. 8. From this plot, it is evident how the PSO algorithmwell iden-
tified the optimal value Ks, even for a flat profile.

Conversely, Fig. 8 shows a completely different behavior for the
a-NSE profile, for which an optimal region was identified in the left
part of the plot for low values of the a parameter. While the gradi-
ent of the curve seemed to approach a maximum, it was not possi-
ble to clearly identify the optimum, which may have been outside
of the range imposed on the a parameter. As previously discussed,
this behavior could be related to a deviation from the Darcian flow
in the filter layer, which requires a more complex modeling
Fig. 8. Horizontal [Ks = 90 cm/min] (top), and vertical [a = 0.001 1/cm] (bottom) response
the right.
approach. The further analyzes of the response surface indicated
that values of a over 0.01 1/cm corresponded to a marked decrease
of NSE. This is evident from the expanded area in the top-right cor-
ner of Fig. 8. This finding is in agreement with the results of the
GSA, which identified a as the most influential parameter.

In order to verify whether additional soil hydraulic parameters,
such as the saturated water content hs and the pore-size distribu-
tion index n, influenced the optimum, a surrogate-based optimiza-
tion, which considered four soil hydraulic parameters was carried
out. The results of the optimization are listed in Table 6.

As shown in Table 6, the newly estimated parameters are very
similar to those estimated when hs and n were fixed. The saturated
water content was 0.17, which is slightly higher than the previ-
ously fixed value. Conversely, the pore-size distribution index n
was slightly lower, but the difference was again very small. The
two most sensitive parameters a and Ks had some small changes,
however overall results are in a good agreement with those
reported previously. Again, the filter layer exhibited a relatively
high permeability and a low value of the a parameter, which is
no longer situated at the border of the evaluated parameter space.
Since a is related to the inverse of the air-entry pressure head, this
suggests that its value is finite and could potentially be measured.
These numerical differences could be related to the effects of inter-
actions between parameters, which, even if small in magnitude as
demonstrated by the GSA, can affect the parameters estimation.
Including these parameters in the optimization process can poten-
tially reduce the parameters uncertainty and help in better defin-
ing the problem.

3.5. Model validation

In order to evaluate the reliability of the estimated parameters,
the model was validated using another independent set of experi-
mental data. Fig. 9 shows a comparison between measured and
modeled hydrographs during the validation period.

The value of the objective function was NSE = 0.8, which again
confirmed the adequacy of the estimated parameters. The descrip-
surface cross-sections. The yellow rectangular areas for both plots are expanded on



Table 6
Unimodal VGM parameters for the filter layer. The saturated water content hs, the shape parameters a and n, and the saturated hydraulic conductivity Ks were estimated using the
PSO algorithm.

Soil hydraulic parameters

Layer hr (�) hs (-) a(1/cm) n (�) Ks (cm/min) l (�)
Filter 0 0.17 0.003 3.1 89 0.5

Fig. 9. A comparison between measured and simulated outflows versus time and against each other (in the insert) during the validation period. The full and dashed lines in
the insert are a bisector and linear regression line, respectively.
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tion of the hydraulic behavior of the stormwater filter during rain-
fall events was satisfactory. This capability of the calibrated model
to correctly describe the hydraulic behavior of the system is impor-
tant when dealing with the analysis of combined traditional drai-
nage systems and LID techniques. A correct description of the
hydrograph during precipitation events gives information about
the lag time and the intensity of peak flow, which are fundamental
for both a comprehensive hydraulic analysis of drainage systems,
and for the evaluation of benefits of LIDs implementations. The
model was not able to reproduce outflow induced by the precipita-
tion event on March 15. This may be related to an overestimation
of actual evapotranspiration calculated using values from the liter-
ature for albedo, LAI, and a hypothetical roots distribution, which
could result in an overestimation of the storage capacity of the
SF at the beginning of the precipitation event, which had a total
volume of 6 mm. As a result, the model predicted that the SF
retained all the precipitation volume. A better characterization of
evapotranspiration could help in increasing the accuracy of the
model, which was already high. As for the optimization data set,
the model poorly described the long tailing behavior of the hydro-
graph after precipitations. This behavior is particularly evident for
the precipitation event on March 28.
4. Conclusions and summary

The aim of this study was to demonstrate the benefit of
surrogate-based modeling in the numerical analysis of Low Impact
Development techniques. In particular, the unsaturated hydraulic
properties of a contained stormwater filter installed at the Univer-
sity of Calabria were evaluated in the study. The kriging technique
was used to approximate the deterministic response of the widely
used mechanistic model HYDRUS-2D, which was used to simulate
the variably-saturated hydraulic behavior of the filter. In order to
reduce the dimensionality of the inverse problem, the simplified
evaporation method was used to determine the unsaturated soil
hydraulic properties of the soil substrate placed on the top of the
filter layer. The Nash-Sutcliffe efficiency index was used both to
compare the simulated and measured outflows, and as the variable
of interest for the construction of the response surface.

The PSO heuristic algorithm was used to estimate the kriging
parameters based on an initial set of design sites obtained using
Latin Hypercube Sampling. The approximation uncertainty frame-
work improved the accuracy of the surrogate model by using the
expected-improvement approach to select additional points to
the initial design sites. The kriging model was validated against
an unexplored set of points with satisfactory results. The obtained
surrogate was then used to perform a Global Sensitivity Analysis of
the hydraulic parameters of the filter layer based on Sobol’s
method, with a negligible computational cost. The sensitivity anal-
ysis revealed that the model is additive, and that two soil hydraulic
parameters, the shape parameter a and the saturated hydraulic
conductivity Ks, mainly affect the hydraulic response of the filter
layer. These two parameters were estimated using the PSO algo-
rithm with a NSE value of 0.85, which indicated an good accuracy
of the model. Moreover, the analysis of the response surface con-
firmed the results of the GSA, identifying a as the most influential
parameter. The reliability of the surrogate-based analysis was eval-
uated by validating the optimized parameters on an independent
dataset of measured outflows. A NSE value of 0.8 confirmed the
reliability of the HYDRUS-2D model calibrated using the kriging
technique. In both the optimization and validation, the model
poorly described the long-tailed behavior of the hydrograph after
precipitations. This could be related to the model inadequacy in
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describing both the film and preferential flows, and the matrix-
fracture interactions that occurs in the filter layer. This suggests
that more complex models are needed to better describe the
hydraulic processes involved.

One of the most widespread criticism against the use of mech-
anistic models is their computational cost, which limits their adop-
tion. This study has demonstrated how a surrogate-based analysis
can provide an effective solution in overcoming this limitation. In
this paper, the kriging technique was used for highly expensive
computational analyses, such as the GSA and the PSO, with good
results. The sufficiently accurate reproduction of measured hydro-
graphs, which is extremely important in the analysis of LIDs, con-
firmed the benefit and reliability of surrogate-based analysis.

This novel study represents the first contribution towards the
use of surrogates for LIDs analysis, which does not need to be lim-
ited only to the investigation of soil hydraulic properties. For
example, potential applications can be also targeted to the opti-
mization of the morphological characteristics of the LID itself
(depth, slope, plants, etc) for a particular climate, to the optimiza-
tion of the adsorption properties of filter layers, or for specific
design aims. Such studies could help in providing a better under-
standing of LID techniques while promoting the widespread adop-
tion of such systems.
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